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Summary. For a type of stationary ergodic discrete-time finite-alphabet
channel more general than the stationary totally ergodic d-continuous
channel of Gray, Ornstein and Dobrushin, it is shown that a stationary,
ergodic source with entropy less than capacity can be transmitted over the
channel with zero probability of error using stationary codes for encoding
and decoding. This result generalizes the result of Gray etal. [3] that
Bernoulli sources can be transmitted with zero error at rates below ca-
pacity over a totally ergodic d-continuous channel.

1. Introduction

Let [A4, u] be an information source; the alphabet A of the source is always
assumed finite, and p, the distribution of the source, is a probability measure
on the measurable space (A®, #(A*)) consisting of 4%, the set of all bilateral
infinite sequences x=(x;)> _ from A, and #(4®), the usual product o-field
of subsets of 4A*. We will assume that our source [4,u] is both stationary
(ie., the shift T, on A% preserves u), and ergodic (i.e., T,-invariant sets have
measure zero or one). We say that [A, u] is aperiodic if p(x)=0 for every
xeA*. We let H(u) denote the entropy of the source [ A4, u].

Let [B,v, (] be a stationary channel, where the input alphabet B and the
output alphabet C are finite, and v={v :xeA4%} is a family of probability
measures on C® such that

(a) The map x—v (E) from B*—[0,1] is & (B*)-measurable for each
EcF(C®).

(b) v, (TeE)=v(E), xeB*, EeF (C*).

We say the stationary and ergodic source [ A4, i] is zero error transmissible
over the stationary channel [B, v, C] if there exist stationary codes ¢: A®—B®,
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Y: C*—>A% and a Markov chain U, X, Y such that U={U}2 __ is a process
with state space 4 and distribution g, X is the process with state space B such
that X =¢(U), Yis a process with state space C for which the distribution of ¥
conditioned on X is given by v, and U=/(Y) a.s. Intuitively speaking, if we
encode the process U (which serves as a model for the information source
[A, 1]) into the process X, and then transmit X over the channel [B,v, C], the
process U can be recovered with probability one from the channel output
process Y.

There is an equivalent way of formulating this. We say that the stationary
sources [4, u], [B,A] are isomorphic if there exist processes U, V which are
stationary codings of each other such that U has distribution g, and V has
distribution 4. Following Gray etal. [3], given the stationary source [B, A] and
the stationary channel [B,v, C], we say [B, 1] is v-invulnerable if there are
processes X, Y such that the distribution of X is A, the distribution of Y
conditioned on X is given by v, and X is a stationary coding of Y. That is,
[B,A] can be directly transmitted over the channel [B,v, C] (without first
encoding), and then recovered exactly from the channel output. It is not hard
to see that [A, ] is zero-error transmissible over [B,v, C] if and only if there
exists a v-invulnerable source [B, 4] isomorphic to [A4, u].

Shannon [9] showed that for a discrete memoryless channel there are two
capacities Cy and C (with C,< C for most cases of interest) such that, if block
encoders and decoders are used, C, is the maximum rate below which zero-
error transmission is possible and C is the maximum rate below which trans-
mission is possible with arbitrarily small (but possibly positive) probability of
error. The number C is called the Shannon capacity and is equal to the
supremum of the information rates of all stationary input-output measures for
the channel; C, is called the zero-error capacity and has been calculated only
for a few special cases considered by Shannon [9] and Lovasz [4] among
others. One can see from an examination of Shannon’s proof [9] that zero-
error transmission using block coders is not possible at rates between C, and
C because a block code has finite memory; that is, for some positive integer
M, the output of the code at any time i is completely determined by looking at
the sequence being coded at times i—M through i+ M. (See also [2], where
some negative results are given on zero-error transmission using finite-memory
sliding-block codes.) Gray etal. [3] showed that if infinite memory stationary
encoders and decoders are used, zero-error transmission at any rate below C is
possible provided the source being transmitted is a stationary coding of a
memoryless source (i.e., a Bernoulli source), and the channel is totally ergodic
and d-continuous, a channel more general than the discrete memoryless chan-
nel.

In this paper, we show that for a type of channel more general than that
considered by Gray et al. [3], zero-error transmission using stationary coders is
possible for stationary, ergodic, aperiodic non-Bernoulli sources at all rates
below C.

2. Principal Results

Let 2,(B) be the set of all probability measures on B® for which the shift T is
a measure-preserving, ergodic, aperiodic transformation on the probability
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space (B®, # (B®), u). On 2,(B) we place the unique metric topology for which
convergence of a sequence of measures is weak convergence. Similarly, we
place the topology of weak convergence on the set 2(B, C) of all probability
measures on B® x C®. If A is a probability measure on B* and [B,v,C] is a
stationary channel, let v be the probability measure on B® x C® such that

Av(E x F)=[ v (F)dA(x), EeF (B®), FeF (C®).
E

Given a stationary channel [B,v,C], let &, be the map A—Aiv from
2(B)-»P?(B, C). If ue#,(B) and [B,v,C] is a stationary channel, we say
[B,v, C] is ergodic at u if the measure pv is ergodic (with respect to the
transformation (x, y)—>(Tzx, T y) on B® x C*).

