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In this paper, we consider two kinds of second order differential equations: a 
heat equation with coefficients irregular with respect to the time variable and a 
stochastic partial differential equation as, for example, the Zakai equation 
arising in the filtering theory. We prove the smoothness of the solutions of 
these equations under a condition of the H6rmander type. For  this purpose, we 
adapt the proof by J.J. Kohn [11] of the classical H6rmander theorem [10]: in 
each case, we develop a symbolic calculus on a special class of pseudo- 
differential operators and obtain a priori inequalities in well fitted Sobolev 
spaces, which lead to the smoothness of the solutions as in the classical case. 

As a direct application of these two theorems, we get regularity results for 
the conditional laws of filtering and smoothing theory under a global 
H6rmander condition. This gives a new proof of this smoothness result, which 
has been already obtained by J.M. Bismut-D.Michel [4], using the Malliavin 
calculus [3, 20, 21] under a local H/Srmander condition. 

H. Kunita [16, 17] has a similar theorem in the particular case where the 
coefficients of the Zakai equation do not depend on the observation. 

Let us remark that the idea is closely related to that of E. Pardoux [-24, 26], 
N. Krylov-B. Rozovskii [12] and B. Rozovskii-A. Shimizu [27] who generalized 
regularity results for solutions of elliptic PDE (partial differential equations) to 
solutions of SPDE (stochastic partial differential equations). 

The paper is structured as follows. In the first part, we establish the 
deterministic theorem, in the second part the probabilistic one (in these two 
parts, we follow the expository paper of M. Chaleyat-Maurel [-5] on the paper 
of J.J. Kohn [11]). The last part is devoted to the applications. 

We are grateful to J.M. Bismut for pointing out to us this approach of the 
problem and encouraging us during our investigations. 

1. A HiJrmander Theorem for a Class of Heat Equations 

a) Notations 

Let us denote by ~ - ~ + Cb, C- Cb. C (IR x Nn) the space of real valued functions f 
defined on IR + x Nn such that: 
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a) f is ~(N+)|  measurable. 

b) for every t > 0 ,  f ( t ,  .) is smooth and all the derivatives w.r.t, x are 
bounded on compact  subsets of ~ +  * x IR". 

V o . . . . .  V a are d + l  vector fields on ~ +  xlR" such that: V i ( t , x ) = V j ( t , x ) - -  
0xj 

and the V/'s are in Chic; C is an element of Cb~,c. We call 5f(V1 . . . . .  Ve) the Lie 
algebra with coefficients in Cb~,c generated by 1/1 . . . . .  V~ and, for N ~ N ,  
~N(V1, ..., Va) the sub-space of Y(V1, ..., Ve) generated by the brackets of 
1/1 . . . . .  V d whose length is smaller than N. 

The aim of this paragraph is to prove a hypoellipticity theorem for the 
d 

= ~ +  Vo+ ~ Vii 2 + c  acting on the following class of distributions: operator  L ~?t ~= 

is the class of Radon measures on P,+ x R"  of the form d& • dt where (#t)t~ 
is a family of Radon measures on 1(" such that the map t + # ,  from R +  to 
J/(IR"), the set of Radon measures on R", is bounded on bounded sets of R+.  

1.1. Theorem. Assume that, for every compaet set K of ]R + * x ~ ,  there exists 
N ~ N  such that: H: 5YN(V1, ..., Vd)(t, x ) = ~ "  for every (t, x )~K.  

Let u be in ~, satisfying: 

c~u d 
- - +  Z Vigu+Vou+cu=feCb~,c" 
0t i=l 

Op 
Then, u has a density p and both p and ~7 are elements of C ~ b,c" 

In the classical H6rmander  theorem, the vector fields are supposed to be 
smooth;  here we allow a measurable dependance with respect to t. Neverthe- 
less, Kohn 's  method works because the only derivation w.r.t, t appearing in L 

is ~- ,  i.e. a first order operator, and condition (H) only involves the "sum of 

squares" part  of L. 
So, the proof  of Theorem 1.1 consists in integrating with respect to t the 

classical subelliptic inequalities (cf. [11]); this is justified since the assumptions 
on the V~'s and u imply that the estimates are uniform w.r.t.t.  

b) A Class of Test Functions and Sobolev Norms 

We define 5~1 as the class of real valued, measurable functions on R +  x R", 
with compact  support  in R +* x R " ,  smooth with respect to x for every t > 0  
and with all their derivatives w.r.t, x in Lz(R + x IR"). 

