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Summary 

This paper considers a finite dam in continuous time fed by inputs, with a 
negative exponential distribution, whose arrival times form a Poisson process; 
there is a continuous release at unit rate, and overflow is allowed. Various results 
have been obtained by appropriate limiting methods from an analogous discrete 
t ime process, for which it is possible to find some solutions directly by deter- 
minantal  methods. 

First the stationary dam content distribution is found. The distribution of the 
probabili ty of first emptiness is obtained both when overflow is, and is not 
allowed. This is followed by  the probability the overflow before emptiness, 
which is then applied to determine the exact solution for an insurance risk problem 
with claims having a negative exponential distribution. The time-dependent con- 
tent  distribution is found, and the analogy udth queueing theory is discussed. 

1. Introduction 

Since the formulation of a stochastic theory of dams by Mo1~_~r162 [9] a consider- 
able literature has accumulated for both discrete and continuous time dam pro- 
eesses; solutions have been obtained for various stationary and time-dependent 
problems, including those of emptiness which are related to first passage times in 
random walks. Descriptive details and bibliographies have been given by GA~I [6] 
and MO~A?r [10]. tIowever, most results have been found for an infinite dam and 
little is known about the finite dam, when the problem is complicated by the 
possibility of overflow. For a finite dam in discrete t ime P~ABgU [I1] has given 
a method of solution for the stationary distribution, GHOSAL [7] and WEESA- 
KUL [14] have discussed problems of first emptiness and W~ESAKUL [15] has 
found the time-dependent solution when the inputs have a geometric distribution. 

In  this paper we are concerned with a dam of finite capacity K (a positive real 
number) fed by inputs, whose size is a random variable having a negative ex- 
ponential distribution with distribution function (d.f.) 

a ( x )  = 1 - -  e - ~ ( O  < x,  # < ~ )  , 

which occur in a time-homogeneous Poisson process with finite mean ~. The release 
of water is continuous at unit rate per unit t ime unless the dam is empty,  and 
any input which raises the total  content beyond K overflows and is lost. We 
denote this model A. 

10" 
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Let  the content  of the dam at t ime t ( >  0) for model A be denoted by  Z (t) ; 
Z (t) is defined on the non-negative real numbers  not  exceeding K, and is a Markov 
process satisfying : 

Z (t -~ dt) = rain (Z (t) ~- d X  (t), K) --  rain (Z (t) @ d X  (t), (1 - -  ~]) dr), 

where ~] dt is the t ime during (t, t 4- dt) tha t  the dam is empty,  and dX(t )  is 
the input  in (t, t ~- dt), this being addit ive and independent  in non-overlapping 
t ime intervals. Define as F(z ,  t] U, K) = Pr  {Z (t) < z ]Z(0) = U; K} the d.f.  of 
the dam content  at  t ime t given tha t  the non-negative number  U is the content  
at  t ime zero. B y  enumerat ing the possible occurences during (t, t -~ dr) and letting 
dt -+ 0 we obtain the following integro-differential equation (e.f. TAKXCS [13] for 
K---- ~ ) ,  which is the forward Kolmogorov  equation of the process: 

z 

~-- F(z,  t] U, K) -- -a- F(z,  t] U, K) = --  ,~.F(z, t I U, K) + At~ .f F(z  --  x, t I V, K) 
~t Oz 

x ~ O  

e - z zdx ,  0 -<_z <_K,  (1.1) 

with F(z,  t lU ,  K ) =  1 for z > K .  We have F(z,  t l C ,  K ) = 0  for all z < 0 .  
F(z,  t[ U, K) is continuous everywhere in max  (0, U --  t) < z < K,  but  has a 
discontinuity at  z = max (0, U --  t) ; when t > U the concentrat ion F (0, t [ U, K) is 
the probabil i ty of emptiness of the dam at t ime t; F(z,  t ] U, K) has a derivative 
aF(z, t I U, K)/az continuous everywhere, except at  z = max(0,  U -  t) where 
only a r ight derivative exists and at z K where only a left derivative exists. 
F (z, t I U, K) is continuous with respect to t ime for all t and z (0 --< z --< K) except 
at  t =  U - - z w h e n 0 - - < t - - <  U, 0 - < z <  U ( s e e D o o B  [4]). 