In the following, if le#,(B) and [B,v,C] is a stationary channel, I{1v)
denotes the mutual information rate of the measure Av on B*® x C*.

For k=1,2, ..., the k-th order marginal distribution of A1e#,(B) is denoted
by A®,

We now state the main result of the paper. (The proof is given in the last
section.)

Theorem 1. Let the stationary channel [B,v, C]| and te%,(B) be given. Suppose
there is some neighborhood N of t in #,(B) such that @, is continuous at every
measure in A and [B,v, C] is ergodic at every positive entropy measure in N.
Let [A, 1] be a stationary, ergodic, aperiodic source with H(u)<I(tv). Then for
any k=1,2,..., and any 6>0, there exists a v-invulnerable source [B, ] isomor-
phic to [A, 1] such that max|A®(x)—t®(x)|<d. Thus, [A4, u] is zero-error trans-

xeBk
missible over [B,v, C].

Definition. The Shannon capacity C(v) of the stationary channel [B, v, C] is the
supremum of I(uv) over all ue#,(B).

Corollary. Let the stationary channel [B, v, C] be ergodic at every positive entropy
measure in #,(B), and suppose &, is continuous at every measure in %,(B). Let
[A, u] be any stationary ergodic aperiodic source. Then:
(a) [A, u] is zero-error transmissible over [B, v, C]
if H(p)< C(v), and
(b) [ A4, i] is not zero-error transmissible if
H@p > C).

Part. Part (a) follows from Theorem 1. Part (b) was proved in [6].

As a special case, we get the results of Gray et al. [3], for, as shown in [6],
the type of channel considered by these authors satisfies the hypotheses of the
above corollary.

3. Synchronization Words
In order to construct the encoder for our source [ A4, p], we will have to make

sure that certain blocks of the encoder output are synchronization words; ie.,
words which cannot be mistaken for cyclic shifts of themselves. In this section,
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for a given stationary and ergodic source we will show that there are synchro-
nization words “typical” of the source.

Definition. Let B* = U B", where B" is the set of all n-tuples (b, ..., b,) from B.

(B* is thus the set of all finite-length words whose letters are from the alphabet
B.) Define n: B*— B* to be the map

by, by, ....,b)=(b,,....b,, b))

If § is a set of integers and m is a positive integer we say S has minimal
distance m if |i—jl=m for every i,jeS, i=j. From now on, if G is a finite set,
|G| denotes the cardinality of G.

If 4 is a finite set, and x=(x,,...,x,) and x'=(x|,...,x) are in A" let
d(x, x') denote the Hamming distance between these sequences:

nH{1Zign: x =X}

Lemma 1. Let m be a positive integer. Let {X.}*_ be a stationary ergodic
process with state space B such that if S is a set of integers with minimal distance
m, then {X,;:ieS} are independent. Let .= inf Pr{X,+ X ,]. Then, for any £>0,

i*0

lim Pr[ min d((X,,..., X)), 7%(X,,..., X ) Si—e]=0.

n— o 1<k=n-1

Proof. See the proof of Lemma A2 of [8].

Definition. Let Z denote the set of integers. Let S be a subinterval (possibly
infinite) of Z. Given a sequence of letters x={x,: ieS} from some alphabet, an
integer k, and a positive integer r such that the interval [k, k+r—1]
={ieZ: k<i<k-+r—1} is a subset of S, define x| =(x,, ..., x,,, ;). If k=0, we
write x" for x{. Similarly, if X ={X,:ieS} is a sequence of random variables,
define X, and X™.

Fix from now on X ={X,:icZ} to be the sequence of coordinate map-
pings from B*—B; X={X,} to be the sequence of maps from B® x C*—>B
such that X,(x,y)=x;; and Y={Y} to be the sequence of maps from B®
x C®— C such that Y(x, y)=y,.

If uis a Tystationary probability measure on B® define A(u)= inf u[X,

%0

+X,]. Also, if n,k are positive integers with n>k, and >0, we say xeB" is
(k, 6) typical of u if for every be B¥, the distance between

n M{1Zign—k+1:x*=b}|

and u®(b) is less than 6.

Lemma 2. Let ue#,/(B). Then for any 6>0 and any positive integer m, there
exists for n sufficiently large a subset W, of B" such that

(a) |W,| 22070~

(b) every element of W, is (m, d) typical of p.

