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Summary. Suppose X t is a purely discontinuous martingale. A sufficient 
condition for i", to have a local time is given in terms of the local characteristics 
of I". An example is constructed to show that this condition is nearly optimal. 

1. Introduction 

In 1975, Meyer [10] showed how to use Tanaka's formula to construct local times 
for martingales with nondegenerate continuous parts. He then raised the question: 
when does a purely discontinuous martingale have a local time? Yoeurp [16] and 
Yor [17] have both shown that Tanaka's formula fails badly in this case. 

On the other hand, the theory of additive functionals may be used to construct 
local times for certain Markov processes, those for which points are regular for 
themselves (Blumenthal and Getoor [3]). Sufficient conditions for local time to exist 
in terms of the resolvent operator were given by Boylan [4] and Griego [6]. 
Maisonneuve [9] has extended the Markov theory approach to construct local 
times for martingales when points are regular for themselves. 

The difficulty with the Markov theory approach is that one can very rarely 
check whether points are regular for themselves or whether the resolvent operators 
have the proper form. Kesten [8] obtained very good results in the case of processes 
with stationary, independent increments, but virtually no other examples are 
known. 

The purpose of this paper is to give a condition that is sufficient for the existence 
of local times for purely discontinuous semimartingales. Our theorem is stated in 
terms of local characteristics. Hence, when a process is defined by means of a 
stochastic differential equation with respect to a Poisson point process, or when, in 
the case of real-valued Markov processes, it is defined by its infinitesimal generator, 
one can easily read off the local characteristics and apply our condition. 

To state our results, we first need some definitions. We will consider only local 
times that are occupation time densities with respect to Lebesgue measure. Thus, we 
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are interested in the existence of a jointly measurable process Lt(x ) such that, a.s., 

t 

(1.1) ~ 1B(Xs)ds = ~ 1B(x)Lt (x)dx  for all t, for all Borel B__ IR. 
0 

Our processes Xt will be semimartingales that have local characteristics (as, vs). 
This means (our definition may vary slightly from other definitions) (i) a s is 
adapted, (ii) L is adapted, and for each s and co, a a-finite measure on IR-{0}, (iii) for 

t 

each Borel B such that B___ IR-{0} is compact, ~, 1B(AXs) -- ~vs(B)ds is a local 
t s<=t 0 

martingale, and (iv) Xt - ~ AXsl(IAXsI>I ) -- ~ asds is a local martingale. Xt purely 
s<=t 0 

discontinuous means that X~ is the uniform limit of 

2 AXsl( t~x~l~)-  ~ ~ hvs(dh)ds + a~ds as ~ 0 .  
s<=t 0 l>__[hl__>e 0 

If  1 < c~ < 2, let O~(dh)= ~[h[-(l+~)dh be the L6vy measure for a stable 
symmetric process Z t of index c~. Here ~ is the positive constant chosen so that 
E exp (is Zt) = exp ( -  t] s[~). 

Our main result is: suppose 
(1.2) X t is a purely discontinuous semimartingale with local characteristics 
(b~a~, b~L ) such that 

a) bs is measurable, and for  some  KI.ZA , sup Ibsl[ ~ K1.2A , a.s., 
s 

b) for some K 1.2B, sup l a s I < KI.eB, a.s., 
s 

c) for some K1.2c, sup[~h 2 A lvs(dh)l  < K1.2c, a.s., and 
s 

d) for some 1 < c~ < 2, 0 < a < 1, e > O, KI.ZD > O, 

sup i Ihl~-elvs-O~l(dh) <=KI.zD, a.s., 
s - t r  

where I v~ - O~ I is the total variation measure o f  v~ - 0~. 
If (1.2) holds, then a local time Lt(x ) for X t exists (see Theorem (4.13) and 

Sect. 6). 
At first glance, (1.2)d may seem very restrictive. However, in fact, (1.2)d is 

nearly optimal. By this, we mean, if e > 0, then there exists a process Yft such that 

(1.3) Xt is a purely discontinuous local martingale with local characteristics (0, vs) 
such that 

a) v~ (dh) > O~ (dh) for all s and co, and all [h ] < 1, and 
b) for some K1.3, 

1 

sup ~ ]h I ~ +~ (v s - 0~) (dh) < KL3 , 
S - - 1  

but for which no local time for X t can exist (see Theorem (8.8)). 
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If  qJs(dh) = (vs - 0~) (dh), (1.2)d says that ~u s can be very large near 0, but no 
larger than 0~ itself. In fact, if we allow ~s to be larger than 0~ near 0, then, even ifq~ s 
is positive, there need not exist a local time for X t. 

Although (1.2)d is nearly optimal in the sense given above, it is by no means 
necessary. For  example, there are processes with stationary, independent 
increments that do not satisfy (1.2)d but have local times. It would be of  interest to 
get a result with 0~ in (1.2)d replaced by the L~vy measure of  any process with 
stationary, independent increments that itself has a local time, particularly for those 
whose L6vy measure is close to that of a (asymmetric) Cauchy. It would be even 
more interesting to see if any kind of  continuity condition on v s (dh), together with 
v s (dh) > O~ (dh), [h ] < 1, some c~ > 1, would suffice for the existence of  a local time. 

In Sect. 2 we obtain some estimates on the density of  the resolvent of  a 
symmetric stable process of  index e. In Sect. 3 we consider X t satisfying 

(1.4) X t is a purely discontinuous local martingale with local characteristics (0, vs) 
such that (1.2)c holds, for some 1 < c~ < 2, vs(dh ) = O~(dh) i f  ]hi > 1, and (1.2)d 
holds with this same value of ~ and with a = 1. 

We use a perturbation argument to show that the expected time spent in sets by 
Xt has a bounded density with respect to Lebesgue measure. We also indicate how, 
if as = ~(X~), b s -- 6(X~), and vs(dh) = v(Xs, dh) for functions ~ and band  a kernel 
9(x, dh), then the techniques of  Section 3 may be used to prove uniqueness of  a 
martingale problem (and hence of  a Markov process) specified by (b s as, b~ v~). This 
extends the results of  Tanaka, Tsuchiya, and Watanabe [15] who discussed the case 
(a s, 0~). 

Section 4 uses the results of Sect. 3 and the stochastic calculus to construct the 
required L~ (x) when Xt satisfies (1.4). In Sect. 5 we show that L t (x) is continuous in 
t, and we obtain a modulus of continuity. (There is no reason to expect L t (x) to be 
continuous in x.) In Sect. 6 we use localization and time change to show the 
existence ofL~ (x) when (1.2) holds. After some preliminary results concerning weak 
convergence in Sect. 7, in Sect. 8 we construct a process satisfying (1.3) that has no 
local time. Since any process satisfying (1.3) spends 0 time at points (Proposition 
(7.6)), we accomplish our construction by finding a Cantor-like set of  Lebesgue 
measure 0 and a process ii, that spends positive time there. 

Other notation we will use is A h f ( x ) = f ( x + h ) + f ( x - h ) - 2 f ( x ) ,  
A h f ( x )  = f ( x + h ) - f ( x ) -  hf ' (x) .  Let g~ be the infinitesimal generator of a 
symmetric stable process of  index c~. Hence ~ f ( x )  = ~ A~f(x)O~ (dh). 

Let I[ 11 be sup norm, C~: continuous functions with compact support, C 2 twice 
continuously differentiable functions. Let II IIL~ be the L~ norm with respect to/~, 
Lebesgue measure, and let * denote convolution. 

Let ~ ~  ) and let ~ be the P-completion of  .~o Let 
- -  " t + "  

[X , ~ ]  =X~s~AX ~ for purely discontinuous semimartingales. Notat ion and 
terminology relative to stochastic integrals and semimartingales may be found in 
[5], [7], and [10]. Constants whose subscripts are proposition numbers, e.g., cz.~, 
do not change, but constants with an integer as a subscript, e.g., c~, may chance 
from place to place. 

I would like to thank M. Cranston for many helpful conversations concerning Sect. 7 and 8. 



436 R.F. Bass 

2. Stable Densities 

In  this section we derive some estimates for the densities o f  stable processes. 
Al though the methods  used are routine, the results do not  appear  to be in the 
literature. 

Let  1 < c~ < 2 be fixed, and let X t be a symmetric stable process o f  index ~ with 
X 0 = 0. Let  q,(x) be the density o f  X,, and let us write q(x) for qa (x). The 
characteristic function o f  X 1 is Eexp  (is X 1) = exp ( -  Is I=). Since Is 1~ exp ( -  I sl =) is 
integrable for all positive r, q has bounded  derivatives o f  all orders. We need the 
following estimate on q" (x), the p r o o f  o f  which closely follows [2]. 

