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A Charaecterization of the one Parameter Exponential Family
of Distributions by Monotoenicity of Likelihood Ratios

By

Ruporr BoreES and JoHANN PFANZAGL®

Summary

Any one parameter exponential family of distributions has monotone likeli-
hood ratios. As the product probabilities of » identical distributions of an ex-
ponential family form again an exponential family, it has monotone likelihood
ratios for arbitrary n. Furthermore, the members of an exponential family are
mutually absolutely continuous. In Part 1, we show that these properties uniquely
characterize the exponential family. The application of this result to the theory
of testing hypotheses (Part 2) shows that if a family of mutually absolutely con-
tinuous distributions has uniformly most powerful tests for arbitrary levels of
significance, and arbitrary sample sizes, then it is necessarily an exponential
family.

1. The main theorem

Let R = {Py, 0 € O} be a family of probability measures on a measurable
space (¥, &Z). The family B is assumed to be dominated by a o-finite measure**
u|. The density of Py with respect to u is denoted by ps.

We shall say that the family ¥ has monofone likelithood ratios with respect to
a probability measure Py|./ if there exists an »/-measurable function 7'|¥ in-
dependent of 0 € @ and to each 0 € @ a nondecreasing function Hy, such that

4y Po(@)[po(x) = Ho(T(X))  (Po+ Po—a.e.)

The family S is called an exponential family if there exist 27-measurable funec-
tions g|¥ and %|¥X and two functions ¢|@ and ¢|@, such that

@) po(@) = c(O)h(@) expla(B)g (@] (4 —a.c.).

The product probability of » identical probability measures Pge P will be
denoted by Pj= Py X - X P, the family by B» = {P;:0<c6}.

If B¢ is an exponential family, the distributions are mutually absolutely con-
tinuous and have monotone likelihood ratios for all §, T € @ such that a(0) > a(7).

As the product family §37 is again an exponential family, 7 has these pro-
perties for arbitrary x. In the following it will be shown that this characterizes
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** f1.D denotes a function f defined in the domain D.
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the exponential family in a unique way. In fact, less is sufficient to show that 5
is an exponential family.

Theorem 1. Let B be a family of probability measures Pg, and Po ¢ B. Let Py
and each Py be mutually absolutely continuous. If the family B of n-fold product
probability measures of B has monotone likelihood ratios with respect to the product
probability measure P} for each n, then B is an exponential family with a(0) = 0.

At first we prove two lemmas.

Lemma 1. Let Q| % be a probability measure and f4(y) with 6 € O be a family
of B-measurable nonnegative functions. Assume that the class € of all sets {y:fo (y) =c}
with 0 € O and ¢ = 0 is linearly ordered by the relation of inclusion.

Then a) there exists a % -measurable nonnegative funciion S such that for
S(y) > 0.

3) © S(y) = Qesssup{S () : 8(z) < S ()}

and b) there exists a left continuous nondecreasing function Gg such that Gy (0) = 0
and

4) Go(S(y)) = foly) Q —a.e.
IFQCo) =Q (M Ci) for C1e¥, i=0,1, ..., implies Cy = () Ci, then Equa-
i=1 i=1

tion (4) holds everywhere.

Remark. This lemma is a modification of Lemmas 1 and 2 in [4], where the
class € is linearly ordered by the relation of inclusion up to sets of probability
zero. Hence we can restrict ourselves to a short outline of the proof.

Proof. a) We choose one D € € for each value @(C) on % and denote the class
of all D by 2.

Hence the linear order of ¥ implies that & is linearly ordered. As each equa-
tion Q(D) = d has at most one solution D € &, this implies that the intersection
and the union of any subclass of & can be written as the intersection or the union
of a countable subclass of 2. Hence the intersection and the union of each sub-
class of & are #-measurable.

We define

®) S@): = QD).