(¢ min d(x,7*x)=A(w)— 0 for every xeW,.

15ksn—1
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Proof. For each n=1,2, ..., let y, be the probability measure on B* such that

(X" :ieZ} are independent under u, and each have distribution u™. Let i, be
n—1

the probability measure n~! Z K, T3 on B®. It is easily checked that

g.e?(B) and that if ScZ has m1n1mal distance n, {X,:ieS} are independent
under [,. Therefore, by Lemma 1, Lemma 2 holds for each [,. Since j,—u
weakly, H(ii,)— H(u) and i(ﬁ;)—»i(u), Lemma 2 must also hold for p.

Definition. If A is a finite set and Ec A" we say E has minimal distance ¢ if
d(x,y)=e for every x, yeE, x+y. If xe A" and 1<m=n and weA™, we say w is
a m-subblock of x if x*=w for some i, 1 Si<n—m+1.

The following is proved by making a slight modification in the proof of
Lemma A6 of [8].

Lemma 3. Let A be a finite set and let ¢>0. For n=1,2, ..., let E,< A" be given
with minimal distance 2¢. Suppose liminfn~='log|E,|>0. Let k be a positive

n— o0

integer. For n sufficiently large, let F,= A" and a probability distribution p, on F,
be given. Then for n sufficiently large, there exists x,eE, such that if

F,={yeF,: d(x,.c)Z ¢ for every n-subblock c of y},
we have p,(F)—1.

Definition. If A is a finite set and 0<e <1, define
q4(e)=—¢eloge—(1—g)log(l—e)+2¢log|A]|,

where the logarithm is to base 2.
A subset of A" of form {yeA": d(x,y)<d} for some xeA" is called a
Hamming ball of radius é and center x.

Lemma 4. Let 0<e<2. Then for n sufficiently large, every Hamming ball in A™ has
cardinality no greater than 2"4®_ and every subset S of A" has a subset S’ of
minimal distance ¢ such that |S'| 25|27 44,

Proof. That the cardinality of every Hamming ball is bounded above as
indicated, was shown in [5, p. 6]. Given S« A" find Hamming balls B,,..., B,
of radius ¢ which cover S, such that the center of each ball is in S, and the
center of B; does not lie in B;u...UB 1<j<k. Take S’ to be the set of
centers of the balls {B}.

The following is Lemma A3 of [8].

j=1

Lemma 5. Let pe.(B). Suppose 0<e<% and H(u)>qz(}/e). Then i(u)>¢
Following is the synchronization lemma we will need later on to construct
our source encoder.

Lemma 6. Let 0<c <% and let ue?(B) satisfy H(u)>q()/¢). Let k,m be positive
integers and let 6>0. Then for n sufficiently large there exists xeB" and F = B*"
such that:
() min d(x,m'x)>e.
1£isn—-1

(b) x is (m, 6) typical of p.
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(c) every element of F is (m, d) typical of .

(d) if yeE then d(x, c)= ¢ for every n-subblock c of y.
(¢) |F| 20tw=0

(0 p*(F)—1 as n—oo.

Proof. Note that A(u)>e¢ by Lemma 5. Since qB(28)§qB(1/E)<H(,u), we can
choose >0 so small that H{u)>#n+qgz(2¢). By Lemmas 2 and 4, pick for n
sufficiently large a set E,=B" with minimal distance 2¢ and cardinality at least
2"HW=a529-n guch that (a), (b) hold for every xeE,. For each n, choose F, < B*"
such that u™(F)—1 and every sequence in F, is (m,d) typical. Since
liminfn~'log|E,|>0, by Lemma 3 we may find for n sufficiently large a xekE,

and F < F, such that (d) holds and u™(F)— 1. Because (f) holds, (¢) must hold
for large n by the Shannon-McMillan Theorem.

4. Building Very Good Codes From Good Codes

Our method for proving Theorem 1 will work roughly this way. We first
encode [A, u] with a “good” code that produces small probability of error.
Then, as a result of this section, we will be able to obtain a “very good” code
by changing the original encoder a small amount, so that the new encoder
produces a much smaller probability of error. In this way we construct a
Cauchy sequence of better and better encoders such that the limit code is the
zero-error code we seek.

Definition. If A is a finite set and n is a positive integer, we call ScA® a
Rohlin n-set if the sets S, T,S,...,T;~*S are disjoint. We point out the
following property of a Rohlin n-set S< A* for later use.

