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Summary.  We show that the distribution of the composi t ion gl  " '  g, of 
r a n d o m  elements gl ,  . . - ,  gn of the group SO(3) tends to the uniform distri- 
but ion in far more  general situations, than in the commutat ive  case. 

1. Introduction 

The convolut ion of probabil i ty measures/~1, ...,/~,, ..- on a compact  connected 
group G tends under  quite general condit ions to the H a a r  measure of  this 
g roup  (see [-1] and references therein). For  example, if we restrict ourselves to 
the class of measures, absolutely cont inuous with respect to Haa r  measure )~, 
whose densities p~ are bounded  from above, p~<ci, then the general result of 
[1] tells us, that  for 

qn=Pl * ... * Pn 
one has 

provided the series 

max ]q . (g ) -  11 ~ 0  (1) 
gEG 

(cl)- 2 + c~ as n--+ oo. (2) 
1 

It is also proven in [1], that  in terms of constants c i the condit ion (2) can not  
be improved:  

n 

if ~ (ci)- 2 < C for all n 
1 

and the group G has non-trivial one-dimensional representation, then there exist 
a sequence of probabil i ty measures /~1 . . . . .  ~ . . . . .  with densities Pl . . . .  , P,, .-. 
which satisfy Pi < c~ and q,+*Z even in a weak sense. 

The purpose of  this paper is to show, that  for groups G, which have no low- 

dimensional representations, the situation is quite different. In  this paper  we are 
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dealing with the simplist group of this type, G = S O ( 3 )  - the group of proper 
rotations of three-dimensional euclidean space - in which case condition (2) 
can be replaced by far more weaker ones: to have the convergence (1) it is 
enough to have 

(c,)-1~o~ as , 7 ~ .  (3) 
1 

This result shows, that "algebraic" mixing properties of non-commutat ive 
groups are better, then those of commutat ive groups. 

The paper  is organized as follows: In w we formulate our general result 
and recall some facts from [13. In w we make necessary changes in the 
strategy of [1] in order to adapt  it to our case. In w we study unitary 
representations of SO(3). The final w 5 contains further hypothesis. 

2. The Main Theorem 

In [1] there were introduced some useful objects. Here we recall some of them. 
Let # be a probabili ty measure on G, and # = 2 + v be its decomposition into 
singular and absolutely continuous according to Z parts respectively. Let 

and 

Put 

p= dv / d z ,  

Nu(x )= sup inf{p(g), g e E ~ G } .  
E, •(E)=x 

1 

sk ( , )  = ~ x 2/k N,(x)  dx  
0 

(the quantity S(#) of [1] coincides with o u r  S 1 (#)). 

The main result of [1] was the following 

Theorem 1. Let #1 . . . . .  #n~ n~=2 be a sequence of  probability measures on a 
compact connected group G. Suppose for some i, j, 1 <= i < j <= n the measures #1, #j 
are absolutely continuous with respect to Haar measure Z of  G with density 
functions Pi, Pj belonging to LZ(G, Z). Then the measure #a * ... *#,  has a density 
function q, satisfying the inequality 

sup I q. (g) - 1 [ < [I P~ - 1 J I L~ 11Pj -- 1 I I L~ 1:) (1 -- C ~ S ~ (#~)). (4) 
g~G s =  1 

s * i , j  
Here C 1 > 0 is some absolute constant. 

Now we can formulate the main result of the present paper: 

Theorem 2. In the case G = S O ( 3 )  the Theorem 1 remains valid after replacing 
the estimation (4) by the improved one: 

sup Iq . (g) -  11 < liP/- 1 IlL2 IlPj-- 1 IlL2 f i  (1 - c2 S2(#s)) (5) 
gsSO(3) s=  1 

s 4 : i , j  

where C 2 > 0 is some absolute constant. 
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Remark 1. It is easy to see that for # having density function p the bound p < c 
implies 

S~(#) > (k/k + 2) c-  <2/k) 

hence the results mentioned in introduction follow from Theorems 1, 2. 

Remark 2. About the use of the quantities Sk(#), k > 2  the reader is referred to 
w 

3. The Strategy of the Proof 

Now we'll outline the necessary changes in the proof of the Theorem 1 of [1] 
in order to arrive to the proof of the Theorem 2. 

The proof of the Theorem 1 was based on Lemmas 1-3. Lemma 1 remains 
unchanged, the substitute of Lemma 2 will be proven in the next paragraph, 
the minor changes in proof of Lemma 3 will be presented in this section. 

