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Summary. A stochastic differential equat ion with smooth coefficients is 
considered, which defines a cont inuous flow ~bt(co, �9 ) of C ~ mappings of R d in 
R a. If z~ is a cont inuous semi-martingale, q~t(co, zt) is proved to be a semi- 
martingale, for which an Ito type formula is established. It is shown that  a.s., 
for any t, q~t(co, ") is an onto  diffeomorphism. If z t is a cont inuous semi- 
martingale, q5 t ~(co, zt) is proved to be a semi-martingale, whose Ito decom- 
posit ion is explicitly found. 

Consider  the stochastic differential equat ion 

(0.1) d x  = X o ( x  ) dt + X ~(x) . dw  ~ 

x(0)=x 

where X o , X 1 . . . X  m are m + l  vector  fields on R e, w = ( w l . . . w  m) is a Brownian 
motion,  and dw is its Stratonovi tch differential. 

Under  differentiability assumptions on the vector fields X o . . . . .  X m, it is 
easily proved that  (0.1) defines a flow of C ~ mappings of R d in R d, i.e. if x~(co) is 
the solution of (0.1), it is possible to choose a version of the mapping 

(co, t, x)--, x~(co) 

in such a way that  a.s., x.(co) is C a on R a (see Malliavin [11], Elworthy [5] 
and our  work [3]). 

Let  qS. (co,.) be this essentially unique version, i.e. 

(0.2) q~,(co, x)= x~(co). 

In Sect. 1 of this paper we recall some results concerning other  known results 
about  qb. (co, "). 
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In Sect. 2, we prove that if z t is a continuous semi-martingale with values in 
Ra, 4)t(co, zt) is a semi-martingale, whose Ito-Meyer decomposition is explicitly 
found, in Ito form and in Stratonovitch form. 

This result can be easily extended to any general semi-martingale. 
In Sect. 3, we show that a.s., for every t, ~bt(co, -) is a diffeomorphism of R e 

onto R a. The derivation of the a.s. injectivity of qSt(co, -) is easy using standard 
differential analysis techniques. Due to the non compactness of R a, it is much 
harder to prove that qSt(co, ") is a.s. onto. The problem is solved by treating the 
lack of surjectivity of ~bt(co, ") at certain times as a singularity, then using a 
selection Theorem from the theory of stochastic processes [-4] to arrive at a con- 
tradiction with the Markov property of the flow. 

In Sect. 4, we show that if z t is taken as in (0.2), ~b t- 1 (co, zt) is a continuous 
semi-martingale, which is obtained by solving a stochastic differential equation. 

The results contained in this paper were announced in [2]. Let us also 
mention a forthcoming paper by Kunita [9],  which has close connections with 
our paper. 

1. Stochastic Flows 

Let f2 be the set of continuous functions defined on R + with valued in R m. A 
point in ~2 is written co, and the trajectory is w t. Let F t be the ~-field F t 
= B ( w s l S < t ) .  

P is the brownian measure on s with P (wo=0)= l .  {Ft+}t>=0 is the right 
continuous regularization of {Ft}t_> o, which is completed by the negligible sets in 
F~ [4]. 

X o . . . .  , X m are m+  1 C ~ vectors on R e, which are bounded with bounded 
derivatives of all orders. 

Following the notations of Stroock and Varadhan [-13], we define 

[2" t] I-2" t] + 1 
t . -  2 n t + - 2 n 

# * ' " ( t )  = " ~ + ; 2 (w ( t ~ ) - w  (t~)). 

Consider the stochastic differential equation 

(1.1) d x  = X o (x) d t  + X~(x )  . d w  ~ 

x(O) = x  

where d w  is the Stratonovitch differential of w. (1.1) may be put in the 
equivalent Ito form 

(1.2) 

where X~ is given by 

(1.3) 

d x  = X ~ (x) dt  + X; (x ) .  a w ~ 

x(O)=x 

1 aX i 
x *  (x) = Xo(x) + ~ ~ (x) x,(x) 

and 6 w  is the Ito differential of w [12]. 
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Consider now the approximations of Stroock and Varadhan [13] of the 
solution of (1.1) by the solutions of the ordinary differential equations 

dx" = (Xo(x") + Xi(x" ) ~i, ,) dt 
(1.4) 

x"(0) = x.  

By using standard results on ordinary differential equations, the solutions 
x7 'x of (1.4) is easily proved to depend differentiably on x. Let ~bT(co, x) be defined 
by 

q~(co, x) = g '  x. 

For every co, ~bT(co, x) is then jointly continuous in (t, x), C ~ in the x variable, 
a"q~" 

and for any m , ~ ( c o ,  x) is jointly continuous in (t,x). Moreover, by using 

time reversal on (1.4), for every co, and every t>0,  ~b~(co, .) is a diffeomorphism 
of R d onto R d, and [q~". ] 1 (co, .) has the same properties as ~b". (co,-). 