(2.1) Proposition. There exist positive constants c2. a and M2. a such that i f  
X ~ M2.1, 

q"(x) = c2.1 x - ( 3 + e )  ( l  -t- 0 ( 1 ) )  . 

Proof Since q is symmetric, it suffices to consider x > 0. Since s2exp( - [sl =) is 
integrable and real, 

q" (x) = - (2re)- 1 (u(x) + (,(x)), (2.2) 

where 

u(x) = - ]" e-i*XsZexp( - Isl=)ds. 
0 

Choose  ~o < 0 and sufficiently small so that  I~01 < re/2 and so that  a = re + e~0, 
b = 3re/2 + q~ lie in (re/2, 3re/2). Integrate z 2 e x p ( - i z x -  z ~) along the contour  C 
in the complex plane (r, 0) made up o f  the pieces 0 = 0, r o N r __< r 1 ; 0 = q~, 
ro<__r<=rl; r = r o ,  0 >  0 >  qo; and r = r a ,  O>-O>-(p. The integral a round  C 
is 0, and letting r o -~ 0, rl ~ 0% we get 

U(X)  = --  e 3i~~ ~ s 2 exp(sxd  b + s~e ia) ds. 
o 

Letting z = s = e  ~", observing that  Re(z)<= O, and using the expansion 
e ~ = 1 + z + 0(Izl 2) for such z, we get 

0(3 O0 

(2.3) u(x) = - e  3i~ 5 s2exp(sxdb)ds -  e 3i~+i" [. s2+=exp(sxeib)ds + R ,  
0 0 

where ]R[ < ca S s2+2~e . . . . .  ds = O(x  -(3+=~)) 
o 

N o w  integrate the functions zZexp(zxe ~b) and zZ+~exp(zxe ib) around  the 
c o n t o u r 0 = 0 ,  r o=<r=<r a ; 0 - - - - ~ o - T z / 2 , r  o = < r = < r  1 ; r = r o , 0 - > 0 _ >  - q ) - r e / 2 ;  
and r = q ,  0 -> 0 > - r - re/2, and let r o --+ 0, r a ~ oo to t ransform the first two 
integrals on the right side o f  (2.3). We then see that  the first term on the right of(2.3) 
is purely imaginary. 

Using (2.2), we get 

q" (x) = - re- 1 Re u (x) 

= c 3 ~ s 2 +~ exp ( -  sx) ds + Remainder  
0 

=c~x-~3+~) + O(x-~3+20). [] 
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Since X, has the same law as tl/~X1, q t (x )=t -~;~q(x t -~ /~) ,  and 
q;' (x) = t -  ~i~ q,, ( x t -  ~1~). 

Define 
co  O~ 

(2.4) r~,~(x) = ~ e -~ 'q , (x )d t  = ~ e - a t - l l ~ q ( x t - l l ~ ) d t ,  
g 

and r z (x) = rx, o (x). 

(2.5) Proposition. Suppose ~ > 1. 

a) 0 < rz,~(x) ~ CZ.SA(2), where cz.5j(2 ) is independent o f  e and x and --+ 0 as 
2 ---, o~ ; 

b) Ir~,~(x)l" < c2.sBIxl ~-~, c2.sn independent o f 2  anda; 

c) I r'~,~ (x) J =< c2.5c x ~- 2, c2.sc independent o f  2 and ~; 

= r t~ x d) if  6 > 0, Ixl > ~, I a,~( )l =< ez.so(),  (5) [xl ~-3, where c2.5,(2,6)  is inde- 
pendent o f  ~ and --* 0 as 2 --* oo ; 

e) i f  ~5 > 0, Ix] > 6, Ir~,~(x)l < e>s~(2 ,3) Ix l  ~-2, where c2.5E(2,3 ) is inde- 
pendent o f  ~ and ~ 0 as ~ --. ~ .  

Proof. a) i r~,~ (x) [ <= II q II ~ e-  a t - ~/~ dt ~ 0 as 2 ~ oo by dominated convergence, 
since ~ > 1. 0 

b) By the symmetry of  q, we may suppose x > 0. The Fourier  t ransform ofra, ~ is 

~ e  exp ( - t Is I ~) dt = exp ( - (2 + Is [~) e)/(2 + Is [6), and hence rz,~ has derivatives 2t 

of  all orders. 
oo 

" (2.6) }rx,~(x)l < e-at t -3/~lq"(xt-~/~)ldt  

= x  ~-3 ~ e -~u -3 /~ lq" (u -1 /~ ) ldu  
g x  

< x ~-3 el ~ u-a/~(u-~/~)~(a+~)du+ I[q"l] u-3/~du , 
0 M~,.~ 

which, since c~ < 2, gives b). 
c) I f x ~ < x  2 < 0 ,  

X2 

[ri,~(x2) - ri,~(xl) I < 5 [r~,~(x)[dx-~ 0 
Xt  

as x l ,  x;  ~ - 0% using b) and the fact that  e < 2. Therefore limo_ r],, (x) exists. Of  
course, the limit must  be 0 by  a). But  then, if x < 0, 

ri, Ax) = i ~2,~O')dy, 
- - o 0  

and c) follows f rom integrating b). The case x > 0 follows by symmetry.  
d) If  x > 6 > 0, e-Z"~~ e -x"a~, and d) follows from (2.6) by  dominated 

convergence. 
e) This follows from d) in the same way that c) follows from b). V; 
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(2.7) Proposition. Suppose 2 >= 1, e < 1, A >__ 1, and 0 < 7 < (7 - 1)/2. Then 

a) I A ~ r;~,~ ( x ) [ <  e2.vA I h I~-~ Ix I ~- 1, where C2.7A is independent of  e and 2; 
b) i f6 > 0, [x[ > 6, [Ahra,~(x)l < cz.vB(2, g)]h]~-71x]~-l, where c2.7B(2,6) is 

independent of  e and ~ 0 as 2 ~ o0. 
c) t f  Ixl > m2.a, Ihl < max(lx[/Z,A), ]A~rz,~(x)] < c2.7clXl ~-3 Ih}~-~A z, 

where c~,7c is independent of  e and 2. 

Proof. a) First note that  

h 1 

(2.8) AhRrz,~(X) = ~(h-s ) r~ ,~(x+s)ds  = h2~(1 - t )r~' ,~(x+ht)dt .  
0 0 

To prove a), we need to consider a number  of  special cases. 
(i) Ix/21 < Ihl < Ixl. Using Proposi t ion (2.5) b and (2.8), 

1 

IAhr R z,~(x) l < c2.sB h2 S (1 - t) lxWhtl~-3dt  
0 

1 

= c~.s~lh[~-i S (1 - t) lx /h+ tl~-3dt 
0 

1 

< cz.snlhl ~-1 1 (1 - t)~-2dt 
0 

_-< cl IhP-~lx l  ~-1 

(ii) [hi-< Ix[/2. F r o m  (2.8) and Proposi t ion (2.5) b, 

I A ~ r~,~ (x) I < h2 sup,,y)~ 1~1/21 r~5,~ (Y) I 

e2.sBhZ(lx]/2) ~-3 

<_ c21hl~-~lx? -~ 

(iii) [ h i >  [x[, x/h > 0. As in (i), 
1 

IAhRr~,~(X)[ < e2.sB Ihl ~-1 ~ (1 - t)Ix~h+ tl~-3dt 
0 

1 

< e2.5~ Ihr  -1 S(x/h + t)~-3dt 
0 

<-_ e3 Ih I ~-  1 ( x / h ) ~ -  2 

_~ eaJhl~-~lxl ~-a. 

(iv) Ihl > Ixl, x/h < 0 .  By symmetry,  we may suppose wi thout  loss of  
generality that x > 0, h < 0. Also, by symmetry,  rz, ~ (x + h) = rz, ~ ( -  x - h), and so 

(2.9) [A~ra,~(x)[ < I r z , ~ ( - x - h )  - rz,~(x) - ( - 2 x - h ) r ' ~ , , ( x ) l  

+ r 2 x + 2 h l  Ir'~,,(x)l 
[ - 2 x - h  i ~" d R r~,~(x)l + 1 2 x + 2 h ]  Ir~,~(x)J. 