We take as a scalar product  on 5~ the scalar product on L2(R + x ~")  and 
we denote it by ( ,) .  

We introduce now the class of pseudo-differential operators on which we 
shall work and the related Sobolev norms. 

First, for v in 5~ ~(t, 4) denotes the Fourier transform of v(t,.) considered 
as a function on IR", and if A ~ is the Bessel potential on Nn for e e ~ ,  we still 
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call A ~ the ope ra to r  acting on 5~1 in the following way: 

A~"F(t, ~)=(1 + I~lz) "/~ ~(t, 0 .  

Then  the associated ~-Sobolev n o r m  is: 

]lv][ 2 =  j IA~v(t,x)[ 2dtdx.  
�9 .+ x ~n 

We remark  that  if v is in ~ 1 :  [I v L  < + o% V ~ s ~ .  So v is in L 2 ( ~ + ,  H=(~")). 
We recall that,  even if u is a smoo th  function on ~ "  with compac t  support ,  

A"u will not  have compac t  suppor t  unless e s N .  In  part icular ,  A ~ does not  
m a p  ~1  into itself. On the other  hand,  we have a decompos i t ion :  A~=A '~ 
+ A  ''~ (cf. [30]), where A '~ is a proper ly  suppor ted  ope ra to r  (so it sends 5~1 
into itself) and A ''~ is an opera to r  of  order  - oo (so we shall ignore it in the a 
priori  estimations). Then  we consider the a lgebra  ~ '  with coefficients in Cb~ c 

8 
genera ted by the derivat ions - - ,  i =  1 . . .n  and the opera tors  A '~, , s N .  N o w  

0xi 
we state some l emmas  dealing with the propert ies  of d .  

1.2. L e m m a .  ~a' acts on ~ .  

Proof. I t  suffices to prove  that, if u is in 5al, Pu is in 5P1 when P = A  '~ or P 

= ~x~. or  P =b(t, x) with b in Cb~ c and this is immedia te  f rom the definitions. 

1.3. Now,  we recall the main  definitions concerning a class of  pseudo-differen- 
tial opera tors  that  we need in the following (for more  details, see [30]). 

If  U is a bounded  open set in F,." and m e N ,  let SIn(U, U) be the linear 
space of C ~ functions a in U x U x IR" which have the following proper ty :  to 
every compac t  subset K of U x U x 1t." and of n-tuples (e,/3, 7), there is a 
constant  C,,~, ~(K) > 0 such that:  

ID~D{D~a(x, y, ~)[ < C~,r +]~l) ~-I~1. 

To  every a in S~(U, U), we associate the pseudo-differential  opera to r  A with 
ampl i tude  a defined by the oscillating integral: 

VuaC~(U) ,  Au(x)=(2g) -1 ~ ei(~-Y)~a(x,y,~)u(y)dyd~ 
~n x ~n 

(m is the order  of  A). 

Let  ~ ( U )  be the space of such operators .  Every element  of ~m(U) extends, 
by duali ty to a l inear m a p  on ~ ' (U)  the space of distr ibutions with compac t  
suppor t  in U. If K is a compac t  subset  of U and cp a Coo funct ion with suppor t  
in K, we define a seminorm PK, e on ~P,,(U) by: 

II~oAullm-~ 
p~,~,~(A) = sup 

s u p u = K  
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We give now the special form of the amplitudes for the generating elements 
of W: (1 + 1~12) ~/2 is an amplitude for A~; so, if ~0 is an element of C~(IR" x IR ") 
which is identically equal to one in a neighborhood of the diagonal in IR" x R" 
and with compact  support  when multiplied by g(x) or g(y), g e C~(IRn); (p(x, y) 

(1+[~12) ~/2 is an amplitude for A '~. Finally, if A = b ( t , x ) ~ x .  b(t,x)~ i is an 

amplitude for A. 

1.4. Lemma.  Every element P of d of order m defines a map t--*P t from IR + to 
~m(U) which sends bounded sets of IR + * into bounded sets of 7J,,(U). 

Proof. Writing the general form of an amplitude for P and using the proper- 
ties of elements of C~, c, we get the result. 

Let us point out that this property of d is the main tool in the generaliza- 
tion of Kohn 's  proof  to our case. We have in particular: 

1.5. Lemma.  I f  P is an element of d of order m: 

The form of the operator  occurring in Theorem 1.1 leads us to introduce a 
sub-class 5~ of 5Pl : 

and, for v r 5e 2, we define: 

~v a 
L v = = - +  ~ Vi2v+Vov+CV. 

