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In this paper, we consider two kinds of second order differential equations: a
heat equation with coefficients irregular with respect to the time variable and a
stochastic partial differential equation as, for example, the Zakai equation
arising in the filtering theory. We prove the smoothness of the solutions of
these equations under a condition of the Hormander type. For this purpose, we
adapt the proof by J.J. Kohn [11] of the classical Hormander theorem [10]: in
each case, we develop a symbolic calculus on a special class of pseudo-
differential operators and obtain a priori inequalities in well fitted Sobolev
spaces, which lead to the smoothness of the solutions as in the classical case.

As a direct application of these two theorems, we get regularity results for
the conditional laws of filtering and smoothing theory under a global
Hoérmander condition. This gives a new proof of this smoothness result, which
has been already obtained by J.M. Bismut-D. Michel [4], using the Malliavin
calculus [3, 20, 217 under a local Hérmander condition.

H.Kunita [16, 17] has a similar theorem in the particular case where the
coefficients of the Zakai equation do not depend on the observation.

Let us remark that the idea is closely related to that of E. Pardoux [24, 26],
N. Krylov-B. Rozovskii [12] and B. Rozovskii-A. Shimizu [27] who generalized
regularity results for solutions of elliptic PDE (partial differential equations) to
solutions of SPDE (stochastic partial differential equations).

The paper is structured as follows. In the first part, we establish the
deterministic theorem, in the second part the probabilistic one (in these two
parts, we follow the expository paper of M. Chaleyat-Maurel [5] on the paper
of J.J. Kohn [117). The last part is devoted to the applications.

We are grateful to J.M. Bismut for pointing out to us this approach of the
problem and encouraging us during our investigations.

1. A Hérmander Theorem for a Class of Heat Equations

a) Notations

Let us denote by Cp.=Cy (R xR") the space of real valued functions f
defined on R* xIR" such that:
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a) fis Z(R")® #(IR™) measurable.

b) for every t>0, f(t,.) is smooth and all the derivatives w.r.t. x are
bounded on compact subsets of R** x R".

Vs ..., V3 are d+1 vector fields on R+ xR”™ such that: V(t, x)=V{(¢, x)ai
X.

and the Vs are in C{°,; c is an element of Cy°,. We call £(V,, ..., V) the Lic
algebra with coefficients in C;°, generated by V,,..., V¥, and, for NeN,
Ly(Vy, ..., V) the sub-space of Z(V,,..., V) generated by the brackets of
Vi, ..., ¥, whose length is smaller than N.
The aim of this paragraph is to prove a hypoellipticity theorem for the
a d
Fr Vo+ Y Vi>+c acting on the following class of distributions:
i=1
% is the class of Radon measures on R* xR” of the form dy, x dt where (u,), g
is a family of Radon measures on R" such that the map t—yu, from R* to
A (R"), the set of Radon measures on IR”, is bounded on bounded sets of R*.

operator L=

1.1. Theorem. Assume that, for every compact set K of R * xIR", there exists
NeN such that: H: y(Vy, ..., V){t, x)=R" for every (t,x)e K.
Let u be in 9, satisfying:

ou 2
Fr Y Viu+Vou+tcu=[feCp,.
i=1

op

Then, u has a density p and both p and Fr

are elements of C°..
In the classical Hormander theorem, the vector fields are supposed to be

smooth; here we allow a measurable dependance with respect to t. Neverthe-
less, Kohn’s method works because the only derivation w.r.t. ¢ appearing in L

is TS i.e. a first order operator, and condition (H) only involves the “sum of

squares” part of L.

So, the proof of Theorem 1.1 consists in integrating with respect to t the
classical subelliptic inequalities (cf. [117); this is justified since the assumptions
on the Vs and u imply that the estimates are uniform w.r.t. t.

b) A Class of Test Functions and Sobolev Norms

We define &, as the class of real valued, measurable functions on R* xR”",
with compact support in R* * xR”, smooth with respect to x for every t>0
and with all their derivatives w.r.t. x in LZ2(R* xR").

We take as a scalar product on .%, the scalar product on L*(R* x R") and
we denote it by (,).

We introduce now the class of pseudo-differential operators on which we
shall work and the related Sobolev norms.

First, for v in &,, (¢, £) denotes the Fourier transform of v(¢,.) considered
as a function on IR”, and if A% is the Bessel potential on R” for aeR, we still
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call A* the operator acting on &, in the following way:
Ta _ 24a/2 A
A*v(t, &) =(1+|&[F)"* D(z, &).
Then the associated a-Sobolev norm is:

lo|2= [ |A%o(t, x)|*dtdx.
R* xR®

We remark that if v is in & : {[v|,< + o0, VaeR. Sovis in 2R, H*(R").

We recall that, even if u is a smooth function on IR* with compact support,
A*u will not have compact support unless «cIN. In particular, A* does not
map &, into itself. On the other hand, we have a decomposition: A*=A""
+ 4" (cf. [30]), where A’* is a properly supported operator (so it sends &
into itself) and A”* is an operator of order — oo (so we shall ignore it in the a
priori estimations). Then we consider the algebra &/ with coefficients in C;’

generated by the derivations , i=1...n and the operators A%, xeR. Now

0x;
we state some lemmas dealing with the properties of o/.

1.2. Lemma. &/ acts on &;.
Proof. Tt suffices to prove that, if u is in &, Pu is in &; when P=A"* or P

0
=% °F P=b(t,x) with b in C, and this is immediate from the definitions.
X; ’

13

1.3. Now, we recall the main definitions concerning a class of pseudo-differen-
tial operators that we need in the following (for more details, see [30]).

If U is a bounded open set in R" and meN, let S, (U, U) be the linear
space of C* functions a in U x U xR" which have the following property: to
every compact subset K of UxUxR" and of n-tuples (z, f,7), there is a

constant C, , .(K)}>0 such that:

IDDEDYa(x, y, O < C, 5, (K)(1+[Em=17,

a B,

To every a in S™(U, U), we associate the pseudo-differential operator 4 with
amplitude a defined by the oscillating integral:

VueCP(U), Au(x)=Q2mn)~' [ & V%a(x,y, Hu(y)dyds
R x R*
(m is the order of A).