Consider the first term on the right of  (2.9). Since [ 2 x + h ]  < Ihl, then applying 
either (i) or (ii), we get 

I - 2 x - h  AR r~,~(x)l < c412x+hl~-~lxl~- i  < c41h[=-~lxl ~-1. 
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Now consider the second term on the right of  (2.9). 
Ix + hi = - h - x = - h = [h 1, and then, using Proposi t ion (2.5) c, 

1 2 x + 2 h [  ]rS.,=(x)[ < 2C2.sc[x + h[ [xl =-2 

< cslh [ Ix] =-2 __< eslh?-Wlxl ~-1 . 

Summing, ] A ~ r,,~ (x) ] < (c 3 + c~ + c s) ]h [~- ~ [x] y- 1, and so case (iv), hence a), 
is proved.  

b) The p r o o f  is similar to a), using Proposi t ion (2.5) d and e in place of  (2.5) b 
and c. 

c) By case (ii) of  a), 

IA~rx,~(x) l ~ c 6h 2 Ix] ~-3 

c6A2-~+TIh[~-~lxl =-3. D 

If  f is bounded  and Borel, define 

(2.1 O) Ra,~ f ( x )  = ~ f ( y )  rx,~ (x - y) dy. 

An usual, write R , f ( x )  for  R;.,of(x ). It is easy to see t h a t f e  C 2 implies R a f e  C 2. 
The  main theorem of  this section is 

(2.11) Theorem. Suppose 0 < y < (c~- 1)/2 isfixed, K, A positive real numbers 
> 1. Then there exists a nonnegativefunction G and a real number 22.11 such that 

a) IIGI[L1 < 1/2; 

b) / f 2  > 22.11, f e C  2, and v is a measure such that ~ Ihl=-~v(dh) <= K and 
support (v) ~- [ -  A, A], then 

I ~ [R~ f ( x  + h) - Rx f ( x )  - h (Rx f ) '  (x)] v (dh) ] < G* ]/I (x) 

for all x. 
Recall that  * denotes convolution.  

Proof. First we define G. Pick M 1 > M2.1 v 2A, such that  

A2c2.7c K ~ x~-3 dx < 1/12. 
M1 

Pick 6 small so that  a 

c2.7AK~X~-ldx ~ 1/12. 
0 

N o w  pick 22.11 sufficiently large so that  i f 2  > 22.11, 

M~ 

C2.7B()~, 6 )K  ~ x ' - l  dx <= 1/12. 
a 

Let q(6)  = sup c2.7B(2,6). 
2-> 22,at 

Define G (x) by 

[ C2.7AKlXP '-1 if [X] < 8 
(2.12) G(x) = ]cz(g)Klx[  ~-1 if 6 < [x] < M 1 

[A2c2 .TeK[xr  -3 if  [ x l > M 1 .  



440 R.F. Bass 

Clearly, a) is satisfied. Moreover, i f2  > 22.11 , and Ih[ _-< A, 

I A ~ rz,~ (x) [ < G (x) I h I ~- ' /K,  

by Proposition (2.7). 
It is easy to see that iff~CZK, for each e, Rz ,~ f~C z, and that (Rz,~f)" 

= Rz,~ ( f " )  converges uniformly to Rz ( f " )  = (R a f )"  as s ~ 0, and similarly for 
first derivatives. If  we show 

(2.13) [ I Ah R~,~f (x)v(dh) [ <= G* [fl(x) 

for each s =< 1, for each x, b) will follow by dominated convergence, since 

I A h Rz,~ f ( x )  [ < (11 (R~,~ f ) "  II + 2 II (R~,~ f ) '  II) (h 2 ^ h). 

However, (2.13) holds, since 

[ ~ A~ R z , , f  (x)v(dh) [ 

= [ ~ ~ [rz,~ (x - y + h) - r~,, (x - y) - hr'z,~ (x - y)] f ( y )  dy v (dh) I 

< ~ IAhrz,~(x--y) lv(dh)If(Y)[dy 

< ~ a ( x - y ) I f ( Y ) I  ~ Ihl=-~v(dh)dY/g 

__<G, Ifl(x). [] 

3. Densities of Potentials 

Proof 

(3.3) 

Define 
oo 

(3.1) S z f  = E ~ e-~tf(Xt)dt  
o 

f o r f  >_ 0. Our main goal in this section is to show that the measure S z has a bounded 
density with respect to Lebesgue measure. First we need some technical 
propositions. 

(3.2) Proposition. Suppose X t is a local martingale with local characteristics (0, v), 

X o=0,  and s u p ~ l h ]  2/x]h]~v S (dh)<=K<~,  for some 1 < ~ < 2 .  Then, for 
s 0 

0 < ~  < ' c ,  

ElX, o[~-~ < c3.2(K,e)t o + 1. 

Let M > 1, and let 

Y , u = X  t -  ZAX~I(I~x~I>M)+i ~ h%(dh)ds. 
s<=t 0 Ihl>M 

Y~ = Yt M is a local martingale with bounded jumps. If  T N = inf { t: Yt > N}, Yt ̂  TN is 
square integrable, and 
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(3.4) 

(3.5) 

t ^ T  N M 

EY}̂ rN= E[Y, Ylt^r~= E I ~ h2v~(dh) ds 
0 - M  

<= t ( K  + MZ-~sup E 
s < t  l < [ h l < M  

< Kt (1 + M 2 - ') .  

By Fatou, 

P(] Y~I >= M) <__ M -  2 Eyt 2 <__ M -  21iminf EY}^ru < e~ tM -~ . 
N ~ o o  

P ~ Ihlv,(dh)ds> < M - ~ E ~  f Ih[v~(dh)ds 
Ih[ > M 0 Ihl > M 

< M-~tsup E ~ ]hl~v~(dh) 
s<=t [ h l > M  

< KtM -~" 

And, 

(3.6) (1~t Xs I = = (lAX I > M) ~ ~-= 
\ l S = t  \ S < t  

=< E ~ I(IZX~IZM ) 
s<=t 

t 

= E l  f vs(dh)as 
0 Ihl>=M 

<_ tKM -~" 

Adding (3.4), (3.5), and (3.6), we get 

P ( I X t I > = 3 M ) < P ( I Y t I > M ) + P (  i ~ hvs(dh)dsl>_M) 
I h J > M  

\ l s = t  

<= c 2 tM -~ . 

Ihl~vs(dh)) 

Then, 

EIXt[ ~-~ = S (z - ~) ]MI*-~- ~ P(IXt[ > M)dM 
0 

< l + c3t (z -e)  ~ M-*- l  dM. [] 
1 

(3.7) Proposition. Suppose X t satisfies the hypotheses of Proposition (3.2) and 
f s C z. Then 

t 

a) E~f'(X,_)dX~ = O. 
0 

t 

b) E Y' [f(X~) - f ( X ~ _ )  - f ' (X~_)AX I= E~Ahf(Xs)v~(dh)ds. 
s < t  S 0 
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Proof. a) Let M > 1, and define y M by (3.3). E(ytM) 2 < o0 by (3.4), hence Y~ is a 
t 

locally square integrable martingale, and E ~ f '  (X~__) dY~ = O. 
0 

t t (Xs_)dyff  (3.8) ! f ' (X ,_)dX~ - o ~f '  

<-_ llf'll(~r + } 5 
0 ihl>=M 

IhlvAdh)ds). 

The expectation of the right hand side is <21If'liE i ~ Ihlv~(dh)ds 
o I h l ~ M  

< 2 IIf' [I Kt. Hence 

E t t t X 
~U'(X~_)dX s -  ~ f  ( s_)dY M -~0 
0 0 

as M-+ Go by dominated convergence, and a) follows. 
b) By a monotone class argument, ifg: IR x IR --* IR is bounded with support on 

1R x ( - a ,  6)~ ~ [ - M , M ] ,  

t 

(3.9) E S g(X~_,a<) = E [. ~. g(Xs_,h)vs(dh)ds. 
s < t  0 

Apply (3.9) with g (x, h) = [ f (x  + h) - f (x )  - f '  (x) h] 1 (a <= Ihl <= M)" 

E ~, If(X~) - f(X~_) - f '  (X~_) A X s ] l(iAX, b ~[~,vl~) 
s N t  

< lift' lIE ~ IAX~I 2 l(iax, l=<a)+ (2 ]l/ll + [[fill) E ~ IAXs[ I(IAX~I>M) 
s<=t s<=t 

t 

<(l[f"l] + 2[[f'll) ES ~ Ihl2 ^ lh[vs(dh)ds~O 
0 Ihl~[O,M] 

by dominated convergence as ~ --, 0, M --, oe. Similarly, 

t 

E~ ~ I f ( & _  +h) - f ( X s _  ) - f ' (X~_)hlv~(dh)ds  
0 Ihl~[6,M] 

<(III"II + 2III'II) E}  5 Ih]2 Alhlv,(dh) ds-+O 
0 [hl~.[6,M] 

by dominated convergence. Letting ~5 ~ 0, M ~ oo in (3.9), 

E ~ [f(X~) - f ( X ~ _ )  - f ' ( X s _ ) A X s ]  
s < t  

= E i  S [ f (Xs-  +h) - f ( X s _  ) - f ' ( X s _ ) h  ] v~(dh) ds, 
0 

Since Xs has only countably many jumps, the right hand side is unchanged if we 
replace Xs_ by Xs. [] 
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Recall the definitions of  Rz (2.10) and Sz (3.1). The next theorem links S~ with 
R~. 