~t i=1 

If  U is a bounded open set in P, .+*• P~", ~2(U)  is the set of elements of U 
whose support  is contained in U. 

c) Proof of the Theorem 

In a first stage, we establish that L satisfies an energy inequality for every v in 
5P2 . Then we obtain a priori estimates for L in terms of the Sobolev norms 
defined in w under the hypothesis H. After, if u is a Radon measure 
satisfying the hypothesis of Theorem 1.1, we localize and regularize u and, 
applying the a priori estimates to the regularized functions, we show that all 
the e-norms of ~u (~e C~(IR+* x Rn)) are finite, which implies the smoothness 
of u for almost every t. The last step is to get the result for every t. 

1.6. Proposition. I f  U is a bounded open set in ~ + *  x N  n, there exists C > 0  
such that, for every u in b~ 

d 

Z H V~uH~ <= C(l(gu, u)l + Ilull~). 
i = l  
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Proof. Integrating by parts and noticing that (~t ,u)=O, we get the estimation 
in the same way as in the classical case. 

F r o m  now on, we suppose assumpt ion  H is verified. 

1.7. Proposit ion.  There exists e > 0  such that, for all s e n  and all u in 5P2(U): 

Llutls+~= < C(s)(llgulLs+ ItUlls). 

Proof.  We sketch the p roof  in case s = 0. 

n ~ IA 
Using the inequality" Llull~_< ~ - -  +]LUlho (valid for e < l ) ,  we see that  

�9 - = 1  ] l ~ x i l l ~ _  1 

~ u  
we have to get es t imat ions of  ~ , 1_<iNn, by means  of ][Lu]o and Ilul o. 

[I xdl~-i  - -  
This is, at  this stage, that  we use assumpt ion  H. 

Indeed,  there exists N ~ N such that,  at  each point  (t, x) of  U, every ~ is a 

l inear combina t ion  of brackets  of V~, ..., V d whose length is less than  N:  

~iXi=2 ail...ikFi~...ik 

where Fil...i k = IV/K, Fiv,.i~_ ~] and Fi~ = Vii. 
The coefficients a~h...i~ being in Cb~,r they are bounded  in U. So it remains  

to bound  IIFi~...iulL~_ 1 by C(I]Lulko+ [lU[]o) and it is obta ined recursively by the 
symbol ic  calculus via the formula :  

Hfit...ikul[~_ l <= C(llFi~...i~_,ull2~_ l + IILul[o + Ilulbo) 

which leads to: 

If  2 N- ~ e < 1, we conclude by using energy inequality. 
The  estimate,  for s + 0 ,  is proved,  as in the classical case, by commut ing  L 

and A s . 

1.8. Localization and Regularization. Let ~ and ~1 be elements of  C ~ ( N  + x lR") 
with suppor t  in N + * x N",  such that  ~ = 1 on supp ~. 

If  (p is in C~(N")  such that  ~ q~(x)dx=l, we set: ~%(x)=6-"q~(6-~x). Then,  

if u is an element  of f~ (cf. w such that  L u = f s  Chic, we define: 

s~ ~ u(t, x)= ~ u,~% = S ~(t, y) u(t, y) ~%(x- y) dy. 

S o is an element of T o~ (N") and, now, we work  on the algebra of pseudodiffer- 
ential opera tors  generated by sue and the So, 0 <  6-< 1. 

In order  to apply  Propos i t ion  1.7 to S a ~u, we p rove  first the following: 
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1.9. Lemma.  S o ~ u is in 5* 2. 

d 
Proof. It is clear that Sa~u and ~-(Sa~ u) have compact  support in ]R + * x  ~ "  

and are smooth w.r . t .x.  

We only have to prove that all their derivatives w.r.t, x are in L2(R + x ~ ) .  
We have: 

d 
u -  - f ] .  ~[(Sa~u)=So ( ~ t u )  +s0~  ( -  ~ V~ z Vou-Cu 

i = 1  ! 

We must study expressions of the form: D~(Saq Wu) where t/ is in C[( IR +* 
x ~")  with support  in R +  * x IR" and W is a differential operator on ~ "  with 
coefficients in Cb~,c. Denoting by W* the adjoint of W in C [  (N"), we have: 

D~,(Sar 1 Wu)=~ u(t, y) W*(t, .) ~l(t, y)D~oa(x-  y)dy. 