Let ¥,(U) be the space of such operators. Every element of ¥, (U) extends,
by duality to a linear map on &'(U) the space of distributions with compact
support in U. If K is a compact subset of U and ¢ a C® function with support
in K, we define a seminorm py , on ¥, (U) by:

@ Aul gz -m

Pk,pa(A)= sup —————

Ko ueCP (V) 41 g
supuc K
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We give now the special form of the amplitudes for the generating elements
of o/ (1+£]%)*? is an amplitude for A%; so, if ¢ is an element of C*(R" x R")
which is identically equal to one in a neighborhood of the diagonal in R" x R”
and with compact support when multiplied by g(x) or g(y), ge C2MR"); ¢(x,y)

(1+]&1%)%2 is an amplitude for A’ Finally, if A=b(t, x) T , b(t,x)¢, is an
amplitude for A.

1.4. Lemma. Every element P of </ of order m defines a map t—F, from R™* to
¥ (U) which sends bounded sets of R™ * into bounded sets of E,(U).

Proof. Writing the general form of an amplitude for P and using the proper-
ties of elements of C;°,, we get the result.

Let us point out that this property of &/ is the main tool in the generaliza-
tion of Kohn’s proof to our case. We have in particular:

1.5. Lemma. If P is an element of of of order m:
IPOll, Sc() [0],rms  Y0EZ,.

The form of the operator occurring in Theorem 1.1 leads us to introduce a
sub-class &%, of &,

ou
y2={ueyl, E_teyl}

and, for ve &,, we define:

4
Z 2o+ Vyv+co.

=1

If U is a bounded open set in R**xR" &,(U) is the set of clements of U
whose support is contained in U.

¢) Proof of the Theorem

In a first stage, we establish that L satisfies an energy inequality for every v in
&,. Then we obtain a priori estimates for L in terms of the Sobolev norms
defined in §b., under the hypothesis H. After, if # is a Radon measure
satisfying the hypothesis of Theorem 1.1, we localize and regularize u and,
applying the a priori estimates to the regularized functions, we show that all
the a-norms of £u (£e CP(R™* * xR™) are finite, which implies the smoothness
of u for almost every . The last step is to get the result for every 1.

1.6. Proposition. If U is a bounded open set in R™* xR", there exists C>0
such that, for every u in &,(U):

_Z 5= C(Lu, wl+ullg).
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. ou o
Proof. Integrating by parts and noticing that (—6—, u) =0, we get the estimation
in the same way as in the classical case. t

From now on, we suppose assumption H is verified.

1.7. Proposition. There exists ¢>0 such that, for all seR and all u in &,(U):

lullsy . = CILul + ully).

Proof. We sketch the proof in case s=0.

Using the inequality: |u],< Z

i=1

+ |lu| o (valid for £¢<1), we see that

e—1

0x;

we have to get estimations of

, 1<i<n, by means of |Lu||, and |ul},.

axi g—1
This is, at this stage, that we use assumption H.

b,
Indeed, there exists N €N such that, at each point (t, x) of U, every — 1s a

0x;
linear combination of brackets of V,, ..., V; whose length is less than N:
0 .
axi Zazl...lk i1...0k
where F;; =[V,,F, iy ] and F,

The coefficients a; _; being 1n Cb o they are bounded in U. So it remains
to bound ||F, lk“Ha_1 by C(| Lul| o+ |lull,) and it is obtained recursively by the
symbolic calculus via the formula:

1E, . 2

Pgeni

ee1 = C(F, i 4l 5+ Lullg+lullo)

which leads to:
\Ey oul, < (z Vit s, 1+uLuuo+nuuo)

If 2¥=1£<1, we conclude by using energy inequality.
The estimate, for s+0, is proved, as in the classical case, by commuting L
and A°

1.8. Localization and Regularization. Let £ and £, be elements of C*(R* xR")
with support in R** xR", such that £, =1 on supp ¢.
If ¢ is in C*(R") such that f p(x)dx=1, we set: @;(x)=06""¢(6~ ' x). Then,

if u is an element of ¥ (cf. §a)) such that Lu= fe Cy°,, we define:

S;éult, x)=~Eusqp,= fé(t yult,y)@s(x—y)dy.

S; is an element of ¥_ _ (R") and, now, we work on the algebra of pseudodiffer-
ential operators generated by ./ and the S;, 0<o=<1.
In order to apply Proposition 1.7 to S;&u, we prove first the following:
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1.9. Lemma. S;&u is in &,.

d
Proof. 1t is clear that S;&u and E(Safu) have compact support in R** xR"

and are smooth w.r.t. x.

We only have to prove that all their derivatives w.r.t. x are in I>(R* xIR").
We have:

Ssscu=s, (Fu)+s,6 (= 3 vru-vpu—cu—s).

We must study expressions of the form: D%(S;n Wu) where 5 is in CP(IR**
x IR™ with support in R** xIR" and W is a differential operator on R" with
coefficients in C;°,. Denoting by W* the adjoint of W in C(R"), we have:

Di(Ssn Wu)y=[u(t, ) W*(t, ) n(t, ) D*@5(x —y)dy.

To show that this is in L*(R* x R"), we only have to prove that it is bounded
since it has compact support.
For this, we recall that u is in 4 so:

D(Ssn Wu)=[ W*(1, .)n(t, y) D* ¢ (x — y)d p,(¥)

and for (x,tf) varying in a compact set, the set of functions
y->WH*(t, Jnlt, y) D*@(x —y) is bounded for the sup norm.
The mollified distribution satisfies the following estimate:

1.10. Proposition. There exists ¢>0 such that for all seR and all uin 4

185 ullsy = COEOLNE S+ 1€ uilsr-

Proof. We remark first that supp S;&u is contained in a compact set inde-
pendant of §. As in the classical case, we apply Proposition 1.7 to S;¢u and let
L and S;¢ commute. Using Lemma 1.4, we can generalize Friedrich lemma (cf.
[30]) and get:

ILT, S, ¢Jull = Cli& ul;

where T is a first order element of 7 and C is independant of é.