{p+1<isp+t:TiueS} <tn~'+1,ueA®, peZ,t=1,2, ... 4.1)

We call a subset of A® finite-dimensional (f.d.) if it is of form {ueA®: u¥eS} for
some ieZ, positive integer k and ScA* If G is another finite set, it should be
clear what we mean by a f.d. subset of A® x G*. (Make the obvious identifi-
cation between A% x G* and (4 x G)*.) We call a function from A*—G fd. if
the pre-image of very element of G is a fd. subset of 4®. We call a map
@: A*—-G* fd. if for each i€Z, the map ¢;: A*—G is f.d.,, where

@)= (u);, ueA™.
In the following, if S is a set, I denotes the indicator function of S. Also, d,

denotes the metric on £,(B) yielding weak convergence such that

d (=3, 27" Y U ()= A" ()}, u, 1€ Z.(B).

n=1 xeBn

The symbol T denotes the transformation (x, y)—(Tz x, T y) on B® x C*.
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Lemma 7. Let uc?,(B) and let [B,v, C] be a stationary channel which is ergodic
at u and for which @, is continuous at p. Let ScB*® x C® be fd. and satisfy
wv(S)>a>0. Given © (0<t<1), there exist positive integers s, N and a 6>0
such that if n= N, if W=B" has every sequence in it (s,8) typical of p, if {X*"eW
x W} is a Rohlin n-set, and if AeP(B) satisfies n A{X*"eWx W}>1-4, then

@) xv{k—lkfzr_,.s>a}>1—r, k= N.

(b) d_(% 1) <:‘co
Proof. Find o, 7" so that o' >0,0<1 <1, uv(S)>o, of 1—]/? >oc, ]/?<r. Since
pv is ergodic, we may find J such that if G is the event {J ! Z Lo, g>0o

then uv(G)>1—1". Since @, is continuous at g, we may find ﬁ>0 such that if
Ae?(B) and d (A, u)<p, then Av(G)>1—1". We can, and do, assume that f<1.
Fix N,s,0 so that for n=N:

(c) If W< B" has every sequence in it (s, d) typical of u, if {X*"eWx W} is a
Rohlin n-set, and if Ae2(B) satisfies n A(X2"e W x W)>1—4, then d (4, u) < p.

<o(1-1/7)~

n—1li+J—1

n—1
(d) sup ()™t Y Y Ip-ss—ntt Y Ipu
B®x (C® i=0 j=i i=0

k-1
Fix k,n=N. Let W< B" and AeZ,(B) be given by (c). Then E/W[k‘1 Y IT,,G]

i=0

k—1

—=2v(G)>1—7" and so by Chebyshev’s inequality k' ¥ I;_.o>1—17 with
i=0

Av-probability >1 —1/?. This implies

k—1i+J-1
Av[(kJ)‘l yO¥ IT-JS>a'(1—1/?)]>1—1/?,
i=0 j=1
and hence by (d), (a) follows.

Definition. Given positive integers n, M and positive numbers & o such that
O<ea<l1, a (n,M, ¢ o) channel code for the stationary channel [B,v,C] is a
triple (W, G, g) where:

(a) W< B",|W|=M, and {X?"eWx W} is a Rohlin n-set.
(b) G is a f.d. Rohlin n-subset of C*.

(c) gisa fd. map from C* — W.

(d) If AeZ(B) and n A{X?"eWx W}>1—a, then

niv[X*"eWx W,YeG,X"=g(¥)]>1—-.

The following lemma will allow us to construct a very good channel code
from a good channel code.

Lemma 8. Let uc®(B), let the stationary channel [B,v, C] be ergodic at u, and
let @, be continuous at p. Let m,N be positive integers and let F<B*"*! be
such that {X*™*1eF} is a Rohlin N-set. Let G= C® be a fd. Rohlin N-set, and
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let g: C® — BN be a fd. function such that
Nuv[X*"*1eF, YeG, XN =g(Y)]>1—6,

where 6>0 is so small that §<(16)~*, qz(8 %)< H(u). Then, given (0 <t <1),
there exists a(0<wu<1) such that for N’ sufficiently large there exists a
(N', M, t,0) channel code (W',G',g') and a subset Q of B containing W' such
that

(a) M 2N (HG-az(335)

(b) u¥Q)—~1, and if x€Q there exists weW' such that for more than
N='N'(1—-86%) of the integers ie[m+1,N'— N —m] one has x}™ 1, w¥+ieF
and w¥=xV.

(c) If AeP,(B) and N' 2{X*N'eW' x W'} >1—a, then d (J, p) <.

Proof. To ease the notation, if r,seZ and r<s and xeB®, ye C®, let I}(x, y) be
the set of all ie[r,s] such that x?"*'eF, T} yeG, g(T.y)=xY. By Lemma 7, we
may choose a positive a<17/2, and positive integers s,J such that for every
nzJ, if W' <B" has every sequence in it (s,«) typical of g, if {X?"eW’' x W'} is
a Rohlin n-set, and AeZ,(B) satisfies n A{X2"eW’ x W'} >1—a, then

@ AN VI ZN (=8 >1-1/2,j2J.
(© d, (A<

Define ¢=1/244. Let k be the greatest integer in ¢~ !. Since qB(]/g)<H(y), by
Lemma 6 for n sufficiently large there is XeB" and DcB* such that
p*(D) -1 and:

() XyXis(s,a) typical of u, yeD.