First we observe that S is #-measurable. For, (5) implies

{y:Sly) <c}={y:yeD forsome DeP with Q(D) <c}
=U{D: QD) <c and DeZ}.

Furthermore we obtain from (5) that up to a @-null set
(6) B={2:8() < Q(B)}
if Be® or B = Dy.

For, first let B = D e Z. Then y € D implies Dy c D and hence S(y) = @ (D).
As the class of all D, is obviously linearly ordered and contains at most two
different Dy,, Dy, with Q(Dy,) = @ (Dy,), this implies by (5) up to a Q-null set

UDy: 8 =@D)jcD.

{ Dy:=(\{D:yeDe2Z}



A Characterization of the one Parameter Exponential Family of Likelihood Ratios 113

From y e Dy we have

{y:8w) = QD) cU{Dy: Sy = QD))

Therefore (6) holds up to a Q-null set for B = D. Since by definition of & each
C &% is equal to some D e Z up to a Q-null set, (6) holds for all Be¥%. Since
each D, can be written as a countable intersection, (6) follows for B = Dy, by
the Monotone Limit Theorem.

Setting B = Dy in Equation {6), we obtain from (5) that
(7) = Q{z:8() =S8)}-

From (7) we obtain
(®) Qi8S — e < S() =S}

=Sy) —sup{SR): 8k =8(y)—e} =&>0.

This yields (3).

We define a left continuous nondecreasing function Gy by

(9) Qo(s):=1inf{c: Q{y:foly) S ¢} = s&c =0}.
Hence the following mequahtles are equivalent
(10) Go(s) <c¢ and s Q{y:foly) =c}.

Since equation (6) holds for B €% up to a @-null set we obtain (4) almost every-
where. If @ (Co) = ﬂ C;) with C;e¥, i =0,1, ..., implies Cy = () C; then
i=1

QDy) £ QD) 1mphes Dy c D without restriction. Hence in this case, all re-

lations in the proof of (6) hold everywhere and hence (6) and (4) too, q.e.d.
Lemma 2. Let f1|X and f5|X be two real functions with the following properties
1. If for some z;, y;€X (1 =1,...,7)

(1) She <> hil0)
then
(12) Shi) =3,
2. There exist x1, x2, €X such that
(13) filz) < fr(x2).
Then there exists a function A(x) and constants ay = 0 and by such that for k=1, 2
(14) fol@) = ax A (@) + by

Remark. This lemma could also be proved by regarding the sums z f1.(2)
as elements of a semi-group of real numbers. Using the order relations one can
extablish Cauchy’s functional equation.

Proof. By Assumption 2. for every x e ¥ and every positive integer n there
exists an integer m,, () such that
(15) m"T(x) (frlw2) — Fulen)) < (f1(@) — fa(e0) < 2202 (f (o) — fr ).

n

Both inequalities can easily be transformed into an inequality of the form (11)
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where the z;’s and y;'s are equal to z, 21 or x2. By Assumption 1. this inequality
implies (12), which in turn yields
My ()

(f2l@2) — fa@0) = (o (&) — faen) = 202 (fy (@) — fa(an))

Hence the strong inequalities (15) yield the weak inequalities (16).
We define

My (x

(16)

(17) A@): = lim ’”_’;@
and obtain
(18) fr(x) = A(®) [fr (x2) — fe(@1)] + frl21).

Letting ay = [fr(®2) — fr(®1)] and by = fx(x1) for k =1, 2, the desired result
follows, since ax =0 by (13) and Assumption 1.
[
Proof of Theorem 1. 1. By assumption the likelihood ratios H P )0 ()
i=1
are monotonic for each n. Hence for every » there exist a measurable function 7',
independent of 0, and nondecreasing functions H{" depending on § such that

K3
(19) HO (T (1, ... 1‘[ Pol@)  pn__g e,

This yields
(20) HP (T, ..., HH(; (x)) P§—a.e.,

where we drop the index 1 at H and 1" for n = 1.

