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The Vibrating String Forced by White Noise 

E. M. CABANA 

Summary. The equation of the vibrating string forced by white noise is formally solved, using 
stochastic integrals with respect to a plane Brownian motion, and it is proved that a certain process 
associated to the energy is a martingale. Then Doob's martingale inequality is used to furnish some 
probability bounds for the energy. 

Such bounds provide a solution for the double barrier problem for the class of Gaussian stationary 
processes which can be represented as linear functionals of the positions and the velocities of the 
string. 

O. Introduction 

The (formal) stochastic differential equation 

+ax=fi (1) 
in which/) represents a Gaussian white noise, is ordinarily interpreted as equivalent 
to the integral equation 

t 

x (t) - x (0) + a j" x (z) d z = fl (t) - fl (0) (2) 
0 

where fl is a Brownian motion. More generally, a linear differential equation of 
higher order with a white noise in the right-hand member may be interpreted as 
the formally equivalent system of integral equations, where, instead of the mean- 
ingless/)(t), we find a Brownian motion fi(t). 

In the present paper we define a generalization of the ordinary Brownian 
motion (w 1) which we call a plane Brownian motion, and we apply it to propose a 
stochastic integral equation for the vibrating string, forced with a plane white 
noise (that is, a forcing term which presents the randomness of the ordinary 
white noise through time as well as along the length of the string) (w167 2, 3). 

The equation of the vibrating string is solved formally, in the space of Fourier 
transforms, without restricting the domain of the operator appearing in the 
equation of the string to a set of functions satisfying suitable boundary conditions 
(see Feller [3, 4]); this should be done if the results are to be interpreted in the 
original space, by applying the inverse Fourier transform. Then some martingale 
properties of the energy associated to the string are proved in w 3, and some 
probabilistic bounds for the energy are obtained using Doob's martingale in- 
equality. 

As an application, stationary Gaussian processes are represented as linear 
combinations of the positions and velocities associated to the string (w 4). Now 
the probabilistic bounds for the energy lead to analogous bounds for the absolute 
value of such a process, and this allows us to compute bounds for the probability 
that such a Gaussian stationary process ?(t) remains bounded between a double 
barrier during a prescribed period of time (P {[7(s)[ < k + a s for all s~(0, t)}). 
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1. Stochastic Preliminaries. 
Brownian Motion on the Plane and Stochastic Integrals 

1.1. Definition and construction of a Brownian motion on a plane half-strip. 
Let J be the half-line [0, oe), let I be an interval of the real line (possibly 

infinite at one or both ends) containing O, and let us consider the space 0 of 
continuous paths fl: J x  1--,R such that fi(O, z)=fl(t, 0 )=0  for all z~I,  t~J. On 
this space we consider the a-field ~ +  generated by the events {fi[a<fl(t, z)< b} 
(a<b, teJ,  zeI)  and impose probabilities such that, denoting the double in- 
crement fl(b, d)-fl(a, d)-f i(b,  c)+ fl(a, c) by fl(S) (S= {(t, z)ha<t <b, c<_z <d}), 
then 

(i) for each rectangle S in J x I with edges parallel to the coordinate axes 
and area IS], the variable fl(S) is Gaussian with zero mean and variance equal 
to ISl, 

(ii) if $1, $2 are two disjoint rectangles as above, then fl(S1), fi(S2) are inde- 
pendent. 

The probability space (~2, Noo,P) such that P induces probabilities that 
satisfy (i), (ii) is called a Brownian motion on J x I. 

In order to prove that this assignment of probabilities is possible, let us 
construct a Brownian motion on J x I, adapting for that purpose Ciesielski's 
construction of a Brownian motion on the line ([2, 7]). 

When the interval [0, 1) is substituted for J and I =  [-0, 1), this construction 
may be applied with minor changes. It is based on the use of the family of Haar 
functions {~9rlreJ = set of dyadic rationals in (0, 1]}, which is a complete ortho- 
normal set in L 2 (0, 1). The Schauder functions 

= 

0 

defined by 

el  (z)= z, 

~or (z)= 2 -(i(r)+1)/2 max {1 - Iz - rl 2 i(r), O} ( r#  1) 

where i(r) is the unique positive integer such that r may be written as an irreducible 
fraction r =  k/2 i(r), satisfy 

2 ~Or(Z') ~O~(Z") = min {z', z"} (z', z"~(O, 1]) (1) 
r~T 

as a consequence of Parseval's identity applied to the characteristic functions 
of the intervals (0, z'), (0, z"). 

Let us define 
fi(t ,z)= ~ ( ~ gr+~Or(t)~Os(Z)) (2) 

m=O i(r)=m 
n=O i(s)=n 

where (gr+lr, seT) are mutually independent standard Gaussian variables 
(E {g~} =0,  E {g~} = 1, r, seT). 
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The proof of the uniform convergence with probability one of the one-dimen- 
sional analogue of our double series in m, n, applies also here with the obvious 
modifications, proving the continuity of the paths of the process defined by (2). 
In fact, if 

e,,, = sup[ • g~s ~0~(t) ~0s(z)[, 
t, z e I  i(r)=m 

i(s) = n 

it may be shown (following [7] for instance) that 

P[k  ~ (~ { % , < 0 1 / 2  . . . .  log 2,,+,}1 = 1 
=1 m + n = k  

for 0 > �89 this implies that ~ %,  converges with probability one, hence the right- 
mn 

hand side in (2) converges uniformly with probability one. 
Since the set of variables {/~(t, z)lt, z~[O, 1)} is a Gaussian family (i.e., their 

linear combinations are all Gaussian variables with zero means), it only remains 
to check that any two of those variables have the required covariance, namely 

E {fl(t', z') fl(t", z")} =rain {t', t"} min {z', z"}, (3) 

in order to show that the properties (i) and (ii) are satisfied. 