Let N = {T} be the set of irreducible unitary representations of G. If # is a 
measure on G, then its Fourier transform /i is the operator-valued function, 
given by 

fi(T) = ~ T(g) d#(g). 
G 

Let 

II#l[= sup Ilfi(T)ll. 
Ta$ \ id 

Then we have the following 

Lemma 1 (from [1]). Let the sequence #1, ..., #, satisfies the conditions of the 
Theorem 1. Then 

sup [q,(g)-- 11 <_-]]Pl-- 1 liE2 IIPj-- 1 IlL 2 I~I  H#sll" 
geG s=  1 

s t i ,  j 

So to prove the theorem one has to estimate [l#slt. Let ~" be the complex 
n-dimensional space, endowed with usual (complex-valued) scalar product ( , ) ,  
S 2n-1 ~ "  be its unit sphere, for x, y~S 2~-~ put p(x, y)=arccos  Re (x ,  y),  

@r(x ) = {yES2.-  1, p(x, y) < r}, (6) 

for T: SO(3)--+ U(n) being irreducible representation, xaC"  put 

gx = T(g). x, (7) 

finally, let ~ be any SO (3) - invariant (under the action (7)) probability measure 
o n  S 2 n -  1. Then one has 

Lemma 2. There exist C>0,  ro>0 , such that z(@r(x))<= Cr 2 for r<r  o uniformly in 
x ,  T~ n. 

(Here lies the main difference between SO(3) and general G, because in the 
general case the bound z(~(x))=< r (Lemma 2 from [1]) cannot be improved.) 

Since the proof of Lemma 2 is a little lengthy, we'll postpone it until the 
next paragraph. 
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Now we are able to obtain the last estimation one needs to complete the 
proof of the Theorem 2. 

Lemma 3. Let # be a probability measure on SO(3), and T be any non-trivial 
irreducible representation of SO(3). Then ir/2(T)ll < 1 - C 2 S2(#)for s o m e  C 2 >0. 

Proof The arguments are very close to those of the proof of Lemma 3 in [1], 
so we'll be brief. 

Let x, yeS  2"- 1, and v is the absolute continuous part of #. Then 

where 

1 - Re (x,/~(T) y)  > i [1 - cos u] dO(u), 
0 

0(A)=v{geSO(3) ;  p(x, T(g)y)eA}, A = [0, rc]. 

v(E) ~ i N.(x) dx 
0 

(if not, see [1, Lemma 3]). Now define a measure o n  S 2 n -  1: 

~y(B)=z{geSO(3), T(g)yeB}, B c S  2"-a. 

It's easy to check that ry is SO(3)-invariant. Hence, according to Lemma 2, 

z{geSO(3), p(x, T(g)y)<r} =zy(gr (x) )<  Cr 2 for r<r o, 

which, in turn, implies, 

~k([0, r])_<~([0, r]) for all r, 0<r_<~z. 

Because ( 1 -  cos u) is monotone increasing, 

7r 7r 

(1 - cos u) dO(u)>= ~ (1 - cos u) d~(u) 
0 0 

r 0 

> S (1 - cos u) [2 CuNt~(Cu2)] du 
0 

r 0 1 

>= d ~ (u3)Nu(Cu 2) du> C 2 ~ uN~(u)du 
0 0 

for some C 2 > 0, and the proof follows. 

It is almost evident, that for E c SO(3), )~(E)<r implies 

Let's define the measure ~ on [0, ~] by 

(Cr 2 

~([0, r ] ) = ]  ! N~(x) dx, r<-r o, 

(v(SO(3)), r>r o. 
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4. The Geometry of the Orbits of the Unitary Representations of SO (3) 

In this paragraph we'll use the following notations: u, v, ... be unit vectors in 

JR3 '  S 2 ~-- {u,  v, . . .  } ; 

r(u, v) be the angle between u, v; R,(0)~SO(3) be the rotation around u on the 
angle 0; 

N , =  {R,(0), 0~[0, 2~]} cSO(3)  

be one-parameter  subgroup; for e t, e 2, e 3 - being or tonormal  in ~ 3  we'll use 
RI(O), ~'1, ... instead of Re~(O), Nel'  "" '  finally, 

T: SO(3)~  U(n) be some fixed unitary representation, not necessarily irreducible, 
but obeying the following weaker property:  for any xES2"- lc f f2"  there exist 
R ~SO (3) with R x .t = x (we suppress T in expressions, like T(R)x).  

For  x e S  2"- 1 consider the orbit 

C(x)={y;  y = R x ,  R6SO(3)} = S  2"-1. 