We shall replace (20) by a similar set of equations which hold everywhere.
These equations will yield the exponentiality by Lemma 2.

2. At first we put Q|# = Po| in Lemma 1 and fo(x) = Ho(T (z)). Let ¥
be the class of all sets {x: Ho(T (x)) < ¢} with 6 € @ and ¢ = 0. Since the ele-
ments of € are of the form {x: T'(x) <k} or {z: T(x) <k}, the class % is
ordered by the relation of inclusion. Hence by Lemma 1 there exists a measurable
nonnegative function 8(x) such that for S(z) > 0

(21) S(x) = Po —esssup{S(y): S(y) = S(x)}.

Furthermore there exists a left continuous nondecreasing function G depending
on €@ such that

(22) Go(S(@)) = Ho(T (x))  Po—a.e.

Inserting this into (20) we obtain

(23) HP(Tyulx1, ... %)) :ﬁGg(S(xi)) Pi—a.e.
=1

3. Secondly let Q| % of Lemma 1 be the product P} of n identical probability

measures Pg|.o/. Furthermore put fo(y n Go(S . Denote the class of all
i=1

sets
n

(24) O’o(c)::{(ml,...,xn):HGg(S(xi))gc}

=1
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with §€® and ¢ =0 by €y
By (23) the sets Cg(c) are of the form
{1, oovzn) Ty, . n) <k} or {(x1,....20): Tu(@1, ..., 20) = k}
up to a Pg-null set.

Hence for D : = () Og;(ci) the inequality Pg(D) = Pg(C:(d))yields D c C;(d)
i=1

up to a Pp-null set. Let (y1, ..., ¥») € D. Then the monotonicity of G, and de-
finition (24) yield
{(9[)1, ,xn) S(xl) gS( 1,) i = 1, ,n}COﬁZ(Cl)
Hence we have
{(@1, ..., 20) : S(@) £8(w), ¢=1,....,n}cDcC(d) P;—a.e.
By the left continuity of G, and by (21) it follows that (y1, ..., yx) € Cz(d).
Hence P} (D)< P§(Cr(d)) implies D c U;(d) without restriction. Similarly

Pi(D) = P(Cr(d)) implies D > C;(d). Hence P} (ﬁ Cs;(ci)) = PR(Cr(d)) im-
=1

plies ﬂ Cy,(c;) = Cz(d). Setting ¢ = & and ¢; =c for all i = 1,2, ... we ob-
tain furthermore that Py (Cs(c)) < Py (Cz(d)) implies Oy (c) c Cr(d), that is €
is linearly ordered by inclusion.

Hence by Lemma 1 there exists a measurable function Sy (z1, ..., zy) in-
dependent of § € @ and a monotone non-increasing function G§¥ depending on
f & @ such that everywhere

n
(25) G (Sp (@1, ... %n)) = rIng (S(x1)).
i

4. Now we shall apply Lemma 2. By (25) the inequality

(26) 1—[1Gr (S(x)) < L—[lGr (S(ya))

for some 7€ @ yields Sp(xi, ..., %n) < Su(y1, ..., yn) and this in turn implies
n "

(27) HlGo (8(x)) = EG(; (S(ys))

for all 6 € ©. Since P, and P are mutually absolutely continuous and not identical
there exist x1, 2 €¥ such that

(28) 0 <G (S(1)) < Gr(S(x2)) < + 0.

With f;(z) = log G-(S(x)) and fa(x) = log Gy (S (%)) we obtain by Lemma 2
(29) Go(S(x)) = c(0) exp[a(8)g (x)]

with a(6) = 0. From (1) and (22) we obtain the desired result

30) Po(@) = c(0)po(x) expla(f)g(x)]  Po— a.e.