(g) D]z 2knHw=2),

(h) min dEa'%=e

1gi=n-1

(i) If yeD, d(%,c)=e for every n-subblock ¢ of y.

() im+1<iskn—N—m:y?" 1 eF}Y=N-1kn(1—4), yeD.
Fix an arbitrary n=J for which (f)-(j) hold and

(k) 2£néN-' and 2mn—1<s.

(1) Any Hamming ball in B™* of radius 5¢ has cardinality <2"*as(52),

Let o be the symmetric reflexive relation on D such that

(m)x gy if and only if there are more than N~'kn(l—5¢) integers ic[m
+1,kn—N—m] for which x?"}1, y?"+1eF and x¥=y7.
Pick D =D so that

(n) every xeD is g-related to some weD'.

(o) if w,w,eD" and w, *=w, then w, g w,.

Set N'=2n+kn, W={Xyw:yeD’}. Because of (h), (i), {(X*NeW'xW'} is a
Rohlin N'-set. If x5y, then x is in the Hamming ball of radius 5¢ centered at
y- Hence by (g), (1),

(N)~'log|W'|z(2n+kn)~" kn(H(1) —q5(6¢))
(1 —4e) (H(p) —qp(6¢)) 2 H(p) — q(8¢),

from which (a) follows. Setting Q=B"x D x B", then Q> W', u*(Q)—1, and
since N~ 'kn(1—58)>N"*N'(1-9¢), (b) follows from (n).
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Let G' be the set of all yeC® such that there exists xeB* for which
x*NeW x W’ and

12 ~N(x, ) 22N ' N'(1-20).

Let g: C* - B® be a f.d. stationary code such that yeG implies g(y)¥ =g(y). If
G’ is not a Rohlin N’-set there exist ye C* and x,X€B* and integers i,j with i
+1<j<i+ N —1 such that x7V, x2¥'eW’' x W’ and

AN, B8N <26,d(xN, 8 ()N) < 20.
Because of (h), (i), there an integer r such that

(rr+n—1]clj,j+N —1]n[,i+2N'—1] and d(x},X))=e.

¥>rr

Now d(x",g(y)))<4N'dn~1<12¢7 6.
Similarly, d(X7, g(y))<12¢~1 9, and so d(x?,x7)<24¢~* d=¢, a contradiction.

We conclude from this that G' must be a Rohlin N’'-set. Suppose yeC®,
x,XeB®, x?V x?N'eW’' x W', and

(IEY =N, p)l, 1Y M, |2 2N~ N'(1-20).
Now by (4.1) and the fact (from (k)) that N"*N'+1 <Nt N'(1+8), we have

Y =N, IRy ~M(E v SZNTEN(146),
whence
1Y =N, )G ~N(E, )| 22N I N'(1-50).

Applying (4.1) again and (k),

|I£lk++r:)n—N—m~1(x’ y)m[;k_jr:)n—N—m—l()—c—’ y)l

SIN"IN(1—-58)—2—=N"YN'+2n+2m+N)>N"'N'(1-5¢),

knand then x¥ =%"" by (0). Thus there exists a map
g:C*—>W' such that if yeC® and xeB® and x*eW'xW’' and
Y N, )| =2N~'N'(1-26), then g'(y)=x. Suppose Aie#(B) and
N'AX?*YeW’ x W)>1—a. Then (c) follows from (). Also,

which implies x*" g x*"

NIV[X?NeW x W, YeG, XV
N —1

- g'(Y)]=/1v[ U (£2Ve W' x W', Ti¥eG, XY = g'(Tg?)}]
i=0

1

N —1
gm[ U 2V eW x W12V -N+i(X, Y)]gzN-lN/(1~25)]
i=0

N —1
;_zv[ U (2N ew < W, [1I3Y VX, Y)|gsN~1N'(1—5)]
i=0

SN UENeW x W+ iv[|I3¥-NX, V) 23N~ N'(1-6)]—1
>(1~1/2)+(1—1/2)—1=1~1.

Hence, (W’,G’,g') is a (N',|W’|, 1,«) channel code.
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Notation. In the following if X, U are jointly stationary finite state processes
H(X|U) denotes the conditional entropy rate of X given U, and H(X) denotes
the entropy rate of X.

