# Local Times for a Class of Purely Discontinuous Martingales 

Richard F. Bass<br>Department of Mathematics, University of Washington, Seattle, WA 98195, USA


#### Abstract

Summary. Suppose $X_{t}$ is a purely discontinuous martingale. A sufficient condition for $X_{t}$ to have a local time is given in terms of the local characteristics of $X$. An example is constructed to show that this condition is nearly optimal.


## 1. Introduction

In 1975, Meyer [10] showed how to use Tanaka's formula to construct local times for martingales with nondegenerate continuous parts. He then raised the question: when does a purely discontinuous martingale have a local time? Yoeurp [16] and Yor [17] have both shown that Tanaka's formula fails badly in this case.

On the other hand, the theory of additive functionals may be used to construct local times for certain Markov processes, those for which points are regular for themselves (Blumenthal and Getoor [3]). Sufficient conditions for local time to exist in terms of the resolvent operator were given by Boylan [4] and Griego [6]. Maisonneuve [9] has extended the Markov theory approach to construct local times for martingales when points are regular for themselves.

The difficulty with the Markov theory approach is that one can very rarely check whether points are regular for themselves or whether the resolvent operators have the proper form. Kesten [8] obtained very good results in the case of processes with stationary, independent increments, but virtually no other examples are known.

The purpose of this paper is to give a condition that is sufficient for the existence of local times for purely discontinuous semimartingales. Our theorem is stated in terms of local characteristics. Hence, when a process is defined by means of a stochastic differential equation with respect to a Poisson point process, or when, in the case of real-valued Markov processes, it is defined by its infinitesimal generator, one can easily read off the local characteristics and apply our condition.

To state our results, we first need some definitions. We will consider only local times that are occupation time densities with respect to Lebesgue measure. Thus, we
are interested in the existence of a jointly measurable process $L_{t}(x)$ such that, a.s.,

$$
\begin{equation*}
\int_{0}^{t} 1_{B}\left(X_{s}\right) d s=\int 1_{B}(x) L_{t}(x) d x \quad \text { for all } t, \text { for all Borel } B \subseteq \mathbb{R} \tag{1.1}
\end{equation*}
$$

Our processes $X_{t}$ will be semimartingales that have local characteristics $\left(a_{s}, v_{\mathrm{s}}\right)$. This means (our definition may vary slightly from other definitions) (i) $a_{s}$ is adapted, (ii) $v_{s}$ is adapted, and for each $s$ and $\omega$, a $\sigma$-finite measure on $\mathbb{R}-\{0\}$, (iii) for each Borel $B$ such that $\bar{B} \subseteq \mathbb{R}-\{0\}$ is compact, $\sum_{s \leq t} 1_{B}\left(\Delta X_{s}\right)-\int_{0}^{t} v_{s}(B) d s$ is a local martingale, and (iv) $X_{t}-\sum_{s \leq t} \Delta X_{s} 1_{\left(\left|A X_{s}\right|>1\right)}-\int_{0} a_{s} d s$ is a local martingale. $X_{t}$ purely discontinuous means that $\bar{X}_{t}$ is the uniform limit of

$$
\sum_{s \leqq t} \Delta X_{s} 1_{\left(\left|\Delta X_{s}\right| \geqq \varepsilon\right)}-\int_{0}^{t} \int_{1 \geqq|h| \geqq \varepsilon} h \nu_{s}(d h) d s+\int_{0}^{t} a_{s} d s \quad \text { as } \quad \varepsilon \rightarrow 0 .
$$

If $1<\alpha<2$, let $\theta_{\alpha}(d h)=\zeta_{\alpha}|h|^{-(1+\alpha)} d h$ be the Lévy measure for a stable symmetric process $Z_{t}$ of index $\alpha$. Here $\zeta_{\alpha}$ is the positive constant chosen so that $E \exp \left(\right.$ is $\left.Z_{t}\right)=\exp \left(-t|s|^{\alpha}\right)$.

Our main result is: suppose
(1.2) $X_{t}$ is a purely discontinuous semimartingale with local characteristics $\left(b_{s} a_{s}, b_{s} v_{s}\right)$ such that
a) $b_{s}$ is measurable, and for some $K_{1.2 A}, \sup _{s}\left|b_{s}^{-1}\right| \leqq K_{1.2 A}$, a.s.,
b) for some $K_{1.2 B}, \sup _{s}\left|a_{s}\right| \leqq K_{1.2 B}$, a.s.,
c) for some $K_{1.2 \mathrm{C}}$, $\sup \left|\int h^{2} \wedge 1 v_{s}(d h)\right| \leqq K_{1.2 C}$, a.s., and
d) for some $1<\alpha<2,0<\sigma<1, \varepsilon>0, K_{1.2 D}>0$,

$$
\sup _{s} \int_{-\sigma}^{\sigma}|h|^{\alpha-\varepsilon}\left|v_{s}-\theta_{\alpha}\right|(d h) \leqq K_{1.2 D}, \text { a.s., }
$$

where $\left|v_{s}-\theta_{\alpha}\right|$ is the total variation measure of $v_{s}-\theta_{\alpha}$.
If (1.2) holds, then a local time $L_{t}(x)$ for $X_{t}$ exists (see Theorem (4.13) and Sect. 6).

At first glance, (1.2)d may seem very restrictive. However, in fact, (1.2)d is nearly optimal. By this, we mean, if $\varepsilon>0$, then there exists a process $X_{t}$ such that
(1.3) $X_{t}$ is a purely discontinuous local martingale with local characteristics $\left(0, v_{s}\right)$ such that
a) $v_{s}(d h) \geqq \theta_{\alpha}(d h)$ for all $s$ and $\omega$, and all $|h| \leqq 1$, and
b) for some $K_{1.3}$,

$$
\sup _{s} \int_{-1}^{1}|h|^{\alpha+\varepsilon}\left(v_{s}-\theta_{\alpha}\right)(d h) \leqq K_{1.3},
$$

but for which no local time for $X_{t}$ can exist (see Theorem (8.8)).

If $\psi_{s}(d h)=\left(v_{s}-\theta_{\alpha}\right)(d h),(1.2) \mathrm{d}$ says that $\psi_{s}$ can be very large near 0 , but no larger than $\theta_{\alpha}$ itself. In fact, if we allow $\psi_{s}$ to be larger than $\theta_{\alpha}$ near 0 , then, even if $\psi_{s}$ is positive, there need not exist a local time for $X_{t}$.

Although (1.2) d is nearly optimal in the sense given above, it is by no means necessary. For example, there are processes with stationary, independent increments that do not satisfy (1.2)d but have local times. It would be of interest to get a result with $\theta_{\alpha}$ in (1.2)d replaced by the Lévy measure of any process with stationary, independent increments that itself has a local time, particularly for those whose Lévy measure is close to that of a (asymmetric) Cauchy. It would be even more interesting to see if any kind of continuity condition on $v_{s}(d h)$, together with $v_{s}(d h) \geqq \theta_{\alpha}(d h),|h| \leqq 1$, some $\alpha>1$, would suffice for the existence of a local time.

In Sect. 2 we obtain some estimates on the density of the resolvent of a symmetric stable process of index $\alpha$. In Sect. 3 we consider $X_{i}$ satisfying
(1.4) $X_{t}$ is a purely discontinuous local martingale with local characteristics $\left(0, v_{s}\right)$ such that (1.2)c holds, for some $1<\alpha<2, v_{s}(d h)=\theta_{\alpha}(d h)$ if $|h|>1$, and (1.2) d holds with this same value of $\alpha$ and with $\sigma=1$.

We use a perturbation argument to show that the expected time spent in sets by $X_{t}$ has a bounded density with respect to Lebesgue measure. We also indicate how, if $a_{\mathrm{s}}=\bar{a}\left(X_{s}\right), b_{s}=\bar{b}\left(X_{s}\right)$, and $v_{s}(d h)=\bar{v}\left(X_{s}, d h\right)$ for functions $\bar{a}$ and $\bar{b}$ and a kernel $\bar{v}(x, d h)$, then the techniques of Section 3 may be used to prove uniqueness of a martingale problem (and hence of a Markov process) specified by $\left(b_{s} a_{s}, b_{s} v_{s}\right)$. This extends the results of Tanaka, Tsuchiya, and Watanabe [15] who discussed the case $\left(a_{s}, \theta_{\alpha}\right)$.

Section 4 uses the results of Sect. 3 and the stochastic calculus to construct the required $L_{t}(x)$ when $X_{t}$ satisfies (1.4). In Sect. 5 we show that $L_{t}(x)$ is continuous in $t$, and we obtain a modulus of continuity. (There is no reason to expect $L_{t}(x)$ to be continuous in $x$.) In Sect. 6 we use localization and time change to show the existence of $L_{t}(x)$ when (1.2) holds. After some preliminary results concerning weak convergence in Sect. 7, in Sect. 8 we construct a process satisfying (1.3) that has no local time. Since any process satisfying (1.3) spends 0 time at points (Proposition (7.6)), we accomplish our construction by finding a Cantor-like set of Lebesgue measure 0 and a process $X_{t}$ that spends positive time there.

Other notation we will use is $\Delta_{c}^{h} f(x)=f(x+h)+f(x-h)-2 f(x)$, $\Delta_{\mathrm{R}}^{h} f(x)=f(x+h)-f(x)-h f^{\prime}(x)$. Let $\mathscr{G}_{\alpha}$ be the infinitesimal generator of a symmetric stable process of index $\alpha$. Hence $\mathscr{G}_{\alpha} f(x)=\int \Lambda_{R}^{h} f(x) \theta_{\alpha}(d h)$.

Let \|| \| be sup norm, $C_{K}$ continuous functions with compact support, $C^{2}$ twice continuously differentiable functions. Let $\left\|\|_{L_{1}}\right.$ be the $L_{1}$ norm with respect to $\mu$, Lebesgue measure, and let $*$ denote convolution.

Let $\mathscr{F}_{t}^{0}=\sigma\left(X_{s} ; s \leqq t\right)$ and let $\mathscr{F}_{t}$ be the $P$-completion of $\mathscr{F}_{t+}^{0}$. Let $\left[X, X_{t}\right]=\Sigma_{s \leqq t} \Delta X_{s}^{2}$ for purely discontinuous semimartingales. Notation and terminology relative to stochastic integrals and semimartingales may be found in [5], [7], and [10]. Constants whose subscripts are proposition numbers, e.g., $c_{2.1}$, do not change, but constants with an integer as a subscript, e.g., $c_{1}$, may chance from place to place.

[^0]
## 2. Stable Densities

In this section we derive some estimates for the densities of stable processes. Although the methods used are routine, the results do not appear to be in the literature.

Let $1<\alpha<2$ be fixed, and let $X_{t}$ be a symmetric stable process of index $\alpha$ with $X_{0}=0$. Let $q_{t}(x)$ be the density of $X_{t}$, and let us write $q(x)$ for $q_{1}(x)$. The characteristic function of $X_{1}$ is $E \exp \left(\right.$ is $\left.X_{1}\right)=\exp \left(-|s|^{\alpha}\right)$. Since $|\mathrm{s}|^{r} \exp \left(-|s|^{\alpha}\right)$ is integrable for all positive $r, q$ has bounded derivatives of all orders. We need the following estimate on $q^{\prime \prime}(x)$, the proof of which closely follows [2].
(2.1) Proposition. There exist positive constants $c_{2.1}$ and $M_{2.1}$ such that if $x \geqq M_{2.1}$,

$$
q^{\prime \prime}(x)=c_{2.1} x^{-(3+\alpha)}(1+o(1)) .
$$

Proof. Since $q$ is symmetric, it suffices to consider $x>0$. Since $s^{2} \exp \left(-|s|^{\alpha}\right)$ is integrable and real,

$$
\begin{equation*}
q^{\prime \prime}(x)=-(2 \pi)^{-1}(u(x)+\bar{u}(x)), \tag{2.2}
\end{equation*}
$$

where

$$
u(x)=-\int_{0}^{\infty} e^{-i s x} s^{2} \exp \left(-|s|^{\alpha}\right) d s
$$

Choose $\varphi<0$ and sufficiently small so that $|\varphi|<\pi / 2$ and so that $a=\pi+\alpha \varphi$, $b=3 \pi / 2+\varphi$ lie in ( $\pi / 2,3 \pi / 2$ ). Integrate $z^{2} \exp \left(-i z x-z^{\alpha}\right)$ along the contour $C$ in the complex plane ( $r, \theta$ ) made up of the pieces $\theta=0, r_{0} \leqq r \leqq r_{1} ; \theta=\varphi$, $r_{0} \leqq r \leqq r_{1} ; r=r_{0}, 0 \geqq \theta \geqq \varphi ;$ and $r=r_{1}, 0 \geqq \theta \geqq \varphi$. The integral around $C$ is 0 , and letting $r_{0} \rightarrow 0, r_{1} \rightarrow \infty$, we get

$$
u(x)=-e^{3 i \varphi} \int_{0}^{\infty} s^{2} \exp \left(s x e^{i b}+s^{x} e^{i a}\right) d s
$$

Letting $z=s^{\alpha} e^{i a}$, observing that $\operatorname{Re}(z) \leqq 0$, and using the expansion $e^{z}=1+z+0\left(|z|^{2}\right)$ for such $z$, we get

$$
\begin{equation*}
u(x)=-e^{3 i \varphi} \int_{0}^{\infty} s^{2} \exp \left(s x e^{i b}\right) d s-e^{3 i \varphi+i a} \int_{0}^{\infty} s^{2+\alpha} \exp \left(s x e^{i b}\right) d s+R, \tag{2.3}
\end{equation*}
$$

where $|R| \leqq c_{1} \int_{0}^{\infty} s^{2+2 \alpha} e^{-c_{2} s x} d s=O\left(x^{-(3+2 \alpha)}\right)$
Now integrate the functions $z^{2} \exp \left(z x e^{i b}\right)$ and $z^{2+\alpha} \exp \left(z x e^{i b}\right)$ around the contour $\theta=0, r_{0} \leqq r \leqq r_{1} ; \theta=-\varphi-\pi / 2, r_{0} \leqq r \leqq r_{1} ; r=r_{0}, 0 \geqq \theta \geqq-\varphi-\pi / 2$; and $r=r_{1}, 0 \geqq \theta \geqq-\varphi-\pi / 2$, and let $r_{0} \rightarrow 0, r_{1} \rightarrow \infty$ to transform the first two integrals on the right side of (2.3). We then see that the first term on the right of (2.3) is purely imaginary.

