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Summary. For  a type of stationary ergodic discrete-time finite-alphabet 
channel more general than the stationary totally ergodic d-continuous 
channel of Gray, Ornstein and Dobrushin, it is shown that a stationary, 
ergodic source with entropy less than capacity can be transmitted over the 
channel with zero probability of error using stationary codes for encoding 
and decoding. This result generalizes the result of Gray et al. [3] that 
Bernoulli sources can be transmitted with zero error at rates below ca- 
pacity over a totally ergodic d-continuous channel. 

1. Introduction 

Let J-A,#] be an information source; the alphabet A of the source is always 
assumed finite, and #, the distribution of the source, is a probability measure 
on the measurable space (A ~, ~(A~))  consisting of A ~176 the set of all bilateral 
infinite sequences x=(xi)i~=_~ from A, and ~(A~~ the usual product o-field 
of subsets of A ~. We will assume that our source [A,#] is both stationary 
(i.e., the shift T A on A ~ preserves #), and ergodic (i.e., TA-invariant sets have 
measure zero or one). We say that [A,#]  is aperiodic if # (x )=0  for every 
xEA ~ We let H(#) denote the entropy of the source [A, #]. 

Let [B, v, C] be a stationary channel, where the input alphabet B and the 
output alphabet C are finite, and v={vx: xsA  ~} is a family of probability 
measures on C ~~ such that 

(a) The map X~Vx(E ) from B~~ is ~(B~)-measurable  for each 

(b) Vr~x(TcE)=Vx(E), x~B ~, E ~ ( C ~ ) .  
We say the stationary and ergodic source [A, #] is zero error transmissible 

over the stationary channel [B, v, C] if there exist stationary codes ~0: A~--->B ~~ 
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~b" C ~ A  ~ and a Markov chain U , X ,  Ysuch that U={Ui}~=_~o is a process 
with state space A and distribution #, X is the process with state space B such 
that X=(p(U),  Yis a process with state space C for which the distribution of g 
conditioned on X is given by v, and U=O(Y)  a.s. Intuitively speaking, if we 
encode the process U (which serves as a model for the information source 
[A, #]) into the process X, and then transmit X over the channel [B, v, C], the 
process U can be recovered with probability one from the channel output 
process Y 

There is an equivalent way of formulating this. We say that the stationary 
sources [A, #], [B, 2] are isomorphic if there exist processes U, V which are 
stationary codings of each other such that U has distribution #, and V has 
distribution 2. Following Gray et al. [3], given the stationary source [B, 2] and 
the stationary channel [B, v, C], we say [B, 2] is v-invulnerable if there are 
processes X, Y such that the distribution of X is 2, the distribution of Y 
conditioned on X is given by v, and X is a stationary coding of Y That  is, 
[B,2] can be directly transmitted over the channel [-B, v, C] (without first 
encoding), and then recovered exactly from the channel output. It is not hard 
to see that [A, #] is zero-error transmissible over [B, v, C] if and only if there 
exists a v-invulnerable source [B, 2] isomorphic to [A, #]. 

Shannon [9] showed that for a discrete memoryless channel there are two 
capacities C o and C (with C o < C for most cases of interest) such that, if block 
encoders and decoders are used, C o is the maximum rate below which zero- 
error transmission is possible and C is the maximum rate below which trans- 
mission is possible with arbitrarily small (but possibly positive) probability of 
error. The number C is called the Shannon capacity and is equal to the 
supremum of the information rates of all stationary input-output measures for 
the channel; C o is called the zero-error capacity and has been calculated only 
for a few special cases considered by Shannon [9] and Lovasz [4] among 
others. One can see from an examination of Shannon's proof [9] that zero- 
error transmission using block coders is not possible at rates between C o and 
C because a block code has finite memory; that is, for some positive integer 
M, the output of the code at any time i is completely determined by looking at 
the sequence being coded at times i - M  through i + M .  (See also [2], where 
some negative results are given on zero-error transmission using finite-memory 
sliding-block codes.) Gray et al. [3] showed that if infinite memory stationary 
encoders and decoders are used, zero-error transmission at any rate below C is 
possible provided the source being transmitted is a stationary coding of a 
memoryless source (i.e., a Bernoulli source), and the channel is totally ergodic 
and d-continuous, a channel more general than the discrete memoryless chan- 
nel. 

In this paper, we show that for a type of channel more general than that 
considered by Gray et al. [3], zero-error transmission using stationary coders is 
possible for stationary, ergodic, aperiodic non-Bernoulli sources at all rates 
below C. 

2. Principal Results 

Let ~e(B) be the set of all probability measures on B ~ for which the shift T B is 
a measure-preserving, ergodic, aperiodic transformation on the probability 
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space (B a, ~ ( B a ) ,  #). On Ne(B) we place the unique metric topology for which 
convergence of a sequence of measures is weak convergence. Similarly, we 
place the topology of weak convergence on the set ~(B,  C) of all probabili ty 
measures on B a x C a. If 2 is a probabili ty measure on B a and [B, v, C] is a 
stationary channel, let 2v be the probabili ty measure on B a x C ~ such that 

2 v(E x F)= S v~(F) dA(x), E~ ,~  (B~), F ~ ( Ca). 
E 

Given a stationary channel [B,v,C], let 4~ be the map 2---,2v from 
Ne(B)---'~(B, C). If  # ~ e ( B )  and [B,v, C] is a stationary channel, we say 
[B,v, C] is ergodic at # if the measure #v is ergodic (with respect to the 
transformation (x, y)---,(TBx, TcY) on B a x Ca). 

