Bounds for Weighted Multivariate Empirical Distribution Functions

John H.J. Einmahl ${ }^{1}$ and David M. Mason ${ }^{2}$

${ }^{1}$ Dept. of Math., Catholic University, Nijmegen, The Netherlands
${ }^{2}$ Dept. of Statistics, University of Wisconsin, Madison, WI 53706, USA

1. Introduction

Let X_{1}, X_{2}, \ldots be a sequence of independent random vectors, each uniformly distributed over $(0,1)^{d}, d \in \mathbb{N}$. The first n random vectors determine the empirical d.f. \hat{F}_{n} in the usual way:

$$
\begin{equation*}
\hat{F}_{n}(t)=n^{-1} \sum_{i=1}^{n} \prod_{j=1}^{d} 1_{\left(0, t_{j}\right]}\left(X_{i j}\right), \quad t \in(0,1)^{d} \tag{1.1}
\end{equation*}
$$

where $X_{i j}$ is the j-th component of X_{i} and t_{j} the j-th component of t. Writing $|t|=\prod_{j=1}^{d} t_{j}$ we define

$$
\begin{equation*}
\left\|V_{n, v}\right\|=\sup _{0<|t|<1} \frac{n^{v}\left|\hat{F}_{n}(t)-|t|\right|}{(|t|(1-|t|))^{1-v}}, \quad 0 \leqq v \leqq \frac{1}{2} \tag{1.2}
\end{equation*}
$$

In the one-dimensional case, much attention has been paid to criteria which determine the almost sure behaviour of limsup $a_{n}\left\|V_{n, v}\right\|$, where $\left(a_{n}\right)_{n \in \mathbb{N}}$ is a sequence of positive norming constants. Csáki $(1974,1975,1982)$ investigated the important value $v=\frac{1}{2}$ (i.e. in each point the process is divided by its standard deviation), while Shorack and Wellner (1978) considered the other extreme value $v=0$. Mason (1981) connected these two results and derived criteria for every $v \in\left[0, \frac{1}{2}\right]$. For arbitrary dimension d the case $v=0$ has been also considered by Mason (1982). In this paper we generalize Csáki's theorem (1974, 1975, 1982) and even Mason's generalization (1981) to arbitrary dimension d. An interesting corollary of this result is a law of the iterated logarithm for $\log \left\|V_{n, v}\right\|$.

2. Main Results

In this section we present our theorem and its corollaries. The proofs of these are deferred to the next section. Observe that we use sequences of positive norming constants $\left(a_{n}\right)_{n \in \mathbb{N}}$ which differ from those in the introduction.

Theorem. Let $F(t)=|t|, t \in(0,1)^{d}, d \in \mathbb{N}$ and $0 \leqq \nu \leqq \frac{1}{2}$.
(i) If $\sum_{n=1}^{\infty} a_{n}\left(\log \frac{1}{a_{n}}\right)^{d-1}=\infty$, then

$$
\begin{equation*}
\underset{n \rightarrow \infty}{\limsup }\left(n a_{n}\right)^{1-\nu}\left\|V_{n, v}\right\|=\infty \quad \text { a.s. } \tag{2.1}
\end{equation*}
$$

(ii) If $\sum_{n=1}^{\infty} a_{n}\left(\log \frac{1}{a_{n}}\right)^{d-1}<\infty$ and $n a_{n} \downarrow$, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(n a_{n}\right)^{1-v}\left\|V_{n, v}\right\|=0 \quad \text { a.s. } \tag{2.2}
\end{equation*}
$$

Corollary 1. There exists no sequence of positive real numbers $\left(a_{n}\right)_{n \in \mathbb{N}}$ such that $n a_{n} \downarrow$ and

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left(n a_{n}\right)^{1-v}\left\|V_{n, v}\right\|=1 \quad \text { a.s. } \tag{2.3}
\end{equation*}
$$

Corollary 2.