Using (2.2), we get

$$
\begin{aligned}
q^{\prime \prime}(x) & =-\pi^{-1} \operatorname{Re} u(x) \\
& =c_{3} \int_{0}^{\infty} s^{2+\alpha} \exp (-s x) d s+\text { Remainder } \\
& \left.=c_{4} x^{-(3+\alpha)}+O\left(x^{-(3+2 \alpha}\right)\right)
\end{aligned}
$$

Since $X_{t}$ has the same law as $t^{1 / \alpha} X_{1}, \quad q_{t}(x)=t^{-1 / \alpha} q\left(x t^{-1 / \alpha}\right)$, and $q_{t}^{\prime \prime}(x)=t^{-3 / \alpha} q^{\prime \prime}\left(x t^{-1 / \alpha}\right)$.

Define

$$
\begin{equation*}
r_{\lambda, \varepsilon}(x)=\int_{\varepsilon}^{\infty} e^{-\lambda t} q_{t}(x) d t=\int_{\varepsilon}^{\infty} e^{-\lambda t} t^{-1 / \alpha} q\left(x t^{-1 / \alpha}\right) d t \tag{2.4}
\end{equation*}
$$

and $r_{\lambda}(x)=r_{\lambda, 0}(x)$.
(2.5) Proposition. Suppose $\lambda \geqq 1$.
a) $0 \leqq r_{\lambda, \varepsilon}(x) \leqq c_{2.5 A}(\lambda)$, where $c_{2.5 A}(\lambda)$ is independent of $\varepsilon$ and $x$ and $\rightarrow 0$ as $\lambda \rightarrow \infty$;
b) $\left|r_{\lambda, \varepsilon}^{\prime \prime}(x)\right| \leqq c_{2.5 B}|x|^{\alpha-3}, c_{2.5 B}$ independent of $\lambda$ and $\varepsilon$;
c) $\left|r_{\lambda, \delta}^{\prime}(x)\right| \leqq c_{2.5 c}|x|^{\alpha-2}, c_{2.5 C}$ independent of $\lambda$ and $\varepsilon$;
d) if $\delta>0,|x| \geqq \delta,\left|r_{\lambda, \varepsilon}^{\prime \prime}(x)\right| \leqq c_{2.5 D}(\lambda, \delta)|x|^{\alpha-3}$, where $c_{2.5 D}(\lambda, \delta)$ is independent of $\varepsilon$ and $\rightarrow 0$ as $\lambda \rightarrow \infty$;
e) if $\delta>0,|x| \geqq \delta,\left|r_{\lambda, \varepsilon}^{\prime}(x)\right| \leqq c_{2.5 E}(\lambda, \delta)\left\{\left.x\right|^{\alpha-2}\right.$, where $c_{2.5 E}(\lambda, \delta)$ is independent of $\varepsilon$ and $\rightarrow 0$ as $\lambda \rightarrow \infty$.
Proof. a) $\left|r_{\lambda, z}(x)\right| \leqq\|q\| \int_{0}^{\infty} e^{-\lambda t} t^{-1 / \alpha} d t \rightarrow 0$ as $\lambda \rightarrow \infty$ by dominated convergence, since $\alpha>1$.
b) By the symmetry of $q$, we may suppose $x \geqq 0$. The Fourier transform of $r_{\lambda, \varepsilon}$ is $\int_{\varepsilon}^{\infty} e^{-\lambda t} \exp \left(-t|s|^{\alpha}\right) d t=\exp \left(-\left(\lambda+|s|^{\alpha}\right) \varepsilon\right) /\left(\lambda+|s|^{\alpha}\right)$, and hence $r_{\lambda, \varepsilon}$ has derivatives of all orders.

$$
\begin{align*}
\left|r_{\lambda, \varepsilon}^{\prime \prime}(x)\right| & \leqq \int_{\varepsilon}^{\infty} e^{-\lambda t} t^{-3 / \alpha}\left|q^{\prime \prime}\left(x t^{-1 / \alpha}\right)\right| d t  \tag{2.6}\\
& =x^{\alpha-3} \int_{\varepsilon x^{-\alpha}}^{\infty} e^{-\lambda u x^{\alpha}} u^{-3 / \alpha}\left|q^{\prime \prime}\left(u^{-1 / \alpha}\right)\right| d u \\
& \leqq x^{\alpha-3}\left(c_{1} \int_{0}^{M_{2, t}^{-\alpha}} u^{-3 / \alpha}\left(u^{-1 / \alpha}\right)^{-(3+\alpha)} d u+\left\|q^{\prime \prime}\right\| \int_{M_{2.1}^{-\alpha}}^{\infty} u^{-3 / \alpha} d u\right),
\end{align*}
$$

which, since $\alpha<2$, gives $b$ ).
c) If $x_{1}<x_{2}<0$,

$$
\left|r_{\lambda, \varepsilon}^{\prime}\left(x_{2}\right)-r_{\lambda, \varepsilon}^{\prime}\left(x_{1}\right)\right| \leqq \int_{x_{1}}^{x_{2}}\left|r_{\lambda, \varepsilon}^{\prime \prime}(x)\right| d x \rightarrow 0
$$

as $x_{1}, x_{2} \rightarrow-\infty$, using b) and the fact that $\alpha<2$. Therefore $\lim _{x \rightarrow-\infty} r_{\lambda, \varepsilon}^{\prime}(x)$ exists. Of course, the limit must be 0 by a). But then, if $x<0$,

$$
r_{\lambda, \varepsilon}^{\prime}(x)=\int_{-\infty}^{x} r_{\lambda, \varepsilon}^{\prime \prime}(y) d y,
$$

and c) follows from integrating b). The case $x>0$ follows by symmetry.
d) If $x \geqq \delta>0, e^{-\lambda u x^{2}} \leqq e^{-\lambda u \delta^{2}}$, and d) follows from (2.6) by dominated convergence.
e) This follows from d) in the same way that c) follows from b).
(2.7) Proposition. Suppose $\lambda \geqq 1, \varepsilon \leqq 1, A \geqq 1$, and $0<\gamma<(\alpha-1) / 2$. Then
a) $\left|\Delta_{R}^{h} r_{\lambda, \varepsilon}(x)\right| \leqq c_{2.7 A}|h|^{\alpha-\gamma}|x|^{\gamma-1}$, where $c_{2.7 A}$ is independent of $\varepsilon$ and $\lambda$;
b) if $\delta>0,|x| \geqq \delta,\left|\Delta_{R}^{h} r_{\lambda, \delta}(x)\right| \leqq c_{2.7 B}(\lambda, \delta)|h|^{\alpha-\gamma}|x|^{\gamma-1}$, where $c_{2.7 B}(\lambda, \delta)$ is independent of $\varepsilon$ and $\rightarrow 0$ as $\lambda \rightarrow \infty$.
c) if $|x| \geqq M_{2.1},|h| \leqq \max (|x| / 2, A),\left|\Delta_{R}^{h} r_{\lambda, \varepsilon}(x)\right| \leqq c_{2.7 c}|x|^{\alpha-3}|h|^{\alpha-\gamma} A^{2}$, where $c_{2.7 c}$ is independent of $\varepsilon$ and $\lambda$.
Proof. a) First note that

$$
\begin{equation*}
\Delta_{R}^{h} r_{\lambda, \varepsilon}(x)=\int_{0}^{h}(h-s) r_{\lambda, \varepsilon}^{\prime \prime}(x+s) d s=h^{2} \int_{0}^{1}(1-t) r_{\lambda, s}^{\prime \prime}(x+h t) d t . \tag{2.8}
\end{equation*}
$$

To prove a), we need to consider a number of special cases.
(i) $|x / 2| \leqq|h| \leqq|x|$. Using Proposition (2.5) b and (2.8),

$$
\begin{aligned}
\left|\Delta_{R}^{h} r_{\lambda, 8}(x)\right| & \leqq c_{2.5 B} h^{2} \int_{0}^{1}(1-t)|x+h t|^{\alpha-3} d t \\
& =c_{2.5 B}|h|^{\alpha-1} \int_{0}^{1}(1-t)|x / h+t|^{\alpha-3} d t \\
& \leqq c_{2.5 B}|h|^{\alpha-1} \int_{0}^{1}(1-t)^{\alpha-2} d t \\
& \leqq c_{1}|h|^{\alpha-\gamma}|x|^{\gamma-1}
\end{aligned}
$$

(ii) $|h| \leqq|x| / 2$. From (2.8) and Proposition (2.5) b,

$$
\begin{aligned}
\left|U_{R}^{h} r_{\lambda, \varepsilon}(x)\right| & \leqq h^{2} \sup _{|y|} \geqq|x| / 2 \\
& \left|r_{\lambda, \varepsilon}^{\prime \prime}(y)\right| \\
& \leqq c_{2.5 B} h^{2}(|x| / 2)^{\alpha-3} \\
& \leqq c_{2}\left|h^{\alpha-\gamma}\right| x \gamma^{\gamma-1} .
\end{aligned}
$$

(iii) $|h|>|x|, x / h>0$. As in (i),

$$
\begin{aligned}
\left|\Delta_{R}^{h} r_{\lambda, \varepsilon}(x)\right| & \leqq c_{2.5 B}|h|^{\alpha-1} \int_{0}^{1}(1-t)|x / h+t|^{\alpha-3} d t \\
& \leqq c_{2.5 B}|h|^{\alpha-1} \int_{0}^{1}(x / h+t)^{\alpha-3} d t \\
& \leqq c_{3}|h|^{\alpha-1}(x / h)^{\alpha-2} \\
& \leqq c_{3}|h|^{\alpha-\gamma}|x|^{\gamma-1}
\end{aligned}
$$

(iv) $|h|>|x|, x / h<0$. By symmetry, we may suppose without loss of generality that $x>0, h<0$. Also, by symmetry, $r_{\lambda, \varepsilon}(x+h)=r_{\lambda, \varepsilon}(-x-h)$, and so

$$
\begin{align*}
\left|\Delta_{R}^{h} r_{\lambda, \varepsilon}(x)\right| \leqq & \left|r_{\lambda, \varepsilon}(-x-h)-r_{\lambda, \varepsilon}(x)-(-2 x-h) r_{\lambda, \varepsilon}^{\prime}(x)\right|  \tag{2.9}\\
& +|2 x+2 h|\left|r_{\lambda, \varepsilon}^{\prime}(x)\right| \\
= & \left|\Delta_{R}^{-2 x-h} r_{\lambda, \varepsilon}(x)\right|+|2 x+2 h|\left|r_{\lambda, \varepsilon}^{\prime}(x)\right| .
\end{align*}
$$

Consider the first term on the right of (2.9). Since $|2 x+h| \leqq|h|$, then applying either (i) or (ii), we get

$$
\left|A_{R}^{-2 x-h} r_{\lambda, 8}(x)\right| \leqq c_{4}|2 x+h|^{\alpha-\gamma}|x|^{\gamma-1} \leqq c_{4}|h|^{\alpha-\gamma}|x|^{\gamma-1}
$$

Now consider the second term on the right of (2.9).
$|x+h|=-h-x \leqq-h=|h|$, and then, using Proposition (2.5) c,

$$
\begin{aligned}
|2 x+2 h|\left|r_{2, \varepsilon}^{\prime}(x)\right| & \leqq 2 c_{2.5 C}|x+h||x|^{\alpha-2} \\
& \leqq c_{5}|h||x|^{\alpha-2} \leqq c_{5}|h|^{\alpha-\gamma}|x|^{\gamma-1}
\end{aligned}
$$

Summing, $\left|\Delta_{R}^{h} r_{\lambda, \varepsilon}(x)\right| \leqq\left(c_{3}+c_{4}+c_{5}\right)|h|^{\alpha-\gamma}|x|^{\gamma-1}$, and so case (iv), hence a), is proved.
b) The proof is similar to a), using Proposition (2.5) d and e in place of (2.5) b and c .
c) By case (ii) of a),

$$
\begin{aligned}
\left|\Delta_{R}^{h} r_{\lambda, \varepsilon}(x)\right| & \leqq c_{6} h^{2}|x|^{\alpha-3} \\
& \leqq c_{6} A^{2-\alpha+\gamma}|h|^{\alpha-\gamma}|x|^{\alpha-3}
\end{aligned}
$$

If $f$ is bounded and Borel, define

$$
\begin{equation*}
R_{\lambda, \varepsilon} f(x)=\int f(y) r_{\lambda, \varepsilon}(x-y) d y \tag{2.10}
\end{equation*}
$$

An usual, write $R_{\lambda} f(x)$ for $R_{\lambda, 0} f(x)$. It is easy to see that $f \in C^{2}$ implies $R_{\lambda} f \in C^{2}$. The main theorem of this section is
(2.11) Theorem. Suppose $0<\gamma<(\alpha-1) / 2$ is fixed, $K$, A positive real numbers $\geqq 1$. Then there exists a nonnegative function $G$ and a real number $\lambda_{2,11}$ such that
a) $\|G\|_{L_{1}} \leqq 1 / 2$;
b) if $\lambda \geqq \lambda_{2.11}, f \in C_{K}^{2}$, and $v$ is a measure such that $\int|h|^{\alpha-\gamma} v(d h) \leqq K$ and support $(v) \subseteq[-A, A]$, then

$$
\left|\int\left[R_{\lambda} f(x+h)-R_{\lambda} f(x)-h\left(R_{\lambda} f\right)^{\prime}(x)\right] v(d h)\right| \leqq G *|f|(x)
$$

for all $x$.
Recall that $*$ denotes convolution.
Proof. First we define $G$. Pick $M_{1} \geqq M_{2.1} \vee 2 A$, such that