1.11. End of the Proof. We can see easily that, u, being a Radon measure on
R” belonging to ¢, we have: |&,ul_, < + c0.

We deduce then from Proposition 1.10 that there exists a constant C
independant of 4 such that:

ISs€ull _pse=C
which implies that ||£ul _,, < + oo using the following lemma.:

1.12. Lemma. Properties (i) and (ii) are equivalent:
(i) there exists C independant of & such that ||S;Eul,<C,
() [[Eul, <+ 0.
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Iterating this argument, we can show that for any ¢, CX(R* xR"), for
any seR: [[équl,;<+o0 and so, for almost every teR™*, u,(=pg,) is in
C*(R™. To get this smoothness result for all telR** we shall integrate

0 .
with respect to ¢ the equation giving 3 (¢u) and use the following lemma:

1.13. Lemma. Let v be a Radon measure on R™ such that, for every aeNN,
there exists a constant C,>0 such that:

fD“ VA =Cllolles Vo CPRT).

Then, v is a smooth function.

Let us fix telR™. If ¢ is in C?(IR"), we have:

I Do) £(t, %) p(d)

d

=}t" J(=1e (X)D“{if(s X)+( é(S x)—&(s,x) 3, V(s %)

R’ i=

— (5, %) V5, %) — (5, %) ¢, x)) us(x)} dxds.
Then we get:
IBLD“Q)(X) &, ) p(dx) ={ClI ull, .+ CY ol

and, by Lemma 1.13, p, is a smooth function.

2. A Stochastic Hormander Theorem

The celebrated “sum of squares” Hormander theorem gives the hypoellipticity
d

0
of the heat operator Fris Y Vi2+V, whose coefficients do not depend on the
i=1

variable ¢, under the condition: the Lie algebra generated by V|, ..., V; and the
brackets of V,, V,, ..., V; is R" at each xeIR™ In the previous paragraph, we
allowed a dependance on f for the V}’s and so the vector field V;, can not occur
in the assumption. In this section, we consider stochastic heat operators where
the dependance on t of the coefficients is through a brownian motion g;
explicitly: V;(t, x)=V,(x, B,), 1<i<d and

N P ﬁf
Volt, x)=Vy(x, B)+ Z Vi(x, B) =t

— . . dp
where (x, z}-V(x, z), V,(x, z), Vi(x,z) are C® functions in R" x R? ( d[i

a white noise). As we shall see in Sect. 3, operators of this form arise naturally

in filtering theory. We shall prove a hypoellipticity result for these operators
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under a Hérmander condition including ¥, in a certain sense. We can see what
happens by computing formally the bracket:

N
‘ »
)
5

R A OF

a) Notations

Let us denote by C;° = C;°(IR" x IR?) the space of smooth functions on R” x R?
such that all their der1vat1~ves are bounded.
Vos Vis ooos Vs Vis v, V, are m+p+1 vector fields on IR* x R? such that:

Vi(x, z)= Z (x, z) 0<i<m
j=1
. no a ,
K(X,Z)'—'z I/;J(X,Z)—, 1§l§pa
j=1 x;
where the Vs and Vs are in Cy; f. 815 - 8, are p+1 elements of Cy°.

We want to work on a special class of random distributions ¢ Wthh is
defined in the following way: let (Q, #, P) be a probability space filtered by
(#),cr+ and (B,),.g- be a F-brownian motion on @ with values in R”. We shall
denote by w the generic element of Q.

If X is a semi-martingale defined on (Q, %, P), 6X denotes its Ito differen-
tial and dX its Stratonovitch differential (cf. [22]). We denote by §,,X (resp.
6, X) the martingale part (resp. the bounded variation part) of 6 X.

4 is the class of random variables on © with values in .#(IR* x R") of the
form u,(w, dx)dt such that:

1) p(.,dx) is ZF-progressively measurable with values in .#(IR").

i} the map t—pu, sends bounded sets of R* * into bounded sets of the space
of random radon measures on R” normed by:

lu)l=E(|ul%ymn)'"® where g=sup(n+1,4).

On this class, we can state the following SPDE:

: d
| ot x) p(dx)+ | (I {fésqo(s,X)—a—?(s, X)}us(dx))ds
Rr 0

1 Lo 9@ 58 = ] (T Bds+ [ (. B)SFL) olt ) dx.
a.s. for every o e C¥(R* xR") where:

i) £, ,=(Vi+g)(., By, 1

o
iii) ho, ..es b, are in Cp°.

) »%f{—% (Z v+ Z V,Z)+Vo+f}<.,/3s),
<i

=p,
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t t
In the following, we shall write h(t, x, w) = { ho(x, B)ds+ | hy(x, B;) 0 B:.
0 o}
Let £ be the Lie algebra, with coefficients in C;°, generated by V;...V,, and

N .0
the brackets of V... V,,, V| +é—, s Vp—i—af, where, at least, one V, appears.
z, z,
If NeN, we denote by #, the sub-space of # generated by the brackets of
length smaller than N.

Our aim is to prove the following theorem.

2.1. Theorem. Assume that, for every compact set K of R", there exists NeIN
such that:

H: Ry(x,2)=R" for every (x,z)e K xRZ.

Let u=p, dt in 4 satisfying equation (1). Then, a.s., for every t>0, u, admits a
smooth density.

b) Classes of Test Semi-Martingales

We define first a wide class of semi-martingales on which a stochastic Fubini
theorem is valid.

2.2. Definition. %, is the class of maps u: R* xR"x Q—R such that there
exist p+1 maps ug, Uy, ..., 4,: R* xR"x Q>R satisfying:
i) u; is #,-progressively measurable.

i) u, is in L*(R* xR"x Q).
t t

i) u(r, x, w)={uy(s, x, 0)ds+ [ u,s, x, w) 4 BL.
) )

By a theorem of C.Stricker-M. Yor [28], this implies that u admits an %-
progressively measurable version.

Let us denote by (,) the standard scalar product on L*(IR™).

In the proof of Theorem 2.1, we shall often use the following stochastic
Fubini theorem that we state without proof, the arguments being standard:

Let f: R">R be in L*(R") and u in &,. Then:

lﬁfnf(x)u(t, X, w)dx=j;(nj;"f(x)ui(s, x, w)dx) 6 +£(ﬂ£1f(x)u0(s, x, w)dx)ds, (2)

a.s. for every teR™.

