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In the case of product measures indexed by N x N, martingales converge a.s. if 
they are bounded in L LogL.  This probabilistic version of the Jessen-Mar- 
cinkiewicz-Zygmund theorem [11] was established by R. Cairoli [53. We prove 
here a more general result: 1 every 1-martingale of class L L o g L  converges a.s. 
The proof consists in showing that such a process is an amart with respect to 
totally ordered a-algebras, and then applying the amart convergence theorems. 
Also Ll-bOunded sums of independent random variables in the plane are identi- 
fied as amarts with respect to totally ordered a-algebras. In both instances these 
are the same a-algebras, obtained by lumping together all the a-algebras on the 
vertical line corresponding to the same first coordinate. Precise definitions are 
given below. 

The main results of the paper are in the continuous parameter case, where 
we extend the amart theory [93 to the plane, and apply it to show that L L o g L  
bounded 1- and 2-martingales have versions which are well-behaved in quad- 
rants I, II, and IV. In quadrant III the existence of limits is proved only under 
an additional assumption satisfied by martingales with respect to Brownian 
motion. The same conclusions follow for martingales with respect to product a- 
algebras, and, more generally, for martingales satisfying the conditional inde- 
pendence assumption (F4 of [61). By a completely different method, namely by 
stochastic integration in the plane, D. Bakry [2] earlier proved that martingales 
satisfying F4 have right-continuous and left-limited versions. 

The first section of this paper deals with the discrete parameter case. The 
second section develops the theory of descending 1- and 2-amarts. The third 
section considers the ascending case. Applications to continuous parameter 
martingales are given in the fourth, the last, section. 

The authors  wish to thank D. Bakry and P.A. Meyer for most  pertinent comments.  

* Research in part  supported by the National  Science Foundat ion USA 
1 More general, since we do not  assume the conditional indepencence assumption F4 of [6]. Under  

this assumption,  our definition of 1-martingale reduces to that of ordinary martingale, not  to that  
of 1-martingale in the sense of [6] 
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1. Discrete Parameter 

Let  I denote  ~2 with the usual order  (sl, s2)< (t 1, t2) if s 1 < t 1 and  s 2 __< t2; then I 
is filtering to the right. Let  (O, ~ P) be a comple te  probabi l i ty  space, ans let ( ~ )  
be a stochastic basis indexed by I, i.e., an increasing family of  sub-s igma-a lgebras  
of ~ .  Fo r  every t=( t  1, t2), set ~tt I = V ~ l , u  = ~ t , ,  oo, and ~ 2 - V -  ~,,t2-~oo,t2,~ - 

u u 

and set ~ = V Ytt. A process (Xt) is adapted if X, is ~ measurab le  for every 
t e I  

teI.  An integrable process (Xr) is a martingale if E(Xt l~s)=X S, whenever  s__< t. 
An integrable process (Xt) is a 1-martingale if it is a mart ingale ,  and E(X,,,,2I 
@~1, oo) = X~,.,2, whenever  s = (s 1, s2) __< (t 1 , t2) = t. Similarly, an integrable process 
(X,) is a 2-martingale if it is a mart ingale ,  and E(Xt,,,2I~ . . . .  ) -  t . . . .  , whenever  
s<=t. A m a p  z: Q + I  is a simple 1-stopping time if z takes on finitely m a n y  
values, and {z = t} e ~ *  for every t. The  set of  s imple 1-stopping t imes is denoted  
by T *. An adap ted  process (X,) is a 1-amart if the net (EX~,reT  ~) converges. 
One defines similarly 2-stopping times and 2-amarts. A process (Xt) is bounded in 
L L o g L  if supE(IX~llog + IX~I)< oo. We show that  L L o g L - b o u n d e d  1-mar-  

t e l  

t ingales are 1-amarts.  (It is easy to see that  L l - b o u n d e d  1-martingales,  even  L 1- 
b o u n d e d  strong mar t ingales  [20] are not.) 

Theorem 1.1. Let (Xt) be an L Log-bounded 1-martingale. Then the net (X~, v e T  1) 
converges in L 1. Hence (Xt) is a 1-amart, and hence converges almost surely. 

Proof The uniform integrabil i ty of  the mar t inga le  (Xt) insures the existence of 
an integrable r a n d o m  var iable  Xe~oo  such that  X,=E(X]~) ,  and therefore by a 
t heo rem of L.L. He lms  (see e.g. [19], p. 65), (Xt) converges to X in L 1. Set ~(x) 
= x  Log  + x; 4~ is an increasing convex function. Then  by Fa tou ' s  l e m m a  appl ied 
to a subsequence of X . . . .  E[~(IXI)]  < oo. N o w  by Jensen's  inequality,  

�9 (IX - XtI) _-< �89 (2IX[) + ~(2lXtl)] <�89 ~(2]XI) + �89 4~(E(RIXI[~)) 

<�89 05(21XI) + �89162  

Therefore  the net q~(lX-Xt[)  is uni formly integrable,  and hence converges to 
zero in L 1. 

Let  e > 0  be arbi t rary.  Choose  an index u such that  supllX~-X,l[~<~, and 
t > u  

also supE[~( lX , -X , ] ) ]  <~. For  every t>u, set Y t = X t - X ,  and let r be a s imple 
t > u  

1-stopping t ime such that  for some  v~I, one has u<z<-v. For  every a ~ N  with 
ua <a<v~, set 

Sa=  sup Iga, bl, (q~= V ~,b" 
u2 <_ b <v2  b e n  

It  follows f rom the definition of a 1-mart ingale  that  (Y~,b, fga),~<=a<=~ is a one- 
p a r a m e t e r  mar t inga le  for every fixed b with u a__< b < v;.  Hence  the one -pa rame-  
ter process (So, (r ~__<~,~ is a one -pa rame te r  submart ingale ,  and 

[EYe[ < El Y~] < ~ E [ I ~ =  ~} g(I Y~,,~I 1 ~ ) ]  < ESol. 
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Applying Doob's inequality (see e.g. [19], p. 69) to the submartingale 

(IYvl,bl, ~,l,b)lc2=Kb~l)2 yields c~P(S~ >~)< E[I{s~>~}IY~[1, 

V~>0. Choose r/ with 0 < t / < l ;  then, using the elementary 
aLog + b < a L o g  + a +b/e, one has 

inequality 

~ o  oO 

=<t/+S [Y~I [ g o g S v l - L o g  t/] l{s~>,,}dP 

< n + E(I LI Log + [g~l) + e 1 ES~I + ILog nl E IY~I 

< t / +  e + ~]Log t/I + e -  ~ ES~. 

Fix 6>0, and choose e and t/ with 0 < a < 3  and 0<77<1 such that r/+ 
+eiLogt / ]<6(e-1) /e .  Then for every TeT 1, z>u, I x , - x l<=ix~ -Xu i+ lx - x , , I  
implies 

EIX~-XI  <EIY~I + E IX-X , [  *( gXvl q-8~(~ "3c8~-~2(~. 

Hence the net (X~, zeT  ~) converges to X in L ~. The stochastic basis ( ~ )  is 
totally ordered, and hence satisfies the Vitali condition V. Therefore the stochas- 
tic convergence of the net (X~,T~T ~) implies the almost sure convergence of X~ 
([133, Theorem 4.2). Another proof consists in observing that (Xt) is a 1-amart, 
so that the almost sure convergence of X t follows from Astbury's amart 
convergence theorem (see [1] or [13], Theorem 5.1). 

As a corollary, we obtain the following: 

Theorem 1.2 (Cairoli): Let (~) be a stochastic basis such that ~1  and ~ 2  are 
conditionally independent given o~t. Then every L LogL-bounded martingale (Xt, 
~ )  converges almost surely. 

Proof. The conditional independence condition on the stochastic basis insures 
that every martingale is both a 1- and 2-martingale, so that Theorem 1.1 
applies. [] 

The following theorem asserts the equivalence between almost sure con- 
vergence of martingales and the validity of an asymptotic maximal inequality. 

We say that a family g of processes (X t , ~ )  is stable if for every process 
(Xt)~g, and for every index to, the process (Yt, fft) defined by Yt=Xt-Xto ,  ff~= 
~t for t > to, and Y~ = 0, fqt = ~to otherwise also belongs to & 

Theorem 1.3. Let (~)  be a stochastic basis, and let S be a stable subfamily of the 
family of uniformly integrable martingales (in particular the family of L LogL- 
bounded martingales). Then the following conditions are equivalent: 

(i) For every martingale (X~) belonging to g, and every 2>0, 

P(lim sup IXtl > 2) < ~ limElX,l. 
4 

(ii) Every martingale (Xt) belonging to o ~ converges almost surely. 
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Proof  The equivalence of (i) and (ii) in the case where ~ is the class of all 
martingales was proved in [15], and in [16]. The argument also establishes 
Theorem 1.3. [] 

The conjunction of Theorems 1.1 and 1.3 immediately gives: 

Theorem 1.4. Let  (Xt) be a 1-martingale bounded in L L o g L .  Then for every 2>0, 

1 
P(lim sup IXt] >= 2) __< ~ lim E[X,[. 

Theorem 1.4 can be also deduced from [14], Theorem 3.1, applied to the 1- 
amart (X~, ~a) ,  which implies that 

1 1 
P(lim sup IXt] > 2) < :- lira sup EIX~] = ~- limEIXtl. 

- -  - - ~  zeT a A 

The following theorem shows that U-bounded sums of independent random 
variables are 1-amarts, thus giving another proof of the a.s. convergence of such 
sums, first shown by J.P. Gabriel [10]. 

Theorem 1.5. Let (Yi, j) be a family of  independent random variables, set X~ , ,  
= ~ Yi, j, and suppose that (X~,,) is U-bounded. Then the net (X~,zffT 1) 

(i,j)<-(m,n) 

converges in U ,  and (Xm,,) is an ascending 1-amart which converges a.s. 

Proof The following maximal inequality, generalizing an inequality of Mar- 
cinkiewicz-Zygmund, has been proved by J.P. Gabriel [10]. There exists a 
constant K such that 

I] sup [Xm,, [l[ 1 --< K sup [I Xm,. J[ 1 
(m, n) 

and K does not depend on the sequence (Y~,j). The uniformly integrable 
martingale (Xm,.) converges in U to a random variable X. Fix e, and (m o, no) 
such that sup [IXm,,--Xmo,,o[[l<e. Let r ~ T  1 satisfy r>(mo,no). Then 

(m, n) > (too, no) 

(m,n)>=(mo, no) i<m no< j<n  

(m, nJ>=(mo, no) mo<i<-m j<=no 

<[J sup I ~ ~ Yi, jl Pll 
(m,n)>~(mo, no) i<=m no<j<=n 

+H sup I Y 
(m,n)>(mo, no) mo<i<m j<=no 

< K  sup Il X m, n - Xm, no ll l + K sup ]r Xm,,o -- Xmo,,o H 
(m, n) @ (too, no) (m, n) => (mo, rio) 

< 2 K e + K e = 3 K e .  