To show that this is in L2(IR + • ~"),  we only have to prove that it is bounded 
since it has compact  support. 

For  this, we recall that u is in (r so: 

D~ (S a ~l Wu) = ~ W* (t, .) rl (t, y) D ~ q~ (x - y) d #t (Y) 

and for (x,t) varying in a compact  set, the set of functions 
y ~ W * ( t ,  .)q(t, y )D~o(x -y )  is bounded for the sup norm. 

The mollified distribution satisfies the following estimate: 

1.10. Proposition. There exists e>O such that for all s ~  and all u in 

1IS0 ~ull~+~_- < C(s){Ll~xfll~+ II~xuH~}. 

Proof. We remark first that supp Sa~u is contained in a compact  set inde- 
pendant  of 3. As in the classical case, we apply Proposition 1.7 to S a ~ u and let 
L and S a ~ commute. Using Lemma  1.4, we can generalize Friedrich lemma (cf. 
[-30]) and get: 

lilT, so~]ull~ < c I1~ ull~ 

where T is a first order element of ~r and C is independant of ~. 

1.11. End of the Proof. We can see easily that, Pt being a Radon measure on 
R"  belonging to fr we have: Hr ull _ , <  + oD. 

We deduce then from Proposition 1.10 that there exists a constant C 
independant of 6 such that: 

IlSo~ull_.+~<-_c 

which implies that ][ ~ u H - ,  +~ < + Go using the following lemma: 

1.12. Lemma.  Properties (i) and (ii) are equivalent: 
(i) there exists C independant of ~ such that IISa~ull~< C, 

(ii) II~ull~< + ~ .  
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oo + I terat ing this argument ,  we can show that  for any r ~ C c (IR x ll"),  for 
any  s E N :  I I~oUlls<+oe and so, for a lmost  every t e l / + *  , u t ( = # )  is in 
C~176 To get this smoothness  result for all t e l l  +*, we shall integrate 

with respect to t the equat ion giving ~ - ( r  u) and  use the following l emma:  

1.13. L e m m a .  Let v be a Radon measure on llm such that, for every e E N  ~, 
there exists a constant C~ > 0 such that: 

I j O=~o(x)v(dx)l<C=tlcPllo~, V cP E CW (llm) �9 

Then, v is a smooth function. 

Let us fix t e l l  +. If  ~ is in C~~ we have:  

.[ D ~ ~o (x) r (t, x) ~ (d  x) 
N n 

= ~ ( - 1 ) ~ o ( x ) D  ~ ~f ( s , x )+  ~s(S,X)-~(s,x) y~ v~(s,x) 
0~R. n i = l  

-~ ( s , x )Vo( s , x ) -~ ( s , x ) c ( s , x ) )#s (x ) }dxds .  

Then  we get: 

I ~ D~cP(x) ~(t, x) #t(dx)l ~ { C I] ~1 u[l~+2 + c 3  IIq~ll o~. 
IR n 

and, by L e m m a  1.13, #t is a smoo th  function. 

2. A Stochastic Hiirmander Theorem 

The celebrated " s u m  of squares"  H 6 r m a n d e r  theorem gives the hypoell ipt ici ty 
O d 

of the heat  opera to r  - - +  ~, V~2+ V 0 whose coefficients do not  depend on the 
8t i=1 

variable  t, under  the condit ion:  the Lie algebra generated by V 1 . . . . .  V a and the 
brackets  of V o, V1, ... ,  V a is l l "  at each x ~l l" .  In the previous paragraph ,  we 
al lowed a dependance  on t for the V~'s and so the vector  field V o can not  occur  
in the assumption.  In  this section, we consider stochastic heat  opera tors  where 
the dependance  on t of the coefficients is through a b rownian  mot ion  fi; 
explicitly: Vi(t , x ) =  Vi(x, fit), 1 < i < d  and 

dill 
i=1 d t '  

where ( x , z ) ~ ( x , z ) ,  Vo(x,z), ~(x,z)  are C ~~ functions in l l " x l l  p ( dill being 
\dr  

a white no i se ) .  As we shall see in Sect. 3, opera tors  of  this form arise natural ly  

in filtering theory. We shall prove  a hypoell ipt ici ty result for these opera tors  
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under  a H 6 r m a n d e r  condi t ion including V o in a certain sense. We can see what  
happens  by comput ing  formal ly  the bracket :  

' ,. dt" 

a) Notations 

Let us denote  by C~ = C~ ~ (IR n x IR p) the space of smoo th  functions on IR n x Nv 
such that  all their derivat ives are bounded.  