2.3. Definition. #, is the class of maps u: R* xIR” x @R such that:
i) uis Z(R*)x Z(R") x F measurable.
ii) a.s., for every t>0, u(t, ., w) is in C*(R").
iii) u has compact support in R** x R" independent of w.
iv) all the derivatives of u w.r.t. x are in IZ(R* xR"x Q) (g=sup(n+1, 4)).

If U is a bounded open set in R** xR”, %(U) is the set of elements of %,
whose support is in U.
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As in the deterministic case (cf. §1), we define a class of pseudo-differential
operators acting on &,. First, for u in &,, i(t, &, w) denotes the Fourier
transform of u(z, ., w) considered as a function on IR* and, if A% is the Bessel
potential on R, for x€IR, we still call A* the operator acting on ., in the
following way:

A2t &, ) =(1+]E22 0( ¢, ).
As in [12] and [25], we introduce the partial Sobolev norms:

lullZ=E(| [|A%u(, x, )|*dxdt).
R ke

We remark that, if u is in &, |u|, <+, YacR; so u is in [2(QxR™,
H*(IR™).
At last, we consider the algebra ¥ of pseudo-differential operators on IR"

depending on a parameter zeIR” generated by the derivations é%’ 1<iZnand
the operators A'* (associated to the A* as in §1b) with coefficients a(x, z), a
being in CP. Then, we define an algebra ./ of random pseudo-differential
operators on R* xIR™: an element of &/ is obtained from an element of % by
replacing z by B,; so the random character of .« is introduced through the
brownian motion .

This algebra has the following properties.

24. Lemma. < acts on &,.
Proof. Let u be in &, and P in «. It suffices to prove that Pu is in &, for P

=P, =A""and P=P,=a(x, ) Fr Properties (i) and (ii) are clear. (iii) is valid

because P, is properly supported and P, is a differential operator.

The definition of P, implies that P, satisfies condition (iv). The same is true
for P, because a is in C;°.

In the classical case, a pseudo-differential operator on IR" of order m
continuously sends H{!™(R" into Hf (IR™. We generalize this result to our
case.

2.5. Lemma. If P is an element of o/ of order m and U a bounded open set of
R* xIR", there exist constants C(o), xR, such that:

IPul, £ C@) [ulym:  Yuey(U). (3)

. 0
Proof. 1t suffices to prove this inequality for the generators of </ ie. IR
1<i<n A'% oeR and the multiplication by a(x, 8,) with a in C;°. Since and

X
A% do not depend on the variable ¢, we obtain (3) by integrating w.r.t. ¢ the
classical inequality on IR". The same property is valid for a(x,f,) since the
support of u is contained in a fixed compact set and a is in C.
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This inequality could also have been obtained as a consequence of a lemma
similar to Lemma 1.4.
Finally we define the class on which we shall work.

2.6. Definition. .4, is the class of semi-martingales u in &, n %, with u;, i=0 to
p, also in &. If U is a bounded open set of R” we define: % (U)= A myi(U)

2.7. Lemma. &/ acts on %,

- - 0
It suffices to prove that the generators of &/ acts on % i.e. that 4’% ™ and

the multiplication by a(x, 8,) (ae C®) send %, into itself. As we saw in §1.3,, A’

0 .
and i have amplitudes independent of ¢t and we shall prove the property for
X;

them in the next lemma. For the multiplication by a(x, ), we write Ito’s
formula for the product a(x, ) u(t, x, w), ue%;:

a{x, B, u(t, x, w)= j{ (x, B u(s, x, w)+a(x, ﬁ)u(sxa))} B

l

P 32
+f{1 L5 P4 e pyuts v

+z xﬁ (s, x, w) +a(x, ﬁ)uo(sxw)}ds
a being in C;° and u in 57”1(\%, it is clear that the four properties of % are
satisfied by a(x, B,)u.
2.8. Lemma. Let P be an element of o whose amplitude does not depend on t.
Then, if u is in %, we have: a.s. for every (t,x) in R™ xIR™:

t t
Pu(t,x,w)= | Pu,(s,x,) 6 B+ [ Puy(s, x, w) ds. e
o 0

Proof. Let us fix xeR”. If P is an element of <7 satisfying the assumption of the
lemma, it can be viewed as a pseudo-differential operator on R” and it admits
the representation

Pu(t,x,w)=Q2m)~"[[*"%b(x, y, &) u(t,y, w)dyd &

where b can be written:

b,y )= Y @0 A+[EPP? (cf §1.3).
ri+sism
We first notice that we can suppose b(.,., &) has compact support on R” x R"
independant of ¢ Then, by a standard argument of integration by parts in
. . . ob i)

oscillatory integrals, we can consider that b(x,.,.), as well as 6_ and ab
Vi

1<i<n, is uniformally bounded in I*(R" x R™) when x stays in a compact set.
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To obtain (4) as. for every (f,x)eR ™ x R" we use the Kolmogorov theorem
to show that as., the two members of (4) are continuous w.r.t. (t,x). We prove
first that:

E(Pu(t,x',w)—Pu(t,x,w))* "< C(jt —t'|74|x —x'[*9),

for g=sup(4,n+1). Indeed, if we define:
Ap =Pult',x',w)— Pu(t,x’,w)=Q2n) " [{'™ ~M¢b(x', y, &)
W(t', y, w)—u(t,y,w)dydg,
applying Schwarz inequality, we get:

t

B(£2) S CB(] (€, )~y CE (] ([ uds nenas) ay)

ti=0

D
<Cl¢—thE ( J oY uttspo)dsdy) SCle—if

Rt xR i= 1

and here we have used property (iv) of .
Writing 4,. ,=Pu(t,x',w)— Puft,x,w), we are led to estimate the oscillating
integral:

- ) ob
et (1,00, 3, 845 (0, 8)ult o)y de
j
where x” is in the segment joining x and x'.
First, we integrate by parts w.r.t. y to make ¢; disappear. The estimation

a

b ob
follows then from the fact that b, g-; and 5 were supposed to be in I*(IR"
J j

x R") and from property (4) of Z,.
The same estimation can be obtained for the second member of (4).