We then have the fundamental: 

Theorem 1.1. There exists an essentially unique mapping ~t(co, x) defined on Q 
x R + x R d with values in R d, such that: 

a) For any (t, x ) e R  + x R d, co~(~t(co, x) is Ft + measurable. 
b) A.s., the mapping (t, x)~Ot(co, x) is continuous on R + x R e. 

am 4) 
c) A.s., for any (t, x), the differentials ~x~ t (co, x) exist, and are continuous on 

R + x R d. a~) 
d) A.s., for any (t, x), ~xx' (co, x) is non-singular. 

e) For any x e R  d, t--'Ot(co, x) is the essentially unique continuous solution of 

(1.1) with initial condition x. For any x s R  d, t ~ x t  (co, x) is the essentially unique 

solution of the stochastic differential equation on (d, d) matrices 

= ~-.f(dpt(co, x ) )Z  dt + O_~((/),(co, x ) ) Z . d w  i dZ  

(1.5) 
Z(0)=I .  

f) ~". (co,.) converges in probability uniformly on any compact set of  R + x R e to 
q).(co, .). amq) n 

g) For any m, Ox ~ . (co, .) converges in probability uniformly on any compact 

am4. ,  
set of R + x R d to ~-x -x~ tco , .). 

]1 
h) r ~qS". (co, .) converges in probability uniformly on any compact set of  

L ax " 

. o  -1 

Proof. Some of these results are contained in Malliavin [11] (see also Elworthy 
[5]). All of them are proved in Theorems 1.1.2 and 1.2.1 of our own work [3] (see 
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[2]). In [3], the key point of the proof is the inequality 

(1.6) Fors ,  t<T ,x ,  yeRe, p>2,  

Eight(co , x)-~b~(co, y)12p ~ CT, p(I x _ yl2p_t - it_sip). 

The time part of the inequality is essentially in Stroock and Varadhan [13]. The 
space past of the inequality is slightly more involved: we use Gronwall's lemma 

rk 2" k + l q  on each dyadic interval [ / , ~ ; - ] ,  as well as the martingale techniques of 

[13]. For p large enough, (1.6) proves that the measures P" on f2x C(R + 
x Re; R e) images of measure P by the mappings co~(co, q~".(co,-)) are tight. 
Moreover the inequality 

(1.7) For s, t < T , x , y ~ R  d p > 2  

Elx~-x212P ~ CT, p(Ix-- yl2V + lt-- sl p) 

is trivially proved for the solutions of (1.1), which implies the existence of the a.s. 
continuous qS.(co, .) on R + x R e. 

Using Stroock and Varadhan's result [13] on the convergence in law of the 
solutions of (1.4) to the solution of (1.1), the limit of the sequence P" is easily 
proved to be the measure 15 image of P by the mapping co~(co, ~b.(co, .)). A 
measure theoretic argument proves then that ~b". (co,-) converges in probability 
uniformly on any compact set of R § x R e to qS. (co,.). 

c?~(co, x) is given by the solution Z .... of the differential equation 

(1.8) 

dZ,,~ /C?Xo 8Xi  x .i ,,~ = o, l w , )  

Z"' ~ (0) = I. 

Z"' ~ dt 

Consider the stochastic differential equation 

(1.9) 

dZX = ~ (xx) Z x dt + ~ (xx) ZX . dw i 

ZXo = L 

Inequalities corresponding to (1.6) and (1.7) are proved for Z "'x and Z x. It 
follows that a a.s. continuous version of the mapping (t, x)--+Z~[ exists. Z't"x(co) is 
then easily proved to converge in probability uniformly on any compact set of 

R + x R  e to Z~(co). Since ZT'X(co)=~xt (co,'), trivially a.s., for any t, (co, x) 
exists and is equal to Z~(co, .). 

A similar method applies to prove the a.s. existence and continuity of 
0mq~ 
0x" " (co' ")" To prove d), consider the equation 
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c?Xi (x~) dZ'~= - Z ' X ~ - ( x ~ ) d t - Z ' ~ -  x .dw ~ 

(1.10) 
Z~; ~ =I .  

An inequality of type (1.7) is easily proved for Z'tX(co), which implies the 
existence of an a.s. continuous version of (co, t,x)--,Z;X(co). Now the rules of 

x t x  Stratonovitch calculus allow us to see that for any x, t--*Z, Z t is a solution of a 
stochastic differential equation whose unique trivial solution is I. Then for any 
x ~ R  a, a.s., for any t > 0  

(1.11) Z~[ Z;x=I.  

From the a.s. continuity of Z and Z' in (t, x), it follows that (1.11) holds a.s. 

for any (t, x). Since Z~ = ~-~ ~ (co, x), (1.11) proves d). h) follows from d) and g). [] 
UX 

We now express the Markov property of the flow ~b. (co,.). 

Theorem 1.2. Let 0 s be the translation operator 

co = (w,)-- ,  0s(co) = (w~+,- Ws). 

Then for any stopping time T, a.s. on (T<  + oo),for any (t, x )~R + x R a, one has 

(1 .12)  OT +,(co, x) = r 4T(co, x)). 

Proof. The proof is essentially trivial. Note that by a classical result on 
Brownian motion, the measure P.r defined by 

P.r(A)=p.(O~l(A ), (T< + oo)) 
(1.13) P ( T <  + oo) 

is equal to P. ~.(Or(co)," ) is then unambiguously defined a.s. on ( T < + o o ) .  
Moreover for fixed x ~ R  a, the a.s. equality expresses the Markov property of the 
solution of (1.1) - see e.g. [14] - Theorem 5.1.5. Using the a.s. continuity of both 
sides of (1.12) in (t, x) on (T<  + oo), (1.12) is proved. [] 

2. The Generalized Ito-Stratonoviteh Formula 

The assumptions and notations in this section are the same as in Section 1. 
We now have the following result, which generalizes the classical Ito formula 

of change of variables: 