Lemma 9. Let m, N be positive integers with m>N. Let A,B be finite sets. Let
&,0 be numbers such that 0<e<1, 0<8<1/3. Given Fc A*™*' S, =S,cA¥, W
<B", ¢:S, > W, y: W—S, and a jointly ergodic pair of processes U,X with
respective state spaces A, B such that:

(a) {ued>:u*m*1eF}, {xeB*: x*eW x W} are Rohlin N-sets.

(b) With probability 1, U*m"*'eF, UMeS, implies XVeW, y(XM)=U";
UmtleF UNeS, implies o(UY)=X".

() NPr[U*"FleF, U™t eF,U*NeS, x S,]>1-4;

NPr[UM+1eF, Ut leF,UNeS, x S,]>1—¢.

(d) For N’ sufficiently large there are subsets W’,Q of B such that W' <=Q,
Pr[XNeQl—1, and for every xe(Q there exists weW’ for which more than
N~1N'(1—0) integers ie[1,N'—2N + 1] satisfy x*?¥, wNeWx W, w¥=x¥.

(e) H(X|U)>qp(d)+4q4(39).

Then for N’ sufficiently large there is V<A™ such that Pr[UYeV]—1 and a
one-to-one map @' V— W’ with the property that:

For every ueV, there are at least N~*N'(1—76—¢) integers ie[m+1,N'—N
—m] such that

2m+1
i—m

u eF, utmst eF, u?¥eS, xS, 4.2)

i+N—-m
and @' ()Y = ().
Proof. Let G AV x BY be the set of all (4, x) such that:
( |{m+1<iSN'—N—m:u?m eFu?my eF,uf¥eS, xS,

s* i +N—-m
>N-1N'(1-§)
g) |{{m+1ZiSN' —N-m:u?™teF,u?mi! eFul¥eS, xS}
i—m i+ m
>N-1N'(1—¢)

(h) For each ie[m+1,N' =N +1], u?"*1eF and uleS, imply xMeW,

i—m

N

i

YN =ul;u?"eF and uMeS, imply o@))=x

i %i—m

(i) xeQ and Pr[ XV =x| U =u] 2~V HXIV-),

where ¢>0 is so small that H(X|U)>qz(0)+q,(30)+0. Let V=AY be the
set {ueA™: Pr[XVeG,|UY =u]=3}, where G, denotes the section of G at w.
Then, PriU¥eV]—1 as N'—> oo. Fix N’ so large that

() 2m+1+N<oN'

(k) The Hamming balls in 4" of radius 35 have no more than 2V'449
elements, and the Hamming balls in B¥ of radius é have no more than 2¥'45©®
elements.

1) r:[2N’(H(XIU)—a—qB(6))/2]gzN’qA(Sé)g1,
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where if x is a real number, [x] denotes the greatest integer in x. For each
ueV, let A(u) be the set of all #eV such that for more than N~'N'(1—39)
integers ie[m+1,N'—N —m] one has u?m !, gimrl y2met —gimil cF, and
u*¥eS, xS, and u?¥=u}". Pick V' =V such that the sets {A(u): ueV'} cover V,
and if u;,u,eV’ and u, +u,, then u, ¢ A(u,). For each ueV let J(u) be the set of
integers given in (f). Suppose u,,u,eV’ and xeG, NG,,. Now J(u,)uJ(u,) is
contained in the set {m+1<i<N' —N—m: x*YeW x W}, whose cardinality is
less than N~'N'(1+6) by (4.1) and (j). Hence, |J(u,)nJ(u,)|>N"1N'(1-36),
which implies u;eA(u,). Consequently, G, NG, =0 if u,,u,eV’ and u, +u,.
For each xeBY, let B(x) be the set of all xeB" such that for more than
N~1N'(1-9) integers ie[1, N'~2N+1] one has x?¥ x?YeWx W, and x'=xV.
Let V<=V’ Let G(V)=|J{G,:ue¥}. Let {wy,...,w}=W [ J{B(x): xeG(V")}].
If xeG(V) then xeQ and so weB(x) for some we W’ by (d). Thus we{w,,...,w,}
t

and so G(V)C_U B(w,). Now each B(x) is contained in a Hamming ball of

radius 6 and therefore has cardinality at most 2V'22® by (k). Also, each G, has
cardinality at least 2% #XIV)~9)> Therefore, t>|V|r. By a marriage lemma [10,
Lemma 2], there exist disjoint subsets {W,:ueV’} of W’, each having cardi-
nality r, such that if ueV’ and weW,, then there exists xeG, with weB(x).
There are disjoint sets {A4'(u): ueV’} which partition V such that A'(u)<=A(u),
ueV’. By (k), |A'(w)| £2V'94G9 and so by (1) there is a one-to-one ¢': V— W’
such that ¢'(u)=w implies there exists #eV’' and xeBY for which weB(x),
xeG,, and ue A(n). With u,#, w, x as just described, let