2.9. Definition of the Operator L. For u and v in %, let us define:

t

{Lu,v)(t,w)= [ dx (jv(s, x, w) duls, x, w)
R \0
+jt"v(s, x, ) Lo (s, x, co)ds—i—iv(s, x, ) &, uls, x, w)éﬂi)
o] 0

where the first integral on [0,£] is a stochastic integral with respect to the
semi-martingale u (cf. [22]). (It exists because v and u, are in I#(R* x R" x Q)).

From the Fubini Theorem (2), we know that (Lu,v)> is a semi-martingale.
{Lu, vy, will be its martingale part, (Lu, v}, its bounded variation part. Let us
introduce furthermore:

Liu(t,x, w)=ut,x,0)+ 2, u(t,x,0), 1<i<p

which is a kind of martingale part of “Lu”, and the associated quantities:
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ILullz o= Z{HL ullg +1<Lyu, Zyud, I}

where {, >, is the scalar product associated to the norm | |,. We notice that, if
u is in %, || Lu|, , is finite for all aeR.

‘¢) The A-Priori Inequalities

The organization of this paragraph is the same as in the deterministic case (cf.
§1c).

2.10. The energy inequality for the V)s.

Proposition. Let U be a bounded open set of R** xIR™ There exists a constant
C such that, for every u in S (U):

IngE

IViu|§ = C{E(<Lu,up p(o0, )+ lu 5+ Lullg 3.

I

i=1

Proof.
Lu,ud(t,w)= [dx (ju6u+ju$0uds+fu$iu5ﬁi). (5)
R 0 [4] 0

Applying the Ito formula for large ¢ (in the following, we always suppose ¢
large) we get:
t

fudu

0 i

N\H
(Rl

t
fu?ds.
0

1

We remark that there exist functions ¢, ... 4, 4, ... g, such that:

Vi#=—Vi+gq, 0Zism; Wr=—V+g, 1Zi<p.

Taking the bounded variation part of each member of (5), we have only to
compute

t
| fuPLyudsdx.
R 0
First:

t

t
| fu(Vou+cuydsdx= | fuGg,+c)udsdx.
R 0

R* 0

As ¢, and ¢ are in C, this term gives a contribution O(||u|2). On the other
hand, as in [11]:

(V2w u)= — (Vyu, Vi) + (a2 u, ).

1

In the same way:

(V2u,uy= — (Viu, V;u)+1(G2 u, u).
Finally:



586 M. Chaleyat-Maurel and D. Michel

i fdx (}(Viu)zds) =2{Lu, u),(t, )

+lzl Ja (j u; —(Vu)z)ds>+0 (jdx (st))

Let us examine u?—(¥,u)?
uiz_(Vi”)z:(Li”"f/i”_gi”)z—(f/iu)z=(Li”_gi“)(Li”_2f/iu_gi“)
=(Li“‘gi“)(Li“_23:'”"‘&‘”):([4;'“)2_(gi“)z_zgi“(l‘i”_gi“)-

Integrating w.r.t. (z,x) and noticing that g, %, is a first order differential opera-
tor, we get:

< C{lILulig 4+ ul3}.

P
EY
i=1|IR

(i(u?—(ﬁ-u)ﬂds)

2.11. A first Sobolev a priori inequality.

Proposition. Assume H. If U is a bounded open set of R™* xR", there exist
e,>0 and a constant C such that, for e<e, and ue %, (U):

|ull? < CLE(KLu,uy pl) + |3+ I Luel3 o} (6)

Proof. Let u be in %(U). Then, as in the classical case:

2 n

<lullz+ Y

x—1 i=1

2
, ifasl. (7)

a—1

lully = A%l g = lull_

i 0x;

The assumption H implies that each derivation D,=

can be expressed as:

0x

Dy=Y Air-iodvede(x, 2) Fitidk(x, z), k<N at each (x,z)eR" x R? (8)
where the coefficients A}~/ are in C;° and the F/! '/ are defined by:

Fji=Y,

138

Fh Jk_[ FJ1 k-1 lf]kzl

[ A 7% Rl TR A

. 0 .
o LAt el I )
ir
Indeed, using Jacobi’s identity, we can always suppose that #(x, z) is generated
by brackets of this form. In addition, we deduce from the hypoellipticity
condition H that we can take j, =1 in each bracket FJ*=Jx
For simplicity, we will write:
f1ee i = Tk 1. 1— k-1 k__
Fiioge=Fk,  Fliodei=pol=X,  F=[Y,X]

k-1

We write (8) at the point (x,f,). Then, applying Lemma 2.5 and using in-
equality (7), it remains to bound |[F*u|?_, by the right side of (6) since the A;’s
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are uniformly bounded. We point out that it is at this step that we nced the
global Hérmander hypothesis; indeed, this allows us not to care about the A;’s
and to get the estimations recursively by means of the brackets.

We define: T?*~!=A%*"20F* Then:

IFulZ_ =E( [ (Y, X]u, T** 'u)dt).
]R+

When Y=V, , we can integrate on R* x Q the estimates of the classical case

13

and we obtain:

HF"qu_l§C{IIF"‘1MH§¢_1+ luig+ X lIViullé}

i=1
< C{IF )3,y + ull§ +EQCLu, up )+ [ Lull§ g}

o

FP it is similar to the estimation for the first order term in
Z.

I
Hormander’s theorem which is obtained by using the adjoint operator; here,
the notion of adjoint for L has no meaning, so we replace it by the following
lemma.