Vo, V1, ..-, Vm, ~'1 . . . . .  17p are m + p + 1 vector  fields on Nn x IR p such that:  

V~(x, z) = j~l  ~ ' "= Vj(x,z)~xj O~_i~_m 

g i i ( X ' Z ) =  j=l ~ giJ(x'z) ~@j ' l < = i < = p ,  

where the Vj's and ~J 's  are in C~ ; f ,  g~ . . . . .  gp are p + 1 elements  of C 2. 
We want  to work  on a special class of  r a n d o m  distr ibut ions ~ which is 

defined in the following way:  let (f2, ~,~, P) be a probabi l i ty  space filtered by 
( ~ ) t ~ *  and  (fit)t~R+ be a ~ - b r o w n i a n  mo t ion  on s with values in N p. We shall 
denote  by  co the generic e lement  of  ~2. 

If  X is a semi-mar t ingale  defined on (O, o~t, P), 8X denotes  its I to  differen- 
tial and dX its S t ra tonovi tch  differential (cf. [-22]). We denote  by ~SMX (resp. 
@X,) the mar t inga le  par t  (resp. the bounded  var ia t ion part)  of  fiX. 

is the class of  r a n d o m  variables  on s with values in ~t( lR + x IR n) of  the 
form #t(co, dx)dt such that :  

i) # ( . ,  dx) is ~ t -progress ively  measurab le  with values in ~ ( N ~ ) .  

ii) the m a p  t ~ # t  sends bounded  sets of  R +* into bounded  sets of  the space 
of r a n d o m  radon  measures  on IR" n o r m e d  by: 

II#(co)ll=E(ll#il~(R.) x/~ where q = sup (n + l, 4). 

On this class, we can state the following S P D E :  

~r ! ~*~(p(s,x)-~s(s ,x  ) #~(dx) ds 

+f(S ~L~o(s,x)#Adx))~B ~= S ho(x, fl~)ds+Sh~(x, fl~)Sff~ q~(t,x)dx, 
0 ~,~ N "~ 0 

a.s. for every (p~ C ~ ( N  + x l R  n) where:  

ii) s = ( ~ + g , ) ( . , f i ~ ) ,  l<=i<=p, 
iii) h o ..... hp are in C~. 
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t t 

In  the following, we shall write h(t, x, co)=~ ho(x, fl~)ds+~ hi(x, fl~)~fii. 
0 0 

Let  N be the Lie algebra,  with coefficients in C~, generated by V1... V m and 

the brackets  of V 1 ... V m, V1 + 0z~ . . . . .  F'P +3z_z_' where, at least, one V/appears .  
p 

If  N ~ N ,  we denote  by NN the sub-space of N ~ genera ted by the brackets  of  
length smaller  than  N. 

Our  a im is to prove  the following theorem. 

2.1. Theorem.  Assume that, for every compact set K of IR", there exists N s N  
such that: 

/~: r  for every ( x , z ) ~ K •  p. 

Let u=#td t  in ~, satisfying equation (1). Then, a.s., for every t > 0 ,  #t admits a 
smooth density. 

b) Classes of Test Semi-Martingales 

We define first a wide class of semi-mart ingales  on which a s tochast ic  Fubini  
theorem is valid. 

2.2. Definition. SPo is the class of maps  u : N  + x l R n x y 2 ~ N  such that  there 
exist p + 1 maps  uo, u 1 . . . . .  up: IR + x N"  x O ~ I R  satisfying: 

i) u i is J~t-progressively measurable .  

ii) u i is in L2(N + x N "  x f2). 
t t 

iii) u(t, x, co)=S Uo(S, x, co) ds + S u~(s, x, co) c~ fils. 
0 0 

By a theorem of C. Str icker-M. Yor  [28], this implies that  u admits  an 4 -  
progressively measurab le  version. 

Let  us denote  by ( , )  the s tandard  scalar p roduc t  on L2(N"). 
In the p roof  of  Theo rem 2.1, we shall often use the following stochastic 

Fubini  theorem that  we state wi thout  proof,  the a rguments  being s tandard:  
Let  f :  IR"~]R be in L2(F~ n) and u in 2~ o. Then:  

t t 

J f (x)  u(t, x, co)dx=j ' ( j "  f(x)u,(s, x, co)dx)6fl~ + j (S  f(X)Uo(S, x, co)dx)ds, (2) 

a.s. for every t ~  +. 