Theorem 2.1. Let z t be a continuous semi-martingale on (fL Ft +, P) with values in 
R a, which may be written as 

zt = Zo + At + i Hi" 6wl 
0 
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where zo~R d, A t is a continuous adapted bounded variation process such that A o 

=0,  and H 1 . . . H  m are adapted processes such that for any t>O, i [Hi]Zds< 
+ oo a.s. o 

Then (at(co , zt) is a continuous semi martingale whose Ito decomposition is given 
by 

t r 

c~ X i cq (a , 1 c~ 2 (a , , 
+ ~ ((a, (co, z,)) ~ x  (co, zu) H i + ~ ~x2,1co, zu) (Hi, Hi)] du 

~0 &b ' [Xi( 6M. 
0 ~TX 0 L O X  l 

Proof  The  p roof  is an adapta t ion  of  the now classical p roof  of Ito's formula 
given by Kun i t a -Watanabe  in [10], and extended by Meyer  in [12], but  it is 
somewhat  more  involved. The  difficulty comes from the necessity of controll ing 
the flow (a. (co,-) as well as z~. 

No te  that  the two sides of  (2.1) define a.s. cont inuous processes so that  we 
need to establish (2.1) only for a fixed t e R  +. By a stopping argument,  we may 

s s 

assume that  Zs, S IdA], ~ H i. 6w i are bounded  processes. Let  k be an upper  bound  
for their norm. o o 

Define the stopping t ime S~ by 

(2.2) Sz=inf  t > 0 ;  sup ~7.~t(co, x) > l  
Ixl_-<k ] ~x 

O _ < m < : 3  

0"(a (co, ") in (t, x), when l ~  + 0% Sl--, Note  that  by the a.s. jo int  cont inui ty of 8 ~ - .  

+ oo a.s. We will prove (2.1) at t ime t/x S z. By making l--+ + 0% (2.1) will follow 
for t. 

Take e > 0. Let  {T,} be the s topping times 

(2.3) T 0 = 0  

T , + I = t A S I A ( T , + e )  

s ~SW i i i n f  S> Zn; sup [IAs--AT~[, ~. H i �9 

sup 0~7#,tco, x J - ~ x  T,(CO, x ) =>e . 
0'2'2 2 

Clearly, by a joint  cont inui ty argument,  the sequence T, is seen to increase 
a.s. to t/x Sz, and to be s ta t ionary for n large enough (of course, the smaller n 
when T, becomes s tat ionary depends on co). We then have 

(2.4) (at ̂  s,(co, z, ̂  s,) = Zo + X ((at. +, (co, zr.+ ,) - (ar,,(co, zr.)). 
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Moreover 

(2.5) 4ro+,(co, z ~ . + ) -  q~T~ z~o) = (q~ .... (co, z~~ 1)- q~~ ,(co, z~.)) 

+ (~ .+ ,  (co, ~ o ) -  ~ ~o(co, zr.)). 

In the sequel, we make e tend to 0, i.e. take any sequence s,, of > 0 reals 
decreasing to 0 when m--+ + oo, and take the limit in the R.H.S. of (2.4)�9 

�9 Limit  of Z(qSr, +~ (co, zr,  ) - q~r,(co, zr,)) 

By Theorem 1.2, we know that  a.s. 

(2.6) 4~~ +.(co, zr~ = 4.( O~. (co), 4~. (co, zr.)) 

(note that  T. is always < + oo). 
Now since zr. is FT -measurable, OT.(co, ZT.) is FT#measurable. Moreover 

since OT,I(F.) and FT. are independent, ~b~(0T.(co), 4T.(co, ZT.)) is a semi-mar- 
tingale whose starting point qbTn(co , ZT. ) is independent of 0-  ~ T. (F~). It follows that 
for s > 0  

(2.7) G(0~~ ~~ zr.)) 
s 

= 4~o(co, Z~n) + ~ X* (G(0~o(co), ~o(co, Zro))) du 
0 

s 

+ S XM~.(Or.(co), Or.(co, Zr.)))" ~w~(Oro(co)). 
0 

Using Theorem 1.2, it follows that  for s > T,, one has 

(2.8). ~bs(co, zr .  ) = ~br.(co, zr .  ) + j X* (~b, (co, zr .))du 
Tn 

+ i xi(G(co, zr)). ~w ~. 
Tn 

For  u<t iS t ,  let n(u) be defined by 

(2.9) T.(.i < u < T.(u) + 1 

F rom (2.8), we get that  

(2.10) z(~~ 1(co, z%)-~~ z~~ 
l A S t  f A S t  

= I x~(G(co, z~o,o))a~+ y x,(G(co, zr~ 
0 0 

When e--*0, the optional process zr,(, ~ converges uniformly to z, on 
[0, t/x Sl]. Then ~b,(co, zr ,  c,~) converges uniformly to ~,b,(co, z,) on [0, t/x Sl]. Since 
X*, X~ . . .X, ,  are bounded and continuous, trivially 

(2.1 1) Z(05T, + 1 (co, z r , ) -  ~br, (co, zr,)) 
t A S l  t i S !  

-+ y X*(O,(co, G))du+ ~ X~((a,(co, z,)).aw ~ in probability. 
0 0 
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�9 Limit of 2(Or.+ ,(co, z%~+ , ) -  ~br.+,(co , ZT.)) 