In the following, if 2eNe(B ) and [B,v, C] is a stationary channel, /(,Iv) 
denotes the mutual  information rate of the measure ~.v on B a x C ~176 

For k =  1, 2, . . . ,  the k-th order marginal distribution of 2~N,(B) is denoted 
by ,I(k). 

We now state the main result of the paper. (The proof  is given in the last 
section.) 

Theorem 1. Let the stationary channel [B, v, C] and z ~ ( B )  be given. Suppose 
there is some neighborhood Y of z in ~e(B) such that d)~ is continuous at every 
measure in JV" and [B, v, C] is ergodic at every positive entropy measure in Y .  
Let [A,#]  be a stationary, ergodic, aperiodic source with H(#)<I(zv).  Then for 
any k= 1, 2, . . . ,  and any 6 >0,  there exists a v-invulnerable source [B,)~1 isomor- 
phic to [A,#]  such that max]2(k)(x)--Z(k)(X)[<5. Thus, [A, #1 is zero-error trans- 

x ~ B  k 

missible over [B, v, C1. 

Definition. The Shannon capacity C(v) of the stationary channel [B, v, C] is the 
supremum of I(#v) over all #~e(B) .  

Corollary. Let the stationary channel [B, v, C] be ergodic at every positive entropy 
measure in ~,(B), and suppose ~v is continuous at every measure in ~e(B). Let 
[A, #1 be any stationary ergodic aperiodic source. Then: 

(a) [A, #1 is zero-error transmissible over [B, v, C1 
if H(#)< C(v), and 

(b) [A, #1 is not zero-error transmissible if 
H(~) > C(v). 

Part. Part (a) follows from Theorem 1. Part  (b) was proved in [61. 

As a special case, we get the results of Gray  et al. [31, for, as shown in [61, 
the type of channel considered by these authors satisfies the hypotheses of the 
above corollary. 

3. Synchronization Words 

In order to construct the encoder for our source [A, #1, we will have to make 
sure that certain blocks of the encoder output are synchronization words; i.e., 
words which cannot be mistaken for cyclic shifts of themselves. In this section, 
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for a given stationary and ergodic source we will show that there are synchro- 
nization words "typical" of the source. 

Definition. Let B * =  ~) B", where B" is the set of all n-tuples (bl, ...,b~) from B. 
n = l  

(B* is thus the set of all finite-length words whose letters are from the alphabet 
B.) Define ~: B*---,B* to be the map 

g ( b  1 , b 2 ,  . . . ,  bn)= (b2 ,  . . .  , b n,  b l ) .  

If S is a set of integers and m is a positive integer we say S has minimal 
distance m if l i - j l > m  for every i, jeS ,  i4=j. From now on, if G is a finite set, 
Ial denotes the cardinality of G. 

If A is a finite set, and x = ( x l ,  . . . ,x , )  and x'=(x'l ,  ...,x',) are in A', let 
d(x, x') denote the Hamming distance between these sequences: 

n-  11{1 -<i-<n: Xl 4= X'i} t . 

Lemma 1. Let m be a positive integer. Let {Xi}_~ be a stationary ergodic 
process with state space B such that if S is a set of integers with minimal distance 
m, then {Xi: i~S} are independent. Let 2 =  infPr{Xi4=Xo]. Then, for any e>O, 

i4=0 

l i m P r [  rain d((X1,...,X,),~zk(X1 . . . .  , X , ) ) < s  
n~oo l < k < n - 1  

Proof. See the proof of Lemma A2 of [8]. 

Definition. Let Z denote the set of integers. Let S be a subinterval (possibly 
infinite) of Z. Given a sequence of letters x={x i :  ieS} from some alphabet, an 
integer k, and a positive integer r such that the interval [ k , k + r - 1 ]  
={i~Z:  k<_i<_k+r-1}  is a subset of S, define X~=(Xk,...,Xk+r_i). If k=0 ,  we 
write x r for x D. Similarly, if X = { X  F i~S} is a sequence of random variables, 
define X~, and X r. 

Fix from now on J~={J(i: i~Z} to be the sequence of coordinate map- 
pings from B~~ J(={Xi} to be the sequence of maps from B ~ x  C ~ B  
such that )~(x ,y )=x i ;  and ~'={~} to be the sequence of maps from B ~ 
x C ~ 1 7 6  such that Yi(x ,y)=yr  

If /2 is a TB-stationary probability measure on B ~ define 4(#)= inf#[)?~ 
i .o  

4=2o]. Also, if n,k are positive integers with n>k,  and 6>0 ,  we say x~B" is 
(k, 6) typical of # if for every b~B k, the distance between 

n-a[{l  <_i<_n-k + l :x~=b}l  

and #(k)(b) is less than 6. 

Lemma2.  Let #e~e(B ). Then for any 6 > 0  and any positive integer m, there 
exists for n sufficiently large a subset W, of B" such that 

(a) I Wnl > 2  "(m")-~). 
(b) every element of W, is (m, 6) typical of #. 
(c) rain d(x,~kx)> 2(#)--6 for every x~ W,. 

l<--k<-n--1 
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Proof For  each n =  1, 2 . . . . .  let # ,  be the probabi l i ty  measure  on B ~ such that  
{X~,. i~Z} are independent  under  #,  and each have dis tr ibut ion #("). Let  ~ be 

n - - 1  

the probabi l i ty  measure  n - a ~  # , .Y~ ~ on B ~176 It  is easily checked that  
i = 0  

~ e ( B )  and that  if S c Z  has min imal  distance n, {2"~: isS} are independent  
under  ~ .  Therefore,  by L e m m a  1, L e m m a 2  holds for each ~ .  Since ~--- ,# 
weakly,  H(~)---,H(#) and 2 ( ~ ) ~ 2 ( # ) ,  L e m m a  2 must  also hold for #. 