Ji=m+1<KiSN' —N-—m: x}" weWx W,w¥=xN}

L=m+1KiSN—-N-m: g™ a2n! eF u?VeS, xS,}

i-m *%i+N-m
Jy={m+1ZisN'—N-m:
W Bl B e F N =N, ufNe S, X S, ).
Then, |J,|= N~1N'(1—20), |/, =N~ N'(1~g), |J; =N~ N'(1—38). Note that if
ieJ;uJ,ulJ;, then x?NeWx W and so by (4.1), [J,U,UJ,| SN IN/(1+6).
Thus,

T, 0| Z ]+ o+ s =21, 0d, 05| 2 NN (1-76 —¢).

Note that ieJ;nJ,nJ; implies that u?"* u2"i! cF, and u?NeS, xS,, and
@' W)Y = pul), and so (4.2) follows.

Lemma 10. Let [A, ] be a stationary, ergodic, aperiodic source with entropy H.
For N sufficiently large suppose we have sets V= AN, W< BY and a one-to-one
map @:V—W such that p™"(V)—>1 and liminf N~ 'log|W|=R>H. Let ¢, § be

numbers such that 0<e d<1. Then for ]\]]'Vs;ﬁiciently large, there exists a fd.
Rohlin N-set FcA®, sets S;cS,cV, a map y: W—S, and jointly ergodic
processes U, X with respective state spaces A, B such that:
(a) the distribution of U is p.
(b) NPr[U*¥eS, xS,,UeF, Tf UeF]>1-2¢,
NPr[U*NeS,xS,,UeF, TYUeF]>1-6.
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(c) With probability 1, if UeF and UNeS, then X"e W, y(XM)=U", if UeF
and UNeS,, then XN =o(U").
(d) H(X)2 H+ (R — H)— 0.
Proof. Choose a positive ¢ <¢ so that &'(R—H)> —d+&(R—H). Find for each
N a set S,V so that u™(S,) > 1 and lim N~'log|S,|=H. Find S,<S, so
N-oow
that u™(S,) »1—¢. Since liminf N~'log|W—(S,)|=R and lim N~-'log[S,

N-» o0 N— o

—S,[=H, there is a partition {W,:ueS,—S,} of W—¢(S,) such that

(¢) liminf N~!'[ min log|W,J]=R—H.

N—ow ueSy 8

Define yy: W—S, to be the map such that
Yy=9~' on ¢(S,)
=u on W, ueS,—S§,.

By a strong form of Rohlin’s theorem [11, p.22], for each N we can choose a
f.d. Rohlin N-set F=A4® such that

(f) iminf Nu[FAT7NFr{u: u*¥eS, xS8,}]=1-2¢>1-2¢

N-w

(g Al]im NulFn{u:uVeS,—S,}]=¢.

(h) im Nu[FnT; YFn{u:u*YeS, xS,}]=1.
N—oo

Fix x*eB. Let [A4, 7, B] be a stationary channel such that for each ue 4>,

(i) {X¥: T!ueF} are indepencent under 7,,.

G) t,[XV¥=0@wM]=1,uVeS,, TiucF.

(k) t [XN=x]=|W,x"", xeW,x,uleS,—S,, TiueF.

1] ru[)?jzx*]=1,j¢ () LLi+N-1].

Tj ueF
Let U, X be processes with respective state spaces A4, B, such that the distribu-
tion of U is u, and the distribution of X conditioned on U is given by 7. Then
U,X are jointly ergodic by [1], and (c) holds. Because of (c) and (h),
H(U|X)—0 as N — 0. Because of (k), (g), and (e), lim inf H(X|U)=¢(R— H).
N->w

Hence
lim inf[ H(X) — H(U)] =lim inf[H(X|U)— H(U|X)]

N- w0 N—
>&¢(R—H)> —5+¢&R—H),

giving (d). Property (b) holds because of (f), (h).

5. Proof of Theorem 1

Lemma 11. Let [B,v, C] be stationary and let t€?,(B). Suppose N is a neigh-
borhood of © in 2,(B) such that for every positive entropy measure A in N, @, is
continuous at A and [B,v, C] is ergodic at A. Then given k (a positive integer),
8(6>0), RO<R<I(tv)) and e0<e<l), there exists a(0<a<l1) and for n
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sufficiently large a (n,M,¢,a) sliding-block channel code (W,G,g) with M =2}
and every sequence in W (k, d) typical of .