This orbit is a smooth submanifold in S 2"-~. The dimension of (9(x) can be 2 
or 3 according to x and T. To see it, consider the stationary subgroup H(x) of 

x, H (x) = {R~SO(3), R x  =x}. 

Then the manifold (9(x) is diffeomorphic to the manifold of the left cosets of 
SO(3) with respect to subgroup H(x), hence 

dim (9 (x) = dim SO (3) - dim H(x), 

which is 3 when H(x) is discrete and 2 when d i m H ( x ) = l .  (Those are the only 
possibilities.) 

The representation T and the vector x provide us with the probabilistic 
measure ~x o n  S 2n-  1 

zx(B) = Z {(R; RxeB)} ,  (8) 

which is SO(3)-invariant. The hound: d im(9(x)~2  implies the following esti- 
mation: 

Zx(~(y))  < Cr 2 (9) 

where C =  C(x, T), r<ro=ro(X, T). To see it, let y'~S 2n-1, and 

p(y', (9(x))-  max {p(y', Rx);  R~SO(3)} > r. 

Then r~(O~(y))=0. Otherwise D,(y')cD2~(y ) for some ye(9(x), hence it is 
enough to consider the case y~(9(x). But the manifold (9(x) is locally diffeomor- 
phic to two- or three-dimensional disc B. Consider the number Pz~(B) - the 
maximal possible amount  of non-overlapping discs D2~(yi) , centered in B. It 's 
clear, that P2~(B) < r -  2. The unitarity of T implies: 

~x(O2r(yl))  = ~x(o2r(y)) ,  
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which, together with ~ "Cx(~2r(yi) ) =< 1 implies the bound 
i 

Zx(Dr(y)) < P~ 1((9 (x)) <__ P~ I(B) ~ r 2. (10) 

The main result of this paragraph states, that the bound (9) holds uniformly 
in T,x: 

Theorem 3 (=_Lemma 2). There exist two constants C, ro, such that for any n, 
any representation T: SO(3)~  U(n) without invariant vectors and any x, y~q2 n, 

zx(Dr(Y))<=Cr 2 for r<r  o. 

Here the measure z~ is given by (8), and the ball D~(y) - by (6). 
The statement of the theorem is not at all evident. Apriori, it is possible 

that for large n the orbit g0(x) is contained in the e-neighbourhood of suborbit N, x 
for any u, in which case the bound Zx(Dr(Y))<Cr is the best possible. As a 
preliminary step in the proof we'll show that it is not so. 

Lemma 4. For any x~S 2"-~ there exist an element R~SO(3) and a subgroup 
~.6SO(3),  for which 

p(x ,N,  R x ) = g .  

For the proof we shall use two following lemmas. 

Lemma 5. 
R~(n) R,(~) = RE, , vl(2r(u, v)). 

Here [u, v] denotes the vector product of u and v. 
The proof is immediate. 

Lemma 6. Let AcSO(3)  be 

i) symmetric: 
for R~A,R- I~A ,  and 

ii) transitive on SZ: 
for u, v~S 2 there exist R6A with Ru=v. 

Then A4=SO(3); in other words, the set of all four-products of elements of A 
coineides with SO(3)for any A. 

Proof Let u~S 2. By (ii), there exist v~S 2, v l u  such that Rv(n)~A (because it is 
the only way for A to be able to carry u to (-u)).  Now, for any w~S 2, 
Rw(rc)~A 3. To see this, let us find an element R~A, which carries w to v: Rw 
=v. Then R -1R~(z~)R~A 3 by (i). But Rw(rc)=R -1Rv(7OR, because 

R-1R~(Tz)Rw=w, (e- le~(~)R)2=id ,  R-1e,(7~)R~=id. 

Let's denote C=  {Rw(Tr ), w~S2}. It is enough to show CA=SO(3). To see this, 
consider an arbitrary x~S 2. Let us show that Rx(O)~CA for any 0~[0,2rc]. 
Again, let ysS  2 be orthogonal to x with Ry(Tz)sA. 

Let z=Rx(O/2)y. Then Rz(Tz)~C, and Rx(O)=Rz(n)Ry(z 0 by Lemma 5, and 
the result follows. 
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Remark. In the preliminary version of this paper we have proved only, that A 6 

=SO(3). The remark about A4=SO(3)  is due to V. Aisenstat. He also pointed 
out, that the inclusion A 2 ~SO(3) can be proper. 

Proof of Lemma 4. Let 
2 = max {p(x, ~ ,  Rx)}. 

