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A Characterization of the one Parameter Exponential Family 
of Distributions by Monotonicity of Likelihood Ratios 

RUDOLF BORGES and $0tIANN PFANZAGL* 

Summary 

Any one parameter  exponential family of distributions has monotone likeli- 
hood ratios. As the product probabilities of n identical distributions of an ex- 
ponential family form again an exponential family, it has monotone likelihood 
ratios for arbi trary n. Furthermore, the members of an exponential family are 
mutual ly  absolutely continuous. In  Par t  1, we show tha t  these properties uniquely 
characterize the exponential family. The application of this result to the theory 
of testing hypotheses (Part 2) shows tha t  if a family of mutual ly  absolutely con- 
tinuous distributions has uniformly most  powerful tests for arbi t rary levels of 
significance, and arbi trary sample sizes, then it is necessarily an exponential 
family. 

1. The main theorem 

Let ~ = {Po, 0 e O} be a family of probabili ty measures on a measurable 
space (2, d ) .  The family ~ is assumed to be dominated by  a a-finite measure** 
/~ ] ~ .  The density of P0 with respect to # is denoted by P0. 

We shall say tha t  the family ~ has monotone likelihood ratios with respect to 
a probabili ty measure P0[ d ff there exists an d -measurab le  function T] ~ in- 
dependent of 0 e O and to each 0 e O a nondeereasing function Ho, such tha t  

(1) po(x)/po(x) = H o ( T ( X ) )  (Po -R Po -- a.e.) 

The family ~ is called an exponential ]amily if there exist d -measu rab le  func- 
tions g]~ and h I~ and two functions al O and c I O, such tha t  

(2) po(x) : c(O)h(x) exp[a(O)g(x)] (/~ - -  a.e.) .  

The product probabili ty of n identical probabili ty measures P o e  ?$ will be 
denoted by P~ = Po • "'" • Po, the family by ~n = {p~ : 0 e 0}. 

I f  ~ is an exponential family, the distributions are mutual ly absolutely con- 
tinuous and have monotone ]ikelihood ratios for a]l 0, T e O such tha t  a (0) > a (w). 

As the product family ~n  is again an exponential family, ~n has these pro- 
perties for arbi trary n. In  the following it will be shown tha t  this characterizes 
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the exponential  family in a unique way. I n  fact, less is sufficient to show tha t  
is an exponential  family. 

Theorem 1. Let ~3 be a /ami ly  o/probability measures Po, and Po ~ ~. Let Po 
and each Po be mutually absolutely continuous. I /  the /amily ?~n o/n-/old product 
probability measures o/ ~ has monotone likelihood ratios with respect to the product 
probability measure P~ /or each n, then ff3 is an exponential/amily with a (0) ~ O. 

At  first we prove two lemmas. 
Lemm~ 1. Let Q I ~ be a probability measure and/o (Y) with 0 e 0 be a family 

o/~-measurable nonnegative /unctions. Assume that the class ~ o/all sets {y : / o (Y) <= c} 
with 0 ~ 0 and c >= 0 is linearly ordered by the relation o/ inclusion. 

Then a) there exists a ~-measurable nonnegative /unction S such that /or 
S (y) > O. 

(3) S (y) = Q-ess sup (S (z) : S(z) <= S (y)} 

and b) there exists a le/t continuous nondeereasing /unction Go such that Go (0) ---- 0 
and 

(4) Go (S (y)) = / 0  (Y) Q - a.e. 

I / Q  (Co) = Q ((~ C~) /or C~ ~ ~?, i = O, l . . . . .  implies Co = Ct, then Equa- 
i=l i=l 

tion (4) holds everywhere. 
R e m a r k .  This lemma is a modification of Lemmas  1 and 2 in [4], where the 

class cd is linearly ordered by the relation of  inclusion up to sets of probabil i ty 
zero. Hence we can restrict ourselves to a short  outline of the proof. 

Proo/. a) We choose one D E ~ for each value Q (C) on %~ and denote the class 
of  all D by  ~ .  

Hence the linear order of  ~ implies t ha t  ~ is linearly ordered. As each equa- 
t ion Q (D) = d has at  mos t  one solution D ~ ~ ,  this implies t ha t  the intersection 
and the union of any  subclass of ~ can be writ ten as the intersection or the union 
of a countable subclass of  ~ .  Hence the intersection and the union of each sub- 
class of  ~ are ~-measurable .  

We define 

{ D y : = ( ' ~ { D : y e D c ~ }  
(5) S(y) O(Dy). 

First  we observe tha t  S is ~-measurable .  For, (5) implies 

{ y : S ( y ) < c } = { y : y ~ D  for some D ~  with Q ( D ) < c }  
= ~ J { D :  Q(D) < c  and D ~ } .  