By Taylor's formula, since on [O, Sz], 8x 3 . (co,. is uniformly bounded on 
{xeRe; Ixl<k} by l, it follows that 

(2.12) 

8+ 
- 8 x  r'+~ (co, Zro) (zr .+  1 - Z r o )  

1 82(]~ 
+~ 8x 2 r.+~ (co, zr.)(Zr.+l--ZT., zr.+l --ZT.)+ R.(CO) 

with 

(2.13) 

By (2.3), we know that 

[R.(co)l < llzr.+ ~ --r.]" 3 . 

(2.14) 

which implies 

(2.15) 

1) We have 

I z r . . 1 - z r . l < C e  

IR.(co)l <-_ C e l z r . + , - z r n l  2 

(2.16) 
80 8~ 
8 x  r.+ i (co, z~ . )  ( z r  . . . .  --Zr . )=~xx r.+ ~ (co, z~.)  (A  r~ , --  A ~~ 

8• Tn + 1 

+8xr,+l(c~ ~ Hj "(~wJ. 
Tn 

a) Obviously 

(2.17) " (~X T .... ( ( ' O ' Z T ~ ) ( A y n + l - - A Y n ) ) = ! ~ x Y n ( u ) + l ( O ~ , Z T n ( , , } ) M A "  

Since T,,(,) converges uniformly to u, and since ~-~(co, x) 

bounded on [0, t A Sg] when  ]x] < k, it follows immediately that 

~s,  8q5 ,As, 8,~ 
(2.18) jo 8x-xr"~u'+ 1(~ S ~ ' r  (o~,G)dA. 

o 8x 

b) Us ing  (1.12), we have 

(2.19) 8~r '+"  (co' z r ~ ) = ~ 8 x  " (Or"(~176 +r'(CO'Zr'))~xT'(CO'Zr~)" 

is uniformly 

From the independence of O~l(F~o) and Ft., and from (1.5) written in Ito's 
form, one sees that for s > T. 
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(2.20) 8x ~ " cx " ,, 
8X~ 80 + ),, ~ -  (0,(~0, ~))~-x, (o, z~o). ,~w'. 

~) We have 

(~XX T~+ I \ t A SI 
(2.21) Z T,(~o, zr,) ~ Hj.6wj)= ! 80 T. 8X T.(~) (O.), ZT.(.)) H i �9 8W j. 

ar a~ 
Now when a~O, ~77__T.(~(CO, ZT.(~) converges uniformly to ~.(co ,  G) for 

uX u.K 

u<__tAS l, while staying uniformly bounded. Since E ~ IHfl2du is bounded, it 
follows that o 

(2.22) X r.(co, zr.) j Hj.6w j --, ((9, z,)Hj.cSw j in probability. 
T. 0 

fi) We study the limit of 

(2.23) Z[ Jr ~x-x tq)"tc~176 ~ n jawJ " 
n Yn 

oXo 
From (2.2), (2.3) and from the boundedness of ~x-x' (2.23) may be bounded in 

norm by C ~ t. 
When a~0,  (2.23) tends to 0. 
7) Consider now the sum 

Let us calculate 

E Z " ~ x  i 8q~ i wn+l (2.25) [ri+, (O"(m'Zr'))~XXU(O'ZT")'SW ~, HJ "6wj 
L Tn Tn 

- : T o ) ) ~ .  

By a martingale property, the various terms in the sum in (2.25) are mutually 
orthogonal. (2.25) may then be bounded by 

( IT'+' ~ X  i 8~b T ' + I H j . 6 W l 2  
(2.26) C~XE ~ (O,(CO, ZT,))~XU(O),ZT,).6wi ~ 

T. 

+XE ~ #Xi ~~ ~x-x(6,,(co, z~o)) .(o~,z~o)H, du- 
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Tn+ (~W j 
Since Tn+I-Tn and j Hi. are bounded by 
0r 
8~" (co, ZT~ ) is uniformly bounded, (2.25) is bounded by 

and 
8Xi 

(r z~o)) 

(2.27) C[e2E(tASz)+xeE T"+~ ] ( +oo ) [H~12 du < C ez t + eE ~ IH,12 du 
T n 0 

(2.27) tends to 0 when e~0. From (2.25) - (2.27), we get that 

(2.28) X (r Zr.))ff-X,(CO, ZT.)'bWl ~ Hj'bw j 
Tn 

0 8X ~(~) 

Now clearly 

(2.29) 
t^& ~y 8c6 

'~s'sxi 0r 
! ~ (4.(co, z.)) ~ .  (co, zO u~ d~. 

(2.28) and (2.29) imply that 

Tn+l ~ X  i 0 r  Tn +t . \  

(2.30) X ~,, -~x ((~176176 Sr. Hj'Swa) 

,^s, 8X. .. 8r 
H (r (co, z,)) ~-x" ((~' z,) H i du in probability. 

2) We have 

1 Z { 82r ~ --ZT.) ) (2.31) ~ ~x2 T.+~ (CO, ZT,)(ZT, + --ZT.,Zr.+, 

1 X [ ~ r  ) 
=~ \Sx 2 T.+~ (c~ ) 

, 

z (  ~ r  (o~,z~o) A~n,-A~, I H,.~# . 
-t- \ S X  2 T . . . . .  Tn 

a) By (2.2) and (2.3), we have 

X ) <=e,l *^s' (2.32) ( ) i  ~ ~ ~ 8x 2 Tn+~ (CO, ZT,)(Arn+ --Ar~,ATo+I--Ar~) ! IdAI. 
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The L.H.S. of (2.32) tends then to 0 when e~0.  
b) First note that by (2.3), we have 

(2.33) 27(( ~2~b " 0 2 +  " ZT.))( T"+I T;I'Hj'6wJ)) \ \  ~x2 Tn+I(O)'ZTnJ--~ffx2Tnto)' \ ~T. Hi'(~wi' ~ 

"~eS Tn+lTn ~ Hi" (~W i 2. 