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\log \left\|V_{n, v}\right\|}{\log \log n}=(1-v) d \quad \text { a.s. } \tag{2.4}
\end{equation*}
$$

Corollary 3. For all $\alpha>0$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{-\alpha}\left\|V_{n, v}\right\|=0 \quad \text { a.s. } \tag{2.5}
\end{equation*}
$$

Corollary 3 is the multidimensional version of Corollary 1 of Mason (1981).
In order to formulate Corollary 4 we have to introduce some notation. The (open) rectangles $\left(s_{1}, t_{1}\right) \times \ldots \times\left(s_{d}, t_{d}\right)$ in $(0,1)^{d}$ will be written as $R=R(s, t)$. Given an arbitrary rectangle $R \subset(0,1)^{d}$ we define $\hat{F}_{n}\{R\}=n^{-1} \sum_{i=1}^{n} 1_{R}\left(X_{i}\right)$ and we write $|R|$ for the Lebesgue measure of R.
Corollary 4. Let $F(t)=|t|, t \in(0,1)^{d}, d \in \mathbb{N}$ and $\mu \in(-\infty, 1)$. Then we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup _{|R| \geqq \frac{(\log n)^{\mu}}{n}} \frac{\log \log n}{(\log n)^{1-\frac{1}{2} \mu}} \frac{n^{\frac{1}{2}}\left|\hat{F_{n}}\{R\}-|R|\right|}{(|R|(1-|R|))^{\frac{1}{2}}}=\frac{1}{1-\mu} \quad \text { a.s. } \tag{2.6}
\end{equation*}
$$

however,

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \sup _{|R| \geqq \frac{1}{2}} \frac{1}{(\log n)^{\frac{1}{2}}} \frac{n^{\frac{1}{2}}\left|\hat{F_{n}}\{R\}-|R|\right|}{(|R|(1-|R|))^{\frac{1}{2}}}=\infty \quad \text { a.s. } \tag{2.7}
\end{equation*}
$$

For the proof of this corollary we will require a result of Alexander (1984).
It is easy to see that the distinction between open, half-open and closed rectangles is inessential for the type of results just stated. Also, all of our results remain true if we replace $F(t)=|t|$ by F, whenever F has a density with respect to Lebesgue measure that is bounded away from 0 and ∞.

3. Proofs

Before beginning the actual proofs we first present two inequalities. The first one can be found in Ruymgaart and Wellner (1982, Corollary 2.4); see also Ruymgaart and Wellner (1984) for related results.

Inequality 1. There exists $c_{1}, c_{2}, c_{3} \in(0, \infty)$, only depending on d, such that for any $\theta \in(0,1)$

$$
\begin{align*}
& P\left(\sup _{|t| \geqq \theta} \frac{n^{\frac{1}{2}}\left|\hat{F}_{n}(t)-|t|\right|}{|t|^{\frac{1}{2}}} \geqq \lambda\right) \\
& \quad \leqq c_{1}\left(\log \frac{2}{\theta}\right)^{d} \exp \left(-c_{2} \lambda^{2} \psi\left(c_{3} \lambda(n \theta)^{-\frac{1}{2}}\right)\right), \quad \lambda \geqq 0, \tag{3.1}
\end{align*}
$$

where $\psi:[0, \infty) \rightarrow(0, \infty)$ satisfies $\psi(\sigma) \sim 2 \sigma^{-1} \log \sigma$ as $\sigma \rightarrow \infty$.
Inequality 2. For each $d \in \mathbb{N}, 0 \leqq v \leqq \frac{1}{2}, a \in[1, \infty)$ and $n \geqq 3$ we have

$$
\begin{equation*}
P\left(\sup _{0<\left\lvert\, t \leq\left(n a \frac{1}{1-v}\right)^{-1}\right.} \frac{n^{v} \hat{F}_{n}(t)}{\left.|t|^{1-v}>0\right) \leqq d\left(\log \left(n a^{\left.\frac{1}{1-v}\right)}\right)^{d-1} \frac{-1}{a^{\frac{-1}{1-v}}} \text {. }{ }^{1-2}\right.}\right. \tag{3.2}
\end{equation*}
$$

Proof of Inequality 2. Let $|X|_{1: n}=\min _{1 \leqq i \leqq n}\left\{\left|X_{i}\right|\right\}$. Notice that the probability on the left side of (3.2) is equal to

$$
\begin{aligned}
& P\left(|X|_{1: n} \leqq\left(n a^{\frac{1}{1-v}}\right)^{-1}\right)=P\left(\max _{1 \leqq i \leqq n}\left(-\log \left|X_{i}\right|\right) \geqq \log \left(n a^{\frac{1}{1-v}}\right)\right) \\
& \leqq n P\left(-\log \left|X_{1}\right| \geqq \log \left(n a^{\frac{1}{1-v}}\right)\right) .
\end{aligned}
$$