Hence (X~,z~T a) converges to X in L 1. [] 
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We now state analogous results in the descending case. Proofs, similar to 
those in the ascending case, are omitted. An adapted process (X~) is a descending 
1-amart if the net (EX~:zeT 1, r - -*(-  o% - Go)) converges (here 2g 2 is considered 
as a directed set filtering to the left). 

Descending 2-amarts are defined analogously. 

Theorem 1.6. Let (Xt) be a l-martingale bounded in LLo g L;  then (X~: z~T 1, 
z - - * ( - ~ , -  Go)) converges in L1, (Xt) is a descending amart, and (X~), t ~ ( - o %  
- oo) converges almost surely. 

Finally results analogous to the theorems of this section are true by 
symmetry if one replaces 1-processes by the corresponding 2-processes. 

2. Continuous Parameter Amarts; Quadrants I, II and IV 

In this section we show that continuous parameter 1-amarts indexed by 1R 2 
have modifications which are well-behaved in quadrants I and IV. The same is 
true for 2-amarts in quadrants I and II. 

Given s, telR2+, set s ~ t  if s l< q and s 2 K t  2. Given an index e, denote the 
four quadrants determined by t by Ql(t) = {s:s> t}, Qn(t)= {s:s 1 __< q ,  s 2 > t2}, 
Qli l ( t )  = {S :S ~ t},  and Qiv(t) = {s:s 1 > tl, s 2 < t2}. Let ( 4 )  be an increasing family 
of a-algebras indexed by t=( t  1, t2)elR2+, and such that 2(o,o) contains all the 
null sets. Define 4 1 = 4 1 . ~ = V , 4  .... and 4 2 = 4 2 ,  oo=V,Y'-,,t~. A stochastic 
basis (Nt)taa~ is right-continuous if for every index t, ~ =  c~{N~:s~> t}. A stochastic 
process (X~)taR~ is continuous in Qi, i = I  . . . .  , IV, if Xt=lim(X~:s-*t,  s6Qi(t)) for 
every t. For  every i = I  . . . .  , IV, denote Q~ the interior of Qi(t) for the euclidean 
topology of the plane. The process (Xt) has limits in Q~, i = I  . . . . .  IV, if 
lim(X~:s--*t, seQ~ exists for every index t. Continuity in QI [Qm] is called 
right- [left] continuity, and a process having limits in (2i [QIII] is said to have 
right [left] limits. A process (Xt) is adapted if X~ is 4 measurable for every t. A 
process (Yt) is a modification of (Xt) if for every t, X t=  Yt a.s., and (Yt) is 
indistinguishable from (X~) if for almost every co, Xt(co ) = Yt(co) for every index t. 
A process (Xt) is separable if there exists a countable subset S of IR 2 (called 
separant) and a null set N such that for every coq~N and every telR 2, 

x,(co)e N (UEXs(O)):seO~S3) 
0a0(t) 

where the intersection is over the family (9(0 of all open sets 0 containing t. 
Doob's theorem ([7], p. 57) about the existence of separable modifications of one- 
parameter processes extends to the present setting. Given any subset S of IR~, 
denote by S 1 [$2] the set of first [second] coordinates of the elements of S. 

Let J be a directed set filtering to the right, and let (N, t~J) be an increasing 
family of sub-a-algebras of ~. A map z:f2--*J is a stopping time for (~t) if 
{z < t} e ~  for every t. A 1-stopping time is a stopping time for (41,  telR2), and a 
2-stopping time is a stopping time for ( 4  2, tEIR2+). Let i = 1, 2; an/-stopping time 
is called simple if it takes on finitely many values. T i denotes the set of simple i- 
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stopping times, and for every subset S of 1R 2, T~(S) denotes the set of elements 
of T ~ with all the values in S. If T is a stopping time for (Nt), let fr 
{ A ~ :  Ac~{-c<t}~Nt for all t}. 

A sequence z(n) of 1-stopping times l-decreases to ~ in Ql[Qiv] if lim r(n)= ~, 
the sequence z(n)l decreases, and v(n)>r for every n [z(n)l >~1 and z(n)2< % for 
every n]. A sequence r(n) of 1-stopping times 1-recalls "c in Q~l [Qiv3 if z(n) 1- 
decreases to -c in Ql [Q~v], and if r(n)>>r for every n ['c(n)l >~1 and z(n)2 < %  on 
the set {r2>0} for every n]. The definitions for 2-stopping times are similar, 
exchanging everywhere the roles of the first and second coordinates. Thus one 
defines sequences z(n) of 2-stopping times 2-decreasing to z [2-recalling z] in the 
quadrants Q~ and QH. 

The following proposition shows that given a 1-stopping time ~, the duster 
points of the nets Xt(co) when t approaches ~ in the quadrants QI and Q~v can be 
obtained as cluster points for some sequences X~(,0, with z(n)~ T~(S). It general- 
izes Proposition 7.1 (a) [-93 to processes indexed by 1R2+. 

Proposition 2.1. Let (X~) be an adapted process, let S be a separant set, and let z be 
a bounded I-stopping time. 

(1) There exists a bounded sequence r(n) in Tt(S)  which 1-recalls r in Q~, 
and such that the two nets {X~(,)(co):n~N} and {X~(co):t~z(co), t>>z(co)} have 
the same cluster points for almost every co. 

(2) Suppose that ~2>0. For every e>0, there exists a 1-stopping time o- with 
P(o-=z)> 1 -e ,  ~rz >~a, 0<o- 2 <r2,  and there exists a bounded sequence o-(n) in 
T~(S) which 1-recalls o- in Qiv, such that the two nets {X~(,)(co):n~N} and 
{X~(co):t~o-(co), ta >o-~(co), tz<a2(co)} have the same cluster points for almost 
every co. 

Proof For every a>O, set ~ = ~ , ~  =~1~,  Vb>0. 

(i) Let ( M , M )  be an upper bound of z. For every n > l ,  and every i,j>O, 
choose an element t(n, i,j) in S, and also in 

J~(i,j) = [i2 -n, (i+ 1)2-n[ x [j2 -~, ( j+ 1) 2-hi. 

Set 

o-(n) = ~ ~ t(n, i + l , j + l ) l ~ j ~ i , j )  ~ . 
O ~ = i ~ = M 2  n O ~ j ~ = M 2  n 

It is easy to see that a(n)cTl(S) ,  decreases and 1-recalls -c in Q~. Fix n; since S is 
a separant set, there exists a finite subset of S, {t(n, 1), t(n, 2) . . . .  , t(n, rn) ) such 
that, setting 

A = {co: for every t with ~(co)~ t ~  o-(n)(co), there exists i with 1 _~ i_~ r~ 

such that ~(co) ~ t(n, i) ~ ~r(n) (co) and ]Xt(co ) - Xt(~, o(co)l < 2-"}, 

one has P(A)> 1 - 2  -n. 
Set t" o --0, fix j =~1, and let n = n(j), i = i(j) be the unique pair of intergcrs such 

that 

j = r o + . . . + r ~ _ ~ + i  , n~=l, l~=i~=r~. 
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Set Bj = {z 1 < t(n, i)1 <__ o-(n)l } n {'c 2 < t(n, i)2 ~ z2 + 2- '}.  Since a(n)l is a one-di- 
mensional stopping time for (~q~)._>_o, 

B~= {t(n, i)1 <=a(n)l}c~{z ~t(n , i)}~{z ~(t(n, i)1 , t(n, 0 2 - 2  ")}~, 

and B y ~ , , i ) ,  Bje~o(,),. 
Define an element v(j) of Ta(S) by 

v(j)= t(n, i) on B j, 

v (j) = o-(n) elsewhere. 

Clearly v(j)>>z, lim v(j)=z, and the cluster points of the sequence 
j~oo 

{Xv(j)(co):j> 1} and of the net {Xt(~o): t>>z(co), t--,z(co)} are the same for almost 
all co. However, we still must arrange the first coordinates of v(j) by decreasing 
values. We define a sequence p(n) of discrete (not necessarily simple) 1-stopping 
times as follows. Let p(1) be the first value of {v(1), v(2) . . . .  } when arranged in 
decreasing order of v(n)l, i.e., for every tsS, we set 

{;(1)=t} = U [{v(i)=t)c~(~ {v(j)l < t l } ) ~ ( ~  {v(j)l ~t l})] .  
i>= l j< i  j > i  

Since the maps v(j)l are one-parameter stopping times for (~a),>_o, p(1) is a 1- 
stopping time. Let p(2) be the second value of {v(l), v(2) . . . .  } when arranged in 
decreasing order of v(n)l , i.e., for every teS, 

{p(2)=t}= U {{v(i)=t} i>l 

O [ U  ({V(]')I >tl}('3((-~ {V(k)l<tl})U'~ ((~ {V(k)l~tl})) ] 
j4-i k<i k>i  

k t - j  k:gj 

6~ [~_J.({v(j)I = t 1}~((-~ iv(k)1 < t l})~ (('~ {v(k)l~tl}))]}. 
J<t k<i k>i  

k:Fj 

Clearly p(2) is a 1-stopping time, and the procedure can be continued by 
induction. Since l imp(n)=z and p(n)>>~, the cluster points of the sequence 
{Xp(n): n > 1} and of the net {X t(co): t~zfro), t >> z(co)} are the same for almost 
every co. By the definition of v(j), for every n => 1 and every j=> 1 with r 0 + r 1 + . . .  
+ r ,_  1 <J--<ro+... +r , ,  we have v(j) 1 <a(n)l  ; hence we also have P(J)I <or(n)1. 
To obtain the promised sequence z(n), we now keep only finitely many values 
from each 1-stopping time p(n). For every j >  1, let R(j) be a finite subset in the 
range of p(j) such that if C j= {p(j)~R(j)}, then P(Cj)> 1 - 2  -j. For every j, let n 
satisfy ro+ ... +r ,_a  < j < r o +  ... +r , ,  and set 

z( j )=t  on {p(j)=t}~((~ Ck) for every t~R(j), 
k > j  

z(j)=a(n) on ( ~  Ck) ~. 
k>j 

Let o)~{p(j)=t}c~((~ Ck) for some t~R(j); then 
k>j 

~(j)(co)=p(j)(co), and z (j + l) (to) = p (j + l) (co). 
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Hence z(j'+l)l(co)=<z(j)l(co). Let co~(~  Q)c; then z(j+l)(co) can be either 
k>j  

p (j + l ) (co), or a(n)(co), or a(n+l)(co) (the last value being possible only if 
j = r o +  ... +r,). Since p ( j +  1)l(co)=<a(n)l(co), we also have z ( j+  1)l(co)<z(j)l(co ). 
Clearly z(j)>>z, l imz( j )=z,  and z(j)t decreases. For almost every co, there 
exists an integer N such that cot 0 Cj. Since the sequences (Xo(j):j>N) 

j>=N 

and (X~(j): j> N) agree on (~ Cj, it suffices to check that each z(j) is a 1-stopp- 
j__>N 

ing time (necessarily in TI(s)). This follows easily from the fact that P(J)I de- 
creases, and that (~ C k is ff~(,) -measurable. 

k_>_j 

(2) Fix e>0,  and choose c~>0 such that P ( - cz>2~)>I -E .  Let K be an 
integer such that z__<(Kc~, Kc 0. Let s(n) be a bounded sequence in S such that 
Kc~<s(1)z<s(2)2< ..., and s(1)l >s(2)l  > ... >Kc~. 