When Y= I7ik +

Lemma. Let u and v be in &, Then:

f (gu [$i+aizi,x]ua/sf>dx:<LXu,u>M(t,w)—<Lu,X*u>M(z,w). 9)

Rr

t t
Proof. (LX u,v) = | (IU(SMXM-I—IUo?’iX“éﬁi)dX
(4]

R? \O

t t
{Lu, X*vyp = | (jX*véMu+fX*v$iu5,3i)dx.
R \0 0
First:

] (iwgmgi)m-gﬂ (iX*vﬁiuéﬁi)dx = (iu[gi,X]uaﬁi)dx,

R"

On the other hand, applying Lemma 2.7, we get:

t t
fvoyXu=fv (%Z{u—&-Xuj) 5B
0 0 -

J

OX XOX, 8 .. Mo D
where 6—Zj—i=zl azj 6xi le—ingia—Xi.
Then:

J ({vouxu)dx—J ([x*0b,u)dx=] fo (aXuéﬂj)dx. O
R \0 R \p ® 0 8zj

Now, we express the second member of (9) as a stochastic integral with respect

to B.
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t t
(LXu,vyy={ (jv(SMXu—FijiXuéﬁi) dx
R* \0 0

t t
= (j—XuéMv-l—quzi*véﬁi)dx
&\ o
t
=—{Lv,Xu)y+ | (qu(fi*+$i)véﬁi)dx.
R \0

LX u, vy, —<Lu, X*v),,

={(f(=XuLyv—X*vLu+ X u(L*+ Z)v)dx)5 .

o R

So, (9) implies:

0
fv [.Zﬁ——— X] udx= [(—XuLy—X*vLu+Xu(¥*+L)v)dx.

>
R" 0z i R

Taking v="T2*"1u, we get:
HF"qu_l:E(Rn jnw(—XuLik'v—X*vLiku—!—Xu(Zi’:+,§fik)u—v[gik,X]u)dxdt.

Let us examine each term separately:
Ap2a—1

a) Liv=v,+%v= u+[Z, T** Ju+T** 'Lu.

0z;
b) X*v=—-Xv+(X*+X)v=—T>* ' Xu~[X, T Tut+(X*+X)v
¢) L+, is of order 0.
So:
1F u)3_y < CLNF*  ull 3, o+ ullg + [ Lull§ o3

a—1=
Inductively, we then obtain:
P
1F*ully_, < C{ 2 Vit gy + g+ HLMH&m}-
i=1

If 2*a<1, |Viu|3,_ S| Viu|3Vk<N, and we use the energy inequality to
conclude.

2.12. A second Sobolev a priori estimate.
Proposition. Assume H. If U is a bounded open set in R**xR" there exist
go>0 and C,>0 such that for e<ey and u in S (U):

lull2, . < C{E(KLu, A>*up pl)+ ]2 + | LuliZ 4}

ate=

Proof. We apply Proposition 2.11 to A'*u (in the following, we identify A* and
A’* as their difference is of order — co and gives a trivial contribution to the
estimations).
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14%u)? < CL{E(CLA™, A%u) pl)+ | A% |G+ | LA*u|T o}

Let us first examine |LAu(3 .

?
LA UG o= Y {IL;A*u|§+ <L A%, £ A% o]}
i=1

1=

We calculate L, A u:
LA*u=A"u;+ L A u=A*"Liu+ %, A*]u.
As [ Z;, A%] is of order o, we have:

|LA* U3 0 S CUILUNZ o+ 2+ E( § (L0 ATTu, A Ly 1)},
]R+

For the last term, in order to lower the degree of the operator acting on u, we
use the adjoint of the operator in the same way as to prove that: (Vu,u)
=1(q,u,u). We define: T=L* A*[ ¥, A7]

T*=—[L¥ ANV L= - L, A ]2 L
+term of order 20= — [ £, A*] LF¥ A*— [ &, A*][ A%, L]
+term of order 20= — T—[[ %, A*], ¥ A*] +term of order 2a.
So T+ T* is of order 2« and this allows us to estimate
E( [ ([Z, A ]u, A*Zu)ydt) by ClulZ.
]R+
In the same way:

(LA u, Auy =< Lu, A**uyp+ [(A™u, [ L, A Ju)d1.
]Rn
For the last term, we lower the degree as previously.

d) Regularization

In this paragraph, we shall regularize and localize the distribution u satisfying
the hypothesis of Theorem 1.1 and apply the a priori inequalities to the
regularized maps.

2.13. Definition. Let £, £, be in CP(IR** xR™, such that ¢, =1 on supp¢ and
peCP(IR") be a even function with integral one.
We define: ¢, (x)=n""¢(n~'x) and:

ur,(ta X, a’):nj;"(Py,(x_Y) é(ta y) ,ut(dy)=Sn.fu(t, X, CU)

2.14. Proposition. For every neR**, u, is in %,

Let us first show that u, is in £ . i), ii), iii) of F; are clear from the
properties of 4, £ and ¢.
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To study property iv), we have to estimate:

| E([D*0,(x=y)e(t.y) n(dy) dxdi

R x R*

= | E(CuD*e,(x— )&t )1 dxdt<C StuII()E(H#zII?mmn)),

R*x R*
where K is the projection on R™ of supp¢, and this is finite by property 7 ii).
The semi-martingale property (%, iii)) comes from the equation satisfied by

u. Using the fac~t that &, 0<i<p, is in &/, we can prove easily that the ()5
O<igparein 4.

2.15. Proposition. Let o be a real number. Then, there exists a constant C(«)
independent of n such that, for all ¢ smaller than &,:

Hugllg s = C(d){l\fluﬂfr I\ih(-,ﬂ.)llaﬂr.zp‘,1 Héhi('aﬁ.)na-{—l}'

Proof. By Proposition 2.13, we can apply Proposition 2.12 to u, and we get:
gl 2+ o = Co{E(< Ly, A% u, > pl) + [lu, |2+ || Lug, |12 -

In order to estimate the second member of this inequality by an expression
independent of #, we need to adapt some known properties of the Friedrich
mollifiers to the present case.

Let us denote by ¥,(Q,IR") the space of random pseudo-differential oper-
ators on IR". We shall work on the subalgebra of ¥, (Q,R") generated by .«
and the §,’s, 0=y <1

2.16. Lemma. i) Let u be in 4. Then.:

IS, Sull, = (1 Eull,

where ||Eu|, is defined as |v||, when v is in %,

ii) Friedrich lemma: If A (resp. B) is an element of <7 of order m (resp. m'),
then the brackets [S,,A] (resp. [[S,,A],B]) are in a bounded set of the space
v (QRY (resp. ¥, . . .(Q,R") when n varies in [0,1] and A (resp. B) in a
bounded set of ¥,(Q,IR" (resp. ¥,.(£2,IR").