Observe that $-\log \left|X_{1}\right|$ is a gamma random variable with density $f_{d}(x)=$ $((d-1)!)^{-1} x^{d-1} e^{-x} 1_{(0, \infty)}(x)$. Thus

$$
\begin{align*}
P\left(-\log \mid X_{1}\right. & \left.\geqq \log \left(n a^{\frac{1}{1-v}}\right)\right)=\int_{\log \left(n a a^{\frac{1}{1-v}}\right.}^{\infty} \frac{x^{d-1} e^{-x}}{(d-1)!} d x \\
& =\sum_{k=0}^{d-1}\left\{\left(\log \left(n a^{\frac{1}{1-v}}\right)\right)^{k} \cdot\left(n a^{\frac{1}{1-v}} k!\right)^{-1}\right\} \\
& \leqq d\left(\log \left(n a^{\frac{1}{1-v}}\right)\right)^{d-1}\left(n a^{\frac{1}{1-v}}\right)^{-1} \tag{3.3}
\end{align*}
$$

This completes the proof of Inequality 2.
Proof of the Theorem. (i) It is a consequence of a result on the almost sure behaviour of the first order statistic in Geffroy (1958/1959) or Kiefer (1972) that $\sum a_{n}\left(\log \frac{1}{a_{n}}\right)^{d-1}=\infty$ implies $P\left(|X|_{1: n}<\varepsilon a_{n}\right.$ i.o. $)=1$ for any $\varepsilon>0$. It can be easily seen that

$$
\begin{equation*}
\left(n a_{n}\right)^{1-v}\left\|V_{n, v}\right\| \geqq \frac{\left(n a_{n}\right)^{1-v} n^{v} n^{-1}}{2\left(|X|_{1: n}\left(1-|X|_{1: n}\right)\right)^{1-v}} . \tag{3.4}
\end{equation*}
$$

Hence we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left(n a_{n}\right)^{1-v}\left\|V_{n, v}\right\| \geqq \frac{1}{2 \varepsilon^{1-v}} \quad \text { a.s. } \tag{3.5}
\end{equation*}
$$

Letting $\varepsilon \downarrow 0$ proves the first part of our theorem.
(ii) It is easy to see that we may restrict ourselves without loss of generality to sequences $\left(a_{n}\right)_{n \in \mathbb{N}}$ with $\frac{1}{n^{2}} \leqq a_{n} \leqq \frac{1}{n}$. We first consider the case $v=\frac{1}{2}$. Using
$a_{n} \leqq \frac{1}{n}$ we see that $\sum_{n=1}^{\infty} a_{n}(\log n)^{d-1}<\infty$. We now define

$$
\begin{equation*}
U_{n}=\sup _{0<|t| \leqq b_{n}} \frac{\hat{F}_{n}(t)-|t|}{|t|^{\frac{1}{2}}} \tag{3.6}
\end{equation*}
$$

with $b_{n}=\left(n(\log n)^{d-2}\right)^{-1}$, and prove that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n a_{n}^{\frac{1}{2}} U_{n}=0 \quad \text { a.s. } \tag{3.7}
\end{equation*}
$$

It suffices to prove that $\limsup _{n \rightarrow \infty} n a_{n}^{\frac{1}{2}} U_{n} \leqq 1$ a.s.
Define the following events:

$$
\begin{equation*}
A_{n}=\left\{U_{n} \geqq \frac{1}{n a_{n}^{\frac{1}{2}}}\right\} ; \quad C_{n}=A_{n} A_{n-1}^{c} \tag{3.8}
\end{equation*}
$$