ReSO(3), u e S  2 

Put A={R~SO(3) ,  p(x, Rx)<)~}. Then A is 

i) symmetric, because p(x, Rx)= p(x, R-1 x) due to the unitarity of T, 
ii) transitive on S 2. To see it, let u, w S  2 and Ru=v, ReSO(3). Then 

Rv(O)Ru=v for any 0~[0,27r]. But p(x,~'vRx)<2, hence there exist 
0 o ~ [0, 2 ~] with p (x, R~(Oo) R x) < 2 which implies R~(Oo) R ~A. 

By Lemma 6, A4=SO(3),  hence for any RESO(3) 

p(x, Rx)<4)L (11) 

as it follows from the triangle inequality. 
But the representation T has no invariant vectors, so 

Rxdx(R)=O. 
$0(3)  

In particular 

Re(x ,  Rx> dz(R) =0,  
so(3)  

which together with (x, x ) - - 1  implies the existence of the element Ro~SO(3 ) 

with Re(x,  Rox><O, or p(x, Rox)> ~. Together with (11)it gives ~.>~ and the 
result follows. O 

Proof of the Theorem 3. In order to obtain the desired upper bound for 
zx(D~(y)) it is enough, according to (10), to get a lower bound on P~((9(x)). So we 
are left with the packing problem. 

We consider three different cases according to the specific choice of the 
vector x. 

Case 1. dim (9(x)=2. In this case we can suppose without loss of generality 
that the stationary group H(x) contains the subgroup N3 cSO(3)  (the rotations 
around Oz axis). (The inclusion Na ~H(x) is not necessarily proper. The man- 
ifold C(x) is diffeomorphic to S 2 or IRIp2.) 

Consider the mapping q): SZ--* (9(x), which is given by the formula 

q)(u)=Rx, (12) 

where Re3=u. This formula is well-defined, because for any R', R'e3=u we 
have R'=RR3(O ) for some 0, so Rx=R'x .  

For u, w S  2 let 
~(u, v)=p(~o(u), q~(v)). 

The function ~ has all the properties of the usual metric with the only possible 
exception that ~(u, v) can be equal to zero for u + v. 
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The metric ~ is SO(3)-invariant. To see it, let u, v~S 2, and R', R"~SO(3) be 
such that R'e3=u,  R"e3=v.  Then for R~SO(3), 

~(R u, R v)= p(RR' x, RR" x)= p(R' x, R" x)= p(u, v). 

Hence the metric fi(u, v) depends actually only on r(u, v). We need also the fact, 

that for any ueS 2 there exist v~S 2 with ~(u, v)> 2. This property follows from 

the fact that T has no invariant vectors, and was derived during the proof of 
Lemma 4. 

Now we need the following: 

Lemma 7. Let the function fi(u, v) on S2x S 2 

i) depends only on r(u, v), 
ii) satisfies the triangle inequality, 

7g 
iii) takes the values, greater than ~. 

Then/5(u, v)> �89 v), provided r(u, v)<= 2. 

Proof of Lemma 7. Suppose for some u 4= v, 2 > 0 

7~ 
iS(u, v)<2r(u, v), r(u, v)<~. (13) 

Then for any v'~S 2 with r(u, v')<kr(u, v), k=2 ,3  .... 

~(u, v') <= k2r(u, v). (14) 

7~ 
Indeed, from r(u, v')< k r(u, v), r(u, v)<~ follows the existence of the sequence 
v 1, ... ,  vkeS 2 with 

v l = v  , Vk=V' , r(vl, vi+t)=r(u, v), i=1,  2 . . . .  k - 1 .  

Hence, (14) follows from (i), (ii). 
Now, let k satisfy 

( k - l )  r(u, v) < ~ <=kr(u, v). (15) 

Then {v'eS 2, r(u, v')<kr(u, v)} = S  z, hence by (14) 

k2r(u, v)> sup ~(u, v )=~.  
U, v ~ S  2 

With the help of (15) we have then 

r~/2 re/2 ~/2 1 
2>=kr(u, v ) - - (k-1)r(u ,  v)+r(u, v) > ~+7z /2 -  3' 

and Lemma 7 follows. 
Hence, in Case 1, 
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Pr(tO(x))>_-~ &r(s2), 

which, in turn, is bounded from below by Car -2 for some C a > 0  for all r < q  
with some r 1 > 0. 

Case 2. In Case 1 we have considered the vector x, for which there exist 
some u~S 2 with N , x = x .  Now consider those x - s ,  for which for some u~S 2, 
diam{N,x} <a,  where a is some small constant, the concrete value of which 
we'll specify later, at the end of the last Case 3. 