Definition. If  A is a finite set and E ~ A", we s a y E  has min imal  distance e if 
d(x,y)>e for every x,y~E,  x+y .  I f xEA"  and l < m < n  and w~A ~, we say w is 
a m-subblock  of x if x~ = w for some i, 1 < i_< n -  m + 1. 

The  following is p roved  by mak ing  a slight modif ica t ion in the p roof  of  
L e m m a  A6 of [83. 

n L e m m a  3. Let A be a finite set and let e > 0 .  For n = l , 2  . . . .  , let E, A be given 
with minimal distance 2e. Suppose l i m i n f n - ~ l o g l E , ] > 0 .  Let k be a positive 

n ~  ao 

integer. For n sufficiently large, let F, ~ A k" and a probability distribution p, on F, 
be given. Then for n sufficiently large, there exists x ,~E,  such that if 

F~ = {y~F,: d(x,, c) > e for every n-subblock c of y}, 

we have p , ( F ' ) ~ l .  

Definition. I f  A is a finite set and 0 < ~ <  1, define 

qA(e) = -- e log e--  (1 --e) log(1 -- e) + 2e log [A], 

where the logar i thm is to base 2. 
A subset  of  A" of  form {yeA":d(x ,y)<6} for some xeA" is called a 

H a m m i n g  ball of radius 6 and center x. 

L e m m a  4. Let 0 < e <�89 Then for n sufficiently large, every Hamming ball in A" has 
oardinality no greater than 2 nqA(O, and ever), subset S of A" has a subset S' of 
minimal distance e such that IS'l > ISI 2-"qA(~). 

Proof. Tha t  the cardinali ty of  every H a m m i n g  ball is bounded  above  as 
indicated, was shown in [5, p. 6]. Given  ScA" ,  find H a m m i n g  bails B1, . . . ,B k 
of radius e which cover  S, such that  the center of each ball is in S, and the 
center of  Bj does not  lie in Blu.. .~3B)_I,  l < j < k .  Take  S' to be the set of  
centers of  the balls {Bi}. 

The following is L e m m a  A3 of [81. 

L e m m a  5. Let #~e(B) .  Suppose 0 < e < � 8 8  and H(#)>qB(]/-~ ). Then )~(#)>e. 
Fol lowing is the synchronizat ion  l e m m a  we will need later on to construct  

our  source encoder. 

L e m m a  6. Let 0 < e < �88 and let # ~ e ( B )  satisfy H (#) > qB(]/e ). Let k, m be positive 
integers and let 3 > 0 .  Then for n sufficiently large there exists x6B" and F c B  k" 
such that: 

(a) min  d(x, nix)>e. 
l < _ i < _ n - - i  

(b) x is (m, fi) typical of #. 
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(c) every element of F is (m, 6) typical of #. 
(d) if yeE  then d(x, c)>e for every n-subblock c of y. 
(e) [FI > 2  k"(m")-~) 
(f) ~(k")(F)-*l as n ~ .  

Proof Note that 2 ( /0>e  by Lem m a5 .  Since qB(2e)<%(l fe)<H(#) ,  we can 
choose ~/>0 so small that H(#)>~l+qB(2e). By L e m m a s 2  and 4, pick for n 
sufficiently large a set E, c B" with minimal distance 2e and cardinality at least 
2 n(It(u)-'tB(zC)-n) such that (a), (b) hold for every x~E, .  For  each n, choose F, ~ B  k" 
such that #~"g)(F,)~I and every sequence in F, is (m, 6) typical. Since 
l iminfn - l l o g l E . l > 0 ,  by Lemma  3 we may find for n sufficiently large a x~E,  

n ~ o o  

and F c F ,  such that (d) holds and #("kJ(F)~1. Because (f) holds, (e) must hold 
for large n by the Shannon-McMillan Theorem. 

4. Building Very Good Codes From Good Codes 

Our method for proving Theorem 1 will work roughly this way. We first 
encode [A,#]  with a "good"  code that produces small probabili ty of error. 
Then, as a result of this section, we will be able to obtain a "very good"  code 
by changing the original encoder a small amount,  so that the new encoder 
produces a much smaller probabili ty of error. In this way we construct a 
Cauchy sequence of better and better encoders such that the limit code is the 
zero-error code we seek. 

Definition. If  A is a finite set and n is a positive integer, we call S c A  ~ a 
Rohlin n-set if the sets S, T a S , . . . , T ~ - I S  are disjoint. We point out the 
following property of a Rohlin n-set S cA~176 for later use. 

I { p + l < i < p + t : T j u E S } l < t n - l + l ,  ueAoo, p ~ Z , t = l , 2  . . . .  (4.1) 

We call a subset of Aoo finite-dimensional (f.d.) if it is of form {u6Aoo : u ~ S }  for 
some ieZ,  positive integer k and S c A  k. If G is another finite set, it should be 
clear what we mean by a f.d. subset of Aoox Goo. (Make the obvious identifi- 
cation between Aoo x Goo and (A x G)~ We call a function from Aoo~G f.d. if 
the pre-image of very element of G is a f.d. subset of A ~176 We call a map 
(p: Aoo~Goo f.d. if for each iEZ, the map  ~0g: Aoo--*G is f.d., where 

~o~(u) = ~o(u)i, u~Aoo. 