According to the Borel-Cantelli lemma we need to prove that $\Sigma P C_{n}<\infty$ and $P A_{n} \rightarrow 0$ as $n \rightarrow \infty$. Define

$$
B_{n, k}=\left\{\forall_{t: x_{k-1}<|t| \leqq x_{k} \wedge b_{n}}(n-1) \hat{F}_{n-1}(t) \leqq k-1 ; \exists_{t: x_{k-1}<|t| \leqq x_{k} \wedge b_{n}} n \hat{F}_{n}(t)=k\right\}
$$

where $x_{k}\left(=x_{n, k}\right)$ is the solution of the equation

$$
\begin{equation*}
n x+a_{n}^{-\frac{1}{2}} x^{\frac{1}{2}}=k \tag{3.9}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
x_{k}=\left(\left(1+4 n k a_{n}\right)^{\frac{1}{2}}-1\right)^{2} /\left(4 n^{2} a_{n}\right)=\frac{k}{n}\left\{1-2\left(1+\left(1+4 n k a_{n}\right)^{\frac{1}{2}}\right)^{-1}\right\} \tag{3.10}
\end{equation*}
$$

and

$$
B_{n, k}^{\prime}=\left\{\sup _{|t| \leqq x_{k}}(n-1) \hat{F}_{n-1}(t) \geqq k-1 ;\left|X_{n}\right| \leqq x_{k}\right\} .
$$

We see that $B_{n, k} \subset B_{n, k}^{\prime}$.
For any $\tau>0$ we have the following inclusions (for large n):

$$
\begin{align*}
C_{n} \subset & \left\{\forall_{t: 0<|t| \leqq b_{n}} \hat{F}_{n-1}(t)<|t|+\frac{1}{n-1}\left(\frac{|t|}{a_{n-1}}\right)^{\frac{1}{2}} ;\right. \\
& \left.\exists_{t: 0<|t| \leqq b_{n}} \hat{F}_{n}(t) \geqq|t|+\frac{1}{n}\left(\frac{|t|}{a_{n}}\right)^{\frac{1}{2}}\right\} \\
\subset & \bigcup_{k=1}^{k_{0}} B_{n, k} \subset \bigcup_{k=1}^{k_{0}} B_{n, k}^{\prime} \tag{3.11}
\end{align*}
$$

where $k_{0}=\left[\frac{\tau}{n a_{n}(\log n)^{d-1}}\right]$. (We will choose τ later on.) For the verification of the second inclusion we have to show that $x_{k_{0}} \geqq b_{n}$ for large n, which follows from an elementary computation using the fact that $\sum_{n=1}^{\infty} a_{n}(\log n)^{d-1}<\infty$ and
$n a_{n} \downarrow$ imply

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n a_{n}(\log n)^{d}=0 \tag{3.12}
\end{equation*}
$$

We are now going to derive an upper bound for $P C_{n}$. The inclusions in (3.11) yield

$$
\begin{equation*}
P C_{n} \leqq \sum_{k=1}^{k_{0}} P B_{n, k}^{\prime} \tag{3.13}
\end{equation*}
$$

Using (3.3), it is easy to see that

$$
\begin{equation*}
P\left(\sup _{|t| \leqq x_{k}}(n-1) \hat{F}_{n-1}(t) \geqq k-1\right) \leqq\binom{ n-1}{k-1} x_{k}^{k-1}\left(\sum_{i=0}^{d-1}\left(\log \frac{1}{x_{k}}\right)^{i}\right)^{k-1} . \tag{3.14}
\end{equation*}
$$

Hence we have

$$
\begin{equation*}
P B_{n, k}^{\prime} \leqq\binom{ n-1}{k-1} x_{k}^{k}\left(\sum_{i=0}^{d-1}\left(\log \frac{1}{x_{k}}\right)^{i}\right)^{k} \leqq \frac{k}{n} \frac{\left(n x_{k}\right)^{k}}{k!}\left(\sum_{i=0}^{d-1}\left(\log \frac{1}{x_{k}}\right)^{i}\right)^{k} . \tag{3.15}
\end{equation*}
$$

It can be seen from (3.9) that $x_{k} \leqq k^{2} a_{n}$. This yields for large n

$$
\begin{align*}
P B_{n, k}^{\prime} & \leqq \frac{k}{n}\left(c n k^{2} a_{n}\right)^{k} \frac{1}{k!}(\log n)^{k(d-1)} \\
& =c k^{3} a_{n}\left(c n k^{2} a_{n}\right)^{k-1} \frac{1}{k!}(\log n)^{k(d-1)} \tag{3.16}
\end{align*}
$$

where $c \in(0, \infty)$ is a constant depending on d. Using $k \leqq k_{0}$ for a sufficiently small τ we see that