(3.10) Theorem. Suppose P(X o = Xo) = i. Suppose X~ satisfies (1.4). I f  geC~,  

a) S;~g = Rzg(Xo) + ES e-Z~A~Rzg(X~) (v~- O~)(dh)ds; 
0 

if, in addition, 2 > 22.11, 

b) [Sagl < Rzlgl(Xo) + Sz(G,[g[), 

where G is defined by Theorem (2.11). 

Proof. Suppose f ~  Cff. Recall that ~ is defined by 

(3.11) (9~f (x) = ~ AhRf (x) O~,(dh) . 

By Ito's lemma, Proposition (3.7) (applied to X~ - Xo), and the fact that X t is 
purely discontinuous, 

t t 

= E ' �89 (3.12) Ef(X,) - Ef(Xo) ~ f  (X~_) dX~ + 
0 0 

+ E ~ [f(Xs) - f ( X , _ )  - f ' (Xs_)AX~] 
s<=t 

= E i ~ f ( x s )  v~(dh) ds 
0 

t 

= E~ (r + E i ~A~f(X~) ( % -  0,) (dh)ds. 
0 0 

Since f ~ C ~ ,  ~,, f  is bounded, and [~AhRf(X~)(Vs-- O~,)(dh)[ < ([[f"]] + 2 
II f '  II) ff h2 A I hl I~, - 0~ [(dh) is bounded. Multiply (3.12) by 2e-x, and integrate to 
get 

2S~,f - f(xo) = E ~ e-)'~N~f(X~)ds + E e-~'~j AhR f(X~) (v~--O~) (dh)ds, 
0 0 

o r  

S z ( 2 f -  ~ f )  = f (xo)  + E ~ e-Z~j Ahf(Xs) (v s - 0~) (dh) ds. 
0 

Now let g = 2 f -  f f~f  g will be bounded and in C ~ and so we have a) for 
g ~ (2 - ~ )  ( c ~ ) .  

Now let g~  C 2, and let f =  Rzg. f , f ' ,  f "  will be bounded and continuous. 
Moreover, it is easy to see that f , f ' ,  f "  ~ 0  as Ix[-~ oo. Choose f, a C ~  such 
that f" ~ f ,  f, '  -~f ' ,  f." ~ f "  uniformly. Let g, = (2 - ft,)f", g, ~ g uniformly. 
Rz g. = f , ,  and ~ A ~ f" (x) (v~ - 0~) (dh) converges to the corresponding expression 
with f,  replaced by f by dominated convergence, since ]Ahf, I =< (llf,"ll + 2 
]If.' [D( h2 A [hD. Since a) holds for g, ,  we see that it holds for g as well by letting 
n --~. o o .  

b) follows by applying Theorem (2.11) with A -= 1. [~ 
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If rz is defined by (2.4), note that 

(3.13) r~(0) = ~ e-Xtqt(O)dt = e-Ztt-1/~q(O)dt 
0 0 

= c 3 . 1 3  )~ 1 / ~ - I  

The next theorem is the main goal of  this section. 

(3.14) 

a) 

and 
b) 

Jlgllr~ 

Theorem. Suppose X t satisfies (1.4), 2 > 22.11. Then 

IS~gl < 2rz(0)Ilgll,.l 

there exists a nonnegative function s~(x) bounded by 2r~(0) such that if  
< o0, 

S~g = Sg(x)s~(x)dx .  

(3.15) 
where 

Taking the sup over all such g, 

pM < r~ (0) + �89 

or PM < 2ra(0). Letting M--,  oo, sup IS~gl ~ 2r~(0), which gives a) by the 
linearity of S~. JlgllL1 < 1 

If  A has 0 Lebesgue measure, a) shows that S~ 1A = 0, and hence S~ 
has a density s~(x) with respect to /z, Lebesgue measure. If  e > 0 and 
A = {x:sz(x  ) > 2r~(0) + e}, 

(2rz(0) + e)/z(A) < S a 1 a < 2rz(0)/z(A), 

or/z (A) = 0. Since this is true for each e, we may take s~ (x) < 2 r z (0) for all x. [] 
In the case X~ is Markov, one would want there to exist a kernel ~ (x, dh) such 

that v~(dh) = ~(X~(co), dh). Theorem (3.10) a then becomes 

Szg = R~g(xo) + SaBRxg, 

B f (x) = S A h f ( x )  (9(x, dh) - O, (dh)) 

Although it is a digression from our main topic, we take a moment to show how 
Theorem (3.10) can be used to show uniqueness of  the Markov process 

Proof First of all, DiG*[g[ [i~-1 < []G HL1UgiiL1 < �89 and G* ]g] (x) < �89 Let 

PM = sup [S~g]. By (3.1), IS~g] < ][gU/2, and so P~t < oo. Since S~ is a 
Ilgllz a < 1, Ilg[I < M 

measure, Pu = sup I&gl. 
IlgllL1 _~ 1, IIgll <= M, gECr~ 

By Theorem (3.10)b, i f g s C ~ ,  [Ig[[ ~ < 1, [Ig]] < M, 

[S~g[ <= Rz Igl (Xo) + Sz (G * [g[) 

< IlgllL, Ilr~ll +�89 
__< r~(0) + �89 
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corresponding to the integral operator fr + B. The key is that by Theorem (2.11), B 
is a relatively bounded perturbation of ~ , .  Let ~2 = {functions on [0, oo) that are 
right continuous and have left limits}, let X t (co) = co (t), and suppose P1, P2 are two 
probabilities on f2 for which Pi (Xo = xo) = 1 and (1.4) holds for each Pi. Let E i 

oo 

denote expectation with respect to Pi, and let S [ ~  E~ ~ e -Z t f (X t )d t .  As before, 
0 

IS[~)fl < Ilfl[/,L Writing (3.15) for S~] ), i = 1,2, and then taking the difference, we 
get 

(3.16) (S(z 1~ - S[2)) g = (S[ 1) - S[ 2)) (BR~g).  

So, 

~ o ( 1 )  Letp = sup It~a -S~2))gl. I f g e C ~ ,  ][gll < 1, and L is sufficiently large, 
ILgl[ _-< 1, g s C ~  

IBRxg(x)  I < G* Igl (x) < �89 Ilgll --< �89 

I(S}~ 1) - S(xl))gl ~= �89 

and taking sups, p < )p. Since p < 2/2 < oe, we must have p = 0, or S(~l)g = S(~2)g 
for bounded g. From this one may use techniques from [14, Chap. 6] to conclude 
there is a unique solution to the "martingale problem" given by (1.4), and hence a 
unique Markov process corresponding to the generator f#~ + B. Using techniques 
of [14, 13], and Sect. 6, one can then show uniqueness when (ba, by) satisfies the 
weaker condition (1.2), where b~ = b(Xs), as = fi(Xs) for functions b, 8. 

4. Construction of Local Time 

In this section we construct our local times by f r s t  looking at their potentials 
Ut (2, x). In the Markov case, we would just define Ut(2, x) in terms ofsa, but in the 
general martingale case a more complicated construction is needed. Throughout 
this section we suppose (1.4) holds. 

Let Qt (co,') be a regular conditional probability distribution for 4 .  That is, for 
each A s ~ ,  Q~ (., A) is g-measurable; for each co, Qt (co,') is a probability measure 
on o~; and 

Qt( ' ,A) = P(A I ~-;3, a.s., 

for each A ~ ~ .  Qt exists since ~-is the completion o fa  countably generated a-field 
and X t is real-valued. Let us write Qt Y(co) for S Y(co') Qt (co, de)'). 

IrA = {co : t ~ X t (co) is right continuous with left limits}, E (Qt 1 A) = P (A) = 1, 
or, for each t, Qt ( ' ,  A) = 1, a.s. 

(4.1) Proposition. Suppose (Y~, o~, P)  is a uniformly integrable martingale whose 
paths are right continuous with left limits. Fix to. Then (Yt+~o, ~+to,  Qto) is a right 
continuous martingale, a.s. (P). 