Using (2) we obtain 

( Z 
m=O i(r)=m 
n=O i(s)= n 

and (3) follows from (1). 

Finally, piecing together independent copies {/~kfk = 1, 2, ... } of this Brownian 
motion on [0, 1)• [0, 1) we obtain a Brownian motion/~ on the half-plane J •  R; 
its restriction to J • I is the desired process. 

1.2. Brownian motion related to a canonical measure. 

From now on, I will be an open interval. Let m be a Borel Measure on I, 
which is finite on closed intervals and positive on open intervals (such a measure 
will be called a canonical measure). The symbol m will also be used to represent 
the distribution function 

m(0, z] for z > 0  
m ( z ) = m ( z + ) = ~ - m ( z , O ]  for z < 0 .  

Let us call Im the (possibly infinite) range of the function m and let ft,, be a 
Brownian motion on J •  Ira. Then the process /~ on J •  I defined by /3(t, z)= 
tim(t, re(z)) is said to be a m-Brownian motion on J x  I. 

A m-Brownian motion satisfies the following properties derived from (i) and (ii): 

(i') for each rectangle S in J • I with edges parallel to the coordinate axes 
and d t x dm measure iS[, the variable fl(S) is Gaussian with zero mean and vari- 
ance [SJ. 

(ii') same as (ii). 
8 Z.WahrscheinlJchkeitstheorie verw. Geb., Bd. 15 



114 E, M. C a b a f i a :  

As a function of (t, z), fi is continuous for all t and all the points z of continuity 
o f  m .  

1.3. Stochastic integrals with respect to plane Brownian motions. 

Double stochastic integrals with respect to plane Brownian motions may be 
defined in regions of a very particular shape (namely on [0, t) x I) but general 
enough to serve our present applications, following the same procedure as 
employed for the definition of the simple integrals with almost no additional 
trouble. 

The scheme of McKean may be closely followed. For the proofs and details, 
we refer to [7]. 

Let ~t(teJ) be the a-field generated by the events {a<=fi(t',z)<b[a<b, 
0 <_ t' <- t, z~I}, and Nt + the a-field generated by the process fit + (t', z) = fl(t + t', z) - 
fi(t, z). An increasing family {~r of a-fields is given in such a way that for 
each teJ, ~ is independent of ~ and includes Nt. 

A function f o n  d x I x s to R is said to be a non-anticipating functional when 

(i) f i s  measurable in the product of the Borel field on d x I and the field d ~  
generated by the union of the family {s~gtlt~d }, 

(ii) for each ted, zEI,f(t, z) is ~r 
T 

In the following the symbol J~ will be used as an abbreviation for ~ , W 
0 (O,T) x I  

denoting any positive real number or + oo. 

When 
T 

P {I~f 2 (t, z) d t d m < oo} = 1 (1) 
0 

the integral 
t t 

~ f  dfl--~jf(z, z)dfl(z, z) (0<_<_ t< T) (2) 
0 0 

is defined as a function of t and of the Brownian path, satisfying the following 
conditions1 : 

0. If f is the characteristic function of the rectangle S with edges parallel to 
T 

the coordinate axes, and if S c (0, T)x I, then ~fdfl--f l(S); 
0 

t t t 

1. ~f l  dfl+ ~f2 dfl=~I (f~ +f2) dfl for all t~(0, T); 
0 0 0 

si 2. k fd  fl = k ~ f d  fl for all t~(0, T) and any real constant k; 
0 0 

3. ~ f d f l  is a pathwise continuous function of t with probability 1; 
0 

1 T h e  i n t e g r a n d s  a p p e a r i n g  in the  s tochas t i c  in t eg ra l s  a re  a s s u m e d  to  sat isfy the  a n a l o g u e  o f  (1), 
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4. If t is a stopping time (i.e., t: O--+J is such that {fi[t(fi)<t}eNt), for each 
0 <  t < T) and if )~t is the characteristic function of {t[t < t}, then 

t T 

5I f  df l=SIfz t  dfl; 
o o 

5. I f E  2 d z d m  <oo, then 

(i) E d =0.  

(ii) E f d 3 1 4  = fd3forO<_s<_t<T. 

(iii) E { ( ! i f d , ) 2 } = E { ~ f 2 d z d m } .  

There is little or no change when the integrand f takes  its values on a separable 
Hilbert space H, instead of R. The measurability to be applied is, equivalently, 
the strong measurability, or the weak one. The stochastic integral satisfies proper- 
ties 0 to 4. It also satisfies the following property 5', which is the natural generali- 
zation of 5. 

5'. I fE  [[f[12 dz dm <oo,  t h e n E  f a i l  =0, E f d f l l 4  = f dfl 

for O<__s<_t<T, a n d E  f d f l  =E [[f[12drdm . 

The integrals of Hilbert-space-valued functionals with respect to Brownian 
motions on the line are a very particular case of those considered in [1]. The 
corresponding It6's formula for the stochastic differentiation of composite 
functions is proved there. One version of It6's formula that holds in the present 
context reads as follows. 