$$
\begin{equation*}
P B_{n, k}^{\prime} \leqq c k^{3}(c k \tau)^{k-1} \frac{1}{k!} a_{n}(\log n)^{d-1} \leqq c\left(\frac{1}{2}\right)^{k-1} a_{n}(\log n)^{d-1} \tag{3.17}
\end{equation*}
$$

which entails $P C_{n} \leqq 2 c a_{n}(\log n)^{d-1}$, hence $\Sigma P C_{n}<\infty$.
For the proof of $P A_{n} \rightarrow 0$ as $n \rightarrow \infty$ we need

$$
\begin{equation*}
A_{n, k}=\left\{\sup _{|t| \leqq x_{k}} n \hat{F}_{n}(t) \geqq k\right\} . \tag{3.18}
\end{equation*}
$$

Using $x_{k_{0}} \geqq b_{n}$ we see that

$$
\begin{equation*}
A_{n} \subset \bigcup_{k=1}^{k_{0}} A_{n, k} . \tag{3.19}
\end{equation*}
$$

We have

$$
\begin{equation*}
P A_{n, k} \leqq\binom{ n}{k} x_{k}^{k}\left(\sum_{i=0}^{d-1}\left(\log \frac{1}{x_{k}}\right)^{i}\right)^{k} \leqq \frac{\left(n x_{k}\right)^{k}}{k!}\left(\sum_{i=0}^{d-1}\left(\log \frac{1}{x_{k}}\right)^{i}\right)^{k} \tag{3.20}
\end{equation*}
$$

Using (3.15)-(3.17) we see that

$$
\begin{equation*}
P A_{n, k} \leqq c \frac{n}{k}\left(\frac{1}{2}\right)^{k-1} a_{n}(\log n)^{d-1} \quad \text { for } k \leqq k_{0} \tag{3.21}
\end{equation*}
$$

hence

$$
\begin{equation*}
P A_{n} \leqq c \sum_{k=1}^{k_{0}}\left(\frac{1}{2}\right)^{k-1} n a_{n}(\log n)^{d-1} \leqq 2 c n a_{n}(\log n)^{d-1} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty . \tag{3.22}
\end{equation*}
$$

Our next step is investigating the a.s. behaviour of

$$
\begin{equation*}
H_{n}=\sup _{0<|t| \leqq b_{n}} \frac{|t|-\hat{F}_{n}(t)}{|t|^{\frac{1}{2}}} . \tag{3.23}
\end{equation*}
$$

We immediately see that

$$
\begin{equation*}
H_{n} \leqq \sup _{0<|t| \leqq b_{n}}|t|^{\frac{1}{2}}=\frac{1}{n^{\frac{1}{2}}(\log n)^{\frac{d-2}{2}}}, \tag{3.24}
\end{equation*}
$$

yielding that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n a_{n}^{\frac{1}{2}} H_{n}=0 \quad \text { a.s. } \tag{3.25}
\end{equation*}
$$

Now consider $\sup _{b_{n}<|t|<1} \frac{\left|\hat{F}_{n}(t)-|t|\right|}{|t|^{\frac{1}{2}}}$; using Inequality 1 we find for large n, with $p_{n}=\frac{1}{n a_{n}(\log n)^{d}}$,

$$
\begin{align*}
& P\left(\sup _{b_{n}<|t|<1} \frac{\left|\hat{F}_{n}(t)-|t|\right|}{|t|^{\frac{1}{2}}} \geqq \frac{1}{n a_{n}^{\frac{1}{2}}}\right) \\
& \leqq c_{4}(\log n)^{d} \exp \left(-c_{2}(\log n)^{d} p_{n} \psi\left(c_{3}(\log n)^{d-1} p_{n}^{\frac{1}{2}}\right)\right) \tag{3.26}\\
& \leqq c_{4}(\log n)^{d} \exp \left(-c_{5} p_{n}^{\frac{1}{2}} \log n\right) \\
& \leqq c_{4}(\log n)^{d} n^{-c_{5} p_{n}^{\frac{1}{n}}} \leqq \frac{1}{n^{2}},
\end{align*}
$$

where $c_{4}, c_{5} \in(0, \infty)$ are constants depending on d. Applying the Borel-Cantelli lemma shows that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n a_{n}^{\frac{1}{2}} \sup _{b_{n}<|t|<1} \frac{\left|\hat{F}_{n}(t)-|t|\right|}{|t|^{\frac{1}{2}}}=0 \quad \text { a.s. } \tag{3.27}
\end{equation*}
$$