Here ~+t0 denotes the Qto completion of ~ o  t+to+ �9 
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Proof. As above, Yt+~o is right continuous with left limits, a.s. (Q,o)" Since Y~ is 
uniformly integrable, there exists an even positive function h with h (x)/x ~ oo as 
x ~  oo such that Eh(Yo~) < oo. However, then EQtoh(Yoo) = Eh(Yoo) < co, or 
Qtoh(Y~o) < o% a.s. (P). L e t N  1 = {co:Qtoh(Y~)= oe}. 

Fix s < t. Pick A ~ ~~ ~ and B e  ~o" 

E(Qto(Yt+tolA);B ) = E(Yt+tolA 1,) 

= E(Y~+to 1A IB) 

= E(Q,o(Ys+, o 1A); B). 

Since this holds for arbitrary B e ~0 ,  

(4.2) Qt0(Yt+,o; A) = Q,o(Ys+,o; A), a.s. (P). 

Let N(s, t, A) be the set ofco's for which (4.2) fails to hold. Let A~ be a sequence that 

generates ~O+to, and let N2 = U U N(s, t, AS). 
s,t rational n+ l  

By a similar argument, we can find a null set N3 outside of which 
Qtoh(Yt+,o) < Qtoh(Yoo), t rational. 

Fix co#N 1 uN2 wN3. Y~+to is then uniformly integrable with respect to 
Qto(co,'), t rational. Pick s < t real, s,, > s, tm> t rational $ s, t, respectively. Pick 
A e ~-~ Then A s ~ ~  +t0, and so from (4.2), by a monotone class argument, 

Qt0(Y~.+~o; A) = Qt0(Ys~+to; A). 

Use the right continuity and uniform integrability of Y and let rn ~ oe to get 

(4.3) Qto(Yt+to; A) = Qt0(Ys+to; A) 

for A e ~-~ The proof of the proposition is now immediate. [] 
By applying Proposition (4.1) to X~^uo, Uo fixed, we see that (J(~+~o, Q~o) is a 

locally uniformly integrable martingale. If  A, is a sequence of compact subsets of 
IR-{0} that generate the Borel a-field of IR, and 

y A , =  Z 1A.(AL)--iSJA,(h)vs(dh) ds, 
s<=t o 

applying Proposition (4.1) allows us to show easily that Xt+t0 is purely 
discontinuous with local characteristics (0, v~ +~o). (To get the uniform integrability 
of YAyu0, use Proposition (3.2).) 

For fixed co, if A - IR, 

Qto(co, Xto~A) = P(Xto~A]~o ) = IA(Xto), 

which is 0 or 1. So for almost all co(P), Xto is constant, a.s. (Qto)' 
Fix t o and fix 2 > "~2.11. If  co is not in any of the null sets, we may apply Theorem 

(3.14) to see that there exists a Borel mesurable function of x, bounded by 2r~ (0), 
which we will denote by Vt0 (2, x)(co), such that 

(4.4) Qto e-~tlA(Xt+to) dt (co) = S Vto(2,x)(co) dx, 
A 

for all Borel A __- R. Our potential Ut (2, x) will be a regularized version of Vt(2, x). 
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(4.5) Proposition. There exists a set N4. 5 with #(N4.5) = 0 such that if xOiN4.s, 
(e -~  Vt (2,x), ~o, p), t rational, is a supermartingale, 

Proof Fix s < t. We will first prove 

(4.6) E(e -xt V~(2, x); A) < E(e -xs Vs(2, x); A), a.e. (~) 

if A ~ ~ o .  If  B ___ R is Borel 

(4.7) B S E ( e - ~ V t ( 2 ' x ) ; A ) d x = E ( e - ~ t !  Vt(2'x)dx;A) 

=E(e-~tQ, ie-~rlB(X~+r)dr;A ) 

= E ( i  e-~rlB(Xr)dr;A), 

using Fubini and the boundedness of  V~(2, x). Applying (4.7) with s in place of t, 

~E(e -~s V~(2,x);A)dx = E ( !  e ~lB(Xr)dr;A)> E ( !  e-~rlB(X~)dr;A ) 
B 

= ~E(e -~ V~(2, x);A)dx. 
B 

Since B was arbitrary, (4.6) follows. 
Let N(s, t, A) be the null set of x's for which (4.6) fails. Let A;, be a sequence of 

sets generating ~ 0 ,  and let 

(4.8) N4.5 = U U N(s, t, AS,). 
s, t r a t i o n a l  n + l  

The proposition now follows. [] 
If  x ~ N4.5, e -~  Vt(2, x), t rational, has left and right limits, a.s. Let 

(4.9) Ut (2, x) = lira sup V t (2, x). 
t~ ra t ior taI ,  t~ > t ,  t~ $ t 

Vt (2, x) is measurable in x, for each t. Hence U~ (2, x) is jointly measurable in t and x. 

(4.10) Proposition. If xO~N4.5, (e-Z*Ut(2,x), ~ ,  P) # a supermartingale. 
Furthermore, if B c_ IR is Borel, 

(4.11) 'e-~'U(2, x)dx=E[~e-~'~lB(X~)dr]~t] a.s. (P) J t ~ �9 
B 

Proof The proof  of the first assertion is routine and is omitted. I f f ~  C~, 

(4.12) , f(x) Vt(2, x)dx= E[ie-~f(X~+~)dr[~l, a.s. 

by (4.4). (4.11) follows from (4.12) by a limiting argument and then using the 
monotone class theorem. 

The main theorem of this paper is the following. 
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(4.13) Theorem. Suppose X~ satisfies (1.4). Then there exist jointly measurable right 
continuous increasing processes L t (x) such that 

a) for each t and x, L, (x) has moments of  all orders, 
b) there exists a set N4.13 such that P (N4.13) = 0, and if  co ~- N4. t 3 and B ~- ]R is 

Borel, then 
t 

r  (x)dx = S l (X )ds 
B 0 

for all t. 

Proof If x ~ N4.5, e-  At U~ (2, x) is a supermartingale bounded by 2 r A (0). In this case, 
if 2 > 22.1 ~, let L{ (x) be the predictable increasing part of e-  At Ut (2, x). If  x e N4. s, 
let L~ (x) = 0. By [12], we may take L{ (x) to be jointly measurable in x and t. Fix 2 
sufficiently large, and let 

t 

(4.14) L, (x) = ~ e A~ dL2 (x). 
0 

By [5, p. 188] 

E[L{(x)] p < p! [2rA(0)] p, p = 1,2, . . . ,  

since the potential of L~ (x) is bounded. Then 

E[L,(x)] v < ePAtE[L{(x)] p < ~ ,  

which proves a). 
By a) and the definition of  L{ (x), e-  At Ut (2, x) + L{ (x) is a square integrable 

martingale (if t < u o < oo). Integrating by parts, 

t 

L A L, (x) = e At L{ (x) - ~ ~_ (x) 2e As ds 
0 

t 

= e At L{ (x) - ~ L~ (x) 2e As ds, 
0 

since L~ (x) has at most countably many discontinuities. I f f ~  CK, 

S e-  A, V, (2, x) f ( x )  dx + S f (x )  L~ (x) dx 

is a square integrable martingale. On the other hand, by (4.11) 

is a martingale. Hence, since L~ (x) is predictable for each x, ~ f (x )L~  (x)dx 

- i e-Arf(Xr)dr is a predictable martingale that has paths of  bounded variation 
t 

0 

and is 0 at time 0; therefore it is identically 0. 
Therefore 

t 

(4.15) ~f (x )  L{ (x) dx = ~ e- ~r f (Xr)  dr. 
0 
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It follows easily that for each t, 

t 

(4.16) ~f(x)  L, (x) dx = ~f(Xr) dr, a.s. 
0 

Since both sides are right continuous, we can find a single null set N ( f )  independent 
of t for which (4.16) holds. Taking a countable sequencef, of functions in C~ that 

generate the Borel a-field oflR, we obtain b) by letting N,.13 = ~) N(f,). [] 
n = l  

If  we were to choose a different value of 2, say ~, and let 

t 

L, ix) = S dsdz; (x), 
0 

the argument leading to (4.15) shows that 

~ f ( X ) s  = ~ f ( x )L , ( x )dx ,  a.s. 

Therefore, for almost all co,/S t (x) = L, (x) for almost all x. By Fubini, for almost all 
x,/S, (x) = L, (x), a.s. 