We now describe a discrete dam model in which the content  Zt (t = O, 1, 2 . . . .  ) 
can take only the integral values 0, 1, 2 . . . . .  I n  an interval  (t, t q- 1) of t ime 
there is a probabil i ty a (0 < a < 1) of  an input  occurring and a probabil i ty 
b = 1 - -  a of no input  occurring ; the interval of  t ime between successive inputs 
has the geometric distr ibution ab ~-1 (i = 1, 2 . . . .  ). Whenever  there is an input  
its size W is a r andom variable with the geometric distribution 

P r { W = i } = p q ~ - ~  ( i = 1 , 2  . . . .  ; O < p < l , q = l - - p ) .  

The inputs occur independently,  and during (4 t q- 1) the input  X t  is seen to 
have the modified geometric distr ibution:  

P r { X t = O } = p o = b ;  P r { X t = i } = p ~ = a p q  i-1, i = 1 , 2  . . . . .  (1.2) 

Let  there be a unit  release just before the  end of  each unit  t ime interval,  i.e. at  
t - -  0 (t = 1, 2 . . . .  ), unless the dam is empty.  Fur ther  
capaci ty  k ( >  0), so tha t  there is an overflow of size Xt  
We label this discrete formulat ion model B. 

I t  is known tha t  {Zt} forms a Markov chain with 
and the transit ion matr ix  

b ap  a p q  a p q  k-a aq ~-2 
0 b ap  a p q  ~-4 aq ~-3 

s_= 
0 0 0 b ap  aq 
0 0 0 0 b a . 

let the dam have integral 
q- Zt - -  k if  X t  Jr- Zt > k. 

the states O, 1, ... , k - -  1 

(1.3) 



Some Problems in Finite Dams with ~n Application ~o Insurance Risk 137 

The cumula t ive  probabil i t ies Qi (tln, k) = Pr  (Zt ~ i l Z0 = u ; k} of the dam con- 
t en t  dis t r ibut ion given integral  initial content  u and capaci ty  k sat isfy the  dif- 
ference equat ions 

i + 1  

Q i ( t - k l l u ,  l ~ ) = ~ O i ( t l u ,  lc)pi+l_j, i = 0 , 1  . . . . .  ] c - - 1 .  (1.4) 
j=0 

The relat ion (1.1) m a y  be obtained f rom the analogous discrete t ime difference 
equations (I.4) by  the  l imiting process described below. We have  been unable  to 
solve (1.1) direct ly and have  resorted to limiting methods  f rom the solutions for 
the discrete model  B. We shall pass f rom the discrete to the  continuous prob lem 
as follows: let the discrete model  B be defined in units  of size d ( > 0 )  ins tead of 
unity,  so t h a t  content,  t ime,  input  and release are all measured  in units of  size A. 
We pu t  

(a) a =  ).A + o(~l), b =  l -- ).A § o(A),  p = , u A  + o(A),  
q = 1 - - ,aA  + o ( A ) ,  

(b) i = z A - 1 ,  t ' = t A  -1, u =  UA -1, lc= K A  -1, (1.5) 

where t' represents  t ime in the discrete ease. As we let A -+ 0 it is easily seen t h a t  
the t ime interval  between inputs  and the size of inputs  have  negat ive  exponent ia l  
distr ibutions with means  2 -1 and/~-1  respectively,  and the release becomes con- 
t inuous a t  uni t  ra te  per uni t  t ime. Under  (1.5) as A -> 0 we have  (1.4) tending 
to (1.I) and  model  B is thus a discrete analogue of model  A. 

2 .  T h e  s t a t i o n a r y  d i s t r i b u t i o n  

We first consider some propert ies  of model A when it has set t led down to 
a s t a t ionary  s ta te  which happens  with probabi l i ty  one whenever  K is finite. 
We prove  

T h e o r e m  1. For model A the stationary d./.  F (z I K) = l im F (z, t I U, K) o/ the 
t -->- oo  

dam content, which exists independently o[ the initial content, is given/or K ~ oo by 

F (z] K) - ~ - ;.e-(~-~)z -- ),e-(r,-a)K ' 0 ~ z _--< K .  (2.1) 
oo 

The Laplace-Stieltjes translorm (LST) W (s I K) =- f e -sz dF (z ] K) (Rl s ~ O) o/ 
z = O  

(~ l K) is 

~0(s i K ) = (~ - ~){~ + s - ~ - ( , + ~ - ~ ) ~ }  (# - -  2 + s ) { #  - -  Ze ( . -~ . )K} " (2"2) 