In the following, if S is a set, I s denotes the indicator function of S. Also, d w 
denotes the metric on ~e(B) yielding weak convergence such that 

dw(,, )3 = ~, 2-" ~ I,(")(x)-2(")(x)], #, 2 ~ ( B ) .  
n =  1 x ~ B  n 

The symbol T denotes the transformation (x, y ) ~ ( T  B x, T c y) on Boo x C ~176 
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Lemma 7. Let #e~e(B ) and let [B, v, C] be a stationary channel which is ergodic 
at # and for which q~ is continuous at #. Let ScBoox  Coo be f.d. and satisfy 
#v(S)>c~>0. Given z ( 0 < z < l ) ,  there exist positive integers s, N and a 6 > 0  
such that if n> N, i f W c B "  has every sequence in it (s, 6) typical of#, if {J(2"eW 
x W} is a Rohlin n-set, and if ZE~i~e(B) satisfies n )L { X 2 n E  W x  W} > 1 -- (5, then 

(a))~v k - i  Ir_~s>e > l - z ,  k>N.  
i 

(b) dw(2, #) < z. 

Proof. Find a','c' so that ~ '> 0, 

# v is ergodic, we may find J 

0 < r ' < l ,  #v(S)>c(, c ( (1 - l f~ ; )>e  , l /~ ;<z .  Since 

such that if G is the event J-~ ~, IT-~S>C( , 
j = 0  

then # v ( G ) > l - z ' .  Since ~v is continuous at #, we may find f i>0  such that if 
)~e~e(B ) and dw(2,#)<fl, then 2v(G)> 1 -z ' .  We can, and do, assume that fi<z. 
Fix N, s, 6 so that for n > N: 

(c) If W c B "  has every sequence in it (s, 6) typical of #, if {22"eWx W} is a 
Rohlin n-set, and if 2~e(B)  satisfies n)~(f(ZnEwx W)> 1 - 3 ,  then dw(2,#)< ft. 

n-li+J-1 ~ IT ~S 1~7 (d) sup (nJ)-i E E IT-JS- -n- ln~  i <~'(1-- )--~. 
B m x C ~  i = 0  j = i  i = 0  

[ Fix k ,n>N.  Let W e B "  and )~eC~e(B) be given by (c). Then Exv lk - i  
i = 0  

k - 1  

= 2 v ( G ) > l - z '  and so by Chebyshev's inequality k -1 ~ IT- ,~>I- -] /~;  with 
i = 0  

2 v-probability > 1 - 1/~7. This implies 

(k J) E ;7) > 1 - r  
i = 0  j = l  

and hence by (d), (a) follows. 

Definition. Given positive integers n,M and positive numbers e, c~ such that 
0<e,c~< 1, a (n,M,e,~) channel code for the stationary channel [B, v, C] is a 
triple (W, G, g) where: 

(a) WcB" ,  [WI =M,  and {Xa"eW• W} is a Rohlin n-set. 
(b) G is a f.d. Rohlin n-subset of C ~176 
(c) g is a f.d. map from Coo ~ W. 
(d) If 2eC~e(B) and n)~{22"eWx W} > 1 -c~, then 

n)~v[XZnEw• W, f e G ,  J("=g(Y)] > 1-e .  

The following lemma will allow us to construct a very good channel code 
from a good channel code. 

Lemma 8. Let # ~ ( B ) ,  let the stationary channel [B, v, C] be ergodic at #, and 
let q~v be continuous at #. Let m,N be positive integers and let F c B  2"+~ be 
such that {X?2~+ieF} is a Rohlin N-set. Let G c  C ~176 be a f.d. Rohlin N-set, and 
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let g: C ~ ~ B N be a fd .  function such that 

- - 2 m +  N p  v[X_  m leF,  ITeG, JfN=g(IT)] > 1 - 6 ,  

where 6 > 0  is so small that 6<(16) -4, qB(gb+)<H(#). Then, given z ( 0 < z < l ) ,  
there exists ~(0<~<1)  such that for N' sufficiently large there exists a 
(N' ,M,z ,a)  channel code (W',G',g') and a subset Q of B n' containing W' such 
that 

(a) M > 2 N'(mu)-qB(8~)) 

(b) #(N')(Q)~I, and if xeQ there exists w e W '  such that for more than 
N - 1 N ' ( 1 - 8 6  �88 of the integers i ~ [ m + l , N ' - N - m ]  one has ~m+l  e , ,+leF X i _ m  , W i _  m 

and w~ = xf'. 
(c) / f  2e~e(B ) and N' ~{X2N'e W t X W'} > 1 -- ~, then dw(2 , #) < z. 

Proof To ease the notation, if r, s e Z  and r<s  and xeBoo, y e C  ~, let I~(x,y) be 
the set of all ie[r,s] such that 2m+leF,  i xi_,, T~yeG, g(T~y)=xNi . By Lemma 7, we 
may choose a positive c~<z/2, and positive integers s,J such that for every 
n > J ,  if W ' = B "  has every sequence in it (s,~) typical of #, if {)?2"eW' • W'} is 
a Rohlin n-set, and 2e~e(B ) satisfies n 2{)72"e W' •  W'} > 1 -  ~, then 

(d) 2v[llJo-N(X, Y)[__>N-lj(1-6)] >1 - z / 2 , j > J .  
(e) d~(,~, #) < ~. 

Define e=]/24~.  Let k be the greatest integer in e -1. Since q,(l/a-)<H(#), by 
Lemma 6 for n sufficiently large there is 2eB" and D = B  k" such that 
#(k")(D) ~ 1 and: 

(f) 2 y 2  is (s,c 0 typical of# ,  yeD.  
(g) [Ol >2  k"~m~)-~). 
(h) min d(2, rt ~2)>e. 

l <_i<n--1 

(i) If y~D, d(2, c)>a for every n-subblock c of y. 
2 m +  J. (j) ]{m+ l <- i<-kn-  N - m :  y,_., eF}l>=N-a k n ( 1 - b ) ,  y~D. 