5. Continuity of Local Times 

The local times L t (x) that we constructed in Theorem (4.13) turn out to have the 
nice property that they are continuous in t. Offhand, there is no reason to expect 
them to be continuous in x. 

(5.1) Theorem. There exists a se t  Ns. 1 of  Lebesgue measure 0 such that t fx r N5.1, 
L t (x) is continuous in t, a.s. 

Proof Fix t, and let 

Then, i f f e  CK, f >  0, 

and so 

(5.2) 

Ds(t,x ) = L,+,(x) - L,(x).  

s 

5D, (t, x) f ( x )  dx = Sf(X,+,)  dr, 
0 

(5.3) 

00 

~f(x)  e-~SdDs(t,x)dx = ~ e-~ ' f (Xt+,)ds .  
0 0 

Integrating by parts, 

2e- Z~Ds(t,x)ds = ~ Ds_ (t,x) 2e- )~ ds 
0 0 

u 

= -e-Z"Ou(t,x) + Ie-  dD (t,x) 
0 

oo 

=< ~ e-X~dD~ (t,x) . 
0 
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Then, letting u --, oe in (5.3) and using (5.2) and (4.4), 

(5.4) ~ f ( x ) Q t  ~ 2 e - ~ D s ( t , x ) d s d x  < Qt e-aSf(X~+s)ds 
0 0 

= ~ f (x) V t (2, x) dx 

< 2rz(0)IlfllL1, a.s. 

It follows that, except for x in a set N ( t )  of Lebesgue measure 0, 

Qt S 2 e - ~ D s (  t, x )ds  <__ 2rx(0) __< 2c3.13 2 l/v- 1, 
0 

by (3.13). D S (t, x) is increasing in s, and so if h = 1/2, 
co 

QtDh( t ,x )  <= eZh S 2e -ZSQtDs( t , x )ds  
h 

= < cl h 1 - 1/v 
or, for each t, if x # N(t),  

(5.5) E(Lt+ h (x) - L, (x) I ~ )  < cl h i - 1/% a.s. 

By Fubini applied to {(t, co, x, h): (5.5) does not hold}, there is a null set Na such that 
if xC:N1, (5.5) holds for almost all t, h, and co. Fix xd~N1, fix u o small, and let 

A,  = Lt+u^uo(X) - L,(x); Nu = ~t+, .  

The potential of  A with respect to f9 is 

E(Auo - A,I~ , )  = E(Lt+,o(x)  - L , + u ( x ) l ~ + , )  < clu~ -a/= 

for almost all u, and hence for all u by right continuity of  L and ~ .  
Apply [5, p. 188] to A; we get 

(5.6) E(L,+,o(X) - L , (x))  v = EA~, o < p! (ca u~- a/v)p. 

By right continuity, the fact that L t is increasing, and Theorem (4.13) a, (5.6) holds 
for all t. Take p large enough so that p (1 - 1/~) > 1. By Kolmogorov's  criterion, 
there is a version of Lt (x) that is uniformly continuous in t, a. s. Since Lt (x) is right 
continuous, there is no need to take versions and so L t (x) is continuous, a.s. [] 

Henceforth, let us assume that L~ (x) = 0 if x eNs.a �9 
The estimates in the proof  of Theorem (5.1) can be used to get a modulus of 

continuity for L t (x). By the Taylor expansion for e x and (5.6), 

E(exp (1Lt+,o(X) - L,(x)1/2c a u~- a/v) < 2. 

Letting Go(y) = e lyl and m(y) = 2 q  ly[a- l /L 

(5.7) Go L ' ( x ) - - L ~ ( x ) ~ d s d t  
o o m ( t - s )  ,1 < 0% a.s. 

since the expectation of  the left side of (5.7) is finite. Then by the lemma of Garsia, 
Rodemich, and Rumsey (for example, see [11]), 

I t - s l  

I L t ( x ) -  L~(x)I < c 2  ~ G 0 1 ( c  3u-2)dm(u),a.s.,0<s, t < l ,  
0 
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o r  

]L t (x)  - L~ (x) I 
(5.8) lira sup < c 4 . 

O<=s,t<l,]t-s]<-h,h~O [ lnh]h  1-1/~ = 

I f X  t is Markov ,  one can do slightty bet ter  and  replace the denomina to r  o f  (5.8) 
by I lnhl l /=h 1-~/~. See Millar  [11] for the proof .  

6. Extensions 

In this section we show tha t  if  X t is a semimart ingale  with (1.2) holding, there exists 
a local t ime for X t. First  suppose Yt is a semimart ingale  with local characteristics 
(as, v ~  satisfying (1.2) with b s -- 1. Then  

i (6.1) Zt = Yt - ~, AYsl(l~gl>~)+ (. h v [ ( d h ) d s  - [ a s d s .  
s<=t 0 1 > l h l = > a  0 

is a local mart ingale.  
Let  a + , a [  be the positive and negative parts ,  respectively, o f  as, and let 

t 1 t t --o- t 

A + = S [ h v [ ( d h ) d s + ( a ; d s ,  A ; - = - ~  ~ h v [ ( d h ) d s + S a + d s .  
O ~  0 0 - 1  0 

Let Pt + , Pt-  be two s tandard  Poisson processes independent  o f  each other  and  o f  Y. 
P %  P+-  - A t are mart ingales  with respect  to I t  is easy to check tha t  A; -- A +  and A, 

the appropr ia te  a-fields. 
Let  R t be a process with s tat ionary,  independent  increments,  independent  o f  Yt, 

P +, and P - ,  with L6vy measure  

v R ( d h ) = { O 0  ~(dh) IhlNllh]>l 

Let  

P +  - PAc + R t -  A~ + + A ? .  (6.2) X t = Z t +  A7  

Note  that  v~ satisfies (1.4). 
If To = 0, and Ti+ 1 = inf{t  > Ti: IAXt] > a or IA Yt[ > a}, then because X t and 

Y, are right cont inuous  with left limits, 

T~/~ + oe, a.s. 

Fix i. Let  X} i) = X t + r ~ - X r  ~. ( X[ ~ ~ + r ~, P )  is a local mart ingale ,  X(o ~ = 0, a. s. 
X(1) and v s satisfies (1.4). Observe  that  

(6.3) gs - Yr  = Xs - X r  = g(i) 

if Ti < s < Ti+l.  
(0  By Theorems  (4.13) and  (5.1), there exists a cont inuous  process L t (x)  such that  

i f f e  CK, 

t 

(6.4) S f (XJ  ~ ds = S f ( x )  L} i) (x)  dx, a.s. 
0 
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Fix co not  in the null set o f  (6.4), and  let 

g (x)  = f ( x  + Yr, (co))" 

Then 

(6.5) ~rrx~ L (i) x (i) j~  j ,A(~,+,_~,~(x- Yr )dx  = ~g( )L,^(~,+,_~o(x)dx 
(T~+~-r3 At 

= S g (X~ i)) as 
0 

ri+l ^ (t+ rO 
= ~ f ( X s  - Xr ,  + Yr,) ds 

T, 
T~+I ^ ( t +  T~) 

= (. f(Ys) d~, 
r, 

using (6.4). 
N o w  define L t (x)  by induct ion as follows: 

Lo (x) = 0; 

L t (x) = Lr , (x  ) + L~ i)_ r , ( x -  Yr,)  if T/__< t < T i + 1. 

Lt (x)  is cont inuous,  since each L (~ is. Summing  (6.5) over  i = 0 , 1 , . . . ,  we see 
that  L t (x) is an occupat ion  t ime density for Y~. 

N o w  we want  to show it suffices for (1.2) to hold. Suppose  B t is a strictly 
increasing cont inuous process, B o = 0, Boo = 0% and dBf fd t  = b t > 66.6 > 0. Let  
T t = inf{s:  B~ > t}, and suppose X t = YB,. Suppose,  Yt is a process with a local t ime 
L~ (x). Hence  for co r N, a null set, 

t 

[. f(L)ds = t f ( x ) L , ( x ) d x  for all t. 
0 

Let M t (x)  = L~, (x). Then 

(6.6) [ . f ( x )  M t ( x ) d x  = 

N o w  define 

(6.7) Nt (x)  = 

B t t 

~ f ( Y ~ ) d s  = ~ f ( X . )  dB. 
0 0 

t 

S f ( X . )  b. du. 
0 

t 

S b21 riM. (x). 
0 
t 

(6.8) Proposition. S f ( x ) N t ( x ) d x  = S f ( X u ) d u .  
0 

P r o o f  Fix co r N. Let  d,, be a step process such that  d,- 1 is bounded.  So for fixed 
t 

times ti, d,  = d,, if  t i < u < t i + 1. Let M~ (x)  = ~ ds  1 dMt  (x).  Then,  using (6.6), 
0 

~ f ( x ) M z d ( x ) d x  = ~, ~ f ( x )  ( M f ^ . §  - M f ^ , , ( x ) ) d x  
i = O  

= d - '  (X.)b, du 
t i  

i = 0  t a t  i 
t 

= S f ( X . )  (b . /d . )  du .  
0 

(6.9) 
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A monotone class argument shows that (6.9) holds for any d, provided d~- ~ is 
bounded, in particular with d, = b,. [] 

Now suppose X~ is a semimartingale satisfying (1.2). It is routine to check that 
there exists a Yt satisfying (1.2) with local characteristics (a~, vs) such that X t = IzB. 
Hence Xt has a local time. 