2.3. D e f i n i t i o n .  ~1 is the class of maps  u: IR + • ~ n x  O-~IR such that:  

i) u is ~ ( IR  +) • ~(IR") • ~ measurable .  

ii) a.s., for every t > 0 ,  u(t , . ,  c~) is in C~(~n).  

iii) U has compac t  suppor t  in N + * • ~ independent  of co. 

iv) all the derivatives of u w.r.t, x are in Lq(IR + x ~ " •  ~2) (q = sup (n + 1, 4)). 

If  U is a bounded  open set in IR +* •  ~, ~ ( U )  is the set of elements of  ~1 
whose suppor t  is in U. 
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As in the deterministic case (cf. w 1), we define a class of pseudo-differential 
operators acting on 5~1. First, for u in 5>1, ~/(t, ~, co) denotes the Fourier 
transform of u(t, . ,  co) considered as a function on Nn and, if A" is the Bessel 
potential on IR n, for e ~IR, we still call A ~ the operator  acting on 5~1 in the 
following way: 

~ u ( t ,  4, co) =(1 + 1~12)~/2 ~(t, ~, co), 

As in ]-12] and [25], we introduce the partial Sobolev norms: 

Ilull2--E( S S [A~u( t, x, co)]2dxdt). 
~+ Rn 

We remark that, if u is in 5~1, Ilukl~<+oo, v ~ N ;  so u is in L / ( f 2 x R  +, 
H'(~")). 

At last, we consider the algebra ~ of pseudo-differential operators on Nn 
3 

depending on a parameter  z s IR p generated by the derivations - - ,  1_<iN n and 
c~x i 

the operators A '~ (associated to the A ~ as in w lb)  with coefficients a(x,z), a 
being in C~. Then, we define an algebra sJ  of random pseudo-differential 
operators on IR + x N " :  an element of ~ is obtained from an element of ~ by 
replacing z by fit; so the random character of ~ is introduced through the 
brownian motion ft. 

This algebra has the following properties. 

2.4. Lemma.  s )  acts on ~1.  

Proof. Let u be in 2~ 1 and P in s).  It  suffices to prove that Pu is in ) 1  for P 

= P I = A  '~ and P=P2=a(x ,  fit)~ixi. Properties (i) and (ii) are clear. (iii) is valid 

because PI is properly supported and P2 is a differential operator. 
The definition of Px implies that P1 satisfies condition (iv). The same is true 

for P2 because a is in C~. 
In the classical case, a pseudo-differential operator on N~ of order m 

continuously sends H~+m(Fx n) into H~o~(Nn). We generalize this result to our 
case. 

2.5. Lemma.  I f  P is an element of ~ of order m and U a bounded open set of 
~ +  x IR ~, there exist constants C(e), c~slR, such that: 

IIPull~_-__C(~)Hull~§ V u ~ ( g ) .  (3) 
0 

Proof It suffices to prove this inequality for the generators of ~ '  i.e. - -  
~x i' 

1 _<i_< n A '~, c~elR and the multiplication by a(x, fit) with a in C~ ~ Since ~ and 

A '~ do not depend on the variable t, we obtain (3) by integrating w.r.t, t the 
classical inequality on N". The same property is valid for a(x, flt ) since the 
support  of u is contained in a fixed compact  set and a is in C~. 
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This inequali ty could also have been obta ined  as a consequence of a l e m m a  
similar to L e m m a  1.4. 

Final ly  we define the class on which we shall work. 

2.6. Definition. 5> 2 is the class of semi-mart ingales  u in 5>1 ~5>o with ul , i=O to 
p, also in 5>1. If  U is a bounded  open set of  N"  we define: 5>2(U) = 5~2 n 5~1(U). 

2.7. L e m m a .  s162 acts on ~2. 

It  suffices to prove  that  the generators  of aTg acts on 5>2 i.e. that  A '~, ~ and 

the mul t ip l ica t ion by a(x, flO (aeC~) send 5>2 into itself. As we saw in w A '~ 

and ~ have ampl i tudes  independent  of t and we shall p rove  the p roper ty  for 

them in the next lemma.  Fo r  the mul t ip l icat ion by a(x, fl~), we write I to 's  
formula  for the p roduc t  a(x, fit) u(t, x, co), u ~ 2 :  

~a } 
a(x, fit)u(t,x, co)= ! {~--zi (X, fi~)u(s,x, co) +a(x, fl~)ui(s,x, co ) 6 fl: 

t f l  __v ~2 a 
+ j ~  )_2 ~-j(x,  fl)u(s,x, co) 

0 ( Z i =  1 OZi 

i= l ~Tizl (x'fis)u'(s'x'co)+a(x'fi~)u~ ds 

a being in C~ ~ and  u in 6>1 n 5>0, it is clear that  the four proper t ies  of 5>1 are 
satisfied by a(x, flt)u. 