For every n > 1, i > 0 and j > 0, set 

L(n,i,j)=[i~,,(i+l)c~2, [ x  f ~ ,  ~ [ , j c ~  ( j+ 1)c~ [ 

and choose t(n,i,j) in Sc~L(n,i,j). For every n>0,  every i,j with O<i<_K2 ~, 
2"+l<j<K2 n, set v(n)=t(n, i + 2 , j - 2 )  on {z~L(n, i,j)}, v(n)=s(n) o n  { ' c2~20~ }. 

Then v(n)~Tl(S), v(n)l strictly decreases, v(n)2 strictly increases, and v(n) 1- 
recalls a = lim v(n) in Qiv; furthermore P(z = a) > 1 - e. 

An argument analogous to the one given in the proof of (1) allows us 
to transform v(n) into a sequence a(n) in T~(S) having the required cluster 
points. [] 

Let (o~, n ~ N ) [ ~ ,  n ~ - N ]  be an increasing sequence of a-algebras, and let 
T [ - 7 ]  be the set of simple stopping times for (~) ,  taking values in N [ - N ] .  
The set (T, < ) [ ( - T ,  <)3 is filtering to the right [left]. An integrable process 
(X~, ~ ,  nsN)  [(X,, ~ , n ~ - N ) ]  is an ascending [descending] amart if the net 
(EX~,r~T) [ ( E X ~ , ~ - 7 ) ]  converges. If ~ J ,  for n>O, Y , = X , ,  ~ , = ~ ,  then 
(X,, ~ ,  n~N) is called a descending amart if (Y,, ~ , n ~ - N )  is one. Every L 1- 
bounded ascending amart, and every descending amart converges a.s. ([9], 
Theorem 2.3). An integrable one-parameter process (X,, ~ ,  t > 0) is an ascending 
[descending] amart, if for every stopping time ~ for (~),  and for every sequence 
(r(n),n~N) [(~(n), n ~ - N ) ]  of simple stopping times that increases to ~, the 
process (X~(n), o~(,), n~N) [(X~(,), ~,~nl, n~ - N ) ]  is an ascending [descending] 
amart. An integrable process (X t, 4 ,  t > 0) is an amart if it is both an ascending 
and a descending amart. A process (X t, ~ ,  t>0)  is of class (AL) if for every 
uniformly bounded increasing sequence of simple stopping times ~(n), 
supE[X~(,)] < oe. If (X~, 4 ,  t>0)  is a separable amart of class (AL), then almost 
all trajectories have right and left limits ([9] Theorem 7.3). The following 
definitions give generalizations of the notion of one-parameter amart to 
processes indexed by IR+ x lR+. They are formulated with 1 and 2-stopping 
times in the four quadrants. An integrable process (Xt) t~  + in a 1-amart in QI[QIv] 
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if for every bounded 1-stopping time z, and every uniformly bounded sequence 
(z(n), neN)  in r i which 1-recalls r in QI[QIv], the process (X~(,), ~ , ) ,  neN)  is a 
descending amart. The process ( X t ) t ~  is a descending 1-amart if it is a 1-amart 
in QI and QlV, and if for every b >= 0, the one-parameter process (Xt, b, ~)b, t > O) 
is a descending amart. 

Similar definitions are given for descending 2-amarts, the first and second 
coordinates being exchanged everywhere. 

The following proposition is a local result at one-dimensional stopping times 
for ( 4 ,  ~)te o. The idea of establishing uniformity in the second coordinate is due 
to J.B. Walsh [20]. 

Proposition 2.2. Let (Xt)t~ ~ be a separable descending 1-amart with separant set 
S. Suppose that for every fixed b eS; the one-parameter process (Xo, b, ~ b ,  a > O) is 
separable. Suppose that the family of a-algebras ( ~ l ) t ~  is right-continuous, and 
let a be a bounded one-parameter stopping time for (~ ,  oo)~>= o. Fix M > 0; then for 
almost every o), lim(X,,b(CO): a>a(co), a~a(O))) exists uniformly in beS 2, b <__M. 

Proof Adding if necessary countably many countable sets to S, one may assume 
that for every fixed beS 2 the set {(a, b)eS[a>O} is a dense separant set for the 
one-parameter process (X,, b, ~)b, a>O). For every a>0 ,  set ~ = ~ , , ~ ,  and let 
K be an upper bound for a. Suppose Proposition 2.2 is false. Then there exists a 
measurable set A with P (A)>0  such that for every e)eA, there exists e(o~)>0 
such that for every c~ > 0, there exists s, t~S with s 2 = t 2 __< M, a(co) < s~ < t 1 < a(oJ) 
+c~, and IXs(CO)-x,(o~)l >~(o)). Replacing A by a non-null subset, one may 
assume that for every coeA, e(co) remains larger than a constant e > 0. For  every 
t e S, set 

A(1, t )= {co: a(o)) < t I < a(co) + 1, 3seS, S z = t z ~ M  , 

a(co)<s~ <t,, IXs(CO)-x~(co)l > e} c~A; 

then A(1, t ) e ~ l c ~ + i  . Choose finitely many indices t(i) in S, 1 < i < n  l, with 
t(1)l < t(2)l < . . .  < t(nl)i, such that if A 1 = D A (1, t(i)), then P(Ai) > P(A)/2. Set 

a(1)=t(i) on A(1, t ( i ) ) \  ~).A(1, t(j)), 

a ( 1 ) = ( K + l , 0 )  on A~. 

Then a(1) is a simple 1-stopping time. Suppose that a ( k - 1 )  has been defined 
with a < a ( k - 1 ) l < K + l ,  and that P(Alc~...C~Ak_~)>P(A)/2. For every teS, set 

A(k, t)={6o: a(co)<t i < inf  (a (k-1)1  (co), a(co)+1),  3seS, 

Sz=t2<=M, a(o)) < s I < t  1 , IX~(co)-Xt(oa)l>et~A. 
3 

Choose finitely many indices t(i) in S, l<=i<nk, with t (1)l<t(2)i<. . .<t(nk)l ,  
such that if A k = [9 A(k, t(i)), then 

i <= nk  

A (k, t ) e ~  1 c~ ~ +  (1/k/~ ~(k_ 1)1" Set 

P(Ai ~.. .  C~Ak- 1 ~Ak) > P(A)/2. Then each set 

a(k) = t(i) on A(k, t( i))\  .[_)A(k, t(j)), 

a ( k ) = a ( k - 1 )  on A~. 
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Then a(k) is a simple 1-stopping time, and a<a(k)l  < K +  1. The sequence o-(k)~ 
is clearly decreasing. Since (~a)ae0 is right-continuous, the set A 
=l iminfA,  e c ~ + ( a / k ) = ~ ;  furthermore P(Ao~)>P(A)/2. Set z(k)=o-(k) on A~, 

and ~(k)= ( a + k ,  1 ) o n A ~ .  Clearly the ~(k)are bounded 1-stopping times such 

that lim'-~r(k)x =a ,  and, for every k, a<z(k) l .  It is easy to see that for every k 
the simple random variable r(k)2 is ~(k)l measurable; furthermore, the right- 
continuity of the family (~a), => 0 implies that c~ ~(k, = ~ ,  hence "c 2 = lim infz (k) 2 is 
~ measurable. Therefore "C=(0",'C2) is a bounded 1-stopping time. Since 
P(A~o ) > 0, at least one of the three ~-measurable  sets 

C1 = Aoo c~lim sup {~(k)2 =~2}, 

C2 = Aoo ~ ~ [lim sup {~'2  - -  E < z(k)2 < "C2}]  , 
~ > 0  

C 3 = A ~ c~ (~ [lira sup {% < ~ (k) 2 < ~2 + e}], 
~ > 0  

the union of which is A~o, is non-null. If P ( C , ) > 0 ,  then on Cz the second 
coordinate of ~ clearly takes on values in S 2. Since S 2 is countable, this 
contradicts the fact that for every fixed beS 2, almost every trajectory of the one- 
parameter descending amart (X~,b, ~ a > 0) has right limits. Now suppose that 
P(C2)>0,  and define a 1-stopping time v by v = r  on C 2, v = ( K + l , 1 )  on C~. 
Then for every cot C2, co belongs to all but finitely many of the sets A,, while for 
a subsequence [z(k,)] (co) converging to r(co), one has [z(k,)2] (co)<v2(co). There- 
fore the net {Xt(co): t e S, t ~  v(co), t 1 > v l(co ), t 2 < v 2(co)} fails to converge for each 
co belonging to C 2. Apply Proposition 2.1 (2) to the 1-stopping time v, let = be a 
1-stopping time such that P ( v = z c ) > l - P ( C 2 ) / 2 ,  and let zc(n) be a sequence in 
Ta(S) 1-recalling ~ in Qiv, such that the two nets {X~(,)(co):neN} and 
{X~(co):t~(co), t~S, tl>rCl(co ), t2<g2(co)} have the same cluster point for 
almost all co. Since the net {X~(co):t~n(co), teS, tl>rcl(co ), t2<~2(co) } fails to 
converge on a set of measure at least P(C2)/2, so does the net (X~(,,), nEN). This 
brings a contradiction because the process (Y_,=X~(~))n~N is a descending 
discrete amart for the sequence of a-algebras ~ _ , , =  ~(,)~, and hence converges 
a.s. In the case where P(C3)>0,  one obtains a contradiction in a similar but 
easier way, applying Proposition 2.1 (1) directly to v. [] 

The following Proposition is a global analog of Proposition 2.2, since it 
asserts the existence of horizontal limits a.s., uniformly in the second coordinate. 
The proof of this Proposition is similar to the proof of Theorem 7.2 (b), (b') [9]. 