7. Weak Convergence 

We now wish to construct a counterexample to show that a condition such as (1.2) is 
necessary. In this section we collect a number of  facts related to weak convergence 
inD [0, oo) that will be necessary for the construction, which is carried out in Sect. 8. 

Let f2 = D [0, oo )=  {functions from [0, oo) to IR that are right continuous 
with left limits}. Define X t (co) = co (t) for co E f2. Throughout,  e and fl are fixed 
w i t h l < e < / ~ < 2 .  

We will want to consider probability measures P '  such that 
(7.1) a) ( X  t, P ' )  is a purely discontinuous local martingale with local characteristics 
(0, vs) and P ' ( X  o = 0) = 1. 

b) O:,(dh) < vs(dh ) < c7.1AOfl(dh ) / f  Ihl _--< 1, 

c) v, (dh) = 0 a (dh) i f  I h [ > 1. 

Note that (1.3) is satisfied if c~ < fl < ~ + e. 
One could, in the construction that follows, define P so that v s (dh) = O~ (dh) if 

[hi > 1, and hence so that vs(dh) > O~(dh) for all h; however, the existence or 
nonexistence of  local times depends only on the behavior of  v~ near 0 (cf. Sect. 6), 
and so we do not do that here. 

The proof  of  the following is standard. 

(7.2) Lemma. Suppose ( Y ,  P,) is a submartingale (supermartingale, martingale) 
and for  each t, sup, E n [ Yttl t +~ < oo for  some ~ > O. Suppose for  each j > 1 and t 1 
< . . .  < tj with P(AY~4= O)= 0 for  i =  1 , . . . , j ,  the distribution o f ( Y t l , . . . ,  Yt~) 
under P, converges to that o f  (Y t l , . . . ,  YQ under P. Then ( Y , P )  is a submartingale 
( supermartingale, martingale). 

(7.3) Proposition. Suppose P, is a sequence o f  probability measures satisfying (7.1). 
Then there is a subsequence which converges weakly in D [0, oo) to P, and P satisfies 
(7.1). 

Proof. By (7.1) b and c, supSh2 A Iv~n)(dh)< oo. By the argument of  [13, 

pp. 237-238], the Pn's can be shown to be tight, and so there exists a subsequence 
P,, converging weakly to P. By Lemma (7.2) and Proposition (3.2), (X~, P) is a local 
martingale. 

We now show (X,  P)  is purely discontinuous. Let 

(7.4) Zt = Xt - ~ AX~I(I~x,,>~) 
s < t  

Since P,, converges weakly on D [0, Go) to P, it is not hard to show that if 
t 1 < . . .  < ty,j > 1, the distribution of  (Z t l , . . . ,  Zt)  under P,, converges to the 
distribution under P, provided P(AZt ,  4 = O)= O, i = 1 . . . .  ,j. As above, (Zt, P)  
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is a local mart ingale.  To  show X c, the cont inuous par t  o f  X, is 0, it suffices to 
show Z c = O. 

Z has j umps  bounded  by 1, and  so by (3.4), sup E,  Z 2 < c 1 . L e t f ( x )  = x 2 A c a . 
Then 

Ef(Zt) = lim E,,f(Z~) < lim s u p E , , Z ~ .  
nt  -9 oo n t  

Lett ing cz ~ ~ ,  by m o n o t o n e  convergence,  

EZ 2 < l im sup E., Z~. 
n! 

Let h e C K with suppor t  in [ - 2 ,  2 ] -  (-6/2, 6/2), with 0 < h ( x ) <  x 2, and 
h (x) = x 2 if 6 < ]x I < 1. Since P,, ~ P weakly,  we can show that  

Since 

E Z AZ2 > E ~ h(AZ~) = lira E,, ~, h(AZ~). 
s < t  s < t  n t ~  s < t  

t 6 

s u p E ,  E AZ~l(tAZst<=~) = s u p E ~  ~ hZv~")(dh)ds~O 
n s < t  n 0 - 6  

as 6 ~ 0, we get 

E ~, AZ~ > l im in fE . ,  Z AZ2" 
s < t  n t ~  s<=t 

We then have, since ( Z ,  P,,) is purely discontinuous,  

E(Zc, ZC)t= E([Z,Z]t - ~ AZ2) = EZ~ - E ~ AZ 2 
s = t  / s < t  

=<limsupE,,(Z2- ~dZ~l=l imsupE, ,~ 'Zc  ZC'~ , /t 
n t ~ m  s < t  / n t ~ m  

Finally, we show (7.1) b and  c hold. If f eC~ with suppor t  conta ined in 
[ -  1, 11 - {0}, and 

Yt = Z f(AZs) - t c 7 . 1 A  ~f(h) Oa(dh), 
s < t  

(Yt, P,,) is a supermart ingale .  Again,  the finite dimensional  distr ibutions of  Y, can be 
shown to converge, and so by L e m m a  (7.2), (Y,  P )  is a supermart ingale .  Repeat ing  
this a rgument  with the suppor t  o f  f ~ - [ - 1 , 1 ]  c, we see that  X t has local 
characteristics (0, vs) with 

(7.5) v~(dh) ~ C7.1A l(ihl z l)Oa(dh) + l(ihl > 1)Oa(dh). 

The remainder  of  (7.1) b is similar. []  
Recalling the definit ion of  S~, we need 



Local Time for a Class of Purely Discontinuous Martingales 455 

(7.6) Proposition. Suppose (Xt,P) satisfies (7.1). Then 

sup S;. l[a_6,a+6] <= C 7 . 6 ( ~ ) ,  
lal =< 2 

where c7.6 (~5) depends only on c7.1a, c~, fl, and2, and tends to 0 as 6 --+ O. 

Incidentally, this proposition shows that X, spends 0 time at points, and that to 
construct a P for X t has no local time, one needs a somewhat complicated 
construction. 

Proof. Let T N = inf{t: [X~I > N}. By Ito's lemma (cf. (3.12)). i f f ~ C  2, 

t A T  N 

(7.7) Ef(Xt^r~ ) - f ( O )  = E ~ ~AhRf(Xs)v~(dh)ds. 
0 

Since IA~f(X~)] ~ q( l l f ' ] l  + [If"]l + sup If(x)l)  (h 2/x [hi) if s <  TN, a 
Ixl < N 

limiting argument, Proposition (3.2), and the fact that I f(x)  l < f ( 0 )  + Ixl g f '  [I 
shows that (7.7) holds for f convex such that Ilf'l[ + Ilf"ll < oo. Since f is 
convex, A ~ f ( x )  > O. Letting N ---, 0% we may use monotone convergence and (7.1) 
b on the right of (7.7) and uniform integrability on the left of (7.7) to get 

t 1 

(7.8) Ef(Xt)  - f(O) > E~ ~ A~f(Xs)O~(dh)ds. 
0 - 1  

Taking a limit and applying Fatou, (7.8) holds when f ( x )  = I x -  a l. Direct 
calculation shows that 

1 

(7.9) ~ A ~ f  (x)O~(dh) >= e 1 I x - a [  1-~ >= cl (~l-~ l[a_6, a+6](X ) 
- 1  

if I x - a [  < 1/4. Substituting (7.9) in (7.8) and again using Proposition (3.2), 

(7.10) E i lta_a,,+~l(Xs) ds <= c2 c5 ~-1 (t + lal). 
0 

if 6 < 1/4. Multiplying both sides of (7.10) by 2e -~'* and integrating t from 0 to oo 
completes the proof. [] 

Let Fbe the finite union of disjoint closed intervals contained in [ -  1, 1]. Let R~. 
be the resolvent operator for a symmetric stable process of index ft. That is, R~ is 
defined by (2.10) and (2.4), where now qt is the density of a stable process of index ft. 
Let 

(7.11) ~(dh)=~O~(dh)-O~(dh)  if Ih[=< 1 
(o if th] > 1 

and let B be the operator defined on f e  C 2 by 

(7.12) B f ( x )  = IF(X) S A~f (x )  ~(dh). 