Since 

(2.34) E2 Hi.g;w ~ =E ~ IH~12du 
0 

it follows that (2.33) converges to 0 in probability if e~0.  
Let us calculate 

, (:+' ) 
(2.35) S S 

Tn Tn 
r.+,c~2 4 , ] 2. 

- ~ ~ ~,, to), z T . ) ( H ,  H,) du 
Tn d 

Classically, the various terms in the sum appearing in (2.35) are mutually 
orthogonal. (2.35) may then be bounded by 

i / IF,,+, 6wi4 Tn+l 2t) 
(2.36) C IS [ E f f  H i- + E  ~ IHil adu il" 

Tn Tn 

By Burkholder-Davis-Gundy inequalities, we have 

Hi "(~wi <- iT.+I~ Hi ,~W i T~+ T,.(, 4 ~2E 2 
(2.37) E _ �9 = g 2 E  ~ IH,12du 

Tn Tn 
E T'I(1 Z Tn+l (~W i 4 rn+1 

IHil2au <=Ce S ~ i  - c ~  2E ~ IHil 2&. 
T. T~ 

(2.36) may then be bounded by Ce 2. (2.35) tends then to 0 when e--+0. Now 

(T~+I ~2(~ \ t^S, 02if) , 
(2.38) Z -, -~x2 r, (o),zr,)(Hi,Hildu)= ! Ox~ T~(~, to) , ZT.(~) (ni, nl) du 

which trivially converges to 

,,,s,,~2 4, 
(2.39) b'( ~x2" (o)' G) (Hi, Hi) du. 

The second sum in the R.H.S. of (2.31) converges then to 

lt^Sz t~2,A 
(2.40) ~ ! ~2,(o),z,)(Hi,Hi)du. 
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c) One has 

(2.41) \~?x 2{J~T . . . .  (co, ZT,+,) A T , + - - A T , ,  ~ H i ' 6 w  ~ <el  
Tn 0 

The third sum in the R.H.S. of (2.31) tends to 0 when ~ 0 .  
3) Obviously 

(2.42) ~[ZTn+I--ZTn[2~C ~ AT.+I--AT,~I2§ H i . f w  i 

+o0 Tn+l  2 \  

<=c S IdAI+z I ) 
0 T n / 

IdAI. 

which implies 

(2.43) 
2 ~ ( t A S l  \ 

E(Zl-rn+x--Zrn I )=C \~k+E ~ IHzl2du). 
0 

From (2.15) and (2.43), we get that 

(2.44) R,--+ 0 in probability. 

Using (2.18), (2.22), (2.30), (2.40), (2.44), we get that 

(2.45) x ( 4  ~o +, (co, -'~.+ ,) - 4~.+~ (co, ~o ) )  
e C _ _  t A sz 0~ 

(co,.-u)dA+ aw 
0 0 X  u 0 G X  

t A S l  

z,)) ~xx " (co, z,) H i du 

1 tAs~ 024 
+~ ! ~x2,,(co, z,)(H~,H~)du in probability. 

(2.1) follows from (2.11) and (2.45). [] 

With no extra cost, the following result may also be proved. 

Theorem 2.2. Let  (~, F, 15) be a complete probability space with a right continuous 
increasing family of a-fields {~}t_>0 which contain the negligible sets o fF .  Let  w 
=(wa ... w m) be a m dimensional brownian martingale on (5, F,/5), and d?. (c5,.) be 
the f low defined by 

q~. (~5,.)  = q~. (co (~5), -) 

where co(c5) is given by: co((5) =(w.((5)). 
Let z t be a semi-martingale on ((2, F,, P) with values in R ~ which may be written 

zt= zo + At + M t 
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where z o is Fo-measurable, A is an adapted a.s. right-continuous bounded variation 
process with A =0  and M is a local martingale with M o =0. Then 4)t(Co, zt) is a 
semi-martingale which may be written 

t 

(2.46) 4)~((5, zt)=Zo + ~ X*(O.(G) ,z . ) )du+ i X,(4).(cS, z . ) ) '3w '  
0 0 

8Xi  ((5, " -  i - -  % ) d ( z , w ) c  + ! ~X-x(4>.( ,5, ~2)) o4) 
Ox" 

1 +~i ~ (C~ 04) (c~,~;).~ 
o K~X ~" o ~ "  

+ E (4)=(c~176 
O<_s<_t 

(3z is the Ito differential of  z, (zi ,  z j )  c and (z j ,  wi)c are defined by 

(zi,  z j )  c = (M~i, M~) 
(2.47) . i 

(~j, w )c = (M~, w') 

where M ~ is the continuous part of  M and ( ) denotes quadratic variation [12]). 

Proof. The proof follows the same lines as the proof of Theorem 2.1 and uses the 
techniques of [12]. [] 

Remark I: The C ~ assumption on X o . . . X  m is too strong and may easily be 
weakened. 