Proposition 2.3. Let ( X ~ ) ~  be a separable process with separant set S, and for 
every a>=O, let ~=~,o~.  Suppose that for every fixed b~S2, the one-parameter 
process (X~,b, a>=O) is separable with separant set S~. Fix M>=O; 

(i) Suppose that for every bounded one-dimensional predictable stopping time a 
for (~a)~_>_0, and for almost every co, the nets (X~,~(co): a~a(co), a<a(co)) converge 
uniformly in b~S2, b ~ M. Then for almost every co the functions a~--~ X ~,b(CO ) have 
left limits uniformly in b~S2, b <= M. 

(ii) Suppose that the family ( ~ ) ~ +  is right-continuous. Suppose that for 
every bounded one-dimensional stopping time a for (ft,)a>= O, and for almost every co, 
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the nets (Xa,b(CO): a~--~o-(co), a >a(co)) converge uniformly in b~S2, b < M.  Then for  
almost every co the functions a~--~Xa, b(co ) have right limits uniformly in bffS2, 
b < M .  

Proof. For  a 1 < a 2 ,  set 

Y(a 1, a2, M) = sup  {IXc, b -- Xd, b[ :b ~$2, b < M,  c~S  1, d~S  1, a 1 < c < d < a2}. 

(i) Suppose  that  (i) fails, and for every a > 0, set 

Z a = i n f { Y ( a - c ~ ,  a, M): c~ > 0}. 

The set 
3 = {co: 3~>0 ,  3a >0 ,  Za(co) >~} 

is measurable ,  and by assumpt ion  P ( / I )>0 .  Replacing A by a non-null  subset 
A with P ( A ) = 2 p > O ,  one m a y  assume that  ~ is larger than a constant  e > 0  
independent  of  co, and a is less than  a constant  K independent  of  co. Thus  A 
= {co: 3 a, 0 < a < K, Za(co) > e}. We now construct  a bounded  predictable  stop- 
ping t ime o- for (~a),>__o such that  the assumpt ion  (i) is contradicted.  Set o-o=0, 
and suppose  that  the s topping t ime o- k_ 1 for (~,)~> o has been defined, and that  if 

Bk-  1 = (co: 3a, o-k- 1(co)<a < K ,  Za(co) > ~}, 

then P(B k_ 1) >P. It  is possible to define in terms of finitely m a n y  elements of  S 1 
x S 1 a subset  A k of B k_ 1 of  measure  arbi t rar i ly  close to the measure  of  B k_ 1. 

Choose  finitely m a n y  pairs of  elements (% di) in S 1 x $1, i =  1 . . . .  , n k, such that  
c i < di < K, and, setting 

Ak----{co:3i<=nk, Ci>o-k 1(CO), 

sup( lX  ~,b(co)-- X d,,b(co)l : b~ S 2, b < M)  > e, Sa, di < a < K,  Z ,(co) > e}, 

one has P(Ak)> p. Define a k by 

o-k =inf{di:  1 < i <=nk, o-k- 1 <Ci, 

sup(IX~,,b --Xd,.bl: b~S  2, b < M) > e} A (K + 1 - 2 -  k). 

Clearly o-k is a s imple one-dimensional  s topping t ime for (~)~>o, ak l<Crk<K 
+ 1, B k ~ A k, and P(Bk)>p .  The bounded  sequence (a,) of  s imple s topping times 
for (~)a>_o has been constructed by induction, so that  the sequence of  sets 

C , = { s u p ( l X o , , b - X ~ . b [ : b ~ S 2 ,  b<=M, a e S l ,  a n l < a < o - ~ < K ) > ~ }  

is a decreasing sequence of sets each of probabi l i ty  at least p. Hence  the 
existence of the predictable  bounded  s topping tine for (~)~__>o o-=limo-,  con- 
tradicts the assumpt ion  (i). 

(ii) The p roof  is similar. Suppose that  the conclusion of  (ii) fails, and 
construct  by induct ion a bounded  sequence (o-,) of  s imple s topping t imes for 
(~)~>o such that  the existence of o-=limo-, contradicts  the assumpt ion  in (ii). 
Fo r  every a > 0, set 

U~=inf{Y(a,  a+c~, M): ~>0} .  
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The process (U,, ~a, a>0)  is measurable. Hence as in the proof of(i) choose e>0  
and K > 0  such that, setting A={co:3a,  0 < a < K ,  Ua(co)>e}, one has P(A) 
= 2 p > 0 .  Set O-o=K, and suppose that the simple 1-stopping time ak_ 1 for 
(~a)~>_ 0 has been defined, and is such that if 

Bk l={co:3a, O<a<ak l(co),U~(co)>~}, 

then P(Bk_I)> p. Choose finitely many pairs of elements (ci,dl) in S 1 x S1, 
i = 1, ..., nk, such that c i < di < K, and if 

Ak= {co: 3i <=nk, di < ak_ a (CO), sup(lX c, b(co)-- X a, b(co)l : b6S2, b <= M) > ~, 

~a<c,, go(co) > ~}, 

then P(Ak) >p. Set 

ak = inf{d;: di <__ak_ l, sup(lX c,,b-- X d,,bl : bES2, b <= M) > ~, 

3a<ci, U~>e} A ( K +  1). 

Then ak is a simple stopping time for (~)~>_o, and P(Bk)> p. The sequence (ak) 
has been defined by induction so that the sequence of sets 

C k = {co: sup([ X~., b(CO ) -Xa, b(co)l:b~S2, b <= M, aeS1, 

cr,(co) < a  < a,_ l (co) =< K) > e} 

is a decreasing sequence of sets each of probability at least p. Furthermore (ak) 
converges to the one-dimensional bounded stopping time e for (~,)~o by the 
right continuity of the family of a-algebras (~)~>__ o. However the assumption in 
(ii) is clearly violated by a, and this brings a contradiction. [] 

Combining the statements of the Propositions 2.2, 2.3 (ii), and the existence 
of limits for one-parameter amarts [9], one obtains that descending 1-amarts 
possess modifications which have limits in Q~ and Q~v. The conditions (~) and (fl) 
below assure right-continuity of one-parameter processes. 

Theorem 2.4. Suppose that (Xt)t~ ~ is a descending I-amart, and that (~t 1) is right- 
continuous. 

(i) Suppose that for every a>=O, the one-parameter family (~a,b)b>=O is right- 
continuous, and the one-parameter process (X,, b, ~ ,  b, b > O) is a descending amart. 
Suppose that either (c 0 or (fi) holds. 

(c 0 For every index t=(t l , t2)  and for every sequence z(n) of simple one- 
dimensional stopping times for ( ~ ,  b)b => 0~ t 2  ~ lim"~ z (n) implies EX t = lira EXt~ ' ~(,). 

(fl) For every index t and for every sequence z(n) of simple one-dimensional 
stopping times for ( ~ ,  o~)~ >= o, t 1 ~ lim"~ z(n) implies EX  t = limEX~(,),t,_. 

Then (Xt) has a modification almost every trajectory of which has limits in Q~, 
i.e,, has right limits. 

(ii) Suppose that for every a > O, the one-parameter process (X~, b, ~ ,  b~ b ~ O) is 
an ascending amart'of class (AL). Suppose also that (fl) holds. Then (Xt) has a 
modification almost every trajectory of which has limits in Qiv. 
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(iii) I f  the assumptions (i) and (ii) are satisfied simultaneously, then the 
modification can be chosen to have limits a.s. both in Qr and Q~v. 

Proof We at first prove the existence of a separable modification of (Xt) having 
the properties stated in Proposition 2.2. Suppose that the assumption (fl) holds. 
Let (Yt) be a separable modification of (Xt) with separant set S; we may and do 
assume that S = S  1 x S2,  where $1 and S 2 a r e  dense in IR+. For every aeS1, 
choose a separable modification of the one-parameter process (Ya, b)be0, say 
(Va, b)b>=O, with separant set S(a) which may and will be assumed to contain S 2. 

y~ t Denote by ( t ) t ~  the process defined by Y~ = V t if t l~S  1, Y]= Yt otherwise. 
Since the processes (Y~)s~s and (Y2)s~S are indistinguishable, S separates the 
process (Ys', s~(lR+ \ $1) x lR+). Hence S' =S  1 x ( U S(a)) separates the process 

a~S1 
(Y/)t~R~+. Fix b~S'2= {s2: 3s=(s l ,  s2)~S'}; Theorem 7.4 [9] applied to the one- 
parameter descending amart (Y2, b, ~lb ,  a>0)  gives the existence of a right- 
continuous modification of this process, say (W~,b)a>=o. Define the process 
(Zt)t~ ~ by Z t=  W t if t2eS' 2, Z t= Y/ otherwise. Then S' separates the process 
(Z, t~IR+ x(1R+\S~)), and since the processes (W~,b)~>=O are right-continuous 
for every fixed b~S 2, the set S' 1 x {b}, which is dense in IR+ x {b}, separates this 
process. Hence S' separates (Z t )~  a. Furthermore, for every a~S'~ IbiS'2], the 
processes (Z~, b)b ~ o [(Z~, b)~-> o] are separable. Since (Zt) is a modification of (Xt), 
the process (Zt) has the same amart properties as the original process (Xt). So far 
we have assumed (fl); under the alternate assumption (~) in (i), one obtains the 
existence of such a modification (Zt) by exchanging the roles of the coordinates. 
Therefore, under either assumption (i) or (ii), one can apply Proposition 2.2, 
Proposition 2.3(ii) and Theorem 7.3 [9] about the existence of limits for one- 
parameter separable amarts. It clearly suffices to show the existence of limits in 
every square [0, M [ x [0, M[. Fix M > 0,' let N be a null set such that for every 
coCN, the functions (a~-*Z,,b(CO)) have right limits uniformly in b~S2, b < M .  Fix 
coCN, t~lR2+ with t z < M .  Given e>0,  choose c~>0 such that 

sup([Z a, b(CO ) -- Z~, b(CO)[ : beS' 2, b < M, (a, b)~S', (c, b)sS', 

t I < a < c < q  + c~) < a 

(i) Let N ' = N  be a null set such that for every co(~N', and for every a~S' 1, the 
functions b~Z~,b(co ) have right limits. Suppose co(~N'; fix a~S'~ with t~ < a < q  
+ ~, and choose fl > 0 such that fl < M - t2, and sup ([ Z,. b (CO) 
--Z, ,c(CO)[' t2<b<c<t2+fl)<a For any pair of indices u , v ~ S % ( ] t l , t l + ~  [ 
x ] t2, t z + riD, one has 

Iz.(CO)- z~(CO)l =< Iz . (CO)-z  . . . .  (CO)[ + Izo(CO)- z . . . .  (CO)l 

+ l z  . . . .  (CO)-z .. . .  (co)l__<3e. 