Lemma 1.1. Let cp=cp(t,x) be a function from J x  H to R with continuous 
partial derivative Do q~ = Oq~/Ot. Let ~p also have first and second derivatives D cp 
(on J x H to H)  and D z ~o (on J x H to the space of bounded linear operators H ~ H ) 
with respect to x~H,  such that D2 (o is symmetric and continuous in the operator 
topology, and 

(p (t o + t, x o + x) = q~ (to, Xo) + D O q~ (to, Xo) t + (D (p (to, Xo), x) 

+�89 2 cp (to, Xo) x, x) + 01 (t, X) -}" 0 2 (t, X) 

where 

lira [ t l - l o l ( t , x ) = O ,  lim [[xfl-2oz(t,x)=O. 
It[, I[xll ~ 0  [t[, IIxl[ ~ 0  

Let fl be a m-Brownian motion on J • I, and let g(t),f(t, z) be non-anticipating 

H-valued processes such that E [[g[] 2 dz < o% E [[f[[2 dz dm < o9. 
) 
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Now, if  7 is the stochastic integral 
t t 

? ( t ) - a  + ~ g (z) dz-t- ~ f ( z ,  z) dfl (z, z), (3) 
0 0 

the formula t t 

~p(t, 7(t))= r (0, a)+ ~ Do q)(z, 7(z))dr+ ~ (D q~(z, y(z)), g(z)) dr 
0 0 

t 

+ ~ (Do(% y(z)),f(z, z)) dfi(z, z) (4) 
0 

t 

+�89 ( D2 ~0 (% 7(z))f(% z),f(z, z)) dz dm 
0 

holds with probability one for all 0_<t< T, simultaneously. 

Proof  As in [1], the following reductions can be made without loss. Let us 
introduce the stopping time 

Tn= sup {t~Jlfor O<.z<t, I[D q~ (y (z)) [] + l[ D2q~(y(z))]l<n} 

which satisfies P { lim Tn >__ T} = 1, and prove (4) only for each stopped process 
m---~ oo 

t t 

0 0 

where Z~ is the characteristic function of the interval (0, T~). Since the integrals 
in (3) are continuous functions of t, it is enough to prove that the equality holds 
for each fixed t with probability one. Also since the integrands may be approxi- 
mated by linear combinations of characteristic functions of rectangles with 
edges parallel to the coordinate axes (the so-called simple functionals), it suffices 
to prove (4) for constant g and f (using the additivity of the integrals). 

But in that case, ~ (t) reduces to a + g t+ff i ( t )  with fl(t)= fi((O, t)x I) and It6's 
formula for integrals with respect to Brownian motions in the line applies to 
this case, since fl is such a process up to a constant factor 2. This leads easily to 
the desired result. 

2. The Vibrating String 

This paragraph is just a sketch of some facts related to the formulation and 
solution of the equation of the damped vibrating string. Its main purpose is to 
establish the notations to be used below. 

Instead of the classical equation 

2 u (t, z)/~ t 2 + 2 b ~ u (t, z)/O t = Oa u (t, z)/O z 2 + F (t, z) (1) 

the generalized point of view of Feller ([4]) is adopted, considering the string as a 
family of pairs of functions u (t,o), v (t,~ defined on the interval I and depending 

2 This version of It6's formula is not a particular case of the one proved in [1], because the function 
q~ there considered did not depend on the first variable (i.e., it was defined on H instead of J x H); 
its actual proof can be made following the same lines as for the scalar case (cf. [7], for instance) and 
dealing with the additional troubles introduced by the Hilbert-space context as in [1], but the present 
case is much simpler. 
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on the real parameter t. The function u(t,.) represents the position of the string 
at time t, and the function v(t,.) represents the velocity. As before, it is assumed 
(without loss of generality) that the interval I contains 0. 

A canonical measure m is given on I and the corresponding Hilbert space 
L z (I, m) is called H,,, its norm being denoted by 

I[q)l[m =(j" ~p2 dm)~. 
I 

A Borel measure 7 finite on closed intervals is given on I. An operator L is 
defined by 

Lop d m =  dq)' - (p d 7 (2) 

acting on the set ~ of continuous functions q~ with derivative q0'= dqo/dx at each 
point where m and 7 are continuous, and one-sided derivatives (p+, ~0- at all 
points, such that q)' is of bounded variation; the meaning of (2) is that both terms 
are equal as measures. 

L anihilates two independent positive convex functions ~ ,  ~2 on I; for any 
such ~, L can be expressed as 

Lq~=-~ d (~2 d 

with dy--dO'/~P ([4]). 

The operator L induces a Fourier transform, as shown by McKean [6] 
(cf. also [5]), which maps functions in Hm into a new Hilbert space H I of functions 
on ( -  oo, 0] whose values are vectors of two components. 

From now on, unless the contrary is specified, the indexes will run over the 
set {1, 2}. Let ei(z, p) be the solution of 

Lei(  ", fl)= # ei(. , I~) 

e 1 (0, #) = e f  (0, #) = 1, e 2 (0, #) = e~- (0, #) = O. 