We now express formula (2.1) in Stratonovitch form, i.e. with the help of 
Stratonovitch integrals. Namely 

Theorem 2.3. Under the assumptions of  Theorem 2.1, if  dz is the Stratonovitch 
differential o f  z, then formula (2.1) may be written 

(2.48) 4)t(co, zt) = Zo + i Xo (O,(co, z,)) du 
0 

+ ~ X,(4),(co, zu)).dw' + ~ O~_~ (co, z , ) . d z .  
0 0 (TX 

Proof. By formula (2.1) and the definition of Stratonovitch integral [-12], we have 

t 

(2.49) i Xi(4)~(co,-u))" dw - ~ Xi(4)=(co, z,)). (~w 7 i i 

0 0 

o z.)) + Ux" (co, 

Moreover, using (1.5), it is easily seen that 4).(co,'), ~-x-x.(co,.) defines a 

new flow on R e x(Ra|  to which formula (2.1) is applicable: note that the 
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coefficients in (1.5) and their derivatives are unbounded, but a stopping argu- 
ment carries over the case to such a flow. By formula (2.1), the martingale part 

ar 
of the process ~?x~ (co, zt) may be written 

(2.50) o z"))~x" (co, Zu)) +?~x~. (co, z.))Hi] �9 ,~w i. 

It follows that 

(2.51) 
t ! =; 

! 

02~b ] 
+~-xZU(co, z,)(Hi,Hi) du. 

From (2.1), (2.49), (2.51), we obtain (2.48). [] 

Remark 2: It is no surprise that formula (2.48) is similar to the corresponding 
formula for deterministic flows and differentiable z, since we use here Stratono- 
vitch calculus. Note that writing (2.48) formally, (2.1) may be easily derived. 
However, (2.48) may only be proved using the techniques of Theorem 2.1. 

3. The Diffeomorphism Property of the Flow 

Let T be a > 0 real number. Set 

(3.1) J~0 = - X o ,  X1 = - X 1  "'" J~m = -X,~ 

#~r =WT--WT_ s O<_s<--T. 

Let q~.(co, ") be the flow associated to (20, 2 i ,  ..., Xm). 
Note the trivial fact that the mapping w -~ # r  defines a mapping of (~, Fr) on 

(~2, Fr): co ~ & r ,  which preserves P. 
We now give the key time reversal argument of Ito [8], Malliavin [11] 

which proves that a.s. Cr(co, ") is a diffeomorphism of R e onto R e. 

Theorem 3.1. For any T>0,  there is a negligible set Jffr in f2 such that if co6,A@ 
then 

(3.2) qSr(co, ~T((~-)T, " )) = ~T((~.) T, ( ~ T ( O ) ,  " ) )  = identity on g d. 

Proof. Assume first that T=  1. Note the trivial 

(3.3) ~b~(q~,(cbr, .)) = ~,(&r,  q~(co,. ) = identity on R e 

which follows from the possibility of time reversal on the differential equation 
(1.4). Now since co ~ (5  r preserves measure P, we may apply f) in Theorem 1.1 to 
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the flows 4~.(c5,.) and 45~.(~9T,'), and see that (3.2) holds. For T4=l, we do the 
time change s ~ s / T  in Equation (1.1). [] 

From Theorem 3.1, we get 

Theorem 3.2. A.s.,for any teQ +, ~bt(co, " ) is a diffeomorphism of R d onto R d, and for 
any t e R  +, qbt(co, ") is a diffeomorphism of R d on the open set q)t(co, Rd). 

Proof. Eliminating the countable {~tt}t~o+, the first part of the Theorem 3.2 is a 
trivial consequence of Theorem 3.1. Assume that cor is such that all 
the properties mentioned in Theorem 1.1 hold. 

Let s e R  +. Suppose there exists x , x ' e R  e, with x4=x' such that qS~(co, x) 

~ x  ~ ~b~(co, x') are non-singular. Since = qS~(co, x') = y. Now (co, x) and ~-x 

(t,y) ~ y t ( c o ,  Y) is continuous, by the implicit function Theorem, there exists 

disjoint neighborhoods V and V' of x and x' such that for t~R + close enough to 
s, the equation in z ~bt(co, z) = y has one solution in V and one solution in V'. In 
particular if such a t is taken in Q§ ~bt(co, .) is not injective and this contradicts 

the assumption made on co. Finally qSs(co, R e) is open since ~ (co, .) is con- 
tinuous and non-singular. [] 

Note that if instead of considering R e, we assume that it is replaced by a 
compact connected manifold N, it is trivial that a.s., for any t>0,  ~,bt(co, N ) = N  
since ~bt(co, N) is open and closed in N. 

The difficulty comes here from the non-compactness of R e and more specifi- 
cally from the lack of control at infinity of I/q~,(co, x)-xll. Using (1.7), it is proved 
in [3] (also see I-2]) that for fl > 1, T> 0, L~, T(CO) exists such that 

(3.4) for t<  T, x ~ e  d, [(/)t(co, x ) - - x l<  g~,T(co)(l +lxl ~) 

but this is clearly an insufficient bound. 
Finally note the trivial fact that the uniform consequence in probability of 

q~.~(co,') on compact sets does not suffice to prove the a.s. onto property of 
qS. (co, .), even though the q5 ~. (co, ") are themselves onto for any co, t. 

From now on, we assume that all the properties of Theorem 1.1 b), c), d) and 
the properties listed in Theorem 3.2 hold for every coef2. To do this, it suffices to 
set 

qS,(co, . )=  identity for any t e R  + 

when co belongs to the negligible set where one of these properties does not 
hold. 