This shows the existence of limits in QI along the elements of S' in each square 
[0, M[  2, and completes the proof of (i) since S' is a separant set for (Zt). The 
proof if (ii) is similar. [] 

The following theorem, asserting the existence of right-continuous modifi- 
cations of descending 1-amarts, is a two-parameter version of Theorem 7.4 [9]. 
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Theorem 2.5. Suppose that (~t 1) is a right-continuous family of a-algebras, and let 
(Xt) be a descending 1-amart. 

(i) Suppose that for every a>O, the one-parameter family (~,b)b>__o is right- 
continuous, and the one-parameter process (X,, b, ~ ,  b, b >= O) is a descending amart. 
Suppose that for every telRZ+, and every sequence z(n) of simple 1-stopping times 
1-decreasing to t in Qt,  one  has l imEX~(,)=EX r Then (Xt) has a modification 
every trajectory of which is continuous in QI, i.e., right-continuous. 

(ii) Suppose that for every a >= O, the one-parameter process (Xa, b, .7,, b, b > O) is 
an ascending amart of class (AL). Suppose that for every tslR2+, and every 
sequence z(n) of simple 1-stopping times 1-decreasing to t in Qiv, one has limEX~0 0 
= EX t. Then (Xt) has a modification every trajectory of which is continuous in Qw. 

Proof. (i) By Theorem 2.4(i), the process (X,) has a modification (Yt) having limits 
in QI a.s. Define Zt=lim(Ys, s>>t); it is easy to see that  Z~=lim(Zs,S>t). To 
prove that  (Zt) is a modification of (Xt), it suffices to prove that for every t, Z t 
= Yt=Xt a.s. Fix t, let A ~ t t  1, and for every n > 0 ,  define z ( - n ) = t  on A c, z ( - n )  

= tl-}-~, t2d- on A. Then limEY~( ,~=limEX~(_~=EXt=EY~, and it is easy 

to see that  ( , ~ ) , ~ ( , ) , n e - N )  is a descending amart,  and hence is uniformly 
integrable [9, Theorem 2.9]. Since lim Y~( ,0= Y~ 1A~+Z t 1A a.s., one has E[1AZt] 

~- l -  =E[1AYt]. Since (Yt) and (Z~) are ~ t -measu rab le ,  it follows that  (Zt) is a 
modification of (Xt). This concludes the proof of (i). 

The proof  of (ii) is similar. [] 

Corollary 2.6. Suppose that (~1) is right-continuous, and let (Xt) be a descending 
1-amart. Assume that for every a >= O, the family (~,, b)b > 0 is right-continuous, and 
the process (X~,b, ~ . b ,  b >= O) is both a descending amart and an ascending amart of 
class (AL). 

(i) Suppose that for every t and every sequence z(n) in T 1 1-decreasing to t in 
QI, limEX~tn~=EXt" Then (X~) has a modification (YO continuous in QI and such 
that for almost every co, lim(Y~: s 1 >= tl ,  s 2 < t2) exists for every t with t 2 >0. 

(ii) Suppose that for every t and every sequence z(n) in T 1 1-decreasing to in Qlv, 
l imEX~(,)=EX t. Then (Xt) has a modification (Yt) continuous in Qlv, such that 
for almost every co, lim(Y~: s 1 >=tl,sz>t2) exists for every t. 

Corollary 2.7. Suppose that (~1) and (~2)  are right-continuous. Let (X~) be an 
integrabIe process having simultaneously the descending 1- and 2-amart properties. 
Suppose that for every a >= O, both processes (X~, t, ~,~,  t >= O) and (Xt, ~, ~ ,  ~, t >= O) 
are ascending amarts of class (AL). Then (Xt) has a modification (Yt) such that for 
almost every co, (Yt(co)) has limits in QI, Qn, and Qrv. I f  furthermore for either i= 1 
or i=2 ,  limEX~(~) = E X  t for every t and every sequence z(n) in T i i-decreasing to t 
in QI, then (X~) has a modification (Y~) continuous in Q1 and having the following 
limits for almost every co and every t:lim(Y~(co):sl>=t ~, $2<t2),  and 
lim(Y~(co): s~ < t  1, s2>t~). 

3. Continuous Parameter Amarts: The Ascending Case 
Finally, we study the existence of limits in Qm. We assume in this section that  
the families (4) ,  (~1)  and (~t 2) are right-continuous. Since the third quadrant  
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corresponds to the "ascending" case for both the first and the second coor- 
dinate, the methods of this paper will require more stringent assumptions on the 
process (Xt). 

A sequence z(n) of 1-stopping times 1-increases to z if l imr(n)=z,  and the 
sequence ~(n)l increases. A sequence ~(n) 1-increases to ~ in Qm[Q.] if r(n) 1- 
increases to z, and r(n)<z[v(n)2>z2] for every n. A sequence r(n) of 1-stopping 
times 1-announces z if z(n) 1-increases to z, and if r(n)l <z  1 on {z 1 >0} for every 
n. A sequence z(n) 1-announces ~ in Qm[Q.] if z(n) 1-announces ~, and if for 
every n, z (n )~r  on the set {(0, 0 )~r}  [ 'c(n)2 > ' c  2 o n  the set {~1 >0}].  A stopping 
time z is 1-predictable [in Qiii/in QII] if it can be 1-announced [in Qm/in Q.] by 
some sequence z(n); it is easy to see that a 1-stopping time 1-predictable in 
QIII[QII] can be announced by a sequence z(n) such that "r(n)2 is monotone 
increasing [decreasing]. The definitions for 2-stopping times are obtained by 
exchanging everywhere the roles of the first and second coordinate. Thus one 
defines sequences z(n) of 2-stopping times 2-increasing to z or 2-announcing z 
[in Qni/in Q~v]. 

The following proposition is a left analog of Proposition 2.1, and a two- 
parameter analog of Proposition 7.1(c) [9]. 

Proposition 3.1. Let (Xt) be an adapted process, let S be a separant set, and let r be 
a bounded 1-stopping time. 

(1) Suppose that z l > 0  , and that ~ is 1-predictable in QII. Then given any 
number ~>0, there exists a bounded 1-predictable /-stopping time a with P(a 
= z ) > l - e ,  a>_z, and a bounded sequence a(n) in TI(S) which 1-announces a 
(not necessarily in Qn), such that the set of cluster points of the net 
{Xt(o)): t ~ a(co), t 1 < a l(~O), t 2 > a2(c~)} is contained in the set of cluster points of 
the net {X,(,)(~o): neN} for almost all co. I fz  is 1-announced in QII by a sequence 
z(n) in TI(S), then a can be chosen equal z. 

(2) Suppose that z>>(0,0) is 1-predictable in QIII. Then given any , > 0 ,  there 
exists a bounded 1-predictable 1-stopping time a with a_>__ ~, P(a = ~)> 1 -  8, and 
there exists a bounded sequence a(n) in TI(S) which 1-announces 0, such that 
the set of cluster points of the net {Xt(o) )" t-~a(oo), t~a(co)} is contained in the 
set of cluster points of the net {X,(,)(~o): n~N} for almost all co. If z is 1- 
announced in Qm by a sequence z(n) in TI(S), then a can be chosen equal r. 

Proof. For every a_>0, set No=f t ,  _ ~ 1  Vb_>0. For every n_>0, set D(n) 
- -  , ~ - -  a , b ~  - -  - -  

={i2-" :  i>0}, and let D =  ~ D(n) be the set of positive dyadic numbers. In 
n>=0 

order to simplify the proof, we will assume in the argument below that S 
contains D • D. 

(1) Suppose that z I >0, and z is 1-announced in QII by a bounded sequence 
z(n) such that lim"~ z(n)2 =z  2. Let (M,M) be an upper bound of v and z(n). One 
first replaces in several steps z(n) by elements of TI(S). For every fixed n, the 
map z(n)2 is clearly ff~(,~ -measurable. Hence replacing z(n)2 by its n-th dyadic 
approximation from above, we may and do assume that z(n)2 is a simple ~ ( ~  - 
measurable random variable taking on values in D(n). Also z(n)l announces the 
one-dimensional stopping time z 1 for (~) ,~0-  Therefore, z i is announced by an 
increasing sequence ~(n) of discrete dyadic (not necessarily simple) stopping 
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times for (N,)~>_o (see e.g. [7], p. 132). Fix e > 0 ;  for every n >  1, choose an integer 
N, such that  P[c~(n)eD(N,)] > 1 - ~ - 2 - " ,  and set 

fl(n)=~(n) on 0 {~(i)6D(Ni)}, 
i<n 

f l (n )=M+ 1 - - 2 - "  otherwise. 

The  maps fl(n) are simple 1-stopping times for (~a)a>=O, and announce  a stopp- 
ing t ime /~ such that  P [ f l = ' C l ] > l - e .  Fo r  every n, for every co such 
that  z(1)l (co) </?(n) (co) < M , set y(n)(co)='c(i,)2(co), where i , =  
sup{j:  ~(j)~(co)</~(n)(co)}. On {z(1)1 < / ? ( n ) < m }  C, set 7(n)=M+ 1-2-". Then 
7(n) is a discrete (not necessarily simple) dyadic map. We now check that  7(n) is 
ff~(,)-measurable. For  every b < M ,  for every c < M +  1, 

{fl(n) =b}c~{7(n)=c } = ~ {~(n)=b}c~{z(j)l <b}c~{z( j+  1)1 >b}~{z( j )2  =c},  
j>l 

hence {fl(n) = b} c~ {7(n) = c} e f t  b. 
For  every b < M, 

{fl(n)=b}c~{y(n) = M +  1 + 2 - " }  = {"c(1)1 >b}efY b. 
Finally, 

{fl(n)= M + l - 2-"}~{7(n)= M + l + 2-" } = {fi(n)= M + l -- Z-"}e~M + l_ 2 ,, 

which concludes the proof  that  7(n) is ~{, ) -measurable .  For  every n, keep a 
finite subset R(n) of the range of 7(n) such that  P[y(n)eR(n)] > 1 - e .  2-".  Set 

n(n)=(fi(n), y(n)) on (~ {7(i)~R(i)}, 
i<n 

n ( n ) = ( M + l - 2 - " , M + l + 2 - " )  otherwise. 