Fix an arbitrary n > J  for which (f)-(j) hold and 
(k) 2 < n 6 N  -1 and 2 m n - l  <6. 
(1) Any Hamming ball in B "k of radius 5e has cardinality <2  "kqB(5"). 
Let o- be the symmetric reflexive relation on D such that 
( m ) x a y  if and only if there are more than N - ~ k n ( 1 - 5 e )  integers ie[m 

+ l , k n - N - m ]  for which 2,,+1 2m+1 
_ y~_,, e F  and x~=y~. Xi  m , 

Pick D = D so that 
(n) every xeD is a-related to some weD'. 
(0) if wl ,w2eD'  and w l + w  ~ then Wx4W a. 

Set N ' = 2 n + k n ,  W'={YcyYv:yeD'}.  Because of (h), (i), { f ; 2 n ' e W ' •  is a 
Rohtin N'-set. If x ay,  then x is in the Hamming ball of radius 5e centered at 
y. Hence by (g), (1), 

(N')- x log [W'[ _>_ (2 n + k n) - ~ k n(H(#) - qs(6 e)) 

> (1 - 4 e) (H(#) - q~(6 e)) > H(#) - q~(8 a), 

from which (a) follows. Setting Q=B"•  D • B", then Q ~ W', #(N,)(Q)__+ 1, and 
since N -1 k n ( 1 - 5 e ) > N - ~ N ' ( 1 - 9 0 ,  (b) follows from (n). 
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Let G' be the set of  all y e C  ~ such that there exists x s B  ~ for which 
x2~'~ W' x W'  and 

Iio zN' -N( x, Y)I > 2 N -  1N'(1 - 2 5 ) .  

Let  ~: C ~ + B  ~ be a f.d. s tat ionary code such that  y e G  implies g(y)r~=g(y). If 
G' is not  a Rohlin N'-set  there exist y 6 C  ~~ and x, .~6B ~176 and integers i,j with i 
+ l < j  <=i + N ' -  i such thatxZN'i , xj2S'e W' x W'  and 

d(x 2 u,, f, (y){ N') < 25, d (~2~ N', ~, (y)2 S') < 26. 

Because of (h), (i), there an integer r such that 

[ r , r + n - l ] c [ j , j + N ' - l ] ~ [ i , i + 2 N ' - l ]  and d(x~,~)>=e. 

Now d(x'~, ~(y)2) < 4N'  6 n -  x < 12 a-  1 ft. 
Similarly, d (~ ,  ~,(y)~") < 12 e-  t 3, and so d(x~, ~,") < 24e -  13 = a, a contradict ion.  

We conclude from this that  G' must  be a Rohlin N'-set. Suppose y e C  ~176 
x,~2eB ~~ x 2N', ~2N'ew '  X W', and 

[I2N'-N( x, Y)I, 112~"-N(~, Y)I > 2 N - ~  N'(1 - 26). 

N o w  by (4.1) and the fact (from (k)) that  N - Z N ' +  1 < N - I N ' ( 1  +6), we have 

IIg N'- X(x, y )wI  2u'- N(2, y)l < 2 N -  ~ N'(1 + 6), 
whence 

II2N'- N(X ' y) ~12 ~'-  s(2, Y)I > 2 N -  1 N'(1 - 56). 

Applying (4.1) again and (k), 

i(k + l ) n - N - - m -  l ( .  l~]c-~[(l~ + l ) n - N - m -  l(.~ 
n+m ",--, y," '-n+rn , - ,  Y)] 

> 2 N - ~ N ' ( 1 - 5 6 ) - 2 - N - ~ ( N ' + 2 n + 2 m + N ) > N - 1 N ' ( 1 - 5 e ) ,  

kn --kn xN'  ~ .~N'  which implies x ,  a x , ,  and then by (o). Thus there exists a map  
g': C ~--* W'  such that  if y ~ C  ~ and x ~ B  ~ and x2N'~W ' x W' and 
II~ N'-u( x,y)l > 2 N - 1 N ' ( 1 - 2 d ) ,  then g ' ( y )=x  N'. Suppose 2sN~(B) and 
N ' 2 ( 2 2 N ' e w ' x  W')>  1 - e .  Then  (c) follows from (t). Also, 

N ' 2  v [ X 2 S ' ~ W '  x W ' ,  Y e G ' , X  N" 

N ' - I  
= g ' ( I T ) ] = 2 v  {J~i2s'e W ' x  W , T ~ Y e G , X  i = g  (T~Y 

i _  

x w ,  Y ) I > 2 N - I N ' ( 1 - 2 6 )  
Li=O 

> = N ' , ~ ( 2 2 U ' e W  ' • Y)I _-> 3 N -  1N ' (1  - 1 

> (1 - z/2) + (1 - z/2) - 1 = 1 - z. 

Hence,  (W', G',g') is a (N', [W'I, z, cO channel code. 
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Notation. In the following if X, U are jointly stationary finite state processes 
H(X[U) denotes the conditional entropy rate of X given U, and H(X) denotes 
the entropy rate of X. 

Lemma 9. Let m, N be positive integers with m > N. Let A,B be finite sets. Let 
~,6 be numbers such that 0 < e < l ,  0 < 3 < 1 / 3 .  Given F c A  2"+1, S l c S 2 c A  N, W 
~ B  N, cp: SI-~W, ~: W--+S 2 and a jointly ergodic pair of processes U,X with 
respective state spaces A, B such that." 