Then there exists a Borel Measure f = ( f i ~ )  from ( - w , 0 ]  to 2 • 2 symmetric 
non-negative definite matrices, such that if H r is L2(( - c~, 0], (dfiJ)) with the 
norm of a 2-vector function (p(.)--(~o 1 (~ (p2(~ denoted by 

1 o+ \ •  3 
I1(p(.)I t = (_ f  cpi(#) (p j(#) d f iJ(#) t 2 (3) 

then the Fourier transform from H m to Hf  may be defined by 

u(6 Urn)~ (fii('))=(S u( z ) e , ( z , . ) dm(z ) )~n f  (4) 
I 

which has the inverse 
0+ 

zl = (hi)(eHr ~u ( - ) - -  ~ a,(#) ei(- , #) df i i (#)en ,~ .  3 (5) 
-oo 

Furthermore, the Plancherel theorem [lu[[m=[[~[] holds. 

3 The repeated index denotes summation.  
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Now the equation of the damped vibrating string, with an external force F 
and given initial conditions u (0, o), v(0, o), may be written as a system of integral 
equations t 

u(t,.)=u(O,.)+ ~ v(~,.) dz 
o (6) 

t t 

v(t,.)-- v(o,.)+ ~ (Lu(~, .)-2b v(~,.))d~§ S e(~,.)d~ 
o o 

with formal solution 

(u(t,~)] -em (u(O,2)] t F(r,o)d~, (7) 

1 (~ 
The transformed version of (7) is 

ui(t, #)=~I (t, #) ri(o, #) § e)2 (t, #) vi(o, #) 
t 

+ ~ ~} (t, #) 5�89 ( -  ~, #) ei (z, #) r (~, z) de din(z) 
0 

(8) 
vi (t, #)= e 2 (t, #) ui (0, #)§  ~22 (t, #) vi(0, #) 

t 

§ ~ ~2 (t, #) ~�89 ~, #) ei(z, #) F(z, z) d~ din(z) 
0 

where 
(9) 

d(t, #) 5~(t, #)! 
Because of the nature of the external force that we wish to apply, the form (8) 

of writing the formal solutions will be more suitable. Let us formulate the remain- 
der of this paragraph in the space of transforms. The analogous formulae in terms 
of functions of zeI  may be easily worked out. 

Two new Hilbert spaces are introduced; H} is the space of functions on 
( -  0% 0] to two-vectors, with norm given by 

II1~o(~ = - #) (Pi(#) (Pg(#)dfiJ(#) ~, 

and inner product denoted by ((.,.)) and H~ is the space of pairs ((p; ~) with 
q~=(cpi)eH}, O=(Oi)eH:  and norm 

II(q~; 0) 11~ = (111~o1112 + IlOll2)~ 

If (q~;~0)~Hs,�89 r is said to be the energy of (q~; r the two terms 
�89 lU~olll 2 and �89162 into which the energy may be decomposed are respectively 
the potential energy and the kinetic energy. 

Lemma 2.1. The function (jo = (rio; ~o), defined by 
^ 1 ^ r ~ (t) = r ~ ( t , . )  = (r  ~ (t, o)) = (e I ( t , . )  u i ( 0 , . )  + ~2 (t, o) v i (0 , . ) )  

(lo) 
~o(t)= ~o(t,.)=(fio(t,.))=(5~ 2(t,.) fi,(0,o)+52(t,o) vi(0,')) 
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has the following properties: 
(i) /f b = 0, the energy of (jo is constant 

t 

(ii) for any b > O, �89 (7o (t,.)l[2 + 2 b ~ 113~ (~,')112 d'c is constant. 
0 

Property (i) expresses the conservation of energy, when no external forces 
act on the system, and property (ii) describes how the damping reduces the energy. 
Since (i) is a particular case of (ii), we only prove the latter property. 

The matrix (e}(t,/t)) may be written as follows. For - o o < # < - b  2 and 

r = l / - i ~ - b  ~, 
/e_b, b ( cos r t+rS inr t )  

gri t , /~)=~ ~ (11) 
e -  b t r sin r t 

while, for -b</~__<0 and r ' = l / # +  b 2, 

�9 /e-bt (c~ 

e~(t,p) ~ e-bt~ 7sinhr't 

finally 

The estimates 

e -b t ( cosr t - -bs inr t ) /  

e_b, sinh r ' t  \ 
r ~ ( r'b e -bt cosh r ' t -  -=- sinh r 't  

[e-b'(l+bt) te -~' 
g}(t, pte -bt e-b'( l_bt)]  " 

(~i' (t, #))2 < 4 e 4 t  - 

( - #)(el (t, #))2 =< e4, -, 
( - ]A)-1 (~2 (t, ]./))2 ~ e 4 t - ,  

with t -  = m a x  { 0 ,  - t } ,  allow us to conclude that 

d(t,.)~(o,.)~H}, 

e~ (t,.) 3(0, .)6H}, 

d(t,.) ~(o,.)~ H~, 

(i = 1, 2), 

and 
e2(t,.) 3(O,.)~Hf. 

Therefore, ~~ 3~ and hence O~ 
From 

~ ~] = ~{-exp(B.t)=Buexp(B.t)= ~pel_2b e21 
d 

l~e~-2be 2] 

; Or) 

(11") 

(12) 



120 E . M .  C a b a f i a :  

it follows that 

Hence 

~3fl~ (t' #) ^o 
c3t --v (t,#), 

8 ~o (t, #) ^o 
8t #fl~ (t,#). 

^ 0  " 0  "0  - # ui (t, #) ~t ( fly(t, #)+ ~~ #) ~3~ (t, #))= - 4 b  v i (t, #) vj (t, #) 

and therefore 
t 

c~t (lllfl~ § IlO~ +4b j" II~~ 2 & ) = o .  
0 

This proves (ii). 