Then n(n)eTl(D • D ) c  TI(S), n(n) 1-announces in Qn a bounded  1-stopping 
t ime n such that  n > ~ ,  and P ( = = ~ ) > 1 - 2 e .  

We now have to change the sequence n(n) to a sequence of elements of TI(S) 
having the required cluster points. Replacing n(n) by a subsequence, we may and 
do assume that  if F , =  ~ {Tc(k)z-ZC2>2-"}, then P(F,)<e.2-".  Choose a finite 

k>n 
subset of S, say {t(1, 1) . . . .  , t(1, r,)}, such that, setting 

A 1 ={co: Vt with ~(1)l(co)<t  1 <hi(co) and n(1)2(co)> tz>n2(co), 

there exists i with 1 <_i<r, such that  =(1),(co)< t(1, i)1 <ha(co), 

=(1)2(co ) > t(1, i)2 > n2(co), and ]X~(co) - Xt(1, ~)(co)] < 2-1}, 

one has P ( A 1 ) > 1 - 8 . 2  ~. Choose an integer nz>2  such that, if 

C1= U ({t(1, i)l < n l } \  {t(1, i)l <n(n2)a}), 
1 =<i=<rl 

then P(C 0 < e- 2 -  ~. For  every i with 1 < i < r~, set 

B(1, i) = {n(1)~ < t(1, i)1 < n(n2)~} c~ {n(1)2 - 2 -~ < t(1, 02 < n(1)2} ; 
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since 7c(1)2 is N~(lh-measurable, and since ~(1)1 and ~(n2) 1 are one-parameter  
stopping times for (~)~> o, the sets B(1, i) are ~t(a, m -measurable. For  every i with 
1 <_i<<_rl, define an element v(1, i) of Tt(S) as follows: 

v(1, i )=t(1,  i) on B(1, i). 

v(1, i)=~(n2) on B(1, i) c. 

We now order the 1-stopping times v(1, i), 1 < i N  r 1, by increasing values of 
the first coordinates,  thus obtaining rl elements of T~(S), say a(i), 1 <__ i__<r 1, such 
that  0"(i)1 increases, and o-(r~)~ <rc(n~)~. The construct ion of the sequence a(n) is 
cont inued by induction as follows: Suppose that  the stopping times a(i) such 
that  a(i)l increases, have been defined for 1 < i_<r ,  + ... + r~_ , ,  and let n~ be an 
integer larger than k such that  

~ + . . .  + rk- 1)1 ~ 7c(nk)l- 

Choose a finite subset of S, say {t(k, 1) . . . .  , t(k, rk)}, such that, setting 

A k = {co: Vt with n(nk) 1 (co) < t 1 < n 1(co) and n(nk)z(co ) > t 2 > n2(co), 

there exists i with 1 < i <  r k such that n(nk)l(co ) < t(k, 01 < ~q(co), 

n(nk)2(co ) > t(k, i)2 > n2(co), and IXt(co ) - Xt(k, i~(co)l < 2-k}, 

one has P(Ak)> 1 - -5 .2  -k. Choose an integer nk+ 1 > k +  1, nk+ 1 >nk, such that  if 

Ck= (,_) ({t(k,i)l <TCl}\ {t(k,i)l <rC(nk+l)l}), 
l <_i<_rk 

then P(Ck)<~.2 k. For every i with I <-i<_rk, set 

B(k, i) = {~(nk) 1 < t(k, 01 < ~(nk+ 1)1 } ~ {~z(nk)2 - 2 -  k < t(k, 02 < ~z(nk)2}- 

Then B(k , i~e~  1 ( ~ 1  Define v(k,i) in TI(S) by: / t ( k , i )  ~ f c ( n k  + 1) '  

v(k, i )=t(k, i )  on B(k,i), 

v(k,i)=x(nk+ 1) on B(k,i) c. 

Order  the 1-stopping times v(k, i) by increasing values of the first coordinates,  
thus obtaining r k elements of TI(S), say a(j) with r 1 + ... + r  k_ 1 + 1 <j<=r 1 +. . .  
+ r  k. The finite sequence a(j), l < = j < r , + . . . + r  k clearly satisfies the induction 
hypothesis. The  sequence (a(n))~= 1 converges to ~. The cluster points of the nets 
{Xt(co):tl<~zl(co), t2>n2(co ), t~n(co)}  also are cluster points of the net 
{X~(~)(co): n e N }  if co belongs to the set C=liminf(Aj~C~,c~F~,); since P ( C ) = I  
this completes the proof  of (1). 

The second par t  of the proposi t ion is proved in a similar way, only changing 
the inequalities and monotonic i ty  for the second coordinate.  [ ]  

An integrable process (X~)t~  + is an ascending 1-amart [ of class AL l  if for 

every bounded  sequence z(n) of simple 1-stopping times such that z(n) converges 
to a 1-stopping r, l imZ~(n)~=-cl ,  and ~(n)~<v~ for every n, one has that 
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limEX~(,) exists [and sup E IX~(n)l < oo3. Similar definitions are given for ascend- 
n 

ing 2-amarts. The following proposit ion is a left analog of Proposition 2.2. 

Proposition 3.2. Let ( X t ) t ~  + be a separable ascending 1-amart of class (AL), with 
separant set S = S  1 x S 2. Suppose that for every fixed beS2, the one-parameter 
process (Xa, b, ~alb,, a > O) is separable. Fix M_> 0 and a bounded, predictable one- 
parameter stopping time a for (~,~)~>=o. Then for almost all co, 
lim(X~,b(co): a <or(co), a ~rr(co)) exists uniformly in beS2, b < M. 

Proof Enlarging S if necessary, one may assume that for every beS 2, 
{(a,b)~S: a > 0 }  is a separant set for the process (Xa, b,a~O ). For every a > 0 ,  set 
fga = Y~. ~, let K be an upper bound for a, and let o-(n) be a sequence of stopping 
times for (f~o)a_>o 1-announcing a. Suppose that the stated uniform convergence 
fails to hold for almost all co. Let /3> 0, and let A be a non-null measurable set 
such that for every co~A and for every ~>0 ,  there exist s, teS with s 2 = t 2 < M ,  
a(co)-c~<s 1 < t l < a ( c o  ), and I X s ( c o ) - X t ( c o ) l > a  Denote by S 1 the set of the first 
coordinates of the elements of S. For  every teS, set 

A(1, t )=  {09: t 1 < a(co), 3s~S, such that s 2 = t  2 < M ,  [cr(1)] (co) < s  1 < t l ,  

IXs(CO) - x,(co)l > ~}; 

then A(1, t ) e ~ , V t .  Choose finitely many indices t(i) in S, l<i<_n~, with 
t(1)~ __< t(2)1 < . . .  < t(nl)l, such that if A~ = U A(1, t(i)), then P(A 1) > P(A)/2. Set 

i < n l  

~(1)=t(i) on A(1, t(i))'~ ~).A(1, t(j)), 
J<t 

z (1 )=(K+�89  on A~. 

Then r(1) is a 1-stopping time, and P[z(1)I<a]>P(A)/2 .  Suppose that the 
simple 1-stopping time r ( k - 1 )  has been defined, and that Pl-z(k 
- 1)l <or] >P(A)/2. For  every teS, set 

A(k, t)= {o9" t 1 < a(co), 3s~S, s 2 = t  2 -< M, 

[O'(k)] ((D) V [~ (k  - -  1)1 ] ((D) < s I < t l ,  I X s ( ( J ) )  - Xt((/))] > t3}. 

Choose finitely many indices t(i) in S, 1 < i<n  k, with t(1)l <t(2)1 < ... <t(nk) 1, 
such that if Ak= ~ A(k, t(i)), then P(Ak)>P(A)/2. Set 

i <_nk 

z(k)=t(i) on A(k , t ( i ) ) \  ~ A(k,t(j)), 
j < i  

~ ( k ) = ( K + l - 2 - k .  0) on A~. 

Then r(k), k > l  is a bounded sequence of simple 1-stopping times such that 
r (k) l  ~ o- on  Aco = (~Ak. 

Set r 2 = l im  sup z(k)2, and set r =(a ,  re). Each random variable r(k)2 is clearly 
fgr and z is a 1-stopping time. It is easy to see that Ao~ and ~2 are 
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measurab le  with respect  to v~q~rk~ 1, and P(A~)> P(A)/2. At least one of the three 
sets 

C 1 = Aoo c~lim sup {7.(k)2 =z2}, 

C 2 = A oo ~ (~ [l im sup {z z < 7.(k)2 < "C 2 q- •}], 
~ > 0  

C 3 = A oo c~ (-] [l im sup {% - e < z(k)2 < z2}], 
~ > 0  

the union of which is A~,  is non-null .  The  ascending 1-amar t  p roper ty  of  (X,) 
implies that  for every b~S2 ,  and for every increasing sequence of one-dimen-  
sional s topping times fl(n) for (Na)a=>0 which announces  some s topping t ime fi, 
the sequence (Xp~,~,b, ~lp(.),b, n~N)  is an LLbounded  ascending amart ,  and hence 
converges a.s. Since S 2 is countable,  the definition of A~ clearly implies that  
P (C1)=0 .  N o w  suppose  that  P (C2)=2c~>0 ,  and choose an integer n 1 such that  
if D I = C 2 c ~ ( ~ )  {7.(j)2>%}), then P ( D 0 > ~ .  Since Dl~vN~k)~, there exists 

j<-nl 
ml>n 1 and a set Fa~f~(~,), ,  such that  P(D1AFO<[P(DO-~]/x2 -1. Then 
P(F 1 ~ Ce) > ~. Set 

v(1)=(7.(m1)l, sup 7.(J)2) on Fa, 
j<=nl 

v(1)=(K+2-�89 -1) on /~f. 