Proof. Inequality i) is obtained by integrating on @ xR™* the classical one. To
prove ii), we integrate the classical proof on @ xIR™* and use the particular
form of the elements of ./ as in Lemma 2.8.

From the first part of the lemma, we get first that:

lu =N Sull, = CliE ull,

Now, we examine || Lu, |2 ,.

14
1L, N2 o= Y I Lsu |3 +IKLyy, L)1}
i=1
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In order to compute L;u,, we put down the equation satisfied by u,:

i n’
t ai
u, (t,x,0)=f< =S EJOSIH—S ds—jS EL, udpL
0
+ Ih(t,y,w)w,,(x—y)é(t,y) y
IRYI
So: (u,);= =S, Lu+S,Eh; and Liu,=[%,,S,£]u+S,Eh;. Using the formula:
[Z:,5,81=[%,,8,18+5,[<, ¢,
ILgu )17 < CLIE ull; + 11ERIZY
where C is independant of # by the second part of Lemma 2.16. On the other
hand:
Ly, Ly, = <AL, S, L u+ S, Eh}, A°LS, Eud,

(NS, Ehyy A*Z,S, Euy o= A*S, Ehyy [A%, LS, Eud o+ LF NS, Ehyy NS, Eud

we obtain:

So: [(A*S, Ehy, A* S, Eudol < CHlIEul; + 1 ER)Z, -
It remains to estimate: {A*[#,, S, &Ju, A*Z;S, {up, which can be written:

(T A u, A8 uyo +{ T A% Eu, A Euy o+ O(€, ull3)
T =($S O*s,[Z: <]

=(ZS)*[Z,5,].

This can be easily seen by commuting A* with [.%,,S,], S,[%},{] and %,S,. We
compute now T,+ T, j=1,2.

where:

T, + T =[E, LF + LS, %S, + [ L E1S,(L+ LX) S, 6~ [ £, E18,[LF, 8, E]
- i,f]S,,[S,,,é]ffi*—[[n%é]s,,,(ffis,,)*]—(ncfis,,)*[[c-%”i,é],sn]-

Using the second part of Lemma 2.16, we see that T, + 77 is in a bounded set
of ¥,(2,IR") when # varies in [0,1] and so:

(KT A*E u, A% | = 15Ty + T A u, A*E U)o S C 1y ul,

Using the same argument, we get the same estimate for (T, A*¢u, A*¢u),. The
last term to examine is: E(](Lun,/l“un> pl) which is equal to:

<A2aum[$oas,,f]u+s Zéu-i-s (h £+hgé)>o

and it leads to the same estimates as before.

e) End of the Proof of Theorem 2.1

Let U and V be two bounded open sets in R**xR" such that UcV. U,
U,... U,... is a decreasing sequence of open sets satisfying:

UcUc..cUcUcU,_,c..cU,=V;
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We choose a fitted sequence of smooth functions ¢, on R** x R” such that:

i) &=1on U,

ii) supp&, < U _ ;.
Let us show that, for £eCP(R**xR") with support in U: |[£ul, <+ o,
VaeR. First, u being a Radon measure on R” satisfying property % ii),
NEeull_, <+ o0, VkelN.

Then, applying Proposition 2.14 with {=¢,, we get that S, &,ull_,,,=C,
C independant of #. We deduce from this and a stochastic version of Lem-
ma 1.10 that: ||£,u]_,, , <+ co. So, inductively, we have:

1&et]l _psqny.<+oo andso: [[ull,<+o0, VaeR.

Now, to deduce from that the smoothness of fu w.r.t. x, we cannot conclude
directly as we saw in §1 and so we use the same method as in the proof of
Theorem 1.1.

If ¢ is in C°(IR™), we have:

t

0
<éﬂt7Da¢>_—j{<éﬂs,$§3Da§0>+< é,us,Da >}dS

0
t

_§<£:us= gjsl)a(p>5ﬁ;+j ‘[éhDa(Pdth'
[ 0 R®

Integrating by parts and using the fact that the coefficients of the #;s are in
Cy, we get:
E( sup K, D >N = CllEul, ,+C' <+

||<pllw=1

and, so, as. all the derivatives of &y, t<T, are bounded measures which
proves, by Lemma 1.13, that &y, for t =T, has a smooth density.

3. Applications

a) Background Material

We denote by #” (resp. #’) the space ¥(R*,IR™) (resp. € (R*,R™). A point of
W (tesp. #) is denoted by w (resp. w). Let Q (resp. Q) be the Wiener measure
on ¥ (resp. #') with Q(w,=0)=1 (resp. Q(W,=0)=1). If X is~ a stochastic

process on W x W, AY is the o-field B(X,5=51). X, X1, .0, X, X1, ...,X'p, are
m+p-+1 vector fields defined on IR” x IR?, such that:

Xi(x,2)= ZX’(x z) 0<i<m
j=1 Xj
N . 2 '
Xi(X,Z)"—— ZX{(X,Z)— lélép
1

2
j= 0x;

)

l,...1, are p functions defined on R” x R”.
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We assume that the components of the vector fields and the [’s are in C}°
(ct. 2.a). N
Let (x,,z,) be the solution of the stochastic differential equation on (#" x ¥

B>, 0 x 0):

dx, =X (x,, z)dt+ X, (x,, 2) dwi + X (x,, 2) (d Wi+ (x,, 2,) d 1)
dz,=dw,+1(x,z,)dt (10)
X, Zo fixed.

We let the [s appear in the first equation in order to simplify the Girsanov
transformation.

If we set y,=(x,,z,), Eq. (10) can be written:

dy,= Yoy dt+ Y, (y)dw'+ () @W + I (y) dv), (11)
¥y, fixed

. 5 0 . .. .
where: ¥;=X, and Y;=X i+T, or, in matricial notations:
Z.

X; o > (X, .
Yi—(o), 0<i<m; Yi_(@/@zi) 1<iZp.
In the following paragraphs, we show that, under appropriate hypoellipticity
assumptions, the conditional laws r, , defined by =, ;. f=E(f(x,)|%%), where f
is a bounded measurable function, have a C* density. We treat first the
filtering case (t=T) and deduce from it the smoothing case (¢t <T).