Pick $\delta$ small so that

$$
A^{2} c_{2.7 C} K \int_{M_{1}}^{\infty} x^{\alpha-3} d x \leqq 1 / 12
$$

$$
c_{2.7 A} K \int_{0}^{\delta} x^{\gamma-1} d x \leqq 1 / 12
$$

Now pick $\lambda_{2.11}$ sufficiently large so that if $\lambda \geqq \lambda_{2.11}$,

$$
c_{2,7 B}(\lambda, \delta) K \int_{\delta}^{M_{1}} x^{y-1} d x \leqq 1 / 12
$$

Let $c_{1}(\delta)=\sup _{\lambda \geqq \lambda_{2.11}} c_{2.7 B}(\lambda, \delta)$.
Define $G(x)$ by
(2.12) $G(x)= \begin{cases}c_{2.7 A} K|x|^{\gamma-1} & \text { if }|x| \leqq \delta \\ c_{1}(\delta) K|x|^{\gamma-1} & \text { if } \delta<|x| \leqq M_{1} \\ A^{2} c_{2.7 C} K|x|^{\alpha-3} & \text { if }|x|>M_{1} .\end{cases}$

Clearly, a) is satisfied. Moreover, if $\lambda \geqq \lambda_{2.11}$, and $|h| \leqq A$,

$$
\left|\Delta_{R}^{h} r_{\lambda, \varepsilon}(x)\right| \leqq G(x)|h|^{\alpha-\gamma} / K
$$

by Proposition (2.7).
It is easy to see that if $f \in C_{K}^{2}$, for each $\varepsilon, R_{\lambda, \varepsilon} f \in C^{2}$, and that $\left(R_{\lambda, \varepsilon} f\right)^{\prime \prime}$ $=R_{\lambda, \varepsilon}\left(f^{\prime \prime}\right)$ converges uniformly to $R_{\lambda}\left(f^{\prime \prime}\right)=\left(R_{\lambda} f^{\prime \prime}\right)^{\prime \prime}$ as $\varepsilon \rightarrow 0$, and similarly for first derivatives. If we show

$$
\begin{equation*}
\left|\int \Delta_{R}^{h} R_{\lambda, \varepsilon} f(x) v(d h)\right| \leqq G *|f|(x) \tag{2.13}
\end{equation*}
$$

for each $\varepsilon \leqq 1$, for each $x$, b) will follow by dominated convergence, since

$$
\left|\Delta_{R}^{h} R_{\lambda, \varepsilon} f(x)\right| \leqq\left(\left\|\left(R_{\lambda, \varepsilon} f\right)^{\prime \prime}\right\|+2\left\|\left(R_{\lambda, \varepsilon} f\right)^{\prime}\right\|\right)\left(h^{2} \wedge h\right)
$$

However, (2.13) holds, since

$$
\begin{aligned}
& \left|\int \Delta_{R}^{h} R_{\lambda, \varepsilon} f(x) v(d h)\right| \\
& \quad=\left|\iint\left[r_{\lambda, \varepsilon}(x-y+h)-r_{\lambda, \varepsilon}(x-y)-h r_{\lambda, \varepsilon}^{\prime}(x-y)\right] f(y) d y v(d h)\right| \\
& \quad \leqq \iint\left|A_{R}^{h} r_{\lambda, \varepsilon}(x-y)\right| v(d h)|f(y)| d y \\
& \quad \leqq \int G(x-y)|f(y)| \int|h|^{x-\gamma} v(d h) d y / K \\
& \quad \leqq G *|f|(x) . \quad \square
\end{aligned}
$$

## 3. Densities of Potentials

## Define

$$
\begin{equation*}
S_{\lambda} f=E \int_{0}^{\infty} e^{-\lambda t} f\left(X_{t}\right) d t \tag{3.1}
\end{equation*}
$$

for $f \geqq 0$. Our main goal in this section is to show that the measure $S_{\lambda}$ has a bounded density with respect to Lebesgue measure. First we need some technical propositions.
(3.2) Proposition. Suppose $X_{t}$ is a local martingale with local characteristics $(0, v)$, $X_{0}=0$, and $\sup _{s} \int_{0}^{\infty}|h|^{2} \wedge|h|^{\tau} v_{s}(d h) \leqq K<\infty$, for some $1<\tau<2$. Then, for $0<\varepsilon<\tau$,

$$
E\left|X_{t_{0}}\right|^{\tau-\varepsilon} \leqq c_{3.2}(K, \varepsilon) t_{0}+1
$$

Proof. Let $M \geqq 1$, and let

$$
\begin{equation*}
Y_{t}^{M}=X_{t}-\sum_{s \leq t} \Delta X_{s} \mathbf{1}_{\left(\left|\Delta X_{s}\right|>M\right)}+\int_{0}^{t} \int_{|h|>M} h v_{s}(d h) d s \tag{3.3}
\end{equation*}
$$

$Y_{t}=Y_{t}^{M}$ is a local martingale with bounded jumps. If $T_{N}=\inf \left\{t: Y_{t} \geqq N\right\}, Y_{i \wedge \tau_{N}}$ is square integrable, and

$$
\begin{aligned}
E Y_{t \wedge T_{N}}^{2}=E[Y, Y]_{t \wedge T_{N}} & =E \int_{0}^{t \wedge T_{N}} \int_{-M}^{M} h^{2} v_{s}(d h) d s \\
& \leqq t\left(K+M^{2-\tau} \sup _{s \leqq t} E \int_{1<|h| \leqq M}|h|^{\tau} v_{s}(d h)\right) \\
& \leqq K t\left(1+M^{2-\tau}\right) .
\end{aligned}
$$

By Fatou,

$$
\begin{align*}
& P\left(\left|Y_{t}\right| \geqq M\right) \leqq M^{-2} E Y_{t}^{2} \leqq M^{-2} \liminf _{N \rightarrow \infty} E Y_{t \wedge T_{N}}^{2} \leqq c_{1} t M^{-\tau}  \tag{3.4}\\
& P\left(\int_{0}^{t} \int_{|h|>M}|h| v_{s}(d h) d s \geqq M\right) \leqq M^{-1} E \int_{0}^{t} \int_{|h|>M}|h| v_{s}(d h) d s  \tag{3.5}\\
& \leqq M^{-\tau} t \sup _{s \leqq t} E \int_{|h|>M}|h|^{\tau} v_{s}(d h) \\
& \leqq K t M^{-\tau} .
\end{align*}
$$

And,

$$
\begin{align*}
P\left(\left|\sum_{s \leqq t} \Delta X_{s} 1_{\left(\left|\Delta X_{s}\right|>M\right)}\right| \geqq M\right) & \leqq P\left(\sum_{s \leqq t} 1_{\left(\left|\Delta X_{s}\right|>M\right)} \geqq 1\right)  \tag{3.6}\\
& \leqq E \sum_{s \leqq t} 1_{\left(\left|\Delta X_{s}\right| \geqq M\right)} \\
& =E \int_{0}^{t} \int_{|k| \geqq M} v_{s}(d h) d s \\
& \leqq t K M^{-\tau} .
\end{align*}
$$

Adding (3.4), (3.5), and (3.6), we get

$$
\begin{aligned}
& P\left(\left|X_{t}\right| \geqq 3 M\right) \leqq P\left(\left|Y_{t}\right| \geqq M\right)+P\left(\left|\int_{0|h|>M}^{t} \int_{s} h v_{s}(d h) d s\right| \geqq M\right) \\
&+P\left(\left|\sum_{s \leqq t} \Delta X_{s} 1_{\left(\left|\left|X_{s}\right|>M\right)\right.}\right| \geqq M\right) \\
& \leqq c_{2} t M^{-\tau} .
\end{aligned}
$$

Then,

$$
\begin{aligned}
E\left|X_{t}\right|^{\tau-\varepsilon} & =\int_{0}^{\infty}(\tau-\varepsilon)|M|^{\tau-\varepsilon-1} P\left(\left|X_{t}\right| \geqq M\right) d M \\
& \leqq 1+c_{3} t(\tau-\varepsilon) \int_{1}^{\infty} M^{-\varepsilon-1} d M . \quad \square
\end{aligned}
$$

(3.7) Proposition. Suppose $X_{t}$ satisfies the hypotheses of Proposition (3.2) and $f \in C_{K}^{2}$. Then
a) $E \int_{0}^{t} f^{\prime}\left(X_{s-}\right) d X_{s}=0$.
b) $E \sum_{s \leqq t}\left[f\left(X_{s}\right)-f\left(X_{s-}\right)-f^{\prime}\left(X_{s-}\right) \Delta X_{S} I=E \int_{0}^{t} \int \Delta_{R}^{h} f\left(X_{s}\right) v_{s}(d h) d s\right.$.

Proof. a) Let $M \geqq 1$, and define $Y_{t}^{M}$ by (3.3). $E\left(Y_{t}^{M}\right)^{2}<\infty$ by (3.4), hence $Y_{t}^{M}$ is a locally square integrable martingale, and $E \int_{0}^{t} f^{\prime}\left(X_{s^{-}}\right) d Y_{s}^{M}=0$.

$$
\begin{align*}
& \left|\int_{0}^{t} f^{\prime}\left(X_{s-}\right) d X_{s}-\int_{0}^{t} f^{\prime}\left(X_{s--}\right) d Y_{s}^{M}\right|  \tag{3.8}\\
& \quad \leqq| | f^{\prime} \|\left(\sum_{s \leqq t}\left|A X_{s}\right| 1_{\left(\left|\Delta X_{s}\right| \geqq M\right)}+\int_{0}^{t} \int_{|h| \geqq M}|h| v_{s}(d h) d s\right)
\end{align*}
$$

The expectation of the right hand side is $\leqq 2\left\|f^{\prime}\right\| E \int_{0}^{t} \int_{|h| \geqq M}|h| v_{s}(d h) d s$ $\leqq 2\left\|f^{\prime}\right\| K t$. Hence

$$
E\left|\int_{0}^{t} f^{\prime}\left(X_{s_{-}}\right) d X_{s}-\int_{0}^{t} f^{\prime}\left(X_{s-}\right) d Y_{s}^{M}\right| \rightarrow 0
$$

as $M \rightarrow \infty$ by dominated convergence, and a) follows.
b) By a monotone class argument, if $g: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is bounded with support on $\mathbb{R} \times(-\delta, \delta)^{c} \cap[-M, M]$,

$$
\begin{equation*}
E \sum_{s \leqq t} g\left(X_{s-}, \Delta X_{s}\right)=E \int_{0}^{t} \int g\left(X_{s-}, h\right) v_{s}(d h) d s \tag{3.9}
\end{equation*}
$$

Apply (3.9) with $g(x, h)=\left[f(x+h)-f(x)-f^{\prime}(x) h\right] 1_{(\delta \leqq|h| \leqq M)}$.

$$
\begin{aligned}
& E \sum_{s \leqq t}\left|f\left(X_{s}\right)-f\left(X_{s-}\right)-f^{\prime}\left(X_{s-}\right) \Delta X_{s}\right| 1_{\left(\left|A X_{s}\right| \in[\delta, M]^{\prime}\right)} \\
& \quad \leqq\left\|f^{\prime \prime}\right\| E \sum_{s \leqq t}\left|\Delta X_{s}\right|^{2} 1_{\left(\left|\Delta X_{s}\right| \leqq \delta\right)}+\left(2\|f\|+\left\|f^{\prime}\right\|\right) E \sum_{s \leqq t}\left|\Delta X_{s}\right| 1_{\left(\left|\Delta X_{s}\right| \geqq M\right)} \\
& \quad \leqq\left(\left\|f^{\prime \prime}\right\|+2\left\|f^{\prime}\right\|\right) E \int_{0}^{t} \int_{|h| \mid[\delta, M]}|h|^{2} \wedge|h| v_{s}(d h) d s \rightarrow 0
\end{aligned}
$$

by dominated convergence as $\delta \rightarrow 0, M \rightarrow \infty$. Similarly,

$$
\begin{aligned}
& E \int_{0}^{t} \int_{|h| \ddagger[\delta, M]}\left|f\left(X_{s-}+h\right)-f\left(X_{s-}\right)-f^{\prime}\left(X_{s-}\right) h\right| v_{s}(d h) d s \\
& \quad \leqq\left(\left\|f^{\prime \prime}\right\|+2\left\|f^{\prime}\right\|\right) E \int_{0}^{t} \int_{|h| \Phi[\delta, M]}|h|^{2} \wedge|h| v_{s}(d h) d s \rightarrow 0
\end{aligned}
$$

by dominated convergence. Letting $\delta \rightarrow 0, M \rightarrow \infty$ in (3.9),

$$
\begin{aligned}
E & \sum_{s \leqq t}\left[f\left(X_{s}\right)-f\left(X_{s-}\right)-f^{\prime}\left(X_{s-}\right) \Delta X_{s}\right] \\
& =E \int_{0}^{t} \int\left[f\left(X_{s-}+h\right)-f\left(X_{s-}\right)-f^{\prime}\left(X_{s_{-}-}\right) h\right] v_{s}(d h) d s
\end{aligned}
$$

Since $X_{s}$ has only countably many jumps, the right hand side is unchanged if we replace $X_{s-}$ by $X_{s}$.