Proof. Choose a stationary channel [B, o, C] such that po=pv, ue?,(B) and
the map p—po from & (B) »2(B, C) is continuous at any measure in £,(B) if
and only if @, is, where #(B) is the set of all Ty-stationary and ergodic
measures on B®, with the weak topology. Call this map @/. There must be a
neighborhood A of 7 in #/(B) such that for every positive entropy measure 1
in #,(B), [B, g, C] is ergodic at 1 and ¢/ is continuous at i. By the proofs of
Theorem 2 and Lemma 3 of [8], there exists « and for » sufficiently large a
(n,M,e,0) code (W,G,g) for the channel [B,o,C] with M=2"® and every
sequence in W (k,d) typical of 7. But a (n, M, ¢, a) code for the channel [B, o, C]
must be a (n, M, ¢, o) code for the channel [B,v, C], since uv=po, ue2,(B).

We now proceed with the proof of Theorem 1. Fix [4, ], t,[B,v, C] given
in the statement of Theorem 1. Fix f>0. We will find a v-invulnerable [B, 1]
isomorphic to [A4, u] for which d,(4,7)<p.

Fix neighborhoods A", A/ of t in Z,(B) so small that

(a) [B,v,C] is ergodic at every positive entropy measure in .4 and @, is
continuous at every measure in 4.

(b) If {A,} = A", AeP(B), and A,— 4, then d (4, 7)< f and Ae A"

Construct on some probability space a process U with state space 4 and
distribution p, processes {X(i)}{ with state space B jointly stationary with U,
positive numbers {e}7, {,}7, positive integers {m;}yT, {N}T, sets {S{}%,
{SO}7, {F37, {(W3T, {G}¥, and functions {7, {¥;}7, {g}7 such that for
each i=1:

(c) U, X{(i) are jointly ergodic and the distribution A, of X(i) lies in A",

(d) m>N,, F,cA*™* ! and {ueA™:u”%i* "} is a Rohlin N;-set; W, Bt and
{xeB™: ZN'EW x W} is a Rohlin Ni-set; G,= C® is a f.d. Rohlin N;-set.

(e) S =8P =A™, NPr[U2Ti*Y, Uzﬁ;ileF UNie§9 x S0 >1-2¢,,
and

NPrLUZms UZms1eF, UNeSP x 97> 16,

(D) @;: 8P > W, y: W, -89 with probability 1 if U*m+'eF,, UNeSY then
X@iNieW, UNi=y (X l)N‘) and if UPmticF, UNieSY, then X(l)N —q)l(UN)

(8) 6,<(56)7%/2, ¢,<1/2, Z(si+5i)< 0.

(h) H(X(0)> H(p) +q5(867) +q,(2457).
(i) g;: C*— W, is f.d. and for every k=i,

N, 4L v[X*MeW,xW,YeG, XV =g(Y)]>1-6..
k i i i

() If ueS{*+Y, for at least N !N, ,(1—2¢,—565%) of the integers ]e[m

+1, Nl+1 —N,~m;] one has uz"““, uff;vf_lmieFl, uZN‘eS("xS"), and o, W)

= @;(u}).
(One begins the construction for i=1 using Lemma 11 and Lemma 10.
Having done the construction for i=k, say, one does it for i=k+1 using

o0

Lemmas 8-10.) Define the sequence {1,}{ by n,= ), (2¢,+566%), i=1. From (j)
we obtain k=i
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(k) If k>i, and ueSY, for at least N,”' N,(1 —n,) of the integers je[m;+1, N,
— N,—m,] one has u?"*", ufi”;’v“:_lmle@, u?NieSP x s, and G (W)=, (ul).

For each i=1, let ¢;: A® - B®,y;: B* - A%,g,;: C* —B*® be {.d. stationary
codes such that

M (ﬁl(u);V, = (Pi(”j'vl): “J?i"rlr: ! EF, uJI'ViES(li)-
‘ﬁi(x)j‘vi = ‘pi(x}vl)a foie W, x W,.
gi()’)j'vi:gi(TCjJ’)a T{ yeG,.
From (k), (f), (1), it follows that for k>i=1, each of the three quantities
PrIX(K)o+ X(i)o], PrIv{X(K)), =+ Uyl, Prl@ U)o+ X(k)o] is no greater than 7,
+1—NPr[U?m*1eF,, UNeSP]. This implies there must be a process X with
state space B, such that lim Pr[X(k),+X,]=0 and hence for each i=1,

k—

(m) Pr[‘ﬁi(X)o:’:Uol Prg U)o+ X 1=,

Letting A be the distribution of X, we see from (m) that [B,A] and [4, u] are
isomorphic. Since A; — 4 weakly, from (c), (b) we have d, (4, 1)<f, AeA4". From
(i) and the definition of g,, if k>i=1,

v [Xo=8(Y)e]>1-6,.
Letting k — co, since @, is continuous at A, we see that
IV[X,=8/Y)ol=1-6,, i=l.

Hence [B, 4] is v-invulnerable.
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