Proo]. For  a finite dam in discrete t ime  fed by  independent  discrete inputs  
a formula  has been given by  PRA~HU [11] for determining the  s ta t ionary  dam con- 

t en t  distribution. A generat ing function V (0) = ~ Vi 0 l ([ 0 [ ~ I) is obta ined f rom 
i = 0  

the  relat ion 
V(O) p0(1 - 0) 

A (0) - 0 ' 

where A (0) = ~ p ~  0 ~ (I 0] ~ 1) is the probabi l i ty  generat ing funct ion (p. g.f.) of  
i 0 

the input  distr ibution.  Expand ing  V(O) and normatising yields the  s t a t ionary  
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probabil i t ies Pl  = l im Pr  {Zt = i I u, k}. For  model  B, A (0) = b ~- ap 0 (1 - q 0) -1 
t ---> oo 

so t ha t  we obtain  
i 

Q i =  ~ P ~ - - P - a ( q / P ) ~ + l i = O ,  1, k - - 1  (2.3) 
j = o P -- a(q/P)k . . . . .  

To obtain  the  s t a t ionary  d.f.  F (z I K) for model  A f rom the discrete analogue 
we use units of size A and the subst i tu t ion (1.5) and  let A --> 0. We  have  

(~ -e~  tz~-1+1 
tea --~.A\I_~.A ] 

F (z I K) = l im 
. . /1- - tea  \KA-1 

A --" O te A -- Z Zl ~ ~ X  ) 

= te -- ;~e-(~-a)z 0 <~ z <-- K 
# - -  2, e - ( ~ - Z ) K  

which we wished to prove.  The LST ~f(s lK ) is found by  integrat ion of (2.1) and 
is given b y  (2.2). 

F r o m  (2.2) the  probabi l i ty  F ( 0 [ K )  t h a t  the  dam is e m p t y  is 

(0 [ K) = (~ --  ~) {~ -- ~ e-(~- ~)K}-~, 
while when ), = r e  

F ( z ] K ) = ( l ~ - ) , z ) ( l + ~ K ) - Z  O ~ z ~ K .  

The momen t s  of the content  dis t r ibut ion m a y  be found by  differentiation of (2.2) ; 
the mean  is 

[ ,~ {~ - (1 + (te - ,~) K) e-(~,-~)K} ~ 4: tt 
E (z) = / ~ { ~  2-~-(~--~)~} 

| 2(1 ~ - K )  ). = } t .  

3. First emptiness and overflow 

Our ma in  concern in this section is to obta in  for model  A the improper  d.f 's .  

G*(0, t ] U , K ) = P r { Z ( T ) = 0  for s o m e ~ i n  0 < T ~ t ;  
0 < Z ( v )  < K, 0 < v < ~[ U,K}, 

G*(K, tl U, / ; )  = Pr{Z(T) = K for some ~ in 0 < ~ ~ t; 
0 < Z ( v )  < K, 0 < v < ~:] U , K }  

t h a t  the dam with initial content  U and  capaci ty  K empties  (overflows) for the  
first t ime before overflow (emptiness). We also consider the  zero and  overflow 
avoiding (improper) dis t r ibut ion 

G * ( z , t ] U , K ) = P r { Z ( t ) < = z ; O < Z ( z ) < K , O < z < t I U ,  K } O < = z < K ,  

where cont inui ty  propert ies  are similar to t h a t  for F (z, t] U, K)  for 0 =:<- z < K 
a l though there  is not  now a concentra t ion of probabi l i ty  a t  z : 0 except  for t = U. 
We shall determine the LST ' s  

oo 

~*(0, 81 rZK) = fe-st dG(0, t I U,K) 
t = 0  

c~  

q~*(K, s lU ,  K ) =  f e - s t d G ( K ,  t lU,  K ) R l s ~ O  
t = O  

qg*(z, s tU ,  K ) : f e - S t G ( z ,  t lU,  K ) d t  O < z < K ,  
t = 0  

m a y  be inverted.  and show how they  
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9)*(z,s I U , K )  = ,  

Theorem 2. For model A 

9)* (0, 8 ] U, K) = e-  v(.~+ ;.) {we- ( t r -  ~,)~:_,?~ e - (K-  U) ~} 
Vle-K~2-- v2e-Kv~ (3.1) 