Recall the definitions of $R_{\lambda}(2.10)$ and $S_{\lambda}$ (3.1). The next theorem links $S_{\lambda}$ with $R_{2}$.
(3.10) Theorem. Suppose $P\left(X_{0}=x_{0}\right)=1$. Suppose $X_{t}$ satisfies (1.4). If $g \in C_{K}^{2}$,
a) $S_{\lambda} g=R_{\lambda} g\left(x_{0}\right)+E \int_{0}^{\infty} e^{-\lambda s} \int \Delta_{R}^{h} R_{\lambda} g\left(X_{s}\right)\left(v_{s}-\theta_{\alpha}\right)(d h) d s$;
if, in addition, $\lambda \geqq \lambda_{2.11}$,
b) $\left|S_{\lambda} g\right| \leqq R_{\lambda}|g|\left(x_{0}\right)+S_{\lambda}(G *|g|)$,
where $G$ is defined by Theorem (2.11).
Proof. Suppose $f \in C_{K}^{\infty}$. Recall that $\mathscr{G}_{\alpha}$ is defined by

$$
\begin{equation*}
\mathscr{G}_{\alpha} f(x)=\int \Delta_{\mathbf{R}}^{h} f(x) \theta_{\alpha}(d h) \tag{3.11}
\end{equation*}
$$

By Ito's lemma, Proposition (3.7) (applied to $X_{t}-x_{0}$ ), and the fact that $X_{t}$ is purely discontinuous,

$$
\begin{align*}
E f\left(X_{t}\right)-E f\left(X_{0}\right)= & E \int_{0}^{t} f^{\prime}\left(X_{s-}\right) d X_{s}+\frac{1}{2} E \int_{0}^{t} f^{\prime \prime}\left(X_{s-}\right) d\left\langle X^{c}, X^{c}\right\rangle_{s}  \tag{3.12}\\
& +E \sum_{s \leqq t}\left[f\left(X_{s}\right)-f\left(X_{s-}\right)-f^{\prime}\left(X_{s-}\right) \Delta X_{s}\right] \\
= & E \int_{0}^{t} \Delta_{R}^{h} f\left(X_{s}\right) v_{s}(d h) d s \\
= & E \int_{0}^{t} \mathscr{G}_{\alpha} f\left(X_{s}\right) d s+E \int_{0}^{t} \int A_{R}^{h} f\left(X_{s}\right)\left(v_{s}-\theta_{\alpha}\right)(d h) d s
\end{align*}
$$

Since $f \in C_{K}^{\infty}, \mathscr{G}_{\alpha} f$ is bounded, and $\left|\int \Delta_{R}^{h} f\left(X_{s}\right)\left(v_{s}-\theta_{\alpha}\right)(d h)\right| \leqq\left(\left\|f^{\prime \prime}\right\|+2\right.$ $\left.\left\|f^{\prime}\right\|\right) \int h^{2} \wedge|h|\left|v_{s}-\theta_{\alpha}\right|(d h)$ is bounded. Multiply (3.12) by $\lambda e^{-\lambda t}$ and integrate to get

$$
\lambda S_{\lambda} f-f\left(x_{0}\right)=E \int_{0}^{\infty} e^{-\lambda s} \mathscr{G}_{\alpha} f\left(X_{s}\right) d s+E \int_{0}^{\infty} e^{-\lambda s} \int \Delta_{R}^{h} f\left(X_{s}\right)\left(v_{s}-\theta_{\alpha}\right)(d h) d s
$$

or

$$
S_{\lambda}\left(\lambda f-\mathscr{G}_{\alpha} f\right)=f\left(x_{0}\right)+E \int_{0}^{\infty} e^{-\lambda s} \int J_{R}^{h} f\left(X_{s}\right)\left(v_{s}-\theta_{\alpha}\right)(d h) d s
$$

Now let $g=\lambda f-\mathscr{G}_{\alpha} f$. $g$ will be bounded and in $C^{\infty}$, and so we have a) for $g \in\left(\lambda-\mathscr{G}_{\alpha}\right)\left(C_{K}^{\infty}\right)$.

Now let $g \in C_{K}^{2}$, and let $f=R_{\lambda} g . f, f^{\prime}, f^{\prime \prime}$ will be bounded and continuous. Moreover, it is easy to see that $f, f^{\prime}, f^{\prime \prime} \rightarrow 0$ as $|x| \rightarrow \infty$. Choose $f_{n} \in C_{K}^{\infty}$ such that $f_{n} \rightarrow f, f_{n}^{\prime} \rightarrow f^{\prime}, f_{n}^{\prime \prime} \rightarrow f^{\prime \prime}$ uniformly. Let $g_{n}=\left(\lambda-\mathscr{G}_{\alpha}\right) f_{n} . g_{n} \rightarrow g$ uniformly. $R_{\lambda} g_{n}=f_{n}$, and $\int \Delta_{R}^{h} f_{n}(x)\left(v_{s}-\theta_{\alpha}\right)(d h)$ converges to the corresponding expression with $f_{n}$ replaced by $f$ by dominated convergence, since $\left|\Delta_{R}^{h} f_{n}\right| \leqq\left(\left\|f_{n}^{\prime \prime}\right\|+2\right.$ $\left.\left\|f_{n}^{\prime}\right\|\right)\left(h^{2} \wedge|h|\right)$. Since a) holds for $g_{n}$, we see that it holds for $g$ as well by letting $n \rightarrow \infty$.
b) follows by applying Theorem (2.11) with $A=1$.

If $r_{\lambda}$ is defined by (2.4), note that

$$
\begin{align*}
r_{\lambda}(0) & =\int_{0}^{\infty} e^{-\lambda t} q_{i}(0) d t=\int_{0}^{\infty} e^{-\lambda t} t^{-1 / \alpha} q(0) d t  \tag{3.13}\\
& =c_{3.13} \lambda^{1 / \alpha-1}
\end{align*}
$$

The next theorem is the main goal of this section.
(3.14) Theorem. Suppose $X_{t}$ satisfies (1.4), $\lambda \geqq \lambda_{2.11}$. Then
a)

$$
\left|S_{\lambda} g\right| \leqq 2 r_{\lambda}(0)\|g\|_{L_{1}}
$$

and
b) there exists a nonnegative function $s_{\lambda}(x)$ bounded by $2 r_{\lambda}(0)$ such that if $\|g\|_{L_{1}}<\infty$,

$$
S_{\lambda} g=\int g(x) s_{\lambda}(x) d x
$$

Proof. First of all, $\|G *|g|\|_{L_{1}} \leqq\|G\|_{L_{1}}\|g\|_{L_{1}} \leqq \frac{1}{2}\|g\|_{L_{1}}$ and $G *|g|(x) \leqq \frac{1}{2}\|g\|$. Let $\rho_{M}=\sup _{\|g\|_{L_{1}} \leqq 1,\|g\| \leqq M}\left|S_{\lambda} g\right|$. By (3.1), $\left|S_{\lambda} g\right| \leqq\|g\| / \lambda$, and so $\rho_{M}<\infty$. Since $S_{\lambda}$ is a measure, $\rho_{M}=\sup _{\|g\|_{L_{1}} \leqq 1,\|g\| \leqq M, g \in C_{\mathrm{K}}^{2}}\left|S_{\lambda} g\right|$.

By Theorem (3.10)b, if $g \in C_{K}^{2},\|g\|_{1} \leqq 1,\|g\| \leqq M$,

$$
\begin{aligned}
\left|S_{\lambda} g\right| & \leqq R_{\lambda}|g|\left(x_{0}\right)+S_{\lambda}(G *|g|) \\
& \leqq\|g\|_{L_{1}}\left\|r_{\lambda}\right\|+\frac{1}{2} \rho_{M} \\
& \leqq r_{\lambda}(0)+\frac{1}{2} \rho_{M} .
\end{aligned}
$$

Taking the sup over all such $g$,

$$
\rho_{M} \leqq r_{\lambda}(0)+\frac{1}{2} \rho_{M}
$$

or $\rho_{M} \leqq 2 r_{\lambda}(0)$. Letting $M \rightarrow \infty, \sup _{\|g\|_{L_{1}} \leqq 1}\left|S_{\lambda} g\right| \leqq 2 r_{\lambda}(0)$, which gives a) by the
linearity of $S_{\lambda}$.
If $A$ has 0 Lebesgue measure, a) shows that $S_{\lambda} 1_{A}=0$, and hence $S_{\lambda}$ has a density $s_{\lambda}(x)$ with respect to $\mu$, Lebesgue measure. If $\varepsilon>0$ and $A=\left\{x: s_{\lambda}(x)>2 r_{\lambda}(0)+\varepsilon\right\}$,

$$
\left(2 r_{\lambda}(0)+\varepsilon\right) \mu(A) \leqq S_{\lambda} 1_{A} \leqq 2 r_{\lambda}(0) \mu(A)
$$

or $\mu(A)=0$. Since this is true for each $\varepsilon$, we may take $s_{\lambda}(x) \leqq 2 r_{\lambda}(0)$ for all $x$.
In the case $X_{t}$ is Markov, one would want there to exist a kernel $\bar{v}(x, d h)$ such that $v_{s}(d h)=\bar{v}\left(X_{s}(\omega), d h\right)$. Theorem (3.10) a then becomes

$$
\begin{equation*}
S_{\lambda} g=R_{\lambda} g\left(x_{0}\right)+S_{\lambda} B R_{\lambda} g \tag{3.15}
\end{equation*}
$$

where

$$
B f(x)=\int \Delta_{R}^{h} f(x)\left(\bar{v}(x, d h)-\theta_{\alpha}(d h)\right)
$$

Although it is a digression from our main topic, we take a moment to show how Theorem (3.10) can be used to show uniqueness of the Markov process
corresponding to the integral operator $\mathscr{G}_{\alpha}+B$. The key is that by Theorem (2.11), $B$ is a relatively bounded perturbation of $\mathscr{G}_{\alpha}$. Let $\Omega=\{$ functions on $[0, \infty)$ that are right continuous and have left limits $\}$, let $X_{t}(\omega)=\omega(t)$, and suppose $P_{1}, P_{2}$ are two probabilities on $\Omega$ for which $P_{i}\left(X_{0}=x_{0}\right)=1$ and (1.4) holds for each $P_{i}$. Let $E_{i}$ denote expectation with respect to $P_{i}$, and let $S_{\lambda}^{(i)} f=E_{i} \int_{0}^{\infty} e^{-\lambda t} f\left(X_{t}\right) d t$. As before, $\left|S_{\lambda}^{(i)} f\right| \leqq\|f\| / \lambda$. Writing (3.15) for $S_{\lambda}^{(i)}, i=1,2$, and then taking the difference, we get

$$
\begin{equation*}
\left(S_{\lambda}^{(1)}-S_{\lambda}^{(2)}\right) g=\left(S_{\lambda}^{(1)}-S_{\lambda}^{(2)}\right)\left(B R_{\lambda} g\right) \tag{3.16}
\end{equation*}
$$

Let $\rho=\sup _{\|g\| \leqq 1, g \in C_{K}^{2}}\left|\left(S_{\lambda}^{(1)}-S_{\lambda}^{(2)}\right) g\right|$. If $g \in C_{K}^{2},\|g\| \leqq 1$, and $\lambda$ is sufficiently large,

$$
\left|B R_{\lambda} g(x)\right| \leqq G *|g|(x) \leqq \frac{1}{2}\|g\| \leqq \frac{1}{2}
$$

So,

$$
\left|\left(S_{\lambda}^{(1)}-S_{\lambda}^{(1)}\right) g\right| \leqq \frac{1}{2} \rho
$$

and taking sups, $\rho \leqq \frac{1}{2} \rho$. Since $\rho \leqq 2 / \lambda<\infty$, we must have $\rho=0$, or $S_{\lambda}^{(1)} g=S_{\lambda}^{(2)} g$ for bounded $g$. From this one may use techniques from [14, Chap. 6] to conclude there is a unique solution to the "martingale problem" given by (1.4), and hence a unique Markov process corresponding to the generator $\mathscr{G}_{\alpha}+B$. Using techniques of $[14,13]$, and Sect. 6 , one can then show uniqueness when ( $b a, b v$ ) satisfies the weaker condition (1.2), where $b_{s}=\bar{b}\left(X_{s}\right), a_{s}=\bar{a}\left(X_{s}\right)$ for functions $\bar{b}, \bar{a}$.

## 4. Construction of Local Time

In this section we construct our local times by first looking at their potentials $U_{t}(\lambda, x)$. In the Markov case, we would just define $U_{t}(\lambda, x)$ in terms of $s_{\lambda}$, but in the general martingale case a more complicated construction is needed. Throughout this section we suppose (1.4) holds.

Let $Q_{1}(\omega, \cdot)$ be a regular conditional probability distribution for $\mathscr{F}_{t}$. That is, for each $\Lambda \in \mathscr{F}, Q_{t}(\cdot, \Lambda)$ is $\mathscr{F}_{t}$-measurable; for each $\omega, Q_{t}(\omega, \cdot)$ is a probability measure on $\mathscr{F}$; and

$$
Q_{t}(\cdot, \Lambda)=P(\Lambda \mid \mathscr{F}), \text { a.s., }
$$

for each $\Lambda \in \mathscr{F} . Q_{t}$ exists since $\mathscr{F}$ is the completion of a countably generated $\sigma$-field and $X_{t}$ is real-valued. Let us write $Q_{t} Y(\omega)$ for $\int Y\left(\omega^{\prime}\right) Q_{t}\left(\omega, d \omega^{\prime}\right)$.

If $\Lambda=\left\{\omega: t \mapsto X_{t}(\omega)\right.$ is right continuous with left limits $\}, E\left(Q_{t} 1_{\Lambda}\right)=P(\Lambda)=1$, or, for each $t, Q_{t}(\cdot, \Lambda)=1$, a.s.
(4.1) Proposition. Suppose $\left(Y_{t}, \mathscr{F}_{t}, P\right)$ is a uniformly integrable martingale whose paths are right continuous with left limits. Fix $t_{0}$. Then $\left(Y_{t+t_{0}}, \hat{\mathscr{F}}_{t+t_{0}}, Q_{t_{0}}\right)$ is a right continuous martingale, a.s. (P).

Here $\hat{\mathscr{F}}_{t+t_{0}}$ denotes the $Q_{t_{0}}$ completion of $\mathscr{F}_{t+t_{0}+}^{0}$.

Proof. As above, $Y_{t+t_{0}}$ is right continuous with left limits, a.s. $\left(Q_{t_{0}}\right)$. Since $Y_{t}$ is uniformly integrable, there exists an even positive function $h$ with $h(x) / x \rightarrow \infty$ as $x \rightarrow \infty$ such that $E h\left(Y_{\infty}\right)<\infty$. However, then $E Q_{t_{0}} h\left(Y_{\infty}\right)=E h\left(Y_{\infty}\right)<\infty$, or $Q_{t_{0}} h\left(Y_{\infty}\right)<\infty$, a.s. $(P)$. Let $N_{1}=\left\{\omega: Q_{t_{0}} h\left(Y_{\infty}\right)=\infty\right\}$.