Summarizing (3.8), (3.25) and (3.27) yields

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n a_{n}^{\frac{1}{2}} \sup _{0<|t|<1} \frac{\left|\hat{F}_{n}(t)-|t|\right|}{|t|^{\frac{1}{2}}}=0 \quad \text { a.s. } \tag{3.28}
\end{equation*}
$$

We are now going to consider arbitrary $v \in\left[0, \frac{1}{2}\right.$) and we shall prove

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(n a_{n}\right)^{1-v} \sup _{0<|t|<1} \frac{n^{v}\left|\hat{F}_{n}(t)-|t|\right|}{|t|^{1-v}}=0 \quad \text { a.s. } \tag{3.29}
\end{equation*}
$$

It suffices to prove that

$$
\begin{equation*}
P\left(n a_{n}^{1-v} \sup _{0<|t|<1} \frac{\left|\hat{F}_{n}(t)-|t|\right|}{|t|^{1-v}} \geqq 1 \quad \text { i.o. }\right)=0 . \tag{3.30}
\end{equation*}
$$

Set $c_{n}=\left(n a_{n}\right)^{v-1}$ and define

$$
\begin{aligned}
& D=\left\{\sup _{0<|t|<1} \frac{n^{v}\left|\hat{F}_{n}(t)-|t|\right|}{|t|^{1-v}} \geqq c_{n} \quad \text { i.o. }\right\}, \\
& E=\left\{\begin{array}{lll}
\sup _{0<|t| \leqq \frac{1}{\frac{1}{n-v}}} \frac{n^{v}\left|\hat{F}_{n}(t)-|t|\right|}{|t|^{1-v}} \geqq c_{n} & \text { i.o. }\},
\end{array}\right. \\
& F=\left\{\sup _{n c_{n}^{1-v}}^{\sup _{n c_{n}^{\frac{1}{1-v}}} \leq|t|<1} \frac{n^{v}\left|\hat{F}_{n}(t)-|t|\right|}{|t|^{1-v}} \geqq c_{n} \text { i.o. }\right\} .
\end{aligned}
$$

We see that $P(D) \leqq P(E)+P(F)$.
We will first show that $P(E)=0$. Note that for all $t \in(0,1)^{d}$ such that $|t| \leqq\left(n c_{n}^{\frac{1}{1-v}}\right)^{-1}$, we have $n^{v}|t|^{\nu} \leqq c_{n}^{\frac{-v}{1-v}}$. Since necessarily $c_{n} \rightarrow \infty, c_{n}^{\frac{-v}{1-v}} \leqq \frac{1}{2} c_{n}$ for large enough n. Hence $E \subset E^{\prime}$, where

$$
E^{\prime}=\left\{\sup _{0<|t| \leqq-\frac{1}{n c_{n}^{1-v}}} \frac{n^{v} \hat{F}_{n}(t)}{|t|^{1-v}} \geqq \frac{1}{2} c_{n} \quad \text { i.o. }\right\} .
$$

Let $n_{r}=2^{r}$ for $r \in \mathbb{N}$. Obviously

$$
\begin{equation*}
P\left(E^{\prime}\right) \leqq P\left(\max _{n_{r}<n \leqq n_{r+1}} \sup _{0<|t| \leqq \frac{1}{n c \frac{1}{1-v}}} \frac{n^{v} \hat{F}_{n}(t)}{\left.|t|^{1-v} \geqq \frac{1}{2} c_{n_{r}} \quad \text { i.o. }\right), ~}\right. \tag{3.31}
\end{equation*}
$$

which, since $c_{n} \uparrow$ and $n \hat{F}_{n}(t) \uparrow$ as a function of n for fixed t, is less than or equal to