(a)  {uEA~~ uZ_mm+l~F}, {x~B~: x 2 N ~ w x  W} are Rohlin N-sets. 
(b) With probability 1, uZ_mm+l~f , UN~S2 implies XNeW, O(XN)=uN; 

2m+ 1 U ,, eF, UNeS1 implies ~o(UN)=x N. 
(C) 2,,+ rrZm+l=~ $ 2 ] > 1 _  6. NPr[U_ m I~F, uZN~S, x ~ N - m  ~ ~ 

NPr[U2-"~ + a cF, ~N--mT [2"+ I(=F,  u2N ~s1  )< S1] > 1 - e .  

(d) For N' sufficiently large there are subsets W', Q of B u' such that W' = Q, 
Pr [XU'~Q]~ l ,  and for every xEQ there exists weW'  for which more than 
N - 1 N ' ( 1 - 6 )  integers i~[1, N ' -  2N + I] satisfy x2N, wZN~Wx W, w~=xUz . 

(e) H(XI U) > qB(6) + qa(3 ~5). 

Then for N' sufficiently large there is V c A  N' such that Pr[UN'eV]-+ 1 and a 
one-to-one map ~o' : V-~ W' with the property that: 

For every ucV,, there are at least N - 1 N ' ( 1 - 7 6 - e )  integers ie[m+ l , N ' - N  
- m ]  such that 

2 r e + l E E  ' 2m+1 g? u { N e S l x S 1 ,  (4.2) Ui_ m Ui+N_m~--, 

and q;( . )~  = ~o(u~). 

Proof. Let G ~ A  N" • N' be the set of all (u,x) such that: 

(f) I { m + l < i < N ' - N - m :  ui_,~z~+leF, ui+N_,,eF u2NeS2• 
>=N-~N'(1-3) 

(g) ]{m+l<_i<_N' -N-m:  ui_ m2"+leF, U i + u _ ~  r: u2N~S ~ xS~}] 

>N-~N'(1  -e).  

(h) For e a c h i ~ [ m + l , N ' - N + l ] ,  2,.+1 ui_,. ~F and u~S~  imply xN~w,, 

~9(X~)--" N.. 2,,+~6~ and uN~S~ imply (o(u~)=x~. 

(i) x~Q and P r [ X  n' =xJ U n' =u ]  <2  -n'tmxlv~-~, 

where a > 0  is so small that H(XlU)>qB(6)+qA(36)+a. Let V c A  N' be the 
s e t  {u@AN': Pr[XN'~GulUN'=u]>�89 where G u denotes the section of G at u. 
Then, Pr[UN'eV]~I  as N ' ~ .  Fix N' so large that 

(j) 2 m + l + N < f i N '  
(k) The Hamming balls in A N' of radius 33 have no more than 2 N'qa(ao) 

elements, and the Hamming balls in B N' of radius 6 have no more than 2 N'qB(~) 
elements. 

(1) r= [2u'tmxlv)-~-qB(o))/2] > 2N"/A(36)  = > 1, 
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where if x is a real number, Ix] denotes the greatest integer in x. For each 
ueV, let A(u) be the set of all ~ V  such that for more than N-1N' (1-3~)  
integers i e [ m + l , N ' - N - m ]  one has ui_ m2m+l, Ui_m--2m+l, Ui+N_m ,2m+l U~+N_m~__ , - 2 m + 1  =F and 
u2NeS 2 x S 2 and u2N=fi~ N. Pick V ' c  V such that the sets {A(u): ueV'} cover V, 
and if u 1, u2 e V' and u 1 =I= u 2, then u 1 ~ A(u 2)- For each u E V let a(u) be the set of 
integers given in (f). Suppose ul,u2eV' and xeGuiC~Gu2. Now J(ul)~J(u2) is 

< , contained in the set { m + l < _ i _ N - N - m :  xZNeWx W}, whose cardinality is 
less than N - ~ N ' ( I + ~ )  by (4.1) and (j). Hence, [J(ul)c~J(u2)[>N-*N'(1-3(5), 
which implies uleA(u2). Consequently, G,,C~Gu=O if Ul,U2eV' and Ul#U 2. 
For each xeB N', let B(x) be the set of all ffeB N' such that for more than 
N - i N ' ( 1 - 5 )  integers i e [ 1 , N ' - 2 N + l ]  one has x~,,22NeWx W,, and :ff~ =~N. 
Let ~ 'c V'. Let G(F')= ~){Gu: ueV}. Let {wl, . . . ,w,}= W'c~[~{B(x): xeG(17")}]. 
If xeG(V) then xeQ and so weB(x) for some weW' by (d). Thus we{w1, ...,wt} 

and so G(g)c  0 B(w~). Now each B(x) is contained in a Hamming ball of 

radius ~ and therefore has cardinality at most 2 N'q~(a) by (k). Also, each G, has 
cardinality at least 2N'(H(XlV)-~)/2. Therefore, t >__ I?l r. By a marriage lemma [10, 
Lemma 2], there exist disjoint subsets {W~': ueV'} of W', each having cardi- 
nality r, such that if ueV' and weW/,, then there exists xeG, with weB(x). 
There are disjoint sets {A'(u): ueV'} which partition V such that A'(u)cA(u), 
u~V'. By (k), [A'(u)]<=2 N'qA(3~) and so by (1) there is a one-to-one ~0': V ~ W '  
such that ~o'(u)=w implies there exists ~eV' and xeB N' for which weB(x), 
xeG~, and ueA(~). With u,~,w,x as just described, let 

J1-~ {m+ 1 < _ i N N ' - N - m :  X2N, w~NeW• W, wN=x~} 

j2={m+l<i<_N, N _ m  :-2m+1~.2~+, ~ = 2 N ~ ,  S~} -- Ui--m 'l'ti+N--m~l',bti ~ 3 i  X 

J3 ~- {m+ 1 < _ i < _ N ' - N - m :  
2 m + l  - - 2 r e + l ,  2 m + l  - - 2 m + 1  ~ b  ~ u2N=~2N u 2 N ~ s  

Ui--m , Ui--m Ui+N--m~ Ui+N- -m~ ,  i ~ i 2 X 8 2 } .  