9)* (K, s I U, K) : ,t e -(~:- v) ,  {e- v, .  - e -  ~',~} 
rll e -  K~,-- w e -  K,~ (3.2) 

,e-g(s+a){?]l e-(K U)v . ,__~]2e- (K-U)w}X 

O < z < U  

9)*(u, s [ U,K) + ~ e ' ~  {e - v ~ -  e -v~} • 

{ (V,--tt)e-K~..(eZ(W-~) - eV(v~-~)) -(V2-#) e-1;w(ez(w tO- e5"(w-~))\ 

where 
~ = ( ( 2 §  1/2, 2 ~ 1 , 2 = 2 + # § 1 7 7  

Pro@ We begin with  the discrete model  B; we define 

G(i, t lu ,  l c ) = P r { Z t ~ = i ; 0 < Z  i < ] c , O < Z  i •  for all 

O < j < tlZo = u; lc } ,  

G (k, t I u,/c) = P r  {Zt-1 • X t -1  > k; Z~ > O, 0 < j < t; Z~ • X~ <= Ic, 

0 <_i ~ t - - 2 [ Z o = u ; l c }  

U < z < K  

(3.3) 

where G (0, t I u ,  k) and  G (k, t [ u, k) are respect ively the probabil i t ies of  first emp- 
tiness (overflow) a t  t before overflow (emptiness). Following the a rgumen t  of 
WEESAKUZ [14] it m a y  be shown t h a t  

G(i, t lu ,  lc)= P(u)  Q_t-~G_(i) i = 0 , 1  . . . .  ,/c, (3.4) 

where P (u )  is the  row vector  (0 ... 0 b ap ... apqk-u-1)  with b in the (u - -  1)-th 
position, _G(i) is the column vector  of  elements G(i, 1 [J, k) (j =- 1, 2 . . . .  , k) and 

is a ma t r ix  similar to S except  t h a t  the  first e lement  of the first row is ap and 
the  last  column of S is replaced b y  (apq ~-~ apq  ~-3 ... apq  ap). We have  

a q - J ( 1 - - q i + l )  l ~ j ~ i  
j = i + l  i < k  

r ~]J, k) = bo j > i + 1 
taq~-1 1 ~ j  ~ k; i = k.  (3.5) 

In t roduc ing  the  t ime t rans form q~(i, Otu, k) = ~ G(i, tlu, k) Ot(] 0] ~ 1) i t  
t=0  

follows f rom (3.4) t h a t  

9) (i, 01 ~, k) = 02 g (u) ( !  - 0_Q)-I _a (i).  

B y  writing ( !  - -  0 Q)-I  in t e rms  of the  cofactors of its e lements  we can show t h a t  
k--1 

9) (i, O ]u, l~) = 02{] ! --  O Q_I}-I ~ D~G (i, 1 ]j,/c), (3.6) 
]=1 
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where Dj is the determinant  of the matr ix  ( I  - -  0_Q) with the j - t h  row replaced 
by  P (u). Each of the determinants  in (3.6) is evaluated by  using recursive rela- 
tions after  reduction into a con thmant  form; e.g. for ] I -  0_Q] we carry out  
the reduction by  subtract ing from each row the row immediate ly  below it multi- 
plied by  q. We quote the following results: 

1~_ - OQ] = ( ~ 1  - ; ~ 2 ) - 1 { ( ~  - ~ 2 ) ~  - (1  - ~ 1 ) ~ } ,  

0 (0 b) u-~ B,~-u-1 Bi-1 i = 1, 2, . . . ,  u 
D~ = q~-u A u-1 {(ap -- b q)B~-~-I + b q B~_~_~} i = u -~ l . . . . .  k 

Bn = (~,1 -- ~2) -1 {(1 - -  ~2)),~+1 __ (1 --  ~1)~t~ +1} n ~ 1 

A n  = (/~1 - -  /~2 ) -1{2~  +1 - -  2~+1}  % ~ I 

221,2-----~(y2--40bq)i/2, y=l--O(ap--bq), 

where B0 = B-1 = A0 = 1. Using these results we now obtain 

q) (0, 0 ] u, k) = (0 b) u B~-u-1 Bf-~I (3.7) 

~(k,O]u,k)= ~o ~B ~ (Ob)u-Jq~-~Bi-l + 
B ~ _ I  ~ k - u - 1  ] = 1  

k--2 
+ O a p q ~ - u A u - l ~ B ~ - ] - i  + Obq~-u+lAu-l(1 - -  Bk-u-1)} (3.8) 