3. Some Properties of the Formal Stochastic Solution of the Equation 
of the Vibrating String 

If the external force F that appears in the system w 2 (6) is replaced by the 
formal mixed second derivative ~2 E (t, z)/~ t Ore(z) of a given m-Brownian motion fl 
on J x I, the equations w 2 (8) are replaced by 

fl(t) = flo(t) + eJ ( t , . )  ~,J(t), 
2 (t,~ 7J(t) (1) ~(t) = ~~ + e~ 

^0 /~0 with u , given by w 2 (10) and 

t 

y{(t) = ~ e{(--'c, .) e, (z, .) dE (v, z), i=  1, 2; 
0 

the formal differential 0 2 E/O t ~ m has been replaced by the true stochastic differen- 
tial dE(z, z). We shall say that (1) is the solution of the equation of the string 
forced with plane white noise: 

~2u/Ot2 q- 2b 3u/at =Lu  + 3zE/3t Ore. 

It will be convenient to apply a slightly modified forcing term, in order to 
assure some required convergences, and that is the reason why a factor G(o) 
will be introduced in the definition of 7J. 

Let us assume that 0 (0) = (fl (0), ~ (0)) is a given do-measurable random variable 
such that P{IIO(O)II~< oo}= 1, and let us define the process U(t)=(fl(t), ~(t)) by 
means of (1), where the stochastic integrals 7{ are defined in (3) as the integrals 
of the functions 5�89 ( -  z, o)ei(z, o)G(~ for which the assumption 

04:- 

k =  ~ ~ G2(#) e,(z, #) ej(z, #) df 'J(#)dm(z)< oo (2) 
I - -co  
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is made. The estimates in w 2 (12) imply (for all t simultaneously) that 

t 

~ (t) = S~ 4 ( - ~, . ) ~ e, (z , .  ) d ~ (~, z) ~ ~), 
o (3) 

t 

SS e2 ( -  v,. ) a ei(z,. ) d fl(z, z )eH y, 
0 

with probability one. 
A priori the values of (1 are just functions on ( - o %  0], but using (3) and the 

bounds in w 2 (12) as in the first part of the proof of Lemma 2.1, it follows that 
gt(t)~H'y, ~(t)~Hy, and hence ()(t)~H e simultaneously for all t, with probability 
one. 

Lemma 3.1. The process 

z(t) = II U(t)lle 2 + 4b ~ II ~(~)112 d ~ -  k t, (4) 
o 

where k (< oo) is defined by (2), is given by the stochastic integral 
t 

z (t) = z (0) + 2 55 (v (z), G e (z,.)) d/~ (~, z) (5) 
0 

(the symbol e(z,.) denotes the vector-valued function (ei(z,.))). 

Proof Let us consider the function 

~0(t, 71, ~)2)= iI1~O (t) -t-eJ (t, .) 7JIl] 2 + 1[~~ (t) + eft (t, .)  Till 2 

defined for t~J  and (y~, 72)eHe. Its derivative with respect to t, 

Do q)(t)= - 4bll~3(t)lf 2, 

may be computed as in Lemma 2.1. Lemma 1.1 applied to (p gives 

t 

I[ U(t)[] 2 =  II U(O)I[~ + ff ( -  4b)l[~(~)[[ adz 
0 

t 

a (z,. ) ~2 (_  ~, .) G(. ) e(z, .))) dfl('c, z) + 2 II ((~ (~), ~ 
0 

[ 

+ 2 II (~ (~), 4 (~,.) 4 ( -  ~,.) ~ (.) e (z,.)) dp (r, z) 
0 

t 

+ I1114 (~,.) 4 ( - , , . )  o( . )  e(z,.)[I 2 dv din(z). 
0 

Since e}(z,-)e~(--c,~ 6~, (6) reduces to 

t t 

H CT(t)ll~ = l[ u(O)[l~ - 4 b  J" II~(z)[I 2 d~ + k  t +  2 J'f (~(z), G(.) e(z, .)) dfi(z, z) 
0 0 

(6) 

and the required result follows. 
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Corollary 1. The process z(t) is a martingale, with respect to the family of 
a-fields s~t (teJ). 

Corollary 2. The following estimates hold for [2k 2t[ < 1: 

(i) 
E {(z(t)+ktYl~r ~ (2n)! ~= o (n-j)!  2"- j (2j)! (z (0)) j (k t)"- J. 

(ii) 
E{exp(2z(t))]do}Ne_Zktex p [ 2z(0) ] 1 

U-z,~ktl 1-V]~T~ 

Corollary 3. For each positive ~ and 0 < 2 <  1/2kt, 

e-Z(~+kt) { ~LI~'(O)II~ 
P {[IfJ(s)]lz<e+ks for all se(0, t ) }> l  ~ E  exp 1 - 2 2 k t J "  

Proof of Corollary 1. Use property 5 (ii) (w 1.3) of the stochastic integral. 

Proof of Corollary2. Let c,(t) be an upper bound of E{(z(t)+kt)"[do}. 
Obviously we may take Co (t) = 1, el (t) = z (0) + k t. 