2.8. L e m m a .  Let P be an element of fg  whose amplitude does not depend on t. 
Then, if u is in ~2, we have: a.s. for every (t,x) in IR + xF," :  

t t 

n u( t, x, co) = S n ui(s, x, co) a fl~, + S n uo (S, X, co) d s. (4) 
0 0 

Proof Let  us fix xeP," .  If  P is an element of  ~ satisfying the assumpt ion  of the 
lemma,  it can be viewed as a pseudo-differential  opera to r  on IR" and it admits  
the representa t ion  

nu(t,  x, co)=(2~z)-"~ei(~-Y)r y, 4) u(t, y, co)dyd~ 

where b can be writ ten: 

b(x,y,O= ~ ~i(x,y)~"(l+l~12) s,/2 (cf.~1.3). 
ri+si<m 

We first notice that  we can suppose b ( . , . , 4 )  has compac t  suppor t  on I ( " x  IR" 
independant  of  4. Then, by a s tandard  a rgument  of  integrat ion by parts  in 

0b ~b 
oscil latory integrals, we can consider that  b(x . . . .  ), as well as ~ and , 

1 <i<n,  is uniformal ly  bounded  in L2(IR" x ]R n) when x stays in a compac t  set. 
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To obtain (4) a.s. for every (t,x)elR + x R "  we use the Kolmogorov theorem 
to show that a.s., the two members of (4) are continuous w.r.t. (t,x). We prove 
first that: 

E ( P  u(t ' ,x ' ,  co) - P u( t ,x ,  co))gq <= C ([t - t'lq + l x -  x'14q), 

for q = sup(4, n + 1). Indeed, if we define: 

At, r = P u( t', x', co) - Pu( t, x', co)= (2n ) - "~e  i(x' - Y~r b(x', y, 4) 

(u(t', y, co)- u(t, y, co)) d y d ~, 

applying Schwarz inequality, we get: 

E(A~qt)<CE(~(u(t',y, co)-u(t,y, co))4qdy) NCE u2(s,y, co)ds) dy)  
F.~ i -  

<=Clt'-tlqE ~ ~u4q(s,Y, co)dsdy <=Clt'-tl q 
+ x~ .n  i =  i 

and here we have used property (iv) of 5~. 
Writing Ax,,x--Pu(t, x', co)- P u(t, x, co), we are led to estimate the oscillating 

integral: 

,, 8b ,, ~))u(t,y, co)dyd~ S~e i(x''-')~ (i~jb(x ,y, ~)+~xj(x  ,y, 

where x" is in the segment joining x and x'. 
First, we integrate by parts w.r.t, y to make ~j disappear. The estimation 

~b Ob 
follows then from the fact that b, ~ and ~ were supposed to be in L2(R" 

x R") and from property (4) of ~ .  
The same estimation can be obtained for the second member of (4). 

2.9. Definition of the Operator L. For u and v in 5~z, let us define: 

(Lu, v)(t, co)= Sdx v(s,x, co)6u(s,x, co) 
N~ 

, t is ) + ~ v(s, x, co) ~o,~ U(s, x, co) cl s + S v(s, x, co) ~ei,~ u(s, x, co) a fl 
0 0 

where the first integral on [0, t] is a stochastic integral with respect to the 
semi-martingale u (cf. [22]). (It exists because v and u i are in Lq(N + x N" x s 

From the Fubini Theorem (2), we know that (Lu, v) is a semi-martingale. 
(Lu, v)M will be its martingale part, (Lu, v)D its bounded variation part. Let us 
introduce furthermore: 

Liu(t,x, co)=ui(t,x, co)+ ~i,tu(t,x, co), 1 <_i<_p 

which is a kind of martingale part of "Lu", and the associated quantities: 
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P 

IILu 112,,~ = ~ {llL~ull 2 + I(L~u, Gu>=l} 
i = 1  

where ( , ) ~  is the scalar product  associated to the norm [I II~. We notice that, if 
u is in 5:2, IILNII=,.~ is finite for all e s N .  