] = u + l  

i 
0 Bk-u-1 ~ {a (Oh)u-1 (1--q~-j+l) Bj- l -~b (0 b)u-l-J Bj}I --< i ~ u 

o i ~(u, OIu, k) ~- -B~_l [aB~_u_l (Obq)u-~(1 _ q~-u+l) _~. 
j = l  

cp(i,O]u,k) = OAu_l i 
] = u + l  

i 
a b q1 (1 --  q~-]+l) B~-u-1 ~- ap (1 -~ b q3) ~ Bk-r-2 ~- b q}] 

r = ]  

u + l ~ i  ~ l c - - 1 .  (3.9) 

These results ~re the first step towards finding those for the analogous con- 
t inuous t ime process. We make the subst i tut ion (1.5) and the required results 
(3.1)--(3.3) follow from (3.7)--(3.9) from the following passages to the limit, which 
m ay  be justified by  the cont inui ty  theorem in C n ~  [2, pp 96--  100] : 

9~* (0~ s] U, K) = lim ~ (0, e -s~ ] UA -1, K A - 1 ) ,  
A --> O 

q~* (K, ~ ] U, K) = lira ~o(K A -1, e-S'~ [ U A -1, K A-1) , 
A ----> O 

99* (z, s] U, K) = lim A cf (z A -1, e -s~ 1 UA-1 K A - 1 ) .  
zl --> O 

As a consequence of Theorem 2 we have tha t  the probabilities zK(U,  K)  
(x0(U, K))  t ha t  overflow (emptiness) occurs before emptiness (overflow) are 

c o  

n~(U,  K) : f d G * ( K ,  t] U, K) : ]im ~*(K,  s] U, K) 
t ~ 0 s---->O 

-~- ) ~ e - - ~ K - -  ~ e - - ~ ( K - - U ) - - ~ U  (3.10) 
. ~ e - - ~ K - -  # e - - A K  
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and z0(U,  K) = 1 --  ~K(U, K), indicating tha t  eventual  emptiness or overflow 
is certain. First  emptiness and first overflow in a finite dam are analogous to  the 
problems of absorption in random walk between two absorbing barriers. 

Each  of (3.1), (3.2) and (3.3) may  be inverted;  as an example we consider (3.1). 
We m a y  write this as 

c ~  

~v* (0, s] U, K) = e ~v-  v(s+z+z)/2 [e 'u@~02;+2 {e -((2j+z)~;+ v), 
j = o  

- -  e-((2/+2)K-C:)'}, (3.11) 

where o ~ (2#)1/2/~1. The inversion of each of the terms of (3.11) may  be deter- 
mined from ERDELu [5], SO tha t  we obtain 

t 
G* (0, t] U, K) = e ;.t + U(2#)1/2 e-/~v re- (Z+, )  (~-u/.2) I1{2(Z~(~  -- U))I/2} dT q- 

~= ~ T(T - U) 

[(t b')lK] l /  t [( - - ( j  + 1)K- -  U/j+1/2 
] = 0  \ v = ( j + I ) K + U  

_ e - (  ;. + ~) (t- ~7/'2)( t--(j + l ) K-- U~]+ I I 

{(42# (t q- (j + 1) K) (t - -  (j @ 1) K --  U))1/2} ~_ } 
t 

@ e , v  ~ f e_(;~+,)(~_v/~) z - - ( j @ l ) K  /j+1/2_ 
0 \ ~=0+I)K r q - ( j + I ) K ~ U ]  12j+1 --  

~ - - ( j @  1)K ~j'+l I ] 
- -  (A @/~) (~ + (j @ 1) K -- U] 2j+2] dr 
_e-(Z+z)( t - [7 /2) (  t - - ( j + l ) K  ~3"+1i 

t + ( j + l ) K - - r f i )  2 j + 2 { ( 4 2 k t ( t - - ( J @ l ) K ) ( t +  
\ 

-~ (j § I ) K  - -  U))I/'~}) 

where in the first summat ion I2~+~, Iej+2 are modified Bessel functions with 
argument  212#{'v @ (j ~- 1)K} {~ --  (j ~- 1 )K --  U}] ~/2 while in the second 
summation,  I2~'§ I2~+2 have argument  

2 [ ~ r  - (j + 1)K} {~ + (j + I ) K  --  U}]-~; 

G*(O, U I U,K) = e -~e,  

this being the discrete probabil i ty tha t  first emptiness occurs a t  t ime t = U. 