Fix $s<t$. Pick $A \in \mathscr{F}_{s+t_{0}}^{0}$ and $B \in \mathscr{F}_{t_{0}}$.

$$
\begin{aligned}
E\left(Q_{t_{0}}\left(Y_{t+t_{0}} 1_{A}\right) ; B\right) & =E\left(Y_{t+t_{0}} 1_{A} 1_{B}\right) \\
& =E\left(Y_{s+t_{0}} 1_{A} 1_{B}\right) \\
& =E\left(Q_{t_{0}}\left(Y_{s+t_{0}} 1_{A}\right) ; B\right)
\end{aligned}
$$

Since this holds for arbitrary $B \in \mathscr{F}_{t_{0}}$,

$$
\begin{equation*}
Q_{t_{0}}\left(Y_{t+t_{0}} ; A\right)=Q_{t_{0}}\left(Y_{s+t_{0}} ; A\right), \text { a.s. }(P) \tag{4.2}
\end{equation*}
$$

Let $N(s, t, \dot{A})$ be the set of $\omega$ 's for which (4.2) fails to hold. Let $A_{n}^{s}$ be a sequence that generates $\mathscr{F}_{s+t_{0}}^{0}$, and let $N_{2}=\bigcup_{s, t \text { rational }} \bigcup_{n+1}^{\infty} N\left(s, t, A_{n}^{s}\right)$.

By a similar argument, we can find a null set $N_{3}$ outside of which $Q_{t_{0}} h\left(Y_{t+t_{0}}\right) \leqq Q_{t_{0}} h\left(Y_{\infty}\right), t$ rational.

Fix $\omega \notin N_{1} \cup N_{2} \cup N_{3} . Y_{t+t_{0}}$ is then uniformly integrable with respect to $Q_{t_{0}}(\omega, \cdot), t$ rational. Pick $s<t$ real, $s_{m}>s, t_{m}>t$ rational $\downarrow s, t$, respectively. Pick $A \in \mathscr{F}_{s+t_{0}+}^{0}$. Then $A \in \mathscr{F}_{s_{m}+t_{0}}^{0}$, and so from (4.2), by a monotone class argument,

$$
\left.Q_{t_{0}}\left(Y_{t_{m}+t_{0}} ; A\right)=Q_{t_{0}\left(Y_{s_{m}}+t_{0}\right.} ; A\right)
$$

Use the right continuity and uniform integrability of $Y$ and let $m \rightarrow \infty$ to get

$$
\begin{equation*}
Q_{t_{0}}\left(Y_{t+t_{0}} ; A\right)=Q_{t_{0}}\left(Y_{s+t_{0}} ; A\right) \tag{4.3}
\end{equation*}
$$

for $A \in \mathscr{F}_{s+t_{0}+}^{0}$. The proof of the proposition is now immediate, $\square$
By applying Proposition (4.1) to $X_{t \wedge u_{0}}, u_{0}$ fixed, we see that $\left(X_{t+t_{0}}, Q_{t_{0}}\right)$ is a locally uniformly integrable martingale. If $A_{n}$ is a sequence of compact subsets of $\mathbb{R}-\{0\}$ that generate the Borel $\sigma$-field of $\mathbb{R}$, and

$$
Y_{t}^{A_{n}}=\sum_{s \leqq t} 1_{A_{n}}\left(\Delta X_{s}\right)-\int_{0}^{t} \int 1_{A_{n}}(h) v_{s}(d h) d s,
$$

applying Proposition (4.1) allows us to show easily that $X_{t+t_{0}}$ is purely discontinuous with local characteristics ( $0, v_{s+t_{0}}$ ). (To get the uniform integrability of $Y_{i \wedge u_{0}}^{A_{n}}$, use Proposition (3.2).)

For fixed $\omega$, if $A \subseteq \mathbb{R}$,

$$
Q_{t_{0}}\left(\omega, X_{t_{0}} \in A\right)=P\left(X_{t_{0}} \in A \mid \mathscr{F}_{t_{0}}\right)=1_{A}\left(X_{t_{0}}\right)
$$

which is 0 or 1 . So for almost all $\omega(P), X_{t_{0}}$ is constant, a.s. $\left(Q_{t_{0}}\right)$.
Fix $t_{0}$ and fix $\lambda \geqq \lambda_{2.11}$. If $\omega$ is not in any of the null sets, we may apply Theorem (3.14) to see that there exists a Borel mesurable function of $x$, bounded by $2 r_{\lambda}(0)$, which we will denote by $V_{t_{0}}(\lambda, x)(\omega)$, such that

$$
\begin{equation*}
Q_{t_{0}}\left(\int_{0}^{\infty} e^{-\lambda t} 1_{A}\left(X_{t+t_{0}}\right) d t\right)(\omega)=\int_{A} V_{t_{0}}(\lambda, x)(\omega) d x \tag{4.4}
\end{equation*}
$$

for all Borel $A \subseteq R$. Our potential $U_{t}(\lambda, x)$ will be a regularized version of $V_{t}(\lambda, x)$.
(4.5) Proposition. There exists a set $N_{4.5}$ with $\mu\left(N_{4.5}\right)=0$ such that if $x \notin N_{4.5}$, $\left(e^{-\lambda t} V_{t}(\lambda, x), \mathscr{F}_{t}^{0}, P\right)$, $t$ rational, is a supermartingale.
Proof. Fix $s<t$. We will first prove

$$
\begin{equation*}
E\left(e^{-\lambda t} V_{t}(\lambda, x) ; A\right) \leqq E\left(e^{-\lambda s} V_{s}(\lambda, x) ; A\right), \text { a.e. }(\mu) \tag{4.6}
\end{equation*}
$$

if $A \in \mathscr{F}_{s}^{0}$. If $B \subseteq R$ is Borel

$$
\begin{align*}
\int_{B} E\left(e^{-\lambda_{t}} V_{t}(\lambda, x) ; A\right) d x & =E\left(e^{-\lambda t} \int_{B} V_{t}(\lambda, x) d x ; A\right)  \tag{4.7}\\
& =E\left(e^{-\lambda t} Q_{t} \int_{0}^{\infty} e^{-\lambda r} 1_{B}\left(X_{t+r}\right) d r ; A\right) \\
& =E\left(\int_{t}^{\infty} e^{-\lambda r} 1_{B}\left(X_{r}\right) d r ; A\right),
\end{align*}
$$

using Fubini and the boundedness of $V_{t}(\lambda, x)$. Applying (4.7) with $s$ in place of $t$,

$$
\begin{aligned}
\int_{B} E\left(e^{-\lambda s} V_{s}(\lambda, x) ; A\right) d x & =E\left(\int_{s}^{\infty} e^{-\lambda r} 1_{B}\left(X_{r}\right) d r ; A\right) \geqq E\left(\int_{t}^{\infty} e^{-\lambda r} 1_{B}\left(X_{r}\right) d r ; A\right) \\
& =\int_{B} E\left(e^{-\lambda t} V_{t}(\lambda, x) ; A\right) d x
\end{aligned}
$$

Since $B$ was arbitrary, (4.6) follows.
Let $N(s, t, A)$ be the null set of $x$ 's for which (4.6) fails. Let $A_{n}^{s}$ be a sequence of sets generating $\mathscr{F}_{s}^{0}$, and let

$$
\begin{equation*}
N_{4.5}=\bigcup_{s, \text { rational }} \bigcup_{n+1}^{\infty} N\left(s, t, A_{n}^{s}\right) . \tag{4.8}
\end{equation*}
$$

The proposition now follows.
If $x \notin N_{4.5}, e^{-\lambda t} V_{t}(\lambda, x), t$ rational, has left and right limits, a.s. Let

$$
\begin{equation*}
U_{t}(\lambda, x)=\lim _{t_{m} \text { rationai, } t_{m}>t, t_{m} \downarrow t} V_{t_{m}}(\lambda, x) \tag{4.9}
\end{equation*}
$$

$V_{t}(\lambda, x)$ is measurable in $x$, for each $t$. Hence $U_{t}(\lambda, x)$ is jointly measurable in $t$ and $x$.
(4.10) Proposition. If $x \notin N_{4.5},\left(e^{-\lambda t} U_{t}(\lambda, x), \mathscr{F}_{t}, P\right)$ is a supermartingale. Furthermore, if $B \subseteq \mathbb{R}$ is Borel,

$$
\begin{equation*}
\int_{B} e^{-\lambda t} U_{t}(\lambda, x) d x=E\left[\int_{t}^{\infty} e^{-i r} 1_{B}\left(X_{r}\right) d r \mid \mathscr{F}_{t}\right], \text { a.s. }(P) \tag{4.11}
\end{equation*}
$$

Proof. The proof of the first assertion is routine and is omitted. If $f \in C_{K}$,

$$
\begin{equation*}
\int f(x) V_{t}(\lambda, x) d x=E\left[\int_{0}^{\infty} e^{-\lambda r} f\left(X_{t+r}\right) d r \mid \mathscr{F}_{t}\right], \text { a.s. } \tag{4.12}
\end{equation*}
$$

by (4.4). (4.11) follows from (4.12) by a limiting argument and then using the monotone class theorem.

The main theorem of this paper is the following.
(4.13) Theorem. Suppose $X_{t}$ satisfies (1.4). Then there exist jointly measurable right continuous increasing processes $L_{t}(x)$ such that
a) for each $t$ and $x, L_{t}(x)$ has moments of all orders,
b) there exists a set $N_{4.13}$ such that $P\left(N_{4.13}\right)=0$, and if $\omega \notin N_{4.13}$ and $B \subseteq \mathbb{R}$ is Borel, then

$$
\int_{B} L_{t}(x) d x=\int_{0}^{t} 1_{B}\left(X_{\mathrm{s}}\right) d s
$$

for all $t$.
Proof. If $x \notin N_{4.5}, e^{-\lambda t} U_{t}(\lambda, x)$ is a supermartingale bounded by $2 r_{\lambda}(0)$. In this case, if $\lambda \geqq \lambda_{2.11}$, let $L_{t}^{\lambda}(x)$ be the predictable increasing part of $e^{-\lambda t} U_{t}(\lambda, x)$. If $x \in N_{4.5}$, let $L_{t}^{\lambda}(x)=0$. By [12], we may take $L_{i}^{\lambda}(x)$ to be jointly measurable in $x$ and $t$. Fix $\lambda$ sufficiently large, and let

$$
\begin{equation*}
L_{t}(x)=\int_{0}^{t} e^{\lambda s} d L_{s}^{\lambda}(x) \tag{4.14}
\end{equation*}
$$

By [5, p. 188]

$$
E\left[L_{t}^{\lambda}(x)\right]^{p} \leqq p!\left[2 r_{\lambda}(0)\right]^{p}, p=1,2, \ldots
$$

since the potential of $L_{t}^{\lambda}(x)$ is bounded. Then

$$
E\left[L_{t}(x)\right]^{p} \leqq e^{p \lambda t} E\left[L_{t}^{\lambda}(x)\right]^{p}<\infty
$$

which proves a).
By a) and the definition of $L_{t}^{\lambda}(x), e^{-\lambda t} U_{t}(\lambda, x)+L_{t}^{\lambda}(x)$ is a square integrable martingale (if $t \leqq u_{0}<\infty$ ). Integrating by parts,

$$
\begin{aligned}
L_{t}(x) & =e^{\lambda t} L_{t}^{\lambda}(x)-\int_{0}^{t} L_{\mathrm{s}}^{\lambda}(x) \lambda e^{\lambda s} d s \\
& =e^{\lambda t} L_{t}^{\lambda}(x)-\int_{0}^{t} L_{s}^{\lambda}(x) \lambda e^{\lambda s} d s
\end{aligned}
$$

since $L_{s}^{\lambda}(x)$ has at most countably many discontinuities. If $f \in C_{K}$,

$$
\int e^{-\lambda t} U_{t}(\lambda, x) f(x) d x+\int f(x) L_{t}^{\lambda}(x) d x
$$

is a square integrable martingale. On the other hand, by (4.11)

$$
\int e^{-\lambda t} U_{t}(\lambda, x) f(x) d x+\int_{0}^{t} e^{-\lambda r} f\left(X_{r}\right) d r=E\left[\int_{0}^{\infty} e^{-\lambda r} f\left(X_{r}\right) d r \mid \mathscr{F}_{t}\right]
$$

is a martingale. Hence, since $L_{t}^{\lambda}(x)$ is predictable for each $x, \int f(x) L_{t}^{\lambda}(x) d x$ $-\int_{0}^{t} e^{-\lambda r} f\left(X_{r}\right) d r$ is a predictable martingale that has paths of bounded variation and is 0 at time 0 ; therefore it is identically 0 .
Therefore

$$
\begin{equation*}
\int f(x) L_{t}^{\lambda}(x) d x=\int_{0}^{t} e^{-\lambda r} f\left(X_{r}\right) d r \tag{4.15}
\end{equation*}
$$

It follows easily that for each $t$,

$$
\begin{equation*}
\int f(x) L_{t}(x) d x=\int_{0}^{t} f\left(X_{r}\right) d r, \text { a.s. } \tag{4.16}
\end{equation*}
$$

Since both sides are right continuous, we can find a single null set $N(f)$ independent of $t$ for which (4.16) holds. Taking a countable sequence $f_{n}$ of functions in $C_{K}$ that generate the Borel $\sigma$-field of $\mathbb{R}$, we obtain b) by letting $N_{4.13}=\bigcup_{n=1}^{\infty} N\left(f_{n}\right) . \quad \square$

If we were to choose a different value of $\lambda$, say $\hat{\lambda}$, and let

$$
L_{t}(x)=\int_{0}^{t} e^{\hat{\lambda} s} d L_{s}^{\hat{\lambda}}(x)
$$

the argument leading to (4.15) shows that

$$
\int f(X) \hat{L}_{t}(x) d x=\int f(x) L_{t}(x) d x
$$

Therefore, for almost all $\omega, \hat{L}_{t}(x)=L_{t}(x)$ for almost all $x$. By Fubini, for almost all $x, \hat{L}_{t}(x)=L_{t}(x)$, a.s.