Now

$$
P\left(\sup _{0<|t|<\frac{1}{n_{r}\left(c_{r}\right)^{\frac{1}{1}-\nu}}} \frac{2 n_{r+1}^{v} \hat{F}_{n_{r+1}}(t)}{|t|^{1-v}} \geqq \frac{1}{2} c_{n_{r}} \quad \text { i.o. }\right) .
$$

$$
\begin{aligned}
& \sum_{r=1}^{\infty} P\left(\sup _{0<|t| \leqq \frac{1}{n_{r}\left(c_{n_{r}}\right)^{\frac{1}{1-v}}}} \frac{n_{r+1}^{v} \hat{F}_{n_{r+1}}(t)}{|t|^{1-v}} \geqq 4^{-1} c_{n_{r}}\right) \\
& \leqq \sum_{r=1}^{\infty} P\left(\sup _{0<|t| \leqq}^{\sum_{n_{r+1}\left(c_{n}^{\prime},\right)^{\prime-\nu}} \frac{1}{1-\nu}} \frac{n_{r+1}^{v} F_{n_{r+1}}(t)}{|t|^{1-v}}>0\right),
\end{aligned}
$$

where $c_{n_{r}}^{\prime}=2^{\nu-1} c_{n_{r}}$.
Application of Inequality 2 gives that this last series is less than or equal to

$$
\begin{equation*}
2 d \sum_{r=1}^{\infty}\left(\log \left(n_{r} c_{n_{r}}^{\frac{1}{1-v}}\right)\right)^{d-1} / c_{n_{r}}^{\frac{1}{1-v}} . \tag{3.32}
\end{equation*}
$$

Since for large enough $x(\log x)^{d-1} / x \downarrow$, we have for $r_{0} \in \mathbb{N}$ large enough:

$$
\begin{align*}
& \sum_{r=r_{0}}^{\infty} \sum_{n_{r}-1<n \leqq n_{r}}\left(\log \left(n c_{n}^{\frac{1}{1-v}}\right)\right)^{d-1} /\left(n c_{n}^{\frac{1}{1-v}}\right) \\
& \geqq \sum_{r=r_{0}}^{\infty}\left(n_{r}-n_{r-1}\right)\left\{\left(\log \left(n_{r} c_{n_{r}}^{\frac{1}{1-v} v}\right)^{d-1} / n_{r} c_{n_{r}}^{\frac{1}{1-v}}\right\}\right. \\
& =\frac{1}{2} \sum_{r=r_{0}}^{\infty}\left(\operatorname { l o g } \left(n_{r} c_{n_{r}}^{\left.\left.\frac{1}{1-v}\right)\right)^{d-1} / c_{n_{r}}^{1-v}} .\right.\right. \tag{3.33}
\end{align*}
$$

We see immediately now that finiteness of the series in (ii) implies that the series in (3.32) is finite. Therefore by the Borel-Cantelli lemma $P\left(E^{\prime}\right)=0$, which in turn implies that $P(E)=0$.

We will now show that $P(F)=0$. Notice that

$$
\begin{align*}
& \sup _{\frac{1}{\frac{1}{n}}}^{n c_{n}^{1-v}} \leqq|t|<1 \\
& \leqq \frac{n^{v}\left|\hat{F}_{n}(t)-|t|\right|}{|t|^{1-v}} \\
& \sup _{0<|t|<1} \frac{n^{v}\left|\hat{F}_{n}(t)-|t|\right|}{|t|^{\frac{1}{2}}\left(\frac{1}{n c_{n}^{1-v}}\right)^{\frac{1}{2}-v}} \tag{3.34}\\
&=c_{n}^{\frac{1}{2}-v} \sup _{0<|t|<1} \frac{n^{\frac{1}{2}}\left|\hat{F}_{n}(t)-|t|\right|}{|t|^{\frac{1}{2}}} .
\end{align*}
$$

Hence $P(F) \leqq P\left(F^{\prime}\right)$, where

$$
F^{\prime}=\left\{\sup _{0<|t|<1} \frac{n^{\frac{1}{2}}\left|\hat{F}_{n}(t)-|t|\right|}{|t|^{\frac{1}{2}}} \geqq c_{n}^{\frac{1}{2(1-v)}} \quad \text { i.o. }\right\},
$$

but we now can use (3.28), i.e. the case $v=\frac{1}{2}$, which gives that $P\left(F^{\prime}\right)=0$, which in turn implies $P(F)=0$. Thus we have shown that $P(D)=0$. This completes the proof of (3.29).