4. An application to an insurance risk problem 

In  this section we consider a special case of a problem in insurance risk as 
described by  SEGERDAHL [12], BARTLETT [1] and C~A~s [3]. This model C as- 
sumes tha t  the capital Y(t) (0 < t, Y(t)  < c~) of an insurance company in- 
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creases from an initial value c ( >  O) at a uniform rate, which without loss of 
generality we take to be unity, due to collected premiums. Claims, whose size 
have a negative exponential distribution with mean #-1, occur in a homogeneous 
Poisson process with parameter  ~ to reduce the capital. The company goes ban- 
krupt  whenever a claim reduces the capital to zero. By solving an integral equation 
of the Volterra type Segerdahl showed tha t  the probabili ty Jr0 of ult imate ruin 
is not greater than a e -~~ where a is a constant and O0 is the smallest positive 
root of the equation 

e - ~ { M ( ~ 1 7 6  1, (4.1) 

where M (0) is the LST of the distribution of claim size, which may  be of a general 
form. BAgTL~TT [t] has derived the result with ~ ~- 1 by making use of Wald 's  
identity. CI~AM]~R [3] has given a comprehensive survey of the problems in collec- 
tive risk theory; by using another integral equation technique he has obtained 
the exact solution for a negative exponential claim size distribution which agrees 
with our result (4.2). 

The elapse of t ime T before ruin occurs, known as the prosperous period, is 
a random variable, which is proper only when # < 2, as may  be seen by analogy 
with queueing theory; we define H (t] c) =- Pr  {T < t[ c} with LST 

o o  

~(s[c) --~ f e -st dH (t[c) ( R l s  ~ 0).  
0 

We prove 
Theorem 3, For model C the probability 7~c that ruin ever occurs is 

and 

1 2 > # ,  (4.2) 

~(8] C) = (~/~1) e-C(/~ 72). (4.3) 

Proo[. We can connect this insurance risk problem with the dam model A; 
we identify the uniform release in the dam with the steady inflow of premiums, 
the inputs with the claims, and the initial dam content U with the initial capital 
c = K --  U. I f  we allow the dam to become infinitely deep then the probability 
of ruin is analogous to the probability of overflow in the dam. Hence we obtain ~c 
from (3.10) as 

~ c =  lim 7 ~ ( K  - -  c, K) = { ()'/#) e-C(~-z) )~ < tt 
K-+~ 1 ~_>-#, 

which we wished to show. Similarly (4.3) follows from (3.2) as 

l im g * ( K , s [  K --  c , K ) .  
K - - >  c o  

The non-zero root of (4.1) for claims having a negative exponential distribu- 
tion is 00 = # - -  A so that  the upper bound for ~o found by BA~L~TT [1] when 

< # is e -  ~ (t~- ~). This is inexact by  a factor 2/# independent of the initial capital c; 
however, if c is large we might expect tha t  a company will accept a small margin 
of profit, i.e./~ - -  2 is small, so tha t  e -c(€ would be a reasonable approximation. 
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When ruin occurs in a finite t ime its mean may  be obtained by  differentiation 
of (4.3): 

E ( T [ ~ < ~ ) =  2~ {1--c~+(;~2--~2)0+c/~)} )~>~ 
1 

We can invert (4.3) to give 

t 

T = O  

2 ).~u(v@c) 1/211{(4['t)'r(~;@C))1/2}clT;-- 

2~ ()~[Aj@C)) 1/2~-(gT~)(t+c[2)j~l{(4/~)~t(t ~ - C ) ) 1 / 2 } ]  (4.4) 

We de~ne H(~, t[ c) = Pr  { Y(t) =< z; Y (~) > 0, 0 < ~ < t] Y(0) = ~ > 0} as 
the (improper) d.f. for the capital before ruin occurs. This is analogous to the 
zero and overflow avoiding distribution discussed in the previous section and we 
can prove 

oo 
Theorem 4. For model C the LST ~(z, s ic  ) = f e - s tH( z ,  tic) dt ( R l s  ~ 0) is 

t - - 0  
given by  

e-z(.~+~ ~h){~le c(w--s--;O--~e--c(~ s--~)} 
v(s + 1,-- ~2) z > c 

- -  (~]2 - -  /-s {e zOh--p)  __ e - - c ( , 1 - -# )} ]  {7) ( f ] l  - -  t t) (f]2 - -  /~) 711} -1 

O < z ~ c .  (4.5) 

Pro@ The proof follows immediately from (3.3) with the limit 

;(~, ~[~) = l ira ~ * ( K  - -  ~, s I K - -  c, K ) .  
K - - + ~  

This may  be inverted to give H (z, tic) explicitly; as in the last two sections 
we do not show the results, although they may  be obtained from the authors. 