Fur thermore  we obtain from (5) tha t  up to a Q-null set 

(6) B = {z : S (z) =< Q (B)} 

f f B ~  or B = D y .  

For, first let B = D c ~ .  Then y ~ D implies D y c  D and hence S (y) ~ Q (D). 
As the class of all Dy is obviously linearly ordered and contains at  most  two 
different Dyl, Dy2with Q(Dy~) = Q(Dy~), this implies by  (5) up to a Q-null set 

~ J { D y  : S(y) ~= Q(D)} c D .  
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F r o m  y ~ D v we have  

{y :S (y )  <= Q(D)}ck . J {Dy:S (y  ) <= Q(D)}.  

Therefore  (6) holds up to a Q-null set for B = D. Since b y  definition of ~ each 
C e ~ is equal  to some D ~ ~ up  to a Q-null set, (6) holds for all B e cal. Since 
each Dy can be wr i t ten  as a countable  intersection, (6) follows for B ~ Dy by  
the  Monotone Limi t  Theorem.  

Set t ing B ---- Dy in Equa t ion  (6), we obtain  f rom (5) t h a t  

(7) S(y) = Q{z :S(z)  < S(y)}.  

F r o m  (7) we obtain  

(8) Q { z : S ( y ) - -  e < S(z) ~= S(y)} 
= S(y) - -  sup {S (z) : S (z) ~< S(y) - -  e} ~ s > 0. 

This yields (3). 
We define a left continuous nondeereasing funct ion Go by  

(9) Go (s) : = inf{c : Q {y :/0 (y) =< c} ~ s & c ~ 0}. 

Hence  the following inequalities are equivalent  

(10) Go(s)<=c and s =< Q {y : /0 (y) <= c} . 

Since equat ion (6) holds for B e ~ up to a Q-null set we obtain  (4) a lmost  every- 
oo oo 

where. I f Q ( C 0 ) ~  Q([ '~ C~) with C~ e ~ ,  i = 0, 1 . . . . .  implies C0 = ( '~ C~ then  
i = l  i = l  

Q (Du) <= Q (D) implies D u c D without  restriction. Hence  in this ease, all re- 
lat ions in the  proof  of  (6) hold everywhere  and  hence (6) and  (4) too, q .e .d .  

L e m m a  2. Let ]1 [ ~ and ]2 I ~ be two real/unctions with the/ollowing properties 
1. I] ]or some xi, y~ ~ ~ (i = 1 . . . . .  r) 

r r 

~ h (x~) < ~ h (y~) 
i = 1  i = l  

(11) 

then 

(12) 
r 

12(xd < = ~ is (yd 
i = 1  i = 1  

2. There exist xl ,  x2, e~  such that 

(13) ]1 @1) < / 1  (x2). 

Then there exists a ]unction ~ (x) and constants ak >= 0 and bk such that/or lc = 1, 2 

(14) /~ (x) = a~ ~ (x) + bk. 

t ~ e m a r k .  This l emma could also be p roved  b y  regarding the  sums ~ / l ( x i )  
as e lements  of  a semi-group of real numbers .  Using the order relations one can 
extabl ish  Cauchy 's  functional  equation.  

Proo/. B y  Assumpt ion  2. for every x e Y and every  posit ive integer n there 
exists an integer inn (x) such t h a t  

(15) ~ (x )  (h(x2) - h(xO) < (h(x) - h(xO) < ~n~(x) + 2 (h(x2) - h(x~)).  

Both  inequalities can easily be t r ans formed  into an inequal i ty  of the  fo rm (11) 
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where the x,'s and y(s  arc equal to x, xl or x2. By Assumption 1. this inequality 
implies (12), which in turn yields 

(16) - ~  (f2 (x2) -- f2 (Xl)) ~ (/2 (x) -- f2 (Xl)) <= mn(z)n + 2 (f2 (x2) --  f2 (xl)) .  

Hence the strong inequalities (15) yield the weak inequalities (16). 
We define 

(17) ~(x) : ---- lim m~(x) 
n - ~ o o  

and obtain 

(lS) /~ (~) = )~(x) [/~ (x2) - / ~  (x~)] + / ~  (x~). 

Letting ak = [f~(x2) -- f~(xl)] and b~ ~- f~(xl) for k -~ 1, 2, the desired result 
follows, since a k ~ 0  by (13) and Assumption 1. 