F rom Lemma 3.1, 
t t 

z (t) + k t = z (0) + S k dz + 2 ~ (6 (z), G e (z,.)) dfl (z, z), 
0 0 

so that It6's formula implies 

(z (t) + k t)" = (z (0))" + i n (z (z) + k z)"-i k dz 
0 

t 

+ ~ n (z (z) + k z)"-' 2 (6 (z), G e (z,~ dfl (z, z) 
0 

t 

n(n-  1) ~ (z(z)+ k z) "-2 4(~(z), G e(z, ~ dz din(z), 
2 o 

and hence 

((z (t) + k t)"L do } < (z (o))" + i "k c._1 ('0 d 
0 

t t 

<(z(O))"+nk ~ c._~ (z)dz + 2n(n-1) k ~ E {(z(z)+ kz)"-EIl~(z)ll2lSgo} dz 
0 0 

<(z(O))"+kn(2n- 1)i c,_1 (z) dz, 
0 

because [[~ (t)[I 2 _< z (t) + k t. We may therefore take 
t 

c, (t) = (z (0))" + k n (2 n - 1) ~ c,_,  ('c) dz. 
0 

From this and the fact that Co (t)-- 1, (i) is obtained. 
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As for (ii), it follows from (i) that 

E {e~(t)ldo} ~e_Zk , ~ 2"c.(t) 
n=o n! 

~3 
=e-~kt E ~ 2"(2n)!(z(O))i(kt)"-J 

.=o i=o n!(n-j)! 2"-J(2j)! 
0o 

=e-Zkt Z ~ 2J+"~[Z(m+J)]! 
m=O j=o ( ~ m . t 2 ~ !  (z(O))J(kt)m" 

On the other hand, for lyl<�89 

(7) 

e:,/(1-ey) ~ x J _ +* ~o ~ xJ(2j + 2m)! y,~ 

-,=~o 7 -  ,=o ,.=o 
1 - 2 y  (1 -2y)  o 2)= E ( j ~ ~ m . ~ 2 "  (8) 

and combining (7) with (8), (ii) is readily obtained. 

Proof of Corollary 3. Since z(t) is a martingale, exp(2 z(t)) is a sub-martingale 
for 2=>0, and Doob's inequality gives 

hence 

e ~ e {oS<_uPtexp (2 z (s)) > e ~} =< E {exp (2 z(t))}, 

P { sup z (s) > a} _< e- z~ E {exp (2 z (t))} 
O<s<=t 

and using the estimate (ii) of Corollary 2 and the definition of z(t), it follows that 

P ~  sup II~J(s)ll~+4b~ll~(r)ll2dr-ks>c~ < 1 - 2 2 k t  E exp 1 - 2 2 k t  ' {. O<s<-t 0 

Therefore 

I * t P IlO(s)ll~+4bfll~(~)ll 2 d~<c~+ks for all se(O, t) 
0 

e - l (~+k t ) { e  )~ z(O) t (9) 
>1 1 - 2 2 k t E  x P l _ 2 2 k t -  " 

This last inequality implies the required conclusion. 

4. Application to a Two-Sided Barrier Problem 

The preceding results may be used to derive an estimate for the probability 
that a certain stationary Gaussian process y(s) remains bounded in absolute 
value by a function of the form A / f ~ ,  during an interval of a prescribed length. 
The covariance function F(s)=E{y(t+s)y(O} of the process must have the 
representation (5) indicated below, in order that such an estimate can be obtained. 
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4.1. Representation of stationary Gaussian processes. 
If the initial conditions U (0, .) appearing in the definition of ~r (t)= (fi (t); ~ (t)) 

(w 3 (1)) are suitably chosen, the process O(t) can be made stationary. In fact, 
that is the case when 

r 

fii(O, #)=  ~. ~. ez~ (z, #) G(#) ei(z, lO dfl' (z, z) 
o (1) 

vi (0, l~) = ~ e2~ (% I0 G (#) ei (z, #) d fl' (% z), 
0 

where fl' is a new m-Brownian motion on J • I, independent of ft. The process 
U(t) is then given by 

~(t,  ~)=~} (t, ~) ~i(t, ~), 

with 

^ 2 vi(t, #)= ej (t, ~) ?i(t, #), 

oo t 

~{ (t, 12) = ~. ~. e�89 (z, 12) G (12) e, (z, #) d fl' (z, z) + ~. ~. ~�89 ( -  z, #) G (#) e, (z, #) d fl (z, z), 
0 0 

or simply 
t 

yj (t, #)= ~ � 8 9  #) G(#) e,(z, #) dfl (~, z), 
- o o  

where fi pieces together fl and fl' in the obvious manner. 
Now, given q~=(+; 6 ) e l l , ,  let us compute the covariances of the stationary 

process y (t) = (0  (t), q3)~ 

when Cr(0) is chosen as above [(1)]: 

P(s) = E {y(t) y(t + s)} = E {y (0) y (s)} 

= e  ~ (4(0,  -i, 0 
- o o  

�9 (~2, (s, v) ~ '  (s, v) ~t(v)-  v 8~,(s, v)~'  (s, v) O~(v)) dfU(#) dfk~(v)}. 

Now insert 
0 

- - i '  0 ~{~,~ ( ,  ~)~'(s ,  v)} = ~I ~( -~ ,  ~) ~'(-'~, ~') G(~) C(v) e~(~, ~) e~(~, v) d~ dm(~) 
- o o  

in the above formula, to obtain 

O +  O +  0 

r(s)= ~ ~ Si (4(o,~,) ~A~)-~,4,(o, ~) ~'A~)) 
~ o o  - -oo  - o o  

�9 (4, (s, v) ~,, (v) -  v ~, (s, v) 4,, (v)) ~ ( -  ~, ~,) ~'(--~, ,,) c (~) 6 0,) 
�9 ei(z, 12) ek(Z, V) dz din(z) dfU(tO dfkl(v). 