5. First emptiness with overflow 

We now consider the probabili ty distribution of first emptiness regardless of 
how often overflow occurs. ~Te define 

L ( t [ U , K ) = P r { Z ( T ) = O  for s o m e r i n  0 < T G t I U ,  K} 

oo 
qh*(sIU, K ) = ] e - s t d L ( t l U ,  K ) (Rls>=O) 

t = 0  

and prove 
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Theorem 5. For  model  A 

~ $  (8 ] U ,  K )  ---- e ( s + ~ ) U { ( ~ i - - ~ ) e - ( K - U ) ~ I ~ - - ( ~ ? 2 - - ) . ) e - ( K - U ) v ~ }  
( ~ ] 1  - -  ,~) e -  Kv~.-- (~]2 -- .~) e - ( g -  u)~7~ (5.1) 

Proof.  We begin with the  discrete model  B and define 

] ( t Iu ,  k) = Pr{Zt  = O; 0 < S i ,  0 < j < t[Zo = u;  It}. 

Following WEESAKUL [14] 

t--e f(t}~, ~) = R(~)Q~ -F(1 ) ,  

where _R(u) is the row vector  (0 . . .  b a p  . . .  a p  qk-u-u  aq~-u-1) ,  Q1 is the mat r ix  
differing f rom S only in the first e lement  of the first row which is ap,  and _F(1) 
is the column vector  of  elements /(1 li ,  k) (i ---- 1, 2 . . . .  , k). Clearly _F(1) has  
only one non-zero element which is b in the  first place. As in w 3 we can de te rmine  
the generat ing funct ion of the probabil i t ies of  first emptiness ; we obtain  

r k) = ~ o~/(tlu, k) 
t = 0  

(Oh) u {(1 - -  a 0 - -  ,~2) ~1 k-u-1  - - (1  - -  • 0 - -  ~1) ~2 '~-u-1} 
(1 -- aO -- )L2) )~1 ~ -- (1 -- aO -- )~1) ~21c (5.2) 

Making the subst i tut ion (1.5) and  proceeding to the  l imit  zJ --> 0 we obtain  

4 "  (s [ U, K) = lim r ( e - ~  I UA -~ , K ~ - ~ ) ,  
A-+0 

which yields the required result  (5.1). 
We note t h a t  lira ~b*(s[ U, K ) =  1, verifying t h a t  eventual  emptiness is 

S-->0 
certain. 

6. The t ime-dependent  distribution of the dam content 

W e  wish to  find the  LST ~f*(z, s[ U, K ) =  f F ( z ,  t] U, K ) e - s t d t  ( R l s  ~ O) 
t = 0  

of the  t ime-dependent  solution of the  dam content ;  we do this in 
Theorem 6. For  model A 

W*(z,s[U,K)= ~f*(V, slU, K)+{(s+~--W)e-~"~-(~+~-W)e ~"~,}x 

(e~(~,-~') + ~ ' v -  e -  v'~,)} {~,s(r/1 e - ~ ' ~ , -  V~ e ~ 9 } - 1 U  < z -< K .  
(6.1) 

P r o @  For  model  B we obtain  by  i terat ion of (1.4) t h a t  

Q~ (t[ u, It) = R (u) S ~-2 L (i), (6.2) 
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where L( i )  is the column vector  with elements Qi(1 I J, k) (i = 0, 1 . . . . .  /c - -  1), 
which are given by  

b + a q - J ( 1 - - q ~ + l )  j = O ,  1 . . . . .  i + l  
Q,(1,  I J, k) = 0 j > i + 1 .  (6.3) 