Suppose  that  the integers me, nr the sets Fr and the s topping times v(i) have  
been defined for i < k - 1. Suppose that  m~ > n~ > m~_ ~, and 
P[Cz~FI ~ " "  c~Fk- 1 ]  > ~' Choose  an index n k > m k_ 1 such that  if 

U 
i<=k--1 m k - l < j ~ n  k 

then P(Dk)>c~. Since DkevN~(k) ~, there exists mk> G, and a set Fkeff~(m~),, such 
that  P(DkAFk) < [P(Dk) - c~]/x 2 -k. Then P[((") Fk)c~ C2] > ~. Set 

i<k  

v(k)=(z(mk) 1, sup 7.(/')2) on ~ F i ,  
mk 1< j_--<nk i n k  

v(k)=(K+2-2-k,2 -k) on ((~ Fi)q 
i<k 

Set F=~F~; then P(F~C2)>=~>O, and since ~P(D~AF~)<oo, the Borel-Can-  
k 

telli l e m m a  implies that  a lmost  every co belonging to F also belongs to l im infD, .  
Hence  for a lmost  every co in F, we have liminfv(k)z(co)>z2(co ). Since 
lim sup v(k)2 < l i m s u p  7.(n)2 =7"2, the sequence v(k) converges to z on F. Clearly 
v(k) converges to ( K + 2 , 0 )  on F c. Set v = l i m v ( k ) ;  then for a lmost  every co, there 
exists an integer k(co) such that  for every n>k(co), [V(n)2](co)>YZ(G'.)  ). This 
implies that  if B~=Fc~C2~(~ {v(n)2>v2}), then limJB~=Fc~C 2. Choose  

n>=k 

m > 0  such that  P(Bm)>p>O. Since B,, is in vN~(~)~, we can choose n>m and BE 
.~(,), such that  P[B,,AB]<P(Bm)-p. Set il=n, p(1 )=v( i  0 on B, p ( 1 ) = ( K + 3  
- 2 - 1 ,  2 1) on BL Suppose  that  the integer i~_ ~ and the 1-stopping t ime p(k-1) 
have been defined, and that  P[p(k-1)<(K+2,M)] >p. For  every fixed co, if 
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[ p ( k -  1)1 ] (co) = [v(i k_ 1)1] (co), let i k = inf{j > i k_ 1 : [-v(j)2] (co) < [V(ik- 1)21 (CO)} 
(where i n f 0 =  +oo), and if [p(k-1)] (co)>(K+2,0) ,  set ik= +c~. If  ik<o0, set 
[p(k)] (co)= [V(ik) ] (co); if i k = + oO, set [p(k)] (co)= (K + 3 -  2 k, 2-k). Then p(k) is 
a discrete 1-stopping time. It is easy to see that p(k) 1-announces a 1-stopping 
time p in QII, that p = v  on B~Bm, and that P[Fc~C2c~{p=z}]>p>O. Since 
F c l i m i n f D , , ,  the net {Xt(co): t~p(co),  t l<pl(co),  tz>p2(co)} fails to converge 
for every co in F ~  C a ~ {p ='c}. Applying Proposition 3.1(1), let rc be a predictable 

1-stopping time such that P(~z = p ) >  1 -p-  and let ~(n) be a bounded sequence in 
2' 

TI(S) 1-announcing re, and such that the set of cluster points of the net 
{Xt(co): t ~ re(co), t 1 <~zl(co), t 2 >~2(co)} is contained in the set of cluster points of 
the net {X~(,)(co): n > l }  for almost every co. Then the L~-bounded ascending 
amar t  (X~(,) ,~}n),neN) does not converge on a set of probabili ty larger than 
p/2, which brings a contradiction. Hence P(C2)=0,  and for almost every coeAoo, 
there exists an integer N(co) such that for every n>N(co), one has 
['c(n)2](co)<'c2(co ). This implies that if G g = A o ~ ( ~  {z(n)2<'c2}), then lim.. ~ G k 

n>=k 

=Aoo. Choose n > 0  such that P(G,)>q>O. An argument similar to the one 
given above for B k and v k now shows that one can construct a sequence of 
discrete 1-stopping times p'(k) which 1-announces a 1-stopping time p'  in (2n~, 
and such that the net {Xt(co): t~p'(co), t~p'(co)} fails to converge for all points 
co that belong to a subset of A~o of probabili ty at least q. 

Hence Proposition 3.1(2) and the ascending 1-amart property of the process 
(Xt) bring a contradiction (by an argument similar to the one given above to 
show that P(C2)=0 ). [] 

Applying Propositions 2.3(i) and 3.2, we obtain the following: 

Proposition 3.3. Let (Xt ) r~  + be a separable ascending amart of class (AL) with 
separant set S. Suppose that for every fixed bES2, the one parameter process 
(X~,b: a>O) is separable with separant set S~. Fix M > 0 ;  then for almost every co 
the functions a~-~ X,.b(co ) have left limits uniformly in bES2, b < M. 

The following theorems state the existence of left-limited modifications for 
some classes of amarts. The proof  is similar to the proof  of Theorem 2.4, and 
will be omitted. 

Theorem 3.4. Let ( X t ) t ~  + be an ascending I-amart of class (AL), such that for 
every index t and for every sequence z(n) of simple one-dimensional stopping times 
for (~,b)b>=O, tz=l im'N z(n) implies EXt=l imEX~,~( ,  ). Then (Xt) has a modifi- 
cation almost every trajectory of which has limits in Qir I f  furthermore for every 
f ixed a > O, the one-parameter process (X~, b, ~ , b ,  b > O) is an ascending amart of 
class (AL), then the modification of (Xt) can be chosen to have limits in ~II and QIII" 

We say that a process has limits in the left half-plane QnuQii~ [is continuous in 
the left half-plane] if for every index t, lim(X~:s--*t, s z<t l )  exists 
[lim(Xs: s --, t, sx < ta) = Xt]. Similar definitions are given for the right half-plane 
QiuQ.iv, the upper half-plane QI~QII, and the lower half-plane QIllt")~lV" 
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Theorem 3.5. Let (X,)~a~+ be an ascending 1-amart of class (AL), such that for 
every a >= O, the one-parameter process (X,.b: b > O) has a continuous modification. 
Then (Xt) has a modification almost every trajectory of which has limits in the left 
half-plane. 

Proof As in the proof of Theorem 2.4, let (Ut) be a separable modification of (XJ 
with separant set S = S  1 x S 2, where S~ and S 2 are dense in IR+. For  every b~S2, 
choose a separable modification of the one-parameter process (Ua, b)a>=O, say 
(V~,b),>o with separant set S(b)=S 1. Let (U/) be the process defined by U[= V t if 
t2~$2, U/= U t otherwise. Since S 2 is countable for every aeS[ = ~ S(b), the one- 

baS2 

parameter processes (Va, b)b >= 0 and ( U~, b)b >_ o are indistinguishable. Hence ( V,, b)b >= 0 
has a continuous modification, say (W,,b)b>O. The process Z~= 14,; if t l~S'  1, Z t 
= V t if t~r is an ascending 1-amart, and satisfies the assumptions of Proposi- 
tion 3.2. Now an argument similar to the one given in Theorem 2.4 shows that 
the process (Zt) has limits in the left half-plane. [] 

Theorem 3.6. Let (X~) be a descending 1-amart, and an ascending 1-amart of class 
(AL). 

(i) Assume that (~1) is 
(fa, b)b>=O is right-continuous, 
descending and an ascending 
and for every sequence z(n) in 
Then (Xt) has a modification 
other quadrants. 

right-continuous, that for every a>_O, the family 
and that the process (X,.b, fi,,b,b>O ) is both a 

amart of class (AL). Suppose that for every index t 
T ~ 1-decreasing to t in QI, one has limEX~(,)=EX,. 
(Yt) continuous in Q,I, and having limits in the three 

(ii) Assume that the family (~1) is right-[right- and left-] continuous, and that 
for every a >= O, the process (Xa, b' fi~, b, b >= O) has a continuous modification. 
Suppose that for every index t and every sequence z(n) in T 1 converging to t with 
z(n)l >t  1 It(n)1 < t l ] ,  one has l imEX~(,)=EX~[limEX~,)=EXt,  ' and (X~(,)) is 
uniformly integrable]. Then (Xt) has a modification continuous in the right [left] 
half-plane such that almost every trajectory has limits in the left [right] half-plane. 

(iii) Assume that the family (Ytt 1) is right-continuous, and that for every a> O, 
the processes (X,, b, Y,,  b, b > 0), and (Xb, ~, fib, a, b > O) have continuous modifi- 
cations. Suppose that for every index t, and every sequence z(n) in T 1 converging 
to t in QI, one has l imEX~(,)=EX t. Then (Xt) has a continuous modification. 

Proof (i) The statement is an eady consequence of Corollary 2.6 and Theorem 
3.4. 

(ii) The existence of a modification (Yt) of (Xt) having limits in the half- 
planes is an easy consequence of Theorem 3.5 and its analogue in the right half- 
plane. The existence of modifications continuous in the right half-plane under 
the unbracketed assumptions follows from Theorem 2.5. Under the bracketed 
assumptions, let Zt=lim(Ys: s v*t, S l < t l )  ; clearly (Zt) is continuous in the left 
half-plane. We show that (Z~) is a modification of (Y~) (cf. [9] for the one- 
parameter case). Fix t with t~ >0,  and let s be such that sz <t~. Let F s f ~ l ;  for 

e v e r y n > l / ( t l - S l ) , s e t ' c ( n ) = t o n F ~ , z ( n ) = ( t l - ! , t 2 )  onF.  Thenz(n) converges 

to t, v(n)l__<tl, and z(n)~T I. Hence limEY~,)=EY~. Clearly Y~(,) converges 
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pointwise to Ztle+Y~IF~. Since (Y~(,)) is uniformly integrable, limEY~(,0 
=E[1FZ~] +E[lvo Yt]. Hence E[-le Yt] =E[1FZt] for every F e ~  1, s 1 < t  a. 

Since the family (o~t~) is left-continuous, the equality of expectations holds for 
every F ~  1 = o ( ~ 1 :  s 1 <tl) ,  and hence Yt=Zt a.s. 