Noting that $0<y \leqq \frac{1}{2}$ implies $1<(1-y)^{v-1} \leqq 2$, we see that it remains to prove for $0 \leqq v \leqq \frac{1}{2}$

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(n a_{n}\right)^{1-v} \sup _{\frac{1}{2}<|t|<1} \frac{n^{v}\left|\hat{F}_{n}(t)-|t|\right|}{(1-|t|)^{1-v}}=0 \quad \text { a.s. } \tag{3.35}
\end{equation*}
$$

With the same approach as in Einmahl et al. (1984, proof of Theorem 2.2) we can prove, using results of Ruymgaart and Wellner (1982, Corollary 2.3) or Alexander (1982, Corollary 6.2) that "large d-dimensional points" behave as "small (or large) 1-dimensional points", i.e.

$$
\begin{align*}
& \sum_{n=1}^{\infty} a_{n}^{\prime}<\infty \text { and } n a_{n}^{\prime} \downarrow \text { imply } \\
& \lim _{n \rightarrow \infty}\left(n a_{n}^{\prime}\right)^{1-v} \sup _{0<|t|<1} \frac{n^{v}\left|\hat{F}_{n}(t)-|t|\right|}{(1-|t|)^{1-v}}=0 \quad \text { a.s. } \tag{3.36}
\end{align*}
$$

We omit the proof of (3.36), because it is straightforward though tedious. Q.E.D.

Proof of Corollary 2. Applying the theorem for $a_{n}=\left(n(\log n)^{d}\right)^{-1}$ and for $a_{n}=\left(n(\log n)^{d+\varepsilon}\right)^{-1}, \varepsilon>0$, gives the desired result. Q.E.D.

Proof of Corollary 4. "Large d-dimensional rectangles" also have the same behaviour as "small 1-dimensional points". That means that (3.36) holds true with t replaced by R (cf. Einmahl et al. (1984, proof of Theorem 3.2)). Taking $v=\frac{1}{2}$ and combining this with Corollary 3.9 of Alexander (1984) proves this corollary. Q.E.D.

Acknowledgement. The first named author should like to thank Frits Ruymgaart for his continuing interest during the preparation of this paper.

References

1. Alexander, K.S.: Some limit theorems for weighted and non-identically distributed empirical processes. Ph. D. dissertation, M.I.T. (1982)
2. Alexander, K.S.: Rates of growth and sample moduli for weighted empirical processes indexed by sets. Technical report, University of Washington, Seattle (1984)
3. Csáki, E.: Studies on the empirical d.f. MTA III. Oszt. Közl. 23, $239-327$ (in Hungarian) (1974)
4. Csáki, E.: Some notes on the law of the iterated logarithm for empirical distribution function. Coll. Math. Soc. János Bolyai: Limit Theorems of Probability Theory, 47-58 (1975)
5. Csáki, E.: On the standardized empirical distribution function. Coll. Math. Soc. János Bolyai: Nonparametric Statistical Inference, 123-138 (1982)
6. Einmahl, J.H.J., Ruymgaart, F.H., Wellner, J.A.: A characterization of weak convergence of weighted multivariate empirical processes. To appear in Acta Sci. Math. (Szeged) (1984)
7. Geffroy, J.: Contributions à la théorie des valeurs extrèmes. Publ. Inst. Statist. Univ. Paris 7/8, 37-185 (1958/1959)
8. Kiefer, J.: Iterated logarithm analogues for sample quantiles when $p_{n} \downarrow$. Proc. Sixth Berkeley Sympos. Math. Statist. Probab. 1, 227-244. Univ. of California Press (1972)
9. Mason, D.M.: Bounds for weighted empirical distribution functions. Ann. Probab. 9, 881-884 (1981)
10. Mason, D.M.: Some characterizations of almost sure bounds for weighted multidimensional empirical distributions and a Glivenko-Cantelli theorem for sample quantiles. Z. Wahrscheinlichkeitstheor. Verw. Geb. 59, 505-513 (1982)
11. Ruymgaart, F.H., Wellner, J.A.: Growth properties of multivariate empirical processes. Report 8202, Math. Inst., Kath. Un., Nijmegen (1982)
12. Ruymgaart, F.H., Wellner, J.A.: Some properties of weighted multivariate empirical processes. Statist. Decisions 2, 199-223 (1984)
13. Shorack, G.R., Wellner, J.A.: Linear bounds on the empirical distribution function. Ann. Probab. 6, 349-353 (1978)