Proof of Theorem 1. 1. By assumption the likelihood ratios ~ po(xt)/po(X~) 
$ = ] [  

are monotonic for each n. Hence for every n there exist a measurable function Tn,  
independent of 0, and nondecreasing functions H~ ') depending on 0 such that  

H(n) (Tn(x l  . . . .  ,xn) ) ---- ~ pe(x~) P~- -a . e .  
i = 1 ~o(xi) 

(19) 

This yields 

(2O) 
n 

H(o~)(Tn(xl . . . . .  xn)) : ] - ~ H 0 ( T ( x ~ ) )  P ~ - -  a.e. ,  
i = 1  

where we drop the index 1 at H and T for n ~ 1. 
We shall replace (20) by a similar set of equations which hold everywhere. 

These equations will yield the exponentiality by Lcmma 2. 
2. At first we put  Q I ~  --  P 0 1 d  in Lemma 1 and/o(x)  = H o ( T ( x ) ) .  Let  

be the class of all sets { x : H o ( T ( x ) )  ~ c} with 0 E O and e ~ 0. Since the ele- 
ments o f ~  are of the form {x: T(x) < k }  or {x: T(x) ~ k } ,  the class ~ is 
ordered by  the relation of inclusion. Hence by Lcmma 1 there exists a measurable 
nonnegative function S (x) such that  for S (x) > 0 

(21) S (x) : P0 --  ess sup {S (y) : S (y) ~ S (x)}. 

Furthermore there exists a left continuous nondccreasing function Go depending 
on 0 e 0 such that  

(22) Go(S(x))  ---- H o ( T ( x ) )  Po - -  a.e. 

Inserting this into (20) we obtain 
n 

(23) H(on)(Tn(xl . . . . .  xn)) = ~ - [ e o ( S ( x i ) )  P~--  a.e. 
i = 1  

3. Secondly let Q I ~ of Lcmma 1 be the product P~ of n identical probability 

measures P0 [ 5]. Furthermore put  ]o (Y) = ~ Go (S (x~)). Denote the class of all 
i = 1  

sets 

�9 l~I = (24) Co (e) : = {(xl  . . . .  , x~).  Go (S(x~)) < c} 
i = 1  
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with 0 ~ O  and c ~ 0  by ~n. 
By (23) the sets Co (c) are of the form 

{(xl , . . . ,Xn) : T , ( X l , . . . , x n )  < ~} or {(xl . . . . .  x~) : Tn(xl . . . .  ,xn) ~ k} 
up to a P~-null set. 

Hence for D : = 6 Cai (cd the inequality P~ (D) ~ P~ (C~ (d)) yields D c C~ (d) 
i = l  

up to a P~-nuil set. Let  (yl . . . . .  yn) ~ D. Then the monotonieity of Gai and de- 
finition (24) yield 

{(xl . . . .  , xn) : S ( x d  _-< S ( y d ,  i = 1 . . . . .  n}  c Oa~(cd. 

Hence we have 

{ ( x l , . . . , X n ) : S ( x d ~ S ( y d ,  i = 1  . . . . .  ~}cDcC~(d)  P~- -a . e .  

By the left continuity of Gr and by (21) it follows that  (Yl . . . . .  Yn) e C~(d). 
Hence P~ (D) ~ P~ (C~ (d)) implies D c C~ (d) without restriction. Similarly 

c~ 

P~(D) ~= P~(Cr(d) ) implies n ~ C~(d). Hence P~((~ Ca~(c~) ) = P~(Cr(d) ) im- 
oo i = l  

plies ('~ Cai (cd --~ Cr (d). Setting v~i = v ~ and c / =  c for all i = 1, 2 . . . .  we ob- 
tain furthermore that  P~(Ca(c)) ~ P~(C~(d)) implies Ce(c) c Cr(d), that  is ~n 
is linearly ordered by inclusion. 

Hence by Lemma 1 there exists a measurable function S n ( x l , . . . ,  Xn) in- 
dependent of 0 ~ O and a monotone non-increasing function G(o n) depending on 
0 ~ 0 such that  everywhere 

(25) G(s )(S~(x~, . . . ,  xn) ) - -  ao (S (x l )  ) .  
i = 1  

4. Now we shall apply Lemma 2. By (25) the inequality 

i = l  i = l  

for some T ~ O yields Sn (xl, . . . ,  Xn) < Sn (yl . . . . .  Yn) and this in turn implies 

(27) ~ a0(s (x~)) =< I~I ~0(s(u~)) 
~=i i=i 

for all 0 e O. Since P~ and P0 are mutually absolutely continuous and not identical 
there exist xl, x2 ~ such that 

(28) 0 < G~(S(xl))  < G~(S(x2))  < § ~ .  

With /1  (x) = log G~ (S (x)) and /2  (x) = log Go (S (x)) we obtain by Lemma 2 

(29) Go (S (x)) = c (0) exp [a (0) g (x)] 

with a(O) ~= O. From (1) and (22) we obtain the desired result 

(30) po(x) = c(O)po(x) exp [a(O)g(x)] Po - -  a.e. 