Then, [JI[>N-~N'(1-25), IJEI >N-1N' (1-~) ,  IJ~l > N - ~ N ' ( 1 - 3 6 ) .  Note that if 
ieJl~J2~Ja, then x 2 n e W x W  and so by (4.1), [J~wJ2~Ja[<N-~N'(I+6). 
Thus, 

IJxc~Jzc~J3l => IJxl+ IJ2[ + IJ3l- 2[J~ w J ~ J 3 l  > N -  x N'(1 - 7 ~ -  e). 

Note that ieJ~csJ2~J 3 implies that u~_ m2m+~,u~+N_,.e~ , 2 ~ + t  ~ and u{N~S~xSI, and 
, u ~ (4.2) follows. ~o (u)i = (o(u i ), and so 

Lemma 10. Let [A,#] be a stationary, ergodic, aperiodic source with entropy H. 
For N sufficiently large suppose we have sets V c A  s, W ~ B  ~ and a one-to-one 
map ~o: V ~ W  such that g(m(V) ~ 1  and l iminfN-~loglWl>R>H.  Let e, 6 be 

numbers such that 0<e, 5<  1. Then for N sufficiently large, there exists a fd. 
Rohlin N-set F c A  ~, sets S~cS2cV,  a map t k : W ~ S  2 and jointly ergodic 
processes U, X with respective state spaces A,B such that: 

(a) the distribution of U is #. 
(b) NPr[U2Nes~ x S~, U~F, TaN UeF] > 1 - 2e, 

N Pr[U2N~Sz x $2, U6F, T f  U~F] > 1-6 .  
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(c) With probability 1, if UeF and UNc-S2 then XNe W, O(X N) = UU; if UeF 
and UNeS~, then XN= (o(UN). 

(d) H(X) > H + e(R - H) - 5. 

Proof Choose a positive e '<e  so that e ' ( R - H ) > - 6 + e ( R - H ) .  Find for each 
N a set S 2 c V s o  that # (m(S2)~l  and l i m N - ~ l o g l S 2 ] = H .  Find S ~ S  2 so 

N ~ o o  

that # r  Since liminfN-11og[W-cp(S1)[>=R and lira N-11og[S2 
N ~ a z  N ~ c o  

-SI[---H, there is a partition {Wu: ueS2-S~} of W-(p(S 0 such that 

(e) l i m i n f N - ~ [  rain logIW,]]>=R-H. 
N~oO ucS2--S1 

Define ~,: W->S 2 to be the map such that 

~, = ~ o - '  o n  ~o(S,)  

= u  on  W., uES~-S~. 

By a strong form of Rohlin's theorem [11, p.22], for each N we can choose a 
f.d. Rohlin N-set F ~ A  ~ such that 

(f) liminfN#[Fc~TTUFc~{u: uZNes1 x $1} ] > 1 - 2 e ' >  1 - 2 e .  
N ~ c o  

(g) lim N#]Fc~{u: uNeS2-S1} ] =e'. 
N ~ o ~  

(h) lim N#[F~Tz~CFc~{u: u2UeS2 x $2} ] = 1. 
N ~  o0 

Fix x*~B. Let [A,z,B] be a stationary channel such that for each ueA ~, 

(i) {_~: TjiueF } are indepencent under ~,. 

0) ~ , [ 2 ~ ' =  ~o(uf)] = 1, u~ES~, TjueF. 
(k) v.E2~=x] =lw.f[-', seW.f, R N @ S 2 - S 1 ,  Tj4ueF. 
(1) %[2~=x*]=l , j r  ~ [ i , i + N - l ] .  

Tja usF 

Let U,X be processes with respective state spaces A,B, such that the distribu- 
tion of U is #, and the distribution of X conditioned on U is given by z. Then 
U,X are jointly ergodic by [1], and (c) holds. Because of (c) and (h), 
H(UIX)--,O as g ~ c ~ .  Because of (k), (g), and (e), liminfH(XIU)>=g'(R-H). 

N ~ o o  

Hence 
lira inf[H(X) - H(U)] = lim inf[H(XI U)-  H(UIX)] 

N ~ o o  N ~ a z  

= e'(R - H) > - c5 + ~(R - H), 

giving (d). Property (b) holds because of (f), (h). 

5. Proof  of  Theorem 1 

Lemma 11. Let [B, v, C] be stationary and let Ze~e(B ). Suppose ~A r is a neigh- 
borhood of z in ~e(B) such that for every positive entropy measure 2 in X ,  ~v is 
continuous at 2 and [B,v, C] is ergodic at 2. Then given k (a positive integer), 
6(3>0), R(O<R<I(Tv)) and e ( 0 < e < l ) ,  there exists c~(0<c~<l) and for n 
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sufficiently large a (n,M,c,~) sliding-block channel code (W,G,g) with M > 2  "R 
and every sequence in W (k, r typical of z. 