## 5. Continuity of Local Times

The local times $L_{t}(x)$ that we constructed in Theorem (4.13) turn out to have the nice property that they are continuous in $t$. Offhand, there is no reason to expect them to be continuous in $x$.
(5.1) Theorem. There exists a set $N_{5.1}$ of Lebesgue measure 0 such that if $x \notin N_{5.1}$, $L_{t}(x)$ is continuous in $t$, a.s.
Proof. Fix $t$, and let

$$
D_{s}(t, x)=L_{t+s}(x)-L_{i}(x)
$$

Then, if $f \in C_{K}, f \geqq 0$,

$$
\int D_{s}(t, x) f(x) d x=\int_{0}^{s} f\left(X_{r+t}\right) d r
$$

and so

$$
\begin{equation*}
\int f(x) \int_{0}^{\infty} e^{-\lambda s} d D_{s}(t, x) d x=\int_{0}^{\infty} e^{-\lambda s} f\left(X_{t+s}\right) d s \tag{5.2}
\end{equation*}
$$

Integrating by parts,

$$
\begin{align*}
\int_{0}^{u} \lambda e^{-\lambda s} D_{s}(t, x) d s & =\int_{0}^{u} D_{s-}(t, x) \lambda e^{-\lambda s} d s  \tag{5.3}\\
& =-e^{-\lambda u} D_{u}(t, x)+\int_{0}^{u} e^{-\lambda s} d D_{s}(t, x) \\
& \leqq \int_{0}^{\infty} e^{-\lambda s} d D_{s}(t, x)
\end{align*}
$$

Then, letting $u \rightarrow \infty$ in (5.3) and using (5.2) and (4.4),

$$
\begin{align*}
\int f(x) Q_{t} \int_{0}^{\infty} \lambda e^{-\lambda s} D_{s}(t, x) d s d x & \leqq Q_{t} \int_{0}^{\infty} e^{-\lambda s} f\left(X_{t+s}\right) d s  \tag{5.4}\\
& =\int f(x) V_{t}(\lambda, x) d x \\
& \leqq 2 r_{\lambda}(0)\|f\|_{L_{1}}, \text { a.s. }
\end{align*}
$$

It follows that, except for $x$ in a set $N(t)$ of Lebesgue measure 0 ,

$$
Q_{t} \int_{0}^{\infty} \lambda e^{-\lambda s} D_{s}(t, x) d s \leqq 2 r_{\lambda}(0) \leqq 2 c_{3.13} \lambda^{1 / \alpha-1}
$$

by (3.13). $D_{s}(t, x)$ is increasing in $s$, and so if $h=1 / \lambda$,

$$
\begin{aligned}
Q_{t} D_{h}(t, x) & \leqq e^{\lambda h} \int_{h}^{\infty} \lambda e^{-\lambda s} Q_{t} D_{s}(t, x) d s \\
& \leqq c_{1} h^{1-1 / \alpha}
\end{aligned}
$$

or, for each $t$, if $x \notin N(t)$,

$$
\begin{equation*}
E\left(L_{t+h}(x)-L_{t}(x) \mid \mathscr{F}_{t}\right) \leqq c_{1} h^{1-1 / \alpha}, \text { a.s. } \tag{5.5}
\end{equation*}
$$

By Fubini applied to $\{(t, \omega, x, h)$ : (5.5) does not hold $\}$, there is a null set $N_{1}$ such that if $x \notin N_{1}$, (5.5) holds for almost all $t, h$, and $\omega$. Fix $x \notin N_{1}$, fix $u_{0}$ small, and let

$$
A_{u}=L_{t+u \wedge u_{0}}(x)-L_{t}(x) ; \quad \mathscr{G}_{u}=\mathscr{F}_{t+u}
$$

The potential of $A$ with respect to $\mathscr{G}$ is

$$
E\left(A_{u_{0}}-A_{u} \mid \mathscr{G}_{u}\right)=E\left(L_{t+u_{0}}(x)-L_{t+u}(x) \mid \mathscr{F}_{t+u}\right) \leqq c_{1} u_{0}^{1-1 / \alpha}
$$

for almost all $u$, and hence for all $u$ by right continuity of $L$ and $\mathscr{F}$.
Apply [5, p. 188] to $A$; we get

$$
\begin{equation*}
E\left(L_{t+u_{0}}(x)-L_{t}(x)\right)^{p}=E A_{u_{0}}^{p} \leqq p!\left(c_{1} u_{0}^{1-1 / \alpha}\right)^{p} \tag{5.6}
\end{equation*}
$$

By right continuity, the fact that $L_{t}$ is increasing, and Theorem (4.13) a, (5.6) holds for all $t$. Take $p$ large enough so that $p(1-1 / \alpha)>1$. By Kolmogorov's criterion, there is a version of $L_{t}(x)$ that is uniformly continuous in $t$, a.s. Since $L_{t}(x)$ is right continuous, there is no need to take versions and so $L_{t}(x)$ is continuous, a.s.

Henceforth, let us assume that $L_{t}(x)=0$ if $x \in N_{5.1}$.
The estimates in the proof of Theorem (5.1) can be used to get a modulus of continuity for $L_{t}(x)$. By the Taylor expansion for $e^{x}$ and (5.6),

$$
E\left(\exp \left(\left|L_{t+u_{0}}(x)-L_{t}(x)\right| / 2 c_{1} u_{0}^{1-1 / x}\right) \leqq 2\right.
$$

Letting $G_{0}(y)=e^{|y|}$ and $m(y)=2 c_{1}|y|^{1-1 / \alpha}$,

$$
\begin{equation*}
\int_{0}^{1} \int_{0}^{1} G_{0}\left(\frac{L_{t}(x)-L_{s}(x)}{m(t-s)}\right) d s d t<\infty, \text { a.s. } \tag{5.7}
\end{equation*}
$$

since the expectation of the left side of (5.7) is finite. Then by the lemma of Garsia, Rodemich, and Rumsey (for example, see [11]),

$$
\left|L_{t}(x)-L_{\mathrm{s}}(x)\right| \leqq c_{2} \int_{0}^{|t-s|} G_{0}^{-1}\left(c_{3} u^{-2}\right) d m(u), \text { a.s., } 0 \leqq s, t \leqq 1
$$

or

$$
\begin{equation*}
\limsup _{0 \leqq s, t \leqq 1,|t-s| \leqq h, h \rightarrow 0} \frac{\left|L_{t}(x)-L_{s}(x)\right|}{|\ln h| h^{1-1 / \alpha}} \leqq c_{4} . \tag{5.8}
\end{equation*}
$$

If $X_{i}$ is Markov, one can do slightly better and replace the denominator of (5.8) by $|\ln h|^{1 / \alpha} h^{1-1 / \alpha}$. See Millar [11] for the proof.

## 6. Extensions

In this section we show that if $X_{t}$ is a semimartingale with (1.2) holding, there exists a local time for $X_{t}$. First suppose $Y_{t}$ is a semimartingale with local characteristics ( $a_{s}, v_{s}^{Y}$ ) satisfying (1.2) with $b_{s} \equiv 1$. Then

$$
\begin{equation*}
Z_{t}=Y_{t}-\sum_{s \leqq t} \Delta Y_{s} 1_{\left(\left|\Delta Y_{s}\right|>\sigma\right)}+\int_{0}^{t} \int_{1 \geqq|h| \geqq \sigma} h v_{s}^{Y}(d h) d s-\int_{0}^{t} a_{s} d s \tag{6.1}
\end{equation*}
$$

is a local martingale.
Let $a_{s}^{+}, a_{s}^{-}$be the positive and negative parts, respectively, of $a_{s}$, and let

$$
A_{t}^{+}=\int_{0}^{t} \int_{\sigma}^{1} h v_{s}^{Y}(d h) d s+\int_{0}^{t} a_{s}^{-} d s, A_{t}^{-}=-\int_{0}^{t} \int_{-1}^{-\sigma} h v_{s}^{Y}(d h) d s+\int_{0}^{t} a_{s}^{+} d s
$$

Let $P_{t}^{+}, P_{t}^{-}$be two standard Poisson processes independent of each other and of $Y$. It is easy to check that $P_{A_{i}^{+}}^{+}-A_{t}^{+}$and $P_{A_{i}^{-}}^{+}-A_{t}^{-}$are martingales with respect to the appropriate $\sigma$-fields.

Let $R_{t}$ be a process with stationary, independent increments, independent of $Y_{t}$, $P^{+}$, and $P^{-}$, with Lévy measure

Let

$$
\begin{equation*}
X_{t}=Z_{t}+P_{A_{+}^{+}}^{+}-P_{A}^{-}-+R_{t}^{-}-A_{t}^{+}+A_{t}^{-} \tag{6.2}
\end{equation*}
$$

Note that $v_{s}^{X}$ satisfies (1.4).
If $T_{0}=0$, and $T_{i+1}=\inf \left\{t>T_{i}:\left|\Delta X_{t}\right|>\sigma\right.$ or $\left.\left|\Delta Y_{t}\right|>\sigma\right\}$, then because $X_{t}$ and $Y_{t}$ are right continuous with left limits,

$$
T_{i} \nearrow+\infty, \text { a.s. }
$$

Fix $i$. Let $X_{t}^{(i)}=X_{t+T_{i}}-X_{T_{i}}\left(X_{t}^{(i)}, \mathscr{F}_{t+T_{i}}, P\right)$ is a local martingale, $X_{0}^{(i)}=0$, a.s. and $v_{s}^{X^{(i)}}$ satisfies (1.4). Observe that

$$
\begin{equation*}
Y_{s}-Y_{T_{i}}=X_{s}-X_{T_{i}}=X_{s-T_{i}}^{(i)} \tag{6.3}
\end{equation*}
$$

if $T_{i} \leqq s<T_{i+1}$.
By Theorems (4.13) and (5.1), there exists a continuous process $L_{t}^{(i)}(x)$ such that if $f \in C_{K}$,

$$
\begin{equation*}
\int_{0}^{t} f\left(X_{s}^{(i)}\right) d s=\int f(x) L_{i}^{(i)}(x) d x, \text { a.s. } \tag{6.4}
\end{equation*}
$$

Fix $\omega$ not in the null set of (6.4), and let

$$
g(x)=f\left(x+Y_{T_{i}}(\omega)\right)
$$

Then

$$
\begin{align*}
\int f(x) L_{t \wedge\left(T_{i+1}-T_{i}\right)}^{(i)}\left(x-Y_{T_{i}}\right) d x & =\int g(x) L_{t \wedge\left(T_{i+1}-T_{i}\right)}^{(i)}(x) d x  \tag{6.5}\\
& =\int_{0}^{\left(T_{i+1}-T_{i}\right) \wedge t} g\left(X_{s}^{(i)}\right) d s \\
& =\int_{T_{i}}^{T_{i+1} \wedge\left(t+T_{i}\right)} f\left(X_{s}-X_{T_{i}}+Y_{T_{i}}\right) d s \\
& =\int_{T_{i}}^{T_{i+1} \wedge\left(t+T_{i}\right)} f\left(Y_{s}\right) d s
\end{align*}
$$

using (6.4).
Now define $L_{t}(x)$ by induction as follows:

$$
\begin{aligned}
& L_{0}(x)=0 \\
& L_{t}(x)=L_{T_{i}}(x)+L_{t-T_{i}}^{(i)}\left(x-Y_{T_{i}}\right) \quad \text { if } T_{i} \leqq t<T_{i+1}
\end{aligned}
$$

$L_{t}(x)$ is continuous, since each $L^{(i)}$ is. Summing (6.5) over $i=0,1, \ldots$, we see that $L_{t}(x)$ is an occupation time density for $Y_{s}$.

Now we want to show it suffices for (1.2) to hold. Suppose $B_{t}$ is a strictly increasing continuous process, $B_{0}=0, B_{\infty}=\infty$, and $d B_{t} / d t=b_{t} \geqq \delta_{6.6}>0$. Let $T_{t}=\inf \left\{s: B_{s} \geqq t\right\}$, and suppose $X_{t}=Y_{B_{i}}$. Suppose, $Y_{t}$ is a process with a local time $L_{t}(x)$. Hence for $\omega \notin N$, a null set,

$$
\int_{0}^{t} f\left(Y_{s}\right) d s=\int f(x) L_{t}(x) d x \quad \text { for all } t
$$

Let $M_{t}(x)=L_{B_{t}}(x)$. Then

$$
\begin{align*}
\int f(x) M_{t}(x) d x & =\int_{0}^{B_{t}} f\left(Y_{s}\right) d s=\int_{0}^{t} f\left(X_{u}\right) d B_{u}  \tag{6.6}\\
& =\int_{0}^{t} f\left(X_{u}\right) b_{u} d u \tag{6.7}
\end{align*}
$$

Now define
(6.8) Proposition. $\int f(x) N_{t}(x) d x=\int_{0}^{t} f\left(X_{u}\right) d u$.

Proof. Fix $\omega \notin N$. Let $d_{u}$ be a step process such that $d_{u}^{-1}$ is bounded. So for fixed times $t_{i}, d_{u}=d_{t_{i}}$ if $t_{i} \leqq u<t_{i+1}$. Let $M_{t}^{d}(x)=\int_{0}^{t} d_{u}^{-1} d M_{t}(x)$. Then, using (6.6),

$$
\begin{align*}
\int f(x) M_{i}^{d}(x) d x & =\sum_{i=0}^{\infty} \int f(x)\left(M_{t \wedge t i+1}^{d}(x)-M_{i \wedge t i}^{d}(x)\right) d x  \tag{6.9}\\
& =\sum_{i=0}^{\infty} d_{t_{i}}^{-1} \int_{t \wedge \wedge_{i}}^{t \wedge t_{i+1}} f\left(X_{u}\right) b_{u} d u \\
& =\int_{0}^{t} f\left(X_{u}\right)\left(b_{u} / d_{u}\right) d u .
\end{align*}
$$

A monotone class argument shows that (6.9) holds for any $d_{u}$ provided $d_{u}^{-1}$ is bounded, in particular with $d_{u}=b_{u}$.