We then have the key result 

Theorem 3.3. A.s.,for any t e R  +, ff)t(co, ") is a diffeomorphism of R d onto R d. 

Proof. Let A be the random set in s x R + 

(3.5) A = {((D, t); ~bt(fD , R d) =Rd}. 



346 J.-M. Bismut 

We now prove that A is optional [4]. Let B and C be the random sets 

(3.6) 

We first prove that 

B --- {(co, t); qb~(co, R e) = R e} 

C-{(co,  t); lira IlCbt(co, x)[ ] = + oo}. 

(3.7) A = B n C .  

Clearly if (co, t)eA,(co, t)~B. Moreover  when (co, t)eA, since ~ ( c o ,  .) is non- 

singular and is continuous in x, and since ~bt(co, .) is injective, the mapping 
~b~-~(co,. ) is well defined, is continuous and differentiable - it is in fact C ~~ - on 
R e. If (co, t)eA, (co, t)r C, there is a sequence x,, such that  

(3.8) IIx.II -~ + 

Y, = ~t(co, x,,) ~ y ~ R  a. 
Clearly 

~,,= qV ~(co, y.) 

and since y,-- ,  y, we have 

(3.9) x,  ~ x = ebb- 1 (co, y) 

which is a contradiction to (3.8). We have then proved that  A c B c ~ C .  Con- 
versely if (co, t)eBc~ C, take y ~ R  a. Since y is in the closure of Cbt(co, Re), there 
exists x,  such that  ~t(co, x,)--*y. Now because (co, t)eC, the sequence x, is 
bounded and there is a subsequence x , k ~ x .  This implies that  qS~(co, x ) = y .  
~b~(co, .) is then onto and (co, t)~A. (3.7) is then proved. 

To prove A is optional, we need only to prove that  B and C are optional. 
Trivially 

(3.10) B=f ' ]d{(co,  t ) ; ~ Q  inf Hx-r y)[ I =0}.  
yeQ a 

Since for any yeQ e, 4,(co, y) is an optional process, B is optional. 
Similarly, we have 

(3.11) C={(co, t); sup inf Hq~t(co, x)]l = +oo} 
Hx[I >nx~Qa 

which implies C is optional. A is then optional. 
Assume now CA is a non vanishing set, i.e. that P(rc(~A))=t = 0, where n is the 

projection mapping f2 x R + on f2. By the optional selection Theorem [4] IV.84 
there is a stopping time T whose graph [T]  is such that IT]  c5t ,  and moreover 
P ( T <  + oo)>0. 

Now for n ~ N  large enough (T<n)  is non negligible. F rom Theorem 1.2, we 
know that  

(3.12) (a.s.), on ( r < n ) ,  4,(CO,')=4,_T(0r(CO), q~T(CO,'))" 

Since for any co, all the 4s(co, ") are injective, 4 ,_  r(OT(CO), " ) is injective. Since 
IT]  c~A, on (T<  + oo)(or(co, Re)=t=R a. From this, we conclude that 
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(3.13) a.s. on (T<n) ~,,(co, R d ) ~ R  d. 

Since neQ +, (3.13) is a contradic t ion to T h e o r e m  3.2, which asserts that  q5 (co, �9 ) 
is onto. 

~A is then a vanishing set. T h e o r e m  3.2 is proved.  [ ]  

Remark 1. The key a rgument  in the p roof  is that  w is an independent  increment  
p ropaga to r ,  such that  when a singularity appears  in the flow qS. (co,-), it remains  
for the whole future. This of course prevents  qSt(co,-) f rom not  being onto at 
certain times. 

Remark 2. Since a.s., for any t, qSt(co, �9 ) is a nonsingular  C ~ d i f feomorphism of R d 
onto  R d, 4 t  1((,o,. ) is then a well defined flow of C ~ di f feomorphisms of R e onto  

R d, such that  q52 1(co, .), 8~[qSt-1] (co, x) . . .  are all a.s. joint ly cont inuous in 
�9 --, C~x,n 

(t,x). 

4. Action of the Reciprocal Flow on Continuous Semi-Martingales 

By R e m a r k  2.2, we know that  if z t is a cont inuous process, the process ~b 7 ~(co, %) 
is well defined and is a.s. continuous.  

Assume that  z t is a cont inuous semi-mart ingale  defined on (~, F, Ft +, P) with 
values in R d, which may  be writ ten 

t 

(4.1) z~ = z 0 + A t + S Hi.  6w i 
0 

where zo~R d, A is a cont inuous adapted  bounded  var ia t ion process such tha t  A o 

=0 ,  H 1 ... H m are adapted  processes such that  i IHil 2ds< + o9 a.s. 
0 

We then have 

Theorem 4.1. y t=~b t  l(co, zt) is a continuous semi-martingale which is the unique 
solution of  the stochastic differential equation 

[a+t (co, yt)] 1 Ida- Xo(z) dr- x,( t)-dwi3 (4.2) dy = LSx 

y(0) = z o 

where dz is the Stratonovitch differential of  z. (4.2) may be also written 

1 yt)] (4.2') dy= LSx 

- 1 1 8X i co, 

2 8x 2~ (co, Yt) t (co, Y,) ( H i -  Xi(zt)), 

[~-x t (co, y)] - l ( H i -  Xi(zt)) ) ] dt 

y(O) = z o 

where 6z is the Ito differential of  z. 
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Proof  Consider the stochastic differential equation (4.2'). Note first that the 

growth bounds (3.4) which may also be proven for ~-x" (co'") and .(co," ) 

are insufficient to ensure existence and uniqueness of a solution of (4.2') on ]-0, 
+ oo 1-, s ince fl in (3.4) is a lways > 1. 