2. The statistical significance of the main theorem 

In  [4] (p. 170) it had been shown: I f  for each level of significance a (ran- 
domized) test exists for testing a hypothesis P0, which test is most powerful 
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against any member  of a class ?~, then ~ has nondecreasing likelihood ratios with 
respect to Po. Using this result, Theorem 1 immediately implies: 

Theorem 2. Let ?~ be a/amily o] probability measures Po and Po ~ ?~. Let Po 
and each Po be mutually absolutely continuous. I / / o r  any sample size n and any 
level o/significance there exists a (randomized) test/or the hypothesis P~ which is 
uni]ormly most power]ul against the class o/alternatives ,~n, then ~ is an exponential 
/amily. 

This theorem clearly shows tha t  the concept of a "uniformly most powerful" 
test  is far too restrictive to be generally applicable in testing theory. Under the 
assumption of mutual  absolute continuity, its applicability is limited to a specific 
family, namely the exponential family. A t rea tment  of the general case - -  abandon- 
ing the assumption of mutual  absolute continuity - -  will be given in [1]. 

Theorem 1 is closely related to a well-known theorem stating tha t  a class of 
mutual  absolutely continuous probabili ty measures, admitt ing a sufficient sta- 
tistic, is an exponential family. The relation to Theorem 1 consists in the fact 
tha t  - -  according to the factorization theorem --  T (x) is a sufficient statistic. 
The most recent version of the theorem on sufficient statistics and exponential 
families is contained in DYNKIN ([2] Section 2). He assumes tha t  # is the Lebesgue 
measure on the real line and the densities Po (x) are continuous and have piecewise 
continuous derivatives with respect to x. Earlier versions of this theorem (for 
references see e.g. L~HMANN [3] p. 51) use even more restrictive regularity con- 
ditions concerning the density function P0 (x). 

The conditions of Theorem 1 are more restrictive in a single point : We assume 
that  the likelihood ratios are monotone functions of the sufficient statistic. This 
additional assumption is suggested by some questions originating in the theory 
of testing hypotheses as outlined above. This is sufficient to arrive at  results 
which are independent of any further regularity conditions on the density func- 
tions and any further condition on the measure #] ~ ,  but ~-additivity. Especially 
# l ~  can be the counting measure. 

Theorem 2 refers to the general case which assumes no relationship between 
the hypothesis and the class of alternatives. Applications, however, often suggest 
to think of a family with a naturally ordered parameter  space. I f  in such a ease 
a family of tests exists for any hypothesis 00 e O, these tests being uniformly 
most  powerful against the class of alternatives {0 : ~ > 00}, then the immediate 
applieation of Theorem 2 yields tha t  to any 00 there exists a measurable func- 
tion g(x; 0o) and functions c(0; 00) and a(0 ;  00) of ~ > 00 such that  P ~ - -  a.e. 
for ~ > 00 

(31) pa  (x) = Po0 (x) c (~; ~o) exp [a (0; t~0) g (x; 00)] 

Consider three parameters  01, 03, ~s such tha t  03 > 03 > 01 and Equation (31) 
for (0, 00) = (0s, 02), (0s, 01) and (On, 01). Sinee we have assumed tha t  

{x:p~(x) > 0} 

is independent of 0 up to null sets, comparison of these three equations yields 

(32) [a(0a; ~1) - -  a(02" 0~)]g(x; 01) - -  a(0a; 02)g(x; 02) = log c(~3; 5e) c(~2; ~1) 
' c(v%; ~1) 
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Hence the functions g (x; O) with v q ~ O can be chosen such tha t  they are mutu- 
ally linear dependent, say 

(33) g (x; v ~) = b0 (v~) g (x; O0) ~- do (v ~) 

for any v ~ ~ O and a fixed v% ~ O. With v% fixed we define 

c (v~; 0o) if v~ > 0o 
c(v~):= 1 if v Q = 0 0  

(c(v%; O) exp[a(v%; v~)do(~)]) -1 if v ~ < v% 

(34) 

and 

(35) 
a(v~; t$o) if  v ~ > v~o 

a ( O ) : - -  0 if 0 = ~ o  

- -  a (v~o ; v~) bo (v ~) i f  v ~ < v%. 

Furthermore, let h(x): = p~o(X) and g ( x ) : - - g ( x ;  0o). Then Equation (2) fol- 
lows from (31) and (33)--(35). 

Thus we have shown the following : Let ~ be a family of mutually absolutely 
continuous probability measures with an ordered parameter  space O. Assume 
tha t  for each level of significance ~, each sample size n and each hypothesis #0 eO 
there exists a test  which is uniformly most powerful against all ~ > O0. Then 
the family of probabili ty measures is exponential in the sense of Equation (2). 
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