I t  follows f rom (6.2) and (6.3) t ha t  the t rans form 

v( i ,  Olu, Ic) = ~. Q, ( t lu  , lc) Ot(l O I <= 1) 
t--O 

is given by  

v(i, o1~, k) = 

i + 1  i + 2  
a 02 ZCj (q-; -- q~+i-j) + b 02 E C~ 

j = t i = 1 (6.4) 
l!  - 0el 

where Cj is similar to [ !  - -  0_S I except  t h a t  the j t h  row of ( !  - -  0_S) is replaced 
by  _R (u). Equa t ion  (6.4) is similar to (3.6) and we evaluate  the de te rminan ts  in 
the same way;  we obtain  

[ l  - -  O_S] = (1 - -  O)(]~1 - -  ~ 2 ) - 1 { (  1 - -  )~2) ,@1 - -  (1  - -  a l )  2 .~ } ,  
0 u - r i b  u - n + l E k - u  Gn--1 n ~-  1, 2,  . . . ,  u 

Cn = qn-u-1 (ap --  b q) Fu Ee-n+i + b q E~-n n ~- u @ 1, . . .  

E n = ( 2 1 - - 2 2 ) - i { ( 1 - - a O - - X e ) ) , ~ - - ( 1 - - a O - - 2 1 ) ) . ~ }  n > = l  
F ~  = (; .1 - -  2 s )  - ~  { ( ; .~  - -  0 b ) 2 3  - -  (; ,~ - -  0 b);..g_} n > 1 

a ~  = ( A  - -  ~ 2 ) - 1 [ ( 1  - -  ~ 2 ) ~  - -  ( 1  - -  ; ~ ) ~  - -  O h { ( 1  - -  ;~2) ~ - ~  - -  

- -  (1  - -  ) .1)  ~-i}] ~ >= 1 ,  

with E0 = E-1 = Fo ~ Go = 1. We make  the subst i tut ion (1.5) and obtain  (6.1) 
f rom (6.4) f rom the l imit  process 

%o* (z, ,1 U, K) = lim A ~ ( z A - %  e-'dJUA -~, K A - 1 ) .  
A--.'-O 

The d.f.  F (z ] K) of the  s ta t ionary  content  distr ibution m a y  be found f rom (6.1) 
by  using an extension of Abel 's  theorem (WIDDER [16], Chapter  5) as 

F ( z l K )  = l i m s v * ( z ,  ~1 U, K ) ,  
S---> O 

which agrees with (2.1) 

7. A n a l o g y  wi th  queue ing  theory  

In  a finite queueing sys tem customers arr iving a t  the end of a queue depar t  
wi thout  wai t ing for service when the  delay t ha t  will be caused is large; the  
queueing sys tem M / M / 1  with customers depar t ing wi thout  joining the queue ff 
the  wait ing t ime is greater  than  L ( >  0) m a y  be app rox ima ted  by  the  finite dam 
in continuous time by an appropr ia te  choice of  K.  

When  the  dam has infitine capaci ty  we have  the queueing sys tem M / M / 1  
with the dam content  being identified wi th  the  wait ing t ime. The s ta t ionary  
dis tr ibut ion of the wait ing t ime, which exists as a proper  distr ibution if and  only 
if 2 < / t  m a y  be obta ined b y  lett ing K -+ oo in (2.1): 

F(z)  = l i m F ( z l K  ) = 1 --  (2/#)e  -(~-~)~ 0 <=z < oo. 
K ~ o o  
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Le t t i ng  K --> oo in (5.1) yields the  LST of the  t ime  t a k e n  for the  wai t ing  t ime 
to first reduce to  zero as 

q~* (s I U) = lira q;)* (s ! U, K)  = e -  ~ (~-~), 
K--e* oo 

which has  been found b y  KENDALL [8]. F ina l ly  the  LST ~0' (z, s I U) of the  t ime.  
dependen t  d i s t r ibu t ion  of the  wai t ing  t ime  m a y  be ob ta ined  f rom (6.1) as 

~*(z,  s I U ) - -  l im yJ* (z, s I U, K) 
K - - >  c ~  

( w  - -  ~) e - ( ~ + ~ ) ( ~ - ~ ) +  v,~ {~1 e - z €  ~2 e z~ }  0 ~ z ~ U 

W(W - -  ~) 
~- ~*(U,  s IU,  K)~ -vsW(s+- -~_W){ (8 -~ )~ - -V2)e -u '~  

- (s + ~ - w )  e ~ }  { e ~ r  e~'~} ~ >  u .  
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