Proof. Choose a stationary channel [B,a, C] such that # a = # v ,  #E~(B)  and 
the map # - + # o  from ~ '  (B)-+~a(B, C) is continuous at any measure in ~e(B) if 
and only if ~ is, where ~ (B)  is the set of all TB-stationary and ergodic 
measures on B ~~ with the weak topology. Call this map ~'~. There must be a 
neighborhood X '  of z in ~'(B) such that for every positive entropy measure ,~ 
in ~(B),  [B, r C] is ergodic at ;o and ~'~ is continuous at 2. By the proofs of 
Theorem 2 and Lemma 3 of [8], there exists ~ and for n sufficiently large a 
(n,M,e,~) code (W,G,g) for the channel [B,~,C] with M > 2  "R and every 
sequence in W (k, r typical of z. But a (n, M, g, ~) code for the channel [B, o-, C] 
must be a (n, M, ~, ~) code for the channel [B, v, C], since # v =/.t o-, #e~(B).  

We now proceed with the proof of Theorem 1. Fix [A,#], z, [B, v, C] given 
in the statement of Theorem 1. Fix fl> 0. We will find a v-invulnerable [B, 23 
isomorphic to [A,/~3 for which d,~(2, z) </8. 

Fix neighborhoods ~Ar y '  of z in ~(B) so small that 

(a) [B, v, C] is ergodic at every positive entropy measure in ~ and 4}~. is 
continuous at every measure in JV. 

(b) If {2,} ~ ' ,  2e~e(B), and ,~, ~ . ,  then d~(~.,v)<fl and 2e Jr ~. 

Construct on some probability space a process U with state space A and 
distribution #, processes {X(i)}~ with state space B jointly stationary with U, 
positive numbers {~i}~, {6i}~, positive integers {mi}~, {Ni}~ sets {S~)}~ ~ 

co oo G Oo Oo Oo ~ {S~)}] ~ {Fi}l, {Wi}l, { ~}1, and functions {(Pl}l, {tPi}l, {g~}l such that for 
each i >_ 1 : 

(c) U, X(i) are jointly ergodic and the distribution )t~ of X(i) lies in X ' .  
(d) m i > N  i , F i ~ A  2m'+1 and {u~A~: 2m~+1 U_m~ } is a Rohlin Ncset; W I c B  N' and 

{xeB ~" xaN'~W~ x W~} is a Rohlin Ncset; Ggc C ~ is a f.d. Rohlin Ncset. 
(e I s]i) cs(~) = A N*, N PrFU 2~, + ~ U2~, + t ~F u2N*6S~) x S~)3 > I - 2ei ' 

and 
2m-+a U2N~S(~) • NiPr[U-m~ , r~2m'+l~i~'~l%--m, ~" i, S(~)~> l--(}i �9 

(f) q)~' S~ )---> W~,O~: W~ ~S(~); with probability 1 if U z ~ + ~ F .  U~'eS~ ) then 
- - m i  i~ 

2m~+~F U~'~S~), then X(i)N~=~p~(UN 9. X(i)N~eWi, uN*=~i(X(i)N% and if U_m~ ~ ~, 

(g) 6,<(56)-4/2, e~< 1/2, ~(e~+6~)< ~ .  
i 

(h) H(X(i)) > H(#) + qB(8b~) + qa(24~). 
(i) gi: C OO ~W~ is f.d. and for every k>i,  

(j) If u~S~ +~), for at least N~-~Ni+~(1-2ei-566~) of the integers j e [m  i 
+ l, N i + l - N , - m , ]  one has U2"'+~j-m, , Uj+u._m~.2"'+~ ~ , ,  u~U'~S]~ ), and qh+~(uff' 

(One begins the construction for i=1  using Lemma 11 and Lemma 10. 
Having done the construction for i=k,  say, one does it for i = k + l  using 

Lemmas 8-10.) Define the sequence {r/i}~ by th= ~, (2e k + 566~), i=> 1. From (j) 
we obtain k= 
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(k) If k >  i, and ueS(t k), for at least Ni-lNk(1-tli)  of  the integers j~[m i + 1, Ng 
- N i - m l ]  one has us_,, ,2m~+ 1, Us+N,_mer_i , 2 m , + 1  -,~ ~J"2N~=~(i)~ol "" ~ oa r and Ok(U)~f'=q)i(u:fg. 

For  each i = l ,  let Cp~" A ~ --*B| B ~ ~A~~ C ~ ~ B  ~ be f.d. s tat ionary 
codes such that 

=~0i( s'),us_m~ e/~], 
-- X N- x N  2N-  r )i '=4',( s 9, x s ' s  w~ • ~. 

~i(yff '  = gi(Tg y), Tg ye G i. 

F r o m  (k), (f), (1), it follows that  for k>i>=l, each of the three quantities 
Pr[X(k)o@X(i)o], Pr[fi(X(k))o4= Uo] , Pr[KPi(U)o4=X(k)o ] is no greater  than t/i 

2ink+ 1 + 1-NkPr[U~mk aFk, Uuk~S]k)]. This implies there must  be a process X with 
state space B, such that  lim Pr[X(k)o 4:Xo] = 0  and hence for each i >  1, 

k~co  

(m) Pr[~(X)o  4= Uo], Pr[C&(U)o 4= Xo] < t h. 

Lett ing 2 be the distr ibution of X, we see from (m) that [B, 2] and [A, #] are 
isomorphic.  Since 2 i ~ 2  weakly, from (c), (b) we have d.(2, ~)<fl, 2 e 3  r. F r o m  
(i) and the definition of  ~ ,  if k > i > 1, 

~k 3) [-Jt~ 0 = g i ( l T ) O ]  ~> 1 - -  (~i" 

Lett ing k ~ 0% since ~P~ is cont inuous at 2, we see that 

2v[J(o=F, i (Y)o]~l-b i ,  i>=l. 

Hence  [B, 2] is v-invulnerable. 
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