The first step in treating the Case 2 is to show the existence of z~S z"- 1, for 

which p (x, z) __< 2 a (16) 

and dim (9 (z) = 2. 
Indeed, let 

2 ~  

z'=(2~z) -1 ~ R,(O)xdO; z=zt/llzl[[ 
0 

(because of I [ z l [ l > l - a ,  the last definition makes sense). It's clear, that 
R , ( O ) z - z  for any 0, so dimC(z)=2.  Now, p(x, Ru(O)x)<a implies 

I1 x - R,(O) x I[ =< 2 sin (a/2). 

Because of the convexity of the ball 

B ;  {y, IIx-Yll < 2 sin(a/2)}, 

we have [Ix-zlll <2sin(a/2). But the ball B is seen from the origin at the angle 

( a rc s in2s in2 ) <(ar c s in s in2a )=2a for a<4 ,  and(16) follows. 

Now we'll construct a two-dimensional piece of (9(x) (which is uniformly 
big). 

Without loss of generality let's suppose u=e  3. Then, as it follows from 
Case 1, for any s~[0, re/6] there exist 0se[0, ~/2] with p(z, Ri(Os)z)=s. Hence, 
for any rs[2a, rc/6-2a] there exist 0rs[0,~/2] with p(z, Ri(Or)x)=r. 

But then p(Z, R l (O, ) z )>r-2a ,  and with the help of metric/} of Case 1, 

diam{~3Rl(O~)z} >__r-2a which implies diam{N3Rl(Or)x} > r - 6 a .  

Moreover, for any 
ri,r2E[2a, zc/6-2a],  q), 0~[0,27r] 

p (R3(cp) Rl(0r, ) x, R3 (I//) RI(O~ ) x) >= It, - r21 

as it follows from triangle inequality. 
Finally, we have 

8(r 
where by A we mean any (plane) triangle with base ( ~ / 6 - 8  a) and height 0z/6 

- 8a), and by P~* (A) we mean the number of points of the square lattice on the 
plane with spacing 2r inside A, provided that one of the axes of the lattice is 
parallel to the base of A. 

Case 3. Consider now those x, for which d i am{Nux}>a  for each u~S z. (The 
constant a is the same as in Case 2.) According to Lemma 4 there exist u, w S  2, 
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0o~[0 , 2n] with p(x, {.~uRv(Oo)x})>n/8. The function of 0, p(x, {N, Rv(O)x}), is 
continuous, being zero at 0 =0. For any 0, diam {N, Rv(0 ) x} >a.  

The triangle inequality implies 

P({'~u Rv(01) X}, {'~u R v(02 )  x} )  

> ]p(x, {~r x } ) - p ( x ,  {.~uRv(O2) x})[. 
Hence we have 

8(o(x))->_ I + (D),  

where [] stands for the plane rectangle with sides a, n/8, and Pr~([2) stands 
for the number of sites in [] of square plane lattice with spacing 2r, provided 
the axes of the lattice are parallel to the sides of [Z]. 

To complete the proof of the theorem we have only to choose a. To do it, 
observe that P~(A)~r -2S (A) ,  P ~ ( [ 2 ) ~ r - 2 S ( D ) ,  where S means area. But 

a n  
S(A) = �89 8 a) 2, 8([2) = ~ - ,  so taking a = 1/50 we'll have S(A), S([Z]) > 0. The 

proof of the theorem is thus finished. 

5. The Case of Arbitrary Groups 

Let G be any compact connected group. Consider the number 

k(G) = rain {dim M, M is a manifold, G acts transitively on M}. 

It is clear, that k(G) is defined by the above formula, and l=<k(G)<oe. For 
example, k(Abelean group)= 1 

k ( s o  (n)) = n -  1. 

We conjecture here the following 

Hypothesis. Let T: G ~  U(n) be any irreducible representation and z be (G, T)- 
invariant probability measure on $27 - 1 c C". Then there exist C =  C(G), r =  r(G) 
such that 

z(~r(x))<-_Cr k(~), for all T, x c S  z"- l ,  r=<r(G). 

The validity of this hypothesis would imply the following. 

Theorem 4. Theorem 1 remains valid after replacing the estimation (4) by the 
improved one: 

sup [q.(g)- 11 < IIp~- 1 IIL~ I[Pd- 1 IIL~ fi (1 - C'(G) Sk(G)(#,)) 
g~G s= 1 s*i,j 

for some C(G) > 0. 
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