Now suppose $X_{t}$ is a semimartingale satisfying (1.2). It is routine to check that there exists a $Y_{t}$ satisfying (1.2) with local characteristics $\left(a_{s}, v_{s}\right)$ such that $X_{t}=Y_{B_{t}}$. Hence $X_{t}$ has a local time.

## 7. Weak Convergence

We now wish to construct a counterexample to show that a condition such as (1.2) is necessary. In this section we collect a number of facts related to weak convergence in $D[0, \infty)$ that will be necessary for the construction, which is carried out in Sect. 8.

Let $\Omega=D[0, \infty)=\{$ functions from $[0, \infty)$ to $\mathbb{R}$ that are right continuous with left limits $\}$. Define $X_{t}(\omega)=\omega(t)$ for $\omega \in \Omega$. Throughout, $\alpha$ and $\beta$ are fixed with $1<\alpha<\beta<2$.

We will want to consider probability measures $P^{\prime}$ such that
(7.1) a) $\left(X_{t}, P^{\prime}\right)$ is a purely discontinuous local martingale with local characteristics $\left(0, v_{s}\right)$ and $P^{\prime}\left(X_{0}=0\right)=1$.
b) $\theta_{\alpha}(d h) \leqq v_{s}(d h) \leqq c_{7.1 A} \theta_{\beta}(d h)$

$$
\begin{aligned}
& \text { if }|h| \leqq 1, \\
& \text { if }|h|>1 .
\end{aligned}
$$

c) $v_{s}(d h)=\theta_{\beta}(d h)$

Note that (1.3) is satisfied if $\alpha<\beta<\alpha+\varepsilon$.
One could, in the construction that follows, define $P$ so that $v_{s}(d h)=\theta_{\alpha}(d h)$ if $|h|>1$, and hence so that $v_{s}(d h) \geqq \theta_{\alpha}(d h)$ for all $h$; however, the existence or nonexistence of local times depends only on the behavior of $v_{s}$ near 0 (cf. Sect. 6), and so we do not do that here.

The proof of the following is standard.
(7.2) Lemma. Suppose $\left(Y_{t}, P_{n}\right)$ is a submartingale (supermartingale, martingale) and for each $t, \sup _{n} E_{n}\left|Y_{t}\right|^{1+\varepsilon}<\infty$ for some $\varepsilon>0$. Suppose for each $j \geqq 1$ and $t_{1}$ $<\ldots<t_{j}$ with $P\left(\Delta Y_{i_{i}} \neq 0\right)=0$ for $i=1, \ldots, j$, the distribution of $\left(Y_{t_{1}}, \ldots, Y_{t_{j}}\right)$ under $P_{n}$ converges to that of $\left(Y_{t_{1}}, \ldots, Y_{t_{j}}\right)$ under $P$. Then $\left(Y_{t}, P\right)$ is a submartingale ( supermartingale, martingale).
(7.3) Proposition. Suppose $P_{n}$ is a sequence of probability measures satisfying (7.1). Then there is a subsequence which converges weakly in $D[0, \infty)$ to $P$, and $P$ satisfies (7.1).

Proof. By (7.1) b and c, $\sup _{n} \int h^{2} \wedge 1 v_{s}^{(n)}(d h)<\infty$. By the argument of [13, pp. 237-238], the $P_{n}$ 's can be shown to be tight, and so there exists a subsequence $P_{n^{\prime}}$ converging weakly to $P$. By Lemma (7.2) and Proposition (3.2), $\left(X_{t}, P\right)$ is a local martingale.

We now show ( $X_{t}, P$ ) is purely discontinuous. Let

$$
\begin{equation*}
Z_{t}=X_{t}-\sum_{s \leqq t} \Delta X_{s} 1_{\left(\left|A X_{s}\right|>1\right)} \tag{7.4}
\end{equation*}
$$

Since $P_{n^{\prime}}$ converges weakly on $D[0, \infty)$ to $P$, it is not hard to show that if $t_{1}<\ldots<t_{j}, j \geqq 1$, the distribution of $\left(Z_{t_{1}}, \ldots, Z_{t_{j}}\right)$ under $P_{n}$, converges to the distribution under $P$, provided $P\left(\Delta Z_{t_{i}} \neq 0\right)=0, i=1, \ldots, j$. As above, $\left(Z_{t}, P\right)$
is a local martingale. To show $X^{c}$, the continuous part of $X$, is 0 , it suffices to show $Z^{c}=0$.
$Z$ has jumps bounded by 1 , and so by (3.4), $\sup E_{n} Z_{t}^{2} \leqq c_{1}$. Let $f(x)=x^{2} \wedge c_{2}$. Then

$$
E f\left(Z_{t}\right)=\lim _{n^{\prime} \rightarrow \infty} E_{n^{\prime}} f\left(Z_{t}\right) \leqq \lim _{n^{\prime}} \sup E_{n^{\prime}} Z_{t}^{2}
$$

Letting $c_{2} \rightarrow \infty$, by monotone convergence,

$$
E Z_{t}^{2} \leqq \limsup _{n^{\prime}} E_{n^{\prime}} Z_{t}^{2}
$$

Let $h \in C_{K}$ with support in $[-2,2]-(-\delta / 2, \delta / 2)$, with $0 \leqq h(x) \leqq x^{2}$, and $h(x)=x^{2}$ if $\delta \leqq|x| \leqq 1$. Since $P_{n \prime} \rightarrow P$ weakly, we can show that

$$
E \sum_{s \leqq t} \Delta Z_{s}^{2} \geqq E \sum_{s \leqq t} h\left(\Delta Z_{s}\right)=\lim _{n^{\prime} \rightarrow \infty} E_{n}, \sum_{s \leqq t} h\left(\Delta Z_{s}\right) .
$$

Since

$$
\sup _{n} E_{n} \sum_{s \leqq t} \Delta Z_{s}^{2} 1_{\left(\left|\Delta Z_{s}\right| \leqq \delta\right)}=\sup _{n} E_{n} \int_{0}^{t} \int_{-\delta}^{\delta} h^{2} v_{s}^{(n)}(d h) d s \rightarrow 0
$$

as $\delta \rightarrow 0$, we get

$$
E \sum_{s \leqq t} \Delta Z_{s}^{2} \geqq \liminf _{n^{\prime} \rightarrow \infty} E_{n^{\prime}} \sum_{s \leqq t} \Delta Z_{s}^{2}
$$

We then have, since $\left(Z_{t}, P_{n^{\prime}}\right)$ is purely discontinuous,

$$
\begin{aligned}
E\left\langle Z^{c}, Z^{c}\right\rangle_{t} & =E\left([Z, Z]_{t}-\sum_{s \leqq t} \Delta Z_{s}^{2}\right)=E Z_{t}^{2}-E \sum_{s \leqq t} \Delta Z_{s}^{2} \\
& \leqq \limsup _{n^{\prime} \rightarrow \infty} E_{n^{\prime}}\left(Z_{t}^{2}-\sum_{s \leqq t} \Delta Z_{s}^{2}\right)=\lim _{n^{\prime} \rightarrow \infty} \sup _{n^{\prime}}\left\langle Z^{c}, Z^{c}\right\rangle_{t}=0
\end{aligned}
$$

Finally, we show (7.1) b and c hold. If $f \in C_{K}$ with support contained in $[-1,1]-\{0\}$, and

$$
Y_{t}=\sum_{s \leqq t} f\left(\Delta Z_{s}\right)-t c_{7.1 A} \int f(h) \theta_{\beta}(d h)
$$

( $Y_{t}, P_{n}$ ) is a supermartingale. Again, the finite dimensional distributions of $Y_{t}$ can be shown to converge, and so by Lemma (7.2), $\left(Y_{t}, P\right)$ is a supermartingale. Repeating this argument with the support of $f \subseteq[-1,1]^{c}$, we see that $X_{t}$ has local characteristics $\left(0, v_{s}\right)$ with

$$
\begin{equation*}
v_{s}(d h) \leqq c_{7.1 A} 1_{(|h| \leqq 1)} \theta_{\beta}(d h)+1_{(|h|>1)} \theta_{\beta}(d h) \tag{7.5}
\end{equation*}
$$

The remainder of (7.1) b is similar. $\square$
Recalling the definition of $S_{\lambda}$, we need
(7.6) Proposition. Suppose ( $X_{t}, P$ ) satisfies (7.1). Then

$$
\sup _{|a| \leqq 2} S_{\lambda} 1_{[a-\delta, a+\delta]} \leqq c_{7.6}(\delta),
$$

where $c_{7.6}(\delta)$ depends only on $c_{7.1 \mathrm{~A}}, \alpha, \beta$, and $\lambda$, and tends to 0 as $\delta \rightarrow 0$.
Incidentally, this proposition shows that $X_{i}$ spends 0 time at points, and that to construct a $P$ for $X_{t}$ has no local time, one needs a somewhat complicated construction.

Proof. Let $T_{N}=\inf \left\{t:\left|X_{t}\right| \geqq N\right\}$. By Ito's lemma (cf. (3.12)). if $f \in C^{2}$,

$$
\begin{equation*}
E f\left(X_{i \wedge I_{N}}\right)-f(0)=E \int_{0}^{t \wedge T_{N}} \int \Delta_{R}^{h} f\left(X_{s}\right) v_{s}(d h) d s \tag{7.7}
\end{equation*}
$$

Since $\left|A_{R}^{h} \mathrm{f}\left(X_{s}\right)\right| \leqq c_{1}\left(\left\|f^{\prime}\right\|+\left\|f^{\prime \prime}\right\|+\sup _{\mid x \leqq N}|f(x)|\right)\left(h^{2} \wedge|h|\right)$ if $s<T_{N}$, a limiting argument, Proposition (3.2), and the fact that $|f(x)| \leqq f(0)+|x|\left\|f^{\prime}\right\|$ shows that (7.7) holds for $f$ convex such that $\left\|f^{\prime}\right\|+\left\|f^{\prime \prime}\right\|<\infty$. Since $f$ is convex, $\Delta_{R}^{h} f(x) \geqq 0$. Letting $N \rightarrow \infty$, we may use monotone convergence and (7.1) $b$ on the right of (7.7) and uniform integrability on the left of (7.7) to get

$$
\begin{equation*}
E f\left(X_{t}\right)-f(0) \geqq E \int_{0}^{t} \int_{-1}^{1} \Delta_{R}^{h} f\left(X_{s}\right) \theta_{\alpha}(d h) d s \tag{7.8}
\end{equation*}
$$

Taking a limit and applying Fatou, (7.8) holds when $f(x)=|x-a|$. Direct calculation shows that

$$
\begin{equation*}
\int_{-1}^{1} \Delta_{R}^{h} f(x) \theta_{\alpha}(d h) \geqq c_{1}|x-a|^{1-\alpha} \geqq c_{1} \delta^{1-\alpha} 1_{[a-\delta, a+\delta]}(x) \tag{7.9}
\end{equation*}
$$

if $|x-a|<1 / 4$. Substituting (7.9) in (7.8) and again using Proposition (3.2),

$$
\begin{equation*}
E \int_{0}^{t} 1_{[a-\delta, a+\delta]}\left(X_{s}\right) d s \leqq c_{2} \delta^{\alpha-1}(t+|a|) \tag{7.10}
\end{equation*}
$$

if $\delta \leqq 1 / 4$. Multiplying both sides of (7.10) by $\lambda e^{-\lambda t}$ and integrating $t$ from 0 to $\infty$ completes the proof.

Let $F$ be the finite union of disjoint closed intervals contained in $[-1,1]$. Let $R_{\lambda}$ be the resolvent operator for a symmetric stable process of index $\beta$. That is, $R_{\lambda}$ is defined by (2.10) and (2.4), where now $q_{t}$ is the density of a stable process of index $\beta$. Let

$$
\psi(d h)= \begin{cases}\theta_{\alpha}(d h)-\theta_{\beta}(d h) & \text { if }|h| \leqq 1  \tag{7.11}\\ 0 & \text { if }|h|>1\end{cases}
$$

and let $B$ be the operator defined on $f \in C^{2}$ by

$$
\begin{equation*}
B f(x)=1_{F}(x) \int \Lambda_{C}^{h} f(x) \psi(d h) \tag{7.12}
\end{equation*}
$$

One of the main results we will need in the next section is
(7.13) Proposition. There exists a probability $P$ satisfying (7.1) such that if $S_{\lambda} f=E \int_{0}^{\infty} e^{-\lambda t} f\left(X_{t}\right) d t$ and $f \in C_{K}^{2}$, then

$$
S_{\lambda} f=R_{\lambda} f(0)+S_{\lambda}\left(B R_{\lambda} f\right)
$$

Proof. Let $\psi_{m}(d h)=\psi(d h)$ if $|h| \geqq 1 / m, 0$ otherwise. Let $B_{m}$ be defined analogously to $B$ in (7.12). Let $P_{m}$ be a probability satisfying (7.1) such that ( $X_{t}, P_{m}$ ) has local characteristics $\left(0, v_{s}^{m}\right)$ with $v_{s}^{m}(d h)=1_{F}\left(X_{s}\right) \psi_{m}(d h)+\theta_{\beta}(d h)$. Such $P_{m}$ may be shown to exist by [1] or the techniques of [13]. An alternate argument would be to construct probabilities corresponding to $v_{s}^{m, k}=f_{k}\left(X_{s}\right) \psi_{m}(d h)+\theta_{\beta}(d h), f_{k}$ Lipschitz, using techniques of stochastic differential equations, and then to take weak limits as $f_{k} \rightarrow 1_{F}$.

By Theorem (3.10) a, if $f \in C_{K}^{2}$,

$$
\begin{equation*}
S_{\lambda}^{(m)} f=R_{\lambda} f(0)+S_{\lambda}^{(m)} B_{m} R_{\lambda} f \tag{7.14}
\end{equation*}
$$

where $S_{\lambda}^{(m)} g=E_{m} \int_{0}^{\infty} e^{-\lambda t} g\left(X_{t}\right) d t$, since now $R_{\lambda}$ is the resolvent of a stable process of index $\beta$.