We introduce now the Lie algebras which are involved in our two hy-
poellipticity hypothesis.

We call £(X,,...,X,,) the Lie algebra with coefficients in C;° generated by
X,,...,X, and, for NeN, Z,(X,,...,X,) is the subspace of ¥(X,,...,X,)
generated by the brackets of X, ..., X,, whose length is smaller than N.

Let Z be the Lie algebra, with coefficients in C;° generated by X ,,..., X,
and the brackets of X,,..., X, X1+£—,...,X’p+£ where, at least, one X,

1
appears; we denote by %, the subspace of £ generatgd by the brackets whose
length is smaller than N.

We obtain our regularity result by applying Theorem 1.1 under the restrict-
ed Hormander condition:

H,: for every compact set K of R”", there exists NelN such that:

LvX ., X)X, 2)=R" at each point (x,z)eK xIR”.

And then we obtain the same regularity result by applying Theorem 2.1 under
the extended Hormander condition:
H,: for every compact set K of R”, there exists NeN such that:

Ry(x,z)=R" at each point (x,z)eK xIR?.

In two of the following regularity results, we need an other assumption:
H,: the projection on IR of the supports of X, ... X,, [ ... [, is bounded.
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b) Filtering (cf. [4])

Let us examine first two particular cases (without interest in the filtering
theory).

i) ,=0, X,=0, 1<i<p.

Thanks to a theorem of C. Doléans-Dade [7], one can fix z a.s. in Eq. (11)
and solve it on #. The problem amounts then to proving the regularity of the
law of a diffusion whose coefficients do not depend regularly on time. We get
the answer by applying Theorem 1.1 under assumption H,.

i) ,=0, X,+0, 1<i<p.

One cannot fix any more w in Eq. (11). Nevertheless we shall see that all is
going as if the conditional law were the law of the diffusion associated to the
“operator” 1 ZXZ—FX +X, dd
components IX;, X,

In the general case (l=|=0) we define a new probability measure Q, on ¥
x W such that:

the drift splitting up into (p+1) independant

dQ,

N e |

=L
By W X
where

Li=exp ([L0) 0w -+4] 3 £ds).

As uvsually, we define the unnormalized filter:
p.f=E,(f(x,)L,|%3) which is related to =, by the Kushner formula [18]:

o f= p,f

and p, verifies the Zakai equation: if f is in (gbz (R"), we have:

1 t
pf=pof+|p,Cfds+[p,B,foz (12)
0 0

where

m P
B=X,+1, C=%(Z +y X )+X +lX‘+Z

or equivalently:

t t
pS=pof+[p,Afds+[pB;fdz 13)
0 0
where
m ; L4 LT
A=3T XP+Xo 4RI 4T E-33 O
Pt P =10z,

By Girsanov theorem, z is a brownian motion under Q,,.
We can now state the regularity result for the filter.
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3.1. Theorem. Under condition H,, a.s., for every t>0, n, has a C® density.

Proof. From the Kushner formula, we see that it is equivalent to prove that p,
has a C*® density. To get this result, we apply Theorem 2.1 to Eq. (12), setting:

oX
0z,

V=X, l<ism; V=X, 1<i<p,

1 1

f=0; g=I, 1=isp; h=0, 0=i=p.

i
s

Vo=Xo+L X'+ Y
i=1

(. P)=00 xW,Q); f==. ]

We only have to prove that p, is in ¢ and this is straightforward.

An other way to get this result without using stochastic partial differential
equations is to work on an ordinary partial differential equation derived from
the Zakai equation (cf. [4]). From now on, we suppose H ; verified.

Let us introduce the flow (,,v,)(z,.) associated to the system (cf. [1, 2, 13,
14)):

dy,=Yy(y)dt+ Y(y)dz

i p
dh =465~} (¥ 10 ds
i=1
¥y, fixed
hy =0. (14)

Applying the generalized [to’s formula ([2, 14]), we get:

t

LogL.=v,(z,7,)—
t t 2 gay

0,

(zJ)dy,

where 7, =y, *(z,y,), y, being the solution of (11):

This allows to fix z in L, and to associate to p, an operator v, defined in the
following way:

Let g be any bounded measurable function on R”; we set:

t
- ovg, _ _
v,g=EY (g(xt) exp (—ja—s(z,xs, zo)dys))
o0y
where E} is the expectation w.r.t. the trace of Q, on #” and X is the projection
of yon R™
v, and p, are then linked by the relation:

ptfzv,(expvt(z, ':ZO)fopl l//t)

where p, is the projection on R”, and this shows the equivalence between the
smoothness of p, and that of v,. The main interest of v, is that for a.e. z, it
satisfies the following P.D.E.:
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a 1 m m [¢]
a3 L N = (S @ o)
© Y GWE Yo — (U Y0y, =0 (15)

i=1

where © denotes the adjoint.

The regularity of v, under H, is a direct consequence of Theorem 1.1;
indeed, assumption H is easily deduced from assumption H, and the properties
of the flow .

c¢) Smoothing

If H; is verified the result of regularity for the smoothing problem can be
obtained directly from the filtering case by the following method: first, we
have, for every bounded measurable function f:

Eo(f()Ly|B7) _Eo(f (X)L Eo(Ly_|B) v %7)|B7)
Eo(L|#7) Eo(Ly|27) '

E(f(x)|#7)=
Now, by a result of J.M. Bismut-D. Michel [4] (cf. Theorem 3.10 and the proof
of Theorem 3.12), there exists a function u: #" xIR* x R* xR"-IR such that:
Ey(Ly_,|B) v BF)=ulz, t, T —1,X,).

So, the conditional law 7, , admits the density x—pi(x)u(z:, T
—tp ¥ (2, X, 2,)) where p? is the density of the conditional law x,. We, then,
deduce the regularity of z, ;, under assumption H,, from Theorem 3.1 above
and Theorem 3.10 of [4].

d) Remark

We point out that assumptions H, and H, are global conditions and so are
much stronger than in [4] where the condition on the Lie algebra was only
supposed to be verified at the starting point of the process y.

Acknowledgements. The authors are much indebted to the two referees for every helpful remarks.
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