2. The statistical significance of the main theorem

In [4] (p. 170) it had been shown: If for each level of significance a (ran-
domized) test exists for testing a hypothesis Py, which test is most powerful
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against any member of a class B, then {§ has nondecreasing likelihood ratios with
respect to Py. Using this result, Theorem 1 immediately implies:

Theorem 2. Let S8 be a family of probability measures Py and Py ¢ B. Let Py
and each Py be mutually absolutely continuous. If for any sample size n and any
level of significance there exists a (randomized) test for the hypothesis Py which is
untformly most powerful against the class of alternatives B, then L is an exponential
famaly.

This theorem clearly shows that the concept of a ““uniformly most powerful”
test is far too restrictive to be generally applicable in testing theory. Under the
assumption of mutual absolute continuity, its applicability is limited to a specific
family, namely the exponential family. A treatment of the general case — abandon-
ing the assumption of mutual absolute continuity — will be given in [1].

Theorem 1 is closely related to a well-known theorem stating that a class of
mutual absolutely continuous probability measures, admitting a sufficient sta-
tistic, is an exponential family. The relation to Theorem 1 consists in the fact
that — according to the factorization theorem — 7'(x) is a sufficient statistic.
The most recent version of the theorem on sufficient statistics and exponential
families is contained in Dy~gIN ([2] Section 2). He assumes that u is the Lebesgue
measure on the real line and the densities pg (x) are continuous and have piecewise
continuous derivatives with respect to z. Earlier versions of this theorem (for
references see e.g. Luamany [3] p. 51) use even more restrictive regularity con-
ditions concerning the density function pg(x).

The conditions of Theorem 1 are more restrictive in a single point: We assume
that the likelihood ratios are monotone functions of the sufficient statistic. This
additional assumption is suggested by some questions originating in the theory
of testing hypotheses as outlined above. This is sufficient to arrive at results
which are independent of any further regularity conditions on the density func-
tions and any further condition on the measure p| o, but o-additivity. Especially
p | can be the counting measure.

Theorem 2 refers to the general case which assumes no relationship between
the hypothesis and the class of alternatives. Applications, however, often suggest
to think of a family with a naturally ordered parameter space. If in such a case
a family of tests exists for any hypothesis 9o € O, these tests being uniformly
most powerful against the class of alternatives {¢: § > o}, then the immediate
application of Theorem 2 yields that to any ¢ there exists a measurable func-
tion g (x; ¥o) and functions ¢(9; do) and a(&; Fo) of & > P such that Ps—a.e.
for & > O

31) Po(x) = Doy (%) ¢ (93 Do) exp [a(F; Do) g (x; Fo)]
Consider three parameters 1, ¥, ¥3 such that #3 > J2 > ¥ and Equation (31)
for (9, %o) = (¥3, D2), (P3, 91) and (J2, 91). Since we have assumed that
{z: py(x) > 0}
is independent of 9 up to null sets, comparison of these three equations yields

c(P3; o) c(Pa; O1)

(32) [a(Ps; B1) — a(B2; D1)]g(x; D1) — a(Ps; Do) g (@; P2) = log (89 01)
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Hence the functions g (x; &) with ¢ € @ can be chosen such that they are mutu-
ally linear dependent, say

(33) g(@; &) = bo(9)g(x; do) + do ()
for any 9 € @ and a fixed %y € @. With ¢ fixed we define

c(¥; Po) if 9>
(34) c(f): = 1 if 9=

(c(Po; ¥) expla(do; F)do (P if & <o
and

a(P; Og) if 9>

(35) a@:=1{ 0 if 9=

—a(Po; Nbo(PF) i &< dy.

Furthermore, let h(x): = pyy(x) and g(x): = g(x; ¥0). Then Equation (2) fol-
lows from (31) and (33)—(35).

Thus we have shown the following: Let 4§ be a family of mutually absolutely
continuous probability measures with an ordered parameter space €. Assume
that for each level of significance o, each sample size % and each hypothesis $oc®
there exists a test which is uniformly most powerful against all 9 > §. Then
the family of probability measures is exponential in the sense of Equation (2).
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