Taking a subsequence if necessary, we may assume $P_{m} \rightarrow P$, weakly, and by Proposition (7.3), $P$ satisfies (7.1). Since $f \in C_{K}^{2}, R_{\lambda} f \in C^{2}$, and note then that

$$
\left\|B_{m} R_{\lambda} f-B R_{\lambda} f\right\| \leqq\left\|\left(R_{\lambda} f\right)^{\prime \prime}\right\| \int_{|h|<1 / m} h^{2} \psi(d h) \rightarrow 0
$$

as $m \rightarrow \infty$. Since $\int \Delta_{C}^{h} R_{\lambda} f(x) \psi(d h)$ is continuous, $B R_{\lambda} f(x)$ is discontinuous only at the finitely many endpoints of intervals of $F$. By Proposition (7.6), we can find $g$ continuous such that $S_{\lambda}^{(m)}\left|B R_{\lambda} f-g\right|, S_{\lambda}\left|B R_{\lambda} f-g\right| \leqq \varepsilon$.

Since $P_{m} \rightarrow P$ weakly, $S_{\lambda}^{(m)} f \rightarrow S_{\lambda} f$ and $S_{\lambda}^{(m)} g \rightarrow S_{\lambda} g$.

$$
\begin{align*}
\left|S_{\lambda}^{(m)} B_{m} R_{\lambda} f-S_{\lambda} B R_{\lambda} f\right| \leqq & \left|S_{\lambda}^{(m)} B_{m} R_{\lambda} f-S_{\lambda}^{(m)} B R_{\lambda} f\right|  \tag{7.15}\\
& +\left|S_{\lambda}^{(m)} B R_{\lambda} f-S_{\lambda}^{(m)} g\right|+\left|S_{\lambda}^{(m)} g-S_{\lambda} g\right| \\
& +\left|S_{\lambda} g-S_{\lambda} B R_{\lambda} f\right| \\
\leqq & \left\|B_{m} R_{\lambda} f-B R_{\lambda} f\right\| / \lambda+2 \varepsilon+\left|S_{\lambda}^{(m)} g-S_{\lambda} g\right|
\end{align*}
$$

The proof of the proposition follows from letting $m \rightarrow \infty$ in (7.14), since $\varepsilon$ was arbitrary.

## 8. Counterexamples

In this section we construct a probability $P$ satisfying (7.1) for which $X_{t}$ does not have a local time. The idea is to construct a Cantorlike set $D$ of Lebesgue measure 0 , to let $v_{s}(d h)=\theta_{\alpha}(d h)$ if $X_{s} \in D,|h| \leqq 1, v_{s}(d h)=\theta_{\beta}(d h)$ if $X_{s} \notin D$, and to show that $X_{t}$ spends a positive amount of time in $D$. In view of Proposition (7.6), letting $D$ be a countable set would not work.

Throughout this section $1<\alpha<\beta<2$ are fixed, $R_{\lambda}$ is the resolvent of a symmetric stable process of index $\beta, r_{\lambda}$ the density of $R_{\lambda}$, and $S_{\lambda}$ (or $S_{\lambda}^{(n)}$ ) as in the statement of Proposition (7.13). Let $\gamma=\min ((\beta-\alpha) / 2,(\alpha-1) / 2)$, and let

$$
\begin{equation*}
H(x)=|x|^{\gamma-1} . \tag{8.1}
\end{equation*}
$$

(8.2) Proposition. Let $F$ be the finite union of disjoint closed intervals contained in $[-1,1]$. Suppose $\mu(F)>0$, and let $w=\sup _{y \in \mathbb{R}} \int_{F} H(x-y) d x / \mu(F)$. Let $\psi$ and $B$ be defined by (7.11) and (7.12), and let $P$ be the probability given by Proposition (7.13). Then $S_{\lambda} 1_{F} \geqq c_{8.2}(w)$, where $c_{8.2}(w)$ depends only on $\alpha, \beta$, and $w$, is decreasing in $w$, and strictly positive if $w<\infty$.

Proof. Since $\int_{|h| \leqq 1}|h|^{\beta-\gamma} \theta_{\alpha}(d h)<\infty$, by Theorem (2.11) and (2.12), we can fix a $\lambda$ such that if $f \in C_{K}^{|h| \leq}$,

$$
\begin{equation*}
\left|\int_{|h| \leqq 1} \Delta_{C}^{h} R_{\lambda} f(x) \theta_{\alpha}(d h)\right| \leqq c_{1} H *|f|(x) \tag{8.3}
\end{equation*}
$$

Since $\int \Delta_{C}^{h} g \theta_{\beta}(d h)=\mathscr{G}_{\beta} g$, the infinitesimal generator for a symmetric stable process of index $\beta$, and so $\mathscr{G}_{\beta} R_{\lambda} f=\lambda R_{\lambda} f-f$, then

$$
\begin{align*}
\int \Delta_{\mathrm{C}}^{h} R_{\lambda} f(x) \psi(d h)= & \int_{|h| \leqq 1} \Delta_{C}^{h} R_{\lambda} f(x) \theta_{\alpha}(d h)+\int_{|h|>1} \Delta_{C}^{h} R_{\lambda} f(x) \theta_{\beta}(d h)  \tag{8.4}\\
& -\lambda R_{\lambda} f(x)+f(x)
\end{align*}
$$

Then if support $(f) \subseteq F$ and $0 \leqq f \leqq 1,\left\|R_{\lambda} f\right\| \leqq\left\|r_{\lambda}\right\| \mu(F)$, and

$$
\begin{align*}
\left|f(x)-B R_{\lambda} f(x)\right| & \leqq 1_{F}(x)\left(\lambda R_{\lambda} f(x)+c_{1} H * f(x)+c_{2}\left\|R_{\lambda} f\right\|\right)  \tag{8.5}\\
& \leqq 1_{F}(x)\left(\left(\lambda+c_{2}\right)\left\|r_{\lambda}\right\|+c_{1} w\right) \mu(F)
\end{align*}
$$

On $F^{c}, f-B R_{\lambda} f=0$, and so, by Proposition (7.13),

$$
\begin{equation*}
R_{\lambda} f(0)=S_{\lambda}\left(f-B R_{\lambda} f\right) \leqq\left(c_{1} w+c_{3}\right) \mu(F) S_{\lambda} 1_{F} \tag{8.6}
\end{equation*}
$$

Use monotone convergence to show (8.6) holds for $f=1_{F}$, and then observe that

$$
R_{\lambda} 1_{F}(0) \geqq\left(\inf _{y \in[-1,1]} r_{\lambda}(y)\right) \mu(F)=c_{4} \mu(F)
$$

This and (8.6) shows that $S_{\lambda} 1_{F} \geqq c_{4} /\left(c_{1} w+c_{3}\right)$.
(8.7) Lemma. Suppose $[a, b]$ is a closed interval, $\varepsilon>0$. Then there exists $k_{0}(\varepsilon)$ such that if $k \geqq k_{0}(\varepsilon)$ is even,

$$
\delta=(b-a) /(4 k+2), s_{i}=a+(4 i+1) \delta
$$

and

$$
I_{k}[a, b]=\bigcup_{i=0}^{k}\left[s_{i}+\delta, s_{i}-\delta\right]
$$

then

$$
\int_{I_{k}[a, b]} H(x) d x \leqq\left(\frac{1}{2}+\varepsilon\right) \int_{a}^{b} H(x) d x
$$

The proof of Lemma (8.7), which relies only on the fact that $H(x)$ is integrable and continuous except at 0 , will be omitted. Note that

$$
\mu\left(I_{k}[a, b]\right)=\frac{k+1}{2 k+1} \mu([a, b])>\frac{1}{2} \mu([a, b]), \text { while if } k \geqq 2, \mu\left(I_{k}[a, b]\right) \leqq \frac{3}{5} \mu([a, b]) .
$$

Our main theorem is
(8.8) Theorem. There exists a probability $P$ satisfying (7.1) such that $S_{\lambda}$ is not absolutely continuous with respect to $\mu$. In particular, $\left(X_{t}, P\right)$ cannot have a local time.

Proof. Let $D_{0}=[-1,1]$.

$$
\int_{D_{0}} H(x) d x=\mu\left(D_{0}\right) / \gamma
$$

We will first construct by induction a sequence of closed sets $D_{n}$ such that $D_{n} \supseteq D_{n+1}$, each $D_{n}$ is the finite union of disjoint closed intervals of equal length, each $D_{n}$ is symmetric about 0 and contains $0, \frac{1}{2} \mu\left(D_{n}\right) \leqq \mu\left(D_{n+1}\right) \leqq \frac{3}{5} \mu\left(D_{n}\right)$, and

$$
\sup _{y \in \mathbb{R}} \int_{D_{n}} H(x-y) d x<(2 / \gamma) \mu\left(D_{n}\right)
$$

Suppose $D_{n}=\bigcup_{j=1}^{N_{n}}\left[a_{j}, b_{j}\right]$ has been constructed. Choose $\varepsilon$ small enough so that

$$
\int_{D_{n}} H(x) d x / \mu\left(D_{n}\right)<2 / \gamma(1+2 \varepsilon)
$$

Choose $k \geqq 2$ even and large enough so that for each $j$,

$$
\begin{equation*}
\int_{L_{k}\left[a_{j}, b_{j}\right]} H(x) d x \leqq\left(\frac{1}{2}+\varepsilon\right) \int_{a_{j}}^{b_{j}} H(x) d x \tag{8.9}
\end{equation*}
$$

Let $D_{n+1}=\bigcup_{j=1}^{N_{n}} I_{k}\left[a_{j}, b_{j}\right]$. Summing (8.9) over $j=1, \ldots, N_{n}$,

$$
\int_{D_{n+1}} H(x) d x \leqq\left(\frac{1}{2}+\varepsilon\right) \int_{D_{n}} H(x) d x<\mu\left(D_{n}\right) / \gamma \leqq 2 \mu\left(D_{n+1}\right) / \gamma .
$$

Since $k$ is even, $0 \in D_{n+1}$, and by symmetry considerations,

$$
\sup _{y \in \mathbb{R}} \int_{D_{n+1}} H(x-y) d x=\int_{D_{n+1}} H(x) d x
$$

Next, for each $n$, apply Proposition (8.2) with $F=D_{n}$ to obtain $P_{n}$ satisfying (7.1) and $S_{i}^{(n)} 1_{D_{n}} \geqq c_{8.2}(2 / \gamma)$. By Proposition (7.3), a subsequence of the $P_{n}$ 's converges weakly to $P$ satisfying (7.1). If $m \geqq n, S_{\lambda}^{(m)} 1_{D_{n}} \geqq S_{\lambda}^{(m)} 1_{D_{m}} \geqq c_{8.2}(2 / \gamma)$. Since $D_{n}$ is closed, by weak convergence $S_{\lambda} 1_{D_{n}} \geqq c_{8.2}(2 / \gamma)$.

Let $D=\bigcap_{n=0}^{\infty} D_{n} . D$ is closed, $\mu(D)=0$, and since $S_{\lambda}$ is a measure, $S_{\lambda} 1_{D}=\lim _{n \rightarrow \infty} S_{\lambda} 1_{D_{n}} \geqq c_{8.2}(2 / \gamma)$.

If ( $X_{t}, P$ ) had a local time $L_{t}(x)$, for each $t$

$$
\int_{0}^{t} 1_{D}\left(X_{s}\right) d s=\int_{D} L_{t}(x) d x=0, \text { a.s. }
$$

but then $S_{\lambda} 1_{D}$ would be 0 , a contradiction.

## References

1. Bass, R.: Adding and subtracting jumps from Markov processes. Trans. Amer. Math. Soc. 255, 363376 (1979)
2. Bergström, H.: On some expansions of stable distribution functions. Ark. Mat. 2, 375-378 (1952)
3. Blumenthal, R.M., Getoor, R. K.: Markov Processes and Potential Theory. New York: Academic Press 1968
4. Boylan, E.S.: Local times for a class of Markov processes. Ill. J. Math. 8, 19-39 (1964)
5. Dellacherie, C., Meyer, P.A.: Probabilités et potential. Paris: Hermann 1980
6. Griego, R.: Local times and random time changes. Z. Wahrscheinlichkeitstheorie verw. Geb. 8, 325331 (1967)
7. Jacod, J.: Calcul stochastiques et problèmes de martingales. New York: Springer 1979
8. Kesten, H.: Hitting probabilities of single points for processes with stationary, independent increments. Mem. Amer. Math. Soc. 93, (1969)
9. Maisonneuve, B.: Ensembles régéneratifs, temps locaux et subordinateurs. Séminaire de Probabilités V, Lec. Notes in Math. 191, New York: Springer 1971
10. Meyer, P.A.: Un cours sur les intégrales stochastiques, Séminaire de Probabilités X, Lec. Notes in Math. 511, New York: Springer 1976
11. Millar, P.W.: Modulus of continuity for continuous additive functionals. Z. Wahrscheinlichkeitstheorie verw. Geb. 24, 71-78 (1972)
12. Stricker, C., Yor, M.: Calcul stochastique dépendant d'un paramètre. Z. Wahrscheinlichkeitstheorie verw. Geb. 45, 109-134 (1978)
13. Stroock, D. W.: Diffusion processes associated with Lévy generators. Z. Wahrscheinlichkeitstheorie verw. Geb. 32, 209-244 (1975)
14. Stroock, D. W., Varadhan, S.R.S.: Multidimensional diffusion processes. New York: Springer 1979
15. Tanaka, H., Tsuchiya, M., Watanabe, S.: Perturbation of drift-type for Lévy processes. J. Math Kyoto Univ 14, 79-92 (1974)
16. Yoeurp, Ch.: Compléments sur les temps locaux et les quasi-martingales. Astérisque 52-53, 197-218 (1978)
17. Yor, M.: Rappels et préliminaires généraux. Astérisque 52-53, 17-22 (1978)

Received July 15, 1983; in revised form June 18, 1984

Note added in proof. The author and M. Cranston have recently shown, using the Malliavin calculus, that a purely discontinuous martingale will have a jointly continuous local time provided the local characteristics are sufficiently smooth as well as sufficiently large.


[^0]:    I would like to thank M. Cranston for many helpful conversations concerning Sect. 7 and 8 .