(iii) Let (Zt) be a separable modification of (Xt) with separant set S = S  1 x $2, 
such that for every aeSl[bSS2]  the process (Z~,b)b~0[(Z~,b)~>O] is continuous 
(hence separable). Fix M >  0; by Propositions 2.2, 2.3 and 3.2, for almost every co 
the functions a ~ Z~,b(CO ) are continuous uniformly in b E S  2. Since the processes 
(Z,,b)b> o are continuous for every a~Sa, we deduce that for almost every co, 
lim(Zs(co): s--,t,  s~S) exists for every t. Since S is a separant set for (Zt), this 
defines a continuous modification of (Zt), and hence of (Xt). [] 

4. Regularity of L Log L-bounded Martingales Indexed by 1R2+ 

In this section we show that under natural regularity assumptions on the o-- 
algebras, L LogL-bounded 1-martingales indexed by IR2+ are descending 1- 
amarts. Hence processes which are simultaneously 1- and 2-martingales have 
modifications which are continuous in the first quadrant, and have limits in the 
two quadrants QII and Qiv- 

Recall that if (~) t~+ is a stochastic basis, then 

~ 1 =  V ~ .... and j~2= V ~,,t2. 
u>0 u>=0 

By definition a 1-martingale (Xt) is a martingale such that E(X~]~I)= 
Xsl,~2 for every s =< t, while a 2-martingale (X~) is a martingale such that E(X~I~ 2) 
= Xt .... for every s <= t. 

Proposition 4.1. Suppose that there exists a sequence of real numbers a(n) ~ + 
such that the families(~,),b)b~= o are right-continuous, and suppose that ( ~ ) t ~ +  is 
right-continuous. Let (Xt) be a 1-martingale bounded in L Log L. 

(1) Let z be a bounded 1-stopping time, and let z(n) be a uniformly bounded 
sequence in T ~ such that 

(i) ~(n)2 >= z2 for every n, 
(ii) limz(n)2= % a.s. 

n 

Then EX~t,) converges. I f  z 2 is a constant, then lira EX~(,) = EXo, o. 

(2) Let z be a bounded 1-stopping time, and let z(n) be a uniformly bounded 
sequence in T ~ such that 

(i) z(n)2<z 2 for every n, 
(ii) limz(n)2= % a.s. 
Then EX~(,) converges, and the sequence X~,) is uniformly integrable. 

Proof Fix n; the one-parameter martingale (X~(,~.b,~,~,b)b~0 has a right- 
continuous modification which has left limits, say (Z~,),b)b~o. Let z and z(n) be 
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1-stopping times bounded by (a(M), a(M)) for some M. Then 

EX~(.)= ~ E[l(~(n)=(a,b)}Xa, b] 
a, b 

= ~ E[I(~(,)= (a, b)) E(Xa(M), b[Sl~a~a, 0o)] 
a , b  

= ~,E[ l~{~(n)=(a,b)} Xa(M),b] 
b 

= ~ Ell(:(.): = b} Z.(M), b] = E[Za(M), ~(n)2]' 
b 

By the choice of (Za(i),b)b>_O, the sequence (Z.(i),,(.)2).>=o converges point- 
wise to Za(M),~ ~ under the assumption (1), and to a limit denoted Z.(M),~: - under 
the assumption (2). In both cases, sup]Z.(M),,(.)2[_-< sup [Xa(M).b] a.s., and the 

b < a ( M )  

right hand-side is integrable (see (Sect. ]). This allows us to integrate and deduce 
the convergence of EX~,). Under the assumption (1) for a 1-stopping time r, one 
clearly has limEX,(,)=EZa(~t),:~; hence if 7 5 2 - b ~ ] R + ,  l imEX~(,)=EXo, o. Let 
o-(n) be a sequence of 1-stopping times uniformly bounded by (K, K). For  every a 
with O<a< K, set Y~=sup{lX,,h]: b < K}. Since EYa< E{sup{lXK, b]: b<K}),  the 
process (Y~,~,~,,oo)azK is an D-bounded submartingale. Furthermore, letting 
(C a = o~, o0, one has 

a 

=< Z 1(o(.)~ =.} E(YKI~.) = E(YK]~(.)~), 
a 

which shows the uniform integrability of the sequence X.(.). [] 

The proposition above shows that under the usual assumptions on the o-- 
algebras, LLogL-bounded  1-martingales are descending 1-amarts such that for 
every a__>0 the one-parameter process (X.. b,~a,b, b>O) is a descending amart 
and an ascending amart of class (AL). The analogue of Proposition 3.1 for 2- 
martingales together with Corollaries 2.6 and 2.7 thus allow us to deduce the 
following' 

Theorem 4.2. Let (~tt)t~+ be a stochastic basis such that the family (~t) is right- 
continuous. I f  (Ytt 1) is right-continuous, then ever), L LogL-bounded 1-martingale 
is a descending 1-amart, and admits a modification almost ever), trajectory of which 
is continuous in QI, and has limits in Qiv. Similarly, if (~t 2) is right-continuous, 
then every L LogL-bounded 2-martingale is a descending 2-amart, and admits a 
modification almost every trajectory of which is continuous in QI, and has limits in 

Q I I .  

Corollary 4.3. Let ( ~ ) ~ +  be a stochastic basis such that the families (~) ,  (~ta.), 
and ~ 2 (5)~ ) are right-continuous. Then every process bounded in L L o g L  which is 
both a 1-martingale and a 2-martingale admits a modification (Yt) almost ever), 
trajectory of which is continuous in QI, and has a.s. the following limits for every t: 
lim(Y~: s 1 <t l ,Sz>t2) ,  and lim(Y~: s 1 >tDSz<t2) .  

Hence one deduces the following theorem (see also D. Bakry [2], [3]). 
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Theorem 4.4. Let ( ~ )  be a stochastic basis such that the families (~) ,  (~t 1) and 
(~tt 2) are right-continuous, and such that (~t 1) and (J~t 2) are conditionally inde- 
pendent with respect to ( ~ )  for every index t. Then every L LogL-bounded 
martingale (Xt) has a modification (Yt) continuous in QI, and having limits in the 
quadrants QII and Qiv. 

Trivial examples (e.g., a constant process) show that the assumptions of 
Corollary 4.3 are strictly weaker than those of Theorem 4.4. 

Finally let us observe that a natural example of a family of a-algebras ( ~ ,  P) 
satisfying the conditions stated in Theorem 4.4 is (~1,t2 = ~  | P=P1 @P2), 
where (sJt)t>_o and (Bt)t> 0 are right-continuous one-parameter increasing fa- 
milies of a-algebras on (~21, P1) and (f22, P2). 

The following theorem shows that if the vertical one-parameter processes are 
continuous, then 1-martingales have limits in the left and right half-planes. 

Theorem 4.5. Let ( ~ )  be a stochastic basis such that the family (~1)  is right- 
continuous, and let (Xt) be an L LogL-bounded 1-martingale. Suppose that for 
ever), a > O, the process (X,, b, ~a, V, b >= O) has a continuous modification. Then (Xt) 
is a descending 1-amart and an ascending 1-amart of class (AL). Hence (Xt) has a 
modification (Yt) almost every trajectory of which is continuous in the right half- 
plane, and has limits in the left half-plane. 

Proof The argument given in the proof of Proposition 4.1 clearly shows the 1- 
amart property stated. The regularity of the trajectories follows from Theorem 
3.6(ii). [] 

As an application of Theorem 3.6(iii) we recover a result first shown by 
Cairoli and Walsh [6], about martingales for the a-algebras generated by the 
two-parameter Wiener process. Our method is very different from theirs, since it 
does not use two-parameter stochastic integrals. Let W be the random measure 
on IR 2 which assigns to each Borel set A a Gaussian random variable of mean 
zero and variance equal to the Lebesgue measure of A, and which assigns 
independent random variables to disjoint sets. Define a process (W t, t~]R2+) by 
W~= W(Rt), where Rt={s:  O<_s<_t}, and set ~t =a(W~: s<t). Then for every t the 
a-algebras (~1) and (~t 2) are conditionally independent with respect to (~,~). 

Theorem 4.6. Let o~t = a(W~: s<t )  be defined as above, and let (X~) be an L L o g L -  
bounded martingale for the family (~) .  Then (Xt) has a modification (Y~) which is 
continuous. 

Proof The process (Xt) is an ascending 1-amart of class (AL) and a descending 
1-amart. For every a > 0  [b>0] ,  the one-parameter martingale (Xa, b, b>0) 
[(Xa, b, a>0)]  is an Ll-bounded martingale for the a-algebras generated by the 
one-parameter Brownian motion (W,, b, b>0) [-(Wa,b, a>0) ] ;  hence it has con- 
tinuous modifications. Theorem 3.6(iii) concludes the proof. [] 

Finally, there is a local theorem at infinity (or at any index t in QIII)- 

Theorem 4.7. Let (X~) be an ascending 1-amart at oe, i.e., suppose that the net 
(EX~: z ~ T  1, z ~ oe) converges. Suppose that lim supEIXtl < oo. Then X~ converges 
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essentially when t---, o9. Hence L L o g  L-bounded separable 1-martingales converge 
essentially at oo. I f  the processes are separable, a.s. convergence holds. 

Proof L e t  s be  such  tha t  sup  EIXt[ < oo. T h e  p rocess  (X t, ~t 1, t>s)  is an  L 1- 
t>.s 

b o u n d e d  a m a r t  for the  t o t a l l y  o r d e r e d  fami ly  of  a - a l g e b r a s  (~ttl). H e n c e  by 

A s t b u r y ' s  t h e o r e m  [1] ,  X t c o n v e r g e s  essent ia l ly  at  oo. T h e  p r o o f  tha t  if  (Xt) is an  
L L o g L - b o u n d e d  m a r t i n g a l e ,  t hen  X~ c o n v e r g e s  in L1, h e n c e  EX,  c o n v e r g e s  

is s imi la r  to  the  p r o o f  o f  T h e o r e m  1.1 above ,  and  is omi t t ed .  F ina l ly ,  a.s. con-  

v e r g e n c e  in the  p r e sence  o f  a s e p a r a n t  set fo l lows  by  s t a n d a r d  a rgumen t s .  [ ]  

Added in Proof. We wish to use the present opportunity to correct an omission in the statement of 
Theorem 4.1 [12], p. 97, pointed out to us by Professor Alexandra Bellow. We consider a family 
f(a, z) of ~-,-measurable functions. We assume the 'localization' in the first variable a, but the 
proof also uses the localization in the second variable. Hence one should add the following as- 
sumption: For each s and each ~-measurable set A, z=z' on A implies f(s, z)=f(s, z') on A. This 
assumption is obviously satisfied in the application of the theorem. 
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