(2) 
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Using 
O+ O+ O+ 

~ S h)(#) hi' (v) e i (z, #) e k (z, v) d f  ij (12) d f  kt (v) dm (z) = ~ h~ ~) hi' (#) d f  jt (#), 
- - o o  - - o o  [ - - cO  

which expresses the isometry between H,. and H I implied by the Plancherel 
Theorem, (2) reduces to 

0 +  0 

r(s)= I I (4(0, #) ~j(#)-#4,(o, #)~/#)) 
- ~ - ~ (3) 
�9 (~, (s, #) ~z (#)-  # @(s, #) (o, (#)) ~s ( -  z, #) ek2"( - r, lO G2 (#) d f  jt (P) dz. 

It is not hard to obtain 
o 

I e~ ( -  z, #) e k" ( -  z, #) dz = (e~' (0, #) ek' (0, #) -- # e~ (0, #) ~k' (0, #)) (4) 
- - c o  

and replacing (4) in (3) it follows that 

" 2 r (~)= I (d (o, #) 8 j (#)-#  ~I (o, #) ~oj(#))(~ (~, ~,) 8~(#)-# ~I (s, #) 4,~ ~)) 
- - o O  

1 2 ~ 1 ^ 2 1 + ~ -  (~2 (0, #) 0~(#)- # O0, #) q~ (#))(~ (s, #) 8, (u ) -  # Os,#)+t(~)) ] o 2 (#)df'(#) 

= of #) 

+ 8j(#)(~ (s, #) 8,(#)- # ~ (s, #) ~,(#))] 62(#) df ~(#). 

But also e~ (s, #)= # e~ (s, #) (because B. and e B-~ commute), so that 
0 +  

F(s)= I ( - # )  ~1 (s, #) 62(#) ~j(#) ~ ,~ )  dfJt(#) 
_ oo (5) 

O+ 

+ ~ ~(~, #) 62(#) 8 / # )  St(#) df~'(#) 
- - o O  

and, in particular, 
F(o)= IIG(-)(~ (.); ~(.))ll~. (6) 

Example. Let us set I = ( - r c ,  re) and dm(z)=e zblzl dz, so that (with the abbre- 
viation r =  ~ )  

el (z' #)=e-blz' ( c~ r z + b  sin r z (r>O), 

el(z, -bZ)=( l  + b z) e -bl~r, 

e2(z,#)=e_brzl s inrz  (r>O), 
r 

e2 (z, - b 2) = z e -blzl , 

df(#)- dn(r) ( ~ -b) for # ~ - b  2, 
lr - -1z 
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where n is a jump function with jumps of magnitude 1 at the positive integers, 
and a jump of magnitude �89 at r=O, and 

df(#)=O for -b2<#=<O.  

i of exp(B, s) (w 2(11)) may be written as For # <  - b  2, s>0,  the components  ei 
follows 

~l(s,#)=et(s,#), e~(s,#)=el(s,p)-2be2(s,#) 

so that (5) leads to 

oo 

ebSr(s)= 1 Z,G~(~. +~o.(b2 +r2))cosrs_b 2 ~. - - ,  - -  G, (0r -~5*(b2+r2)) s inrs  
~ r ~ O  r 

where 

(7) 

(8) 

and ~ '  oo ~ardn(r)" a N means �89 a o + r=~l ar = 
0 

4.2. The barrier problem. 

Theorem 4.1. Let y(t) be a stationary Gaussian process with covariance function 
F(s)=E{y(t) y(t +s)} given by (5), for suitable ~ H ~ .  Then, if b is the positive 
damping associated to the representation (5), and k is the constant defined by w 3 (2), 
for each c~> 3k/2b, 

P {ly(s)12 <_(c~ + k s)l[~l[~ for all se(O, t)} > 1 - e  
1 2be-3k r 2 b e - 3 k  

~ q 2 b k t + 3 k "  (9) 

Remark. In order to simplify the dependence on e of the right-hand term in 
(9), one may replace it by the lower bound 

2~ab ~ e- 2 
1 --e 2 b k t + 3 k  

1-2  
for 0__<2< 1. 

In order to prove the theorem, let us prepare the following lemma. 

Lemma 4.1. I f  ~(O)=(fi(O), z3(O)) is the random variable defined in (1) and the 
spectral measure df  is concentrated on ( - 0 %  -b2] ,  then 

E {[]U(0)II~"} -< ~ (3 k/4b)". 
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Proof Let us introduce the (random) function 

with 

g(t)= iJ'e~(v, #) G(#) e(z, #)dfl'(z, z) 2 

' dy(7, z) 2 + ![. g2 (~, #) G(#) e(z, #) = 11171(01112 + 11~2(t)ll z, 

fi(z,  z) = e/2 (z,') G(.) e(z,.), 
t 

7i(t)= ~fi(7,  z) dfl'(z, z), 
0 

and let k.(t) be an upper bound of E {g'(t)}. 