Put (4.2') in the form 

dy =for(Co, Yt)" ~h~ +fit(co, Yt)" fih 1 +. . .  + fzt(co, Y t )  (~hl 
(4.3) 

y(0)=y 

where h ~ ... h ~ are continuous semi-martingales. 
Let T ~'k be the stopping time 

lyl~. ~(co 'Y) T~-~ttco, v ~ t ( c o ,  y)]__>k 

Clearly by a joint continuity argument 

(4.5) lira T"'k= + oe a.s. 
k ~ + c o  

Let n, be the operator of projection on the ball/3, of center 0 and radius n in 
R a" 

Consider now the stochastic differential equation 

(4.6) d y =f~(co, n,(y)). 6h i 

y(0) =y. 

Now using (4.4) and the fact that re, is uniformly Lipschitz, for t <  T n'k, the 
mappings 

y ~f~(co, ~.(y)) 

are easily seen to be bounded and uniformly Lipschitz. By the results of Dol6ans- 
Dade, Protter, Emery [6], (4.6) has a unique solution y,,k on [0, T"'k]. Clearly 
y,,k+l . . . . .  k A unique solution y~ of (4.6) is then defined on [-0, + oe[. t A  T n , k  - - Y t ^  T n ,k"  

Let T'" be the stopping time 

(4.7) T'"= inf{t; [Yt[ > n}. 

a , n + l  - - l ~ n  On [0, T'"], y" is clearly a solution of (4.3), and moreover ytA r ' - - y t ^  r'-. 
Now on [0, T'"], yn is a solution of (4.2). To see this note that for any x, 

~x-xt (co, x) is a solution of Equation (1.10). Now Theorem 2.1 may be used to 
F 1 - - 1  

]~?~b co "1 1-0, T'"], which is a semi-martingale. describe the process =~xxt( ,Yt)_ on 

More precisely, by (2.1), we know that the local martingale part of the process 
- 1  

CO n , ,4 oo 0 ,  is 
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(4.8) - }  s(co, Y'~) ~7-x ((as( Y~)) "<Sw~ 
0 

t a (~ff) n 1 )  co n --1 

Using the rules of t ransformation of a Stratonovitch integral into an Ito integral 
[12] and the trivial 

(4.9) ~y  ([~-x ~ (co, y~)] -1 ) 

we see that 

/4,0, 
0 ]1 

= s (co, y~) [ a z  - X , ( z s )  a w  ~] 
0 

1 ~ 04~ ,, 
~-x (zs)/-/~ 

- ~ (co' Y~) ~xx (4)~( , Y~)) (H~ - X~(zs) ) 

_ [ ~ ( c o , , : ) ] _  1 a 2 ~  , 1 x YxWx~S(co, ys) ([~(co, y:)]- (G- iG)), 
L ~  .,1 

Using (4.1.0), y~ is seen to be a solution of (4.2) on [0, T'"]. 
By Theorem 2.3, G(co, Y~) is a semi-martingale on [0, T'"] such that 

" y j )  dw + , (co, y,"). d / .  (4.11) (ot(co, y'~)=Zo + ~ Xo(O,,(co, y,,))du+ ~ X~(q5,(co, " 
0 0 

Using the explicit form of dy" on [0, T'"], we obtain 

' i (4.12) ~b,(co, y~') = z t + ~ [Xo(4,(co , y,"))- Xo(G) ] du + [X~(4~ y~))-  X~(zt) ] dw ~. 
0 0 

/ n  If x~' = ~bt(co, y~'), on [0, r 1, we have 

t t 

(4.13) x~'= z t + ~ (Xo(x~) - Xo(G) ) du + ~ [Xi(x,") - X~(G) ] �9 dw ~ 
0 0 

which may be written in Ito form 

(4.14) ~ = z t +  o(X'2)-Xo(G)+ 1 ~ ( x ~ )  [H,+X~(x~,)-X~(z,,)] 

lc~X, ) ]. 
2 ax (G) Hi du + (Xi(x~,)- Xi(z,)). cSw i. 

o 
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Now (4.14) is a stochastic differential equat ion of the type 

(4.15) d x "  : g i ( x n )  " c] k i 

where go -.- g~ are Lipschitz in the variable x' ,  and k 0 ... k~ are cont inuous semi- 
martingales. Using [6] again, (4.14) is seen to have a unique solution which is 
trivially x7 = z t. We have then shown 

(4.16) 

i.e. 

(4.17) 

On [0, T'"] ~b~(co, y~) = z, 

on [0, T'"] y7 = q5 t- 1 (co, zt). 

Since G-l(co, zt) is a cont inuous process, T ' " - - , + o o  a.s. Existence of  the 
solutions of (4.2), (4.2') has then been proved on [0, + oo [. Uniqueness is trivial 
from (4.17), or from uniqueness on [0, T "'k] of the solutions of (4.6). [ ]  

Remark 1. Formula  (4.2) is algebraically trivial since, when we use Stra tonovi tch 
calculus, we know that  the formula must  look like the corresponding formula of 
classical differential calculus. All the calculus (4.11), (4.12) is strictly identical to 
what  is done for deterministic flows. 
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