One of the main results we will need in the next section is 
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(7.13) Proposition. There exists a probability P satisfying (7.1) such that i f  
o~ 

S ~ f  = E ~ e-Zt f ( X t ) d t  and f e  C 2, then 
o 

S z f  = Rzf(0)  + S~ ( B R x f ) .  

Proof. Let ~ (dh) = ql (dh) if lhl => 1/m, 0 otherwise. Let B~ be defined analogously 
to B in (7.12). Let Pm be a probability satisfying (7.1) such that (Xt, P,,) has local 
characteristics (0, v~) with v~"(dh)= 1F(X~)~,,(dh)+ Op(dh). Such Pm may be 
shown to exist by [1] or the techniques of [13]. An alternate argument would be 
to construct probabilities corresponding to v~'k=fk(X~)~u,,(dh)+ Oa(dh), fk 
Lipschitz, using techniques of stochastic differential equations, and then to take 
weak limits as fk --> 1F. 

By Theorem (3.10) a, i f f e  C~, 

(7.14) S(~) f = R~f(O) + S(z ") B, ,R~f ,  

where s(~m)g = E m ~ e -at g(X~)dt, since now R~ is the resolvent of  a stable process 
of index/L 0 

Taking a subsequence if necessary, we may assume P,, ~ P, weakly, and by 
Proposition (7.3), P satisfies (7.1). Since f s  C~, R z f e  C z, and note then that 

I l g m R x f - B R x f l ]  ~ [l(R~f)"ll ~ h2~(dh) ~ 0  
Ihl < 1/m 

as m ---, ~ .  Since ~ A h c R~ f(x)~u (dh) is continuous, BR~ f ( x )  is discontinuous only 
at the finitely many endpoints of intervals of F. By Proposition (7.6), we can find g 
continuous such that S[ m) I B R z f -  g I, Sz [BRz f  - g l < ~. 

Since P~ ~ P weakly, s~m)f~ S z f  and s~m)g ~ Szg. 

(7.15) IS~m) B m R z f  - SaBRx f [  < IS~m) BmR~f  - S~")BRxfl  

+ I S(z m) BRx f -  S~m ) g I + [ S~ m) g - S~ g I 

+ ISxg - SaBRa f l  

< I [ B , , R x f -  BRafl l /2  + 2e + IS[m)g - S zg l .  

The proof of the proposition follows from letting m ~ ~ in (7.14), since e was 
arbitrary. [] 

8. Counterexamples 

In this section we construct a probability P satisfying (7.1) for which X t does not 
have a local time. The idea is to construct a Cantorlike set D of Lebesgue measure 0, 
to let v s (dh) = 0~ (dh) ifX~ ~ D, [h I < 1, v s (dh) = Op (dh) ifXs ~ D, and to show that X t 
spends a positive amount of time in D. In view of Proposition (7.6), letting D be a 
countable set would not work. 

Throughout this section 1 < ~ < ]~ < 2 are fixed, R~ is the resolvent of a 
symmetric stable process of index/~, rx the density of R~, and S~ (or S~ ")) as in the 
statement of Proposition (7.13). Let ~ -- min ((]~- oc)/2, (~ - 1)/2), and let 

(8.1) H(x)  = [xl r-1. 
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(8.2) Proposition. Let F be the finite union of  disjoint closed intervals contained in 
[ - 1 ,  1]. Suppose lz(F) > O, and let w = sup ~ H ( x -  y)dx/ct(F). Let ~ and B be 

y~N.  F 

defined by (7.11) and (7.12), and let P be the probability given by Proposition (7.13). 
Then Sz 1F >->_ %.2 (w), where %.2 (w) depends only on c~, t ,  and w, is decreasing in w, 
and strictly positive if  w < oo. 

Proof. Since ~ Ihf-~O~(dh)< ~ ,  by Theorem (2.ll)  and (2.12), we can fix a 2 
Ihl _-< I 

such that i f f ~  C~, 

(8.3) ~ Ahc R z f  (x)O~(dh) < cl H * l f l ( x ) .  
Ihl<l 

Since ~ A ~g Op (dh) = fqp g, the infinitesimal generator for a symmetric stable 
process of index fi, and so f~p R z f =  2 R ~ f - f  then 

(8.4) ~AhcRzf(x)~(dh)= ~ AhcRxf(x)O~(dh)+ ~ AhcRxf(x)O~(dh) 
Ihl <1 Ihl>l 

- 2Rx f (x )  + f ( x ) .  

Then if support ( f )  ~ F and 0 __<f_<__ 1, IIR~.fll ~ IIr~.llcz(f), and 

(8.5) If (x)-  BRaf(x)  l <= IF(X) ()~R~ff (x) + c 1 H , f  (x) + cz IIRzfll) 

_-< at(x)((2 + c2)Ilr~ll + cx w)/~(F). 

On F c, f -  B R x f =  0, and so, by Proposition (7.13), 

(8.6) R).f(O) = S z ( f -  BR;. f)  < (c 1W --~ c3)~/(F)S 2 1F. 

Use monotone convergence to show (8.6) holds for f =  IF ,  and then observe 
that 

R~ lF(O) > (\,<_l,llinf r x ( y ) ) t t ( F ) = c 4 t t ( F ) .  

This and (8.6) shows that S~ le > c4/(Cl w + %). [] 

(8.7) Lemma. Suppose [a, b] is a closed interval, ~ > O. Then there exists k o (~) such 
that if  k > k o (e) is even, 

6 = (b - a)/(4k + 2), s i = a + (4i + 1) 6, 

and 

then 

k 

Ik[a,b] = U [si+6, si--6],  
i=0  

Ik[a,b] a 
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The proof of Lemma (8.7), which relies only on the fact that H(x)  is integrable 
and continuous except at 0, will be omitted. Note that 

l~(Ik[a,b]) -- 2 k + 1 / a ( [ a , b ] ) >  ~([a,b]), while if k > 2 ,  #(Ik[a,b])< /~([a,b]). 

Our main theorem is 

(8.8) Theorem. There exists a probability P satisfying (7.1) such that S;. is not 
absolutely continuous with respect to #. In particular, ( Xt, P) cannot have a local time. 

Proof. Let D o = [ -  1, 1 ]. 

H (x) dx = i~(Do)/7 . 
Do 

We will first construct by induction a sequence of closed sets D. such that 
D. ___ Do__ 1, each D. is the finite union of disjoint closed intervals of equal length, 
each D n is symmetric about 0 and contains 0, �89 _-< ~(D~+I) < }a(D,), and 

sup ~ H ( x - y ) d x  < (2/?)~(D,). 
Y~P" D n 

N. 
Suppose D, = U [aj, bj] has been constructed. Choose ~ small enough so that 

j = l  

H(x)  dx/l~(D,,) < 2/7 (1 + 2e). 
Dn 

Choose k > 2 even and large enough so that for each j, 

(8.9) ~ H(x)  dx < +~ ~H(x)  dx. 
&[aj,bfl ,~j 

N. 
Let D,+ 1 = U Ik[aj, bj]. Summing (8.9) over j =  1 , . . .  ,N, ,  

j = l  

Dn + 1 Dn 

Since k is even, 0 ~D,+ 1, and by symmetry considerations, 

sup j" H ( x - y ) d x =  ~ H(x )dx .  
y~]R Dn+l Dn+l 

Next, for each n, apply Proposition (8.2) with F = D, to obtain P, satisfying 
(7.1) and S~ ") ID. > %2(2/7). By Proposition (7.3), a subsequence of the P,'s 
converges weakly to P satisfying (7.1). If  m > n, S(~ m) lb. > S~m ) lb .  => es. 2 (2/7). 
Since D, is closed, by weak convergence Sz lB. > %2 (2/7). 

Let D =  N D , .  D is closed, /z (D)=0,  and since S z is a measure, 
n = 0  

S~ 1 o = lim S~ lo. > c8. 2 (2/7). 
n~oo 

If (X,, P) had a local time L t (x), for each t 

i lo(Xs)ds = ~ L,(x)dx = 0, a.s.; 
0 D 

but then Sz 1D would be 0, a contradiction. El 
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Note added in proof. The author and M. Cranston have recently shown, using the Malliavin calculus, 
that a purely discontinuous martingale will have a jointly continuous local time provided the local 
characteristics are sufficiently smooth as well as sufficiently large. 