An application of Lemma 1.1 gives 

t t 

g (t) = 2 S j [((]21 (g), f l  (7, Z))) + (72 (g), f2  ('C, Z))] dfl' (z, z) + 55 (l[If 11112 + I[f 2 ][2) d7 din, 
0 0 

and therefore 

t 

g" (t) = ~ n g" -~ (v)(2 [((~1 (T), f l  (% Z))) -1- (7 2 (~), f 2 (7, z))] dfi' 
0 

+ (IHf 1 (z, z)[][2 + iif2 (7, z)pI 2) d7 dm) 
t 

+ �89 n ( n -  1)~ g ' -  2 4 (((71 (z), f l  (,~, Z))) -}- ())2 (T), f2  ('C, a))) 2 dz din. 
0 

(lO) 

From (10) and Cauchy-Schwarz inequality it follows that 

t 
E{gn(t)}<= [.[rlkn_l  -c 1 2 2 d 7  ( )[[(f ; f  )lie dm 

0 

t 
<n(2n_l) i fk ,_ l (z )][( f l .  2 2 , f  )lie dz dm. 

0 

(11) 

Now, using the definition o f f  1, f2,  (11) leads to 

E {g" (t)} =< n ( 2 n -  1)J" S G z (#) ei(z, #) ej(z, #) dfiJ(#) 
ltz 

�9 i k,_~ (r) [(g2 (z, #))2 _ # (g~ (z, #))2] d~ dm(z). 
0 

(12) 

On the other hand, for # < - b  2 and r =  ~ ,  w 2 (11) applies and the fact 
that dfvanishes in ( - b  2, 0] allows us to use the estimate 

(e22 (v, #))2 _ # (e~ (z, #))2 < e-  2 b~(l + 2 b z + 2 b2 z2). (13) 
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Combining (12) and (13), and recalling the definition w 3 (2) of k, we obtain 

t 

E {g"(t)} <n(2n-  1) kSk.(z) e- 2b~(1 +2b z+2b 2 z 2) dz 
o 

which leads to a recursive computation of k,, namely 

t 

ko(t)=l,k,(t)=n(2n-1)k~k,_l(z)e-2b~(l+2bz+2b2z2)dz. (14) 
o 

Since (14) implies 

k.(t)= ~ ( k )  " (i e-2b~(l + 2b z + 2b2 z2)dz) " 

the result follows by putting t - - ~  and using 

+ 3 
Se-2b~(1 +2b z+2b 2 z 2) dz= 2-b" 
0 

Corollary 1. If  the assumptions of Lemma 4.1 hold, then 

{ 21[~(0)[12} < (1 3k2 ) -+  
E e x P l _ 2 2 k t  = b ( 1 - 2 2 k t )  

for 0<3k  2 < b ( 1 - 2 2  kt). 

Proof. 

E e x P l _ 2 2 k t j  ,=o 1-22kt -  n! 

< ~  (2n)!_( 3k2 )" ( 3k2 )-+ 
=,--"go (n!) ~ 4b(1-22kt)- -- 1 b(1-22kt) 

Corollary 2. If  the assumptions of Lemma 4.1. hold, and (/(t) is the process 
defined in w 3, then for each e > 3 k/2 b, 

1 ~-3k/2b / 
p{llCj(s)ll2<e+ksforallse(O,t)}>l_ e ~ V I _ ~  ~-3k/2b (15) 

kt + 3 k/2b " 

Proof. Using Corollary 1, and Corollary 3 of Lemma 3.1, the inequality 

P{LlCJ(s)ll~<=e+ks for all se(0, t)}> 1 - 

follows readily for 
O<2 <b/(2b kt+3k)  

e-X(~+ko 

] /1 -  2(2k t + 3 k/ff)) 
(16) 

and taking the maximum of the right-hand term in (16) for 2 satisfying (17), the 
inequality (15) is obtained for e>3k/2b. If c~<3k/2b, the cited maximum is 
0 (for 2 = 0) and the corresponding result is trivial. 

(17) 
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Proof of  Theorem 4.1. 

The process y( t )=(O(t) ,~)g has covariance F, so that Cauchy-Schwarz 
inequality and Corollary 2 lead to the desired result. 

Example. Let 7(s) be a function with Fourier expansion 

{ sin r s 
= L r o2'  rcosrs-bb,--7--. ) , 

where ~ '  has the same meaning as in w 4 (Example), and the coefficients satisfy, 
for r--0, 1 . . . .  , 

(a) a,=>O, 

(b) tb~l<a~, 
(c) there exist non-negative numbers a',, a ' /such that a~ = a'r a'~; a' = ~ '  a'~ < oo, 

d'=-Sa;<oo. 
Then, for each number c~> 3a"/b, the stationary Gaussian process y with 

covariance function 
F(s) = e -bs ? (s) 

satisfies P{ly(s)12<a'(a+2a"s) for all s such that O<_s<t<_Tr} 

1 ~ -  3."/b ~ - 3 a" /b  

> l - e  2 ~ a " / b  1+ 2a"t+3d'//)" 

08) 

In order to prove the preceding statement, let us represent a process with 
covariance F, choosing I, dm as in the example of w 4.1. This is accomplished by 
setting [see (7)] 

a'r= ~* + (o* (b2 + r2), a," = Ur ,-2 

br = G~ (t}* - ~5" (b 2 + r2)), 

thus defining ~*, ^* ~0, in such a way that 

[I ~bll~ --- ]1[ ~5 ]J[ 2 + [[ ~ ][ 2 ___ ~ ,  ~ ,  + c}* (b 2 + r 2) = a'. 

On the other hand, 

(19) 

- -  Z G,  (e~ (z, #), e2 (z, #)) _ b 
- ~ r = O  

clo 

= 2  Z'G~ =2a" .  
r=O 

re2 (z, ~)! 
(20) 

Now Theorem 4.1 implies the required conclusion. 
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