c) The A-Priori Inequalities 

The organizat ion of this paragraph is the same as in the deterministic case (cf. 
w 

2.10. The energy inequality for the V~'s. 

Proposition. Let U be a bounded open set of N +* x ~ ' .  There exists a constant 
C such that, for every u in 5:2(U): 

Proof 

ILGuLI~<= C {E(l(Lu, u)D(oo,co)l)+ IluLIg + ILLuLI~,,~}. 
i = l  

(Lu, u)(t, co)= ~dx u~u+ U2:ouds+Su~u6~ i . (5) 
N." 0 

Applying the Ito formula for large t (in the following, we always suppose t 
large) we get: 

uau=-�89  u ds. 
0 i = 1 0  

We remark  that  there exist functions q0 -.. qm, g/1 ... @ such that:  

V / * = - V / + q i ,  O<_i<_m; ~ * = - V / + q l ,  l<=i<p. 

Taking the bounded  variat ion part  of each member  of (5), we have only to 
compute  

t 

SU~oUdSdx. 
~l.n O 

First: 
t 

S Su(Vou+cu)dsdx= ~ iu(�89 udsdx" 
~.n 0 ~I- n 0 

As qo and c are in C~, this term gives a contr ibut ion O([lul[o2). On the other  
hand, as in [11]: 

In the same way: 

Finally: 

(Vi2 u, u) = -(Viu, V~u)+l(q{u,u). 

( 2u, u)= u) 
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dx u)Zds =2(Lu, U)D(t,O) ) 
i= I ~.~ \ 0  / 

p t t 

Let us examine ulZ-(l~/u) 2. 

u { - ( ~ u )  2 =(Liu-  ~u-g lu)  2 - ( ~ u )  2 =(L~u-g lu) (L iu-2~u-g lu  ) 

=(Liu-glu)(Liu-  2~iu + giu)=(Liu)Z-(giu)2- 2Yiu(Liu-glu). 

Integrating w.r.t. (t, x) and noticing that g~ ~i  is a first order differential opera- 
tor, we get: 

2.11. A first Sobolev a priori inequality. 

Proposition. Assume ffI. I f  U is a bounded open set of lR+*x IR", there exist 
% > 0  and a constant C such that, for e<e  o and u~S?2(U): 

(6) IIu]I~Z_ <-- C { E(I ( Lu, U) DI) + HuH~+ HLuH 2,~u}. 

Proof Let u be in ~2(U). Then, as in the classical case: 

~ aU 2 if c~_<l. 
+ "  au 2 _-__llullg+ 7x~=_, IluH~=Ha~ull~)=HullZ~-i .= ~ =_1 i=1 ' - 

0 
The assumption/~ implies that each derivation D~ =~x~ can be expressed as: 

D~=Z 211""'~'J~'"J~(x,z)~.::i{~(x,z), k < N  at each (x,z)elR" xIRP 

where the coefficients )el ~''ik'j~'''ik are in C~ and the E i~''J~ are defined by: il ...ik 

F/,~ = V h 

F J l . . . J k _ F V _ .  F j 1 . . . J k - l q  
i l . . . i k  - - t _  i k '  i l . . . i k  1 if Jk = 1 

if Jk = 2, 
= [ azik i,...i~-i j 

(7) 

(8) 

Indeed, using Jacobi's identity, we can always suppose that N(x, z) is generated 
by brackets of this form. In addition, we deduce from the hypoellipticity 
condi t ion/4  that we can take Jl = 1 in each bracket F/{I.IIi~ k. 

For  simplicity, we will write: 

EJl...Jk=Fk; F_Jl...Jk-~=Fk-t=X, Fk=[y,x] .  
i l  ... ik i l  . . .  ik - 1 

We write (8) at the point (x, fl,). Then, applying Lemma 2.5 and using in- 
equality (7), it remains to bound I]FkulLZ~_l by the right side of (6) since the 2i's 
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are uniformly bounded. We point out that it is at this step that we need the 
global HiSrmander hypothesis; indeed, this allows us not to care about the 2~'s 
and to get the estimations recursively by means of the brackets. 

We define: T 2"- 1 =A2~-2 oF k. Then: 

I]Fkul[2_l =E(  S ([Y,X]u, T2~-lu)dt)" 
[i+ 

When Y= V/k, we can integrate on IR + x f2 the estimates of the classical case 
and we obtain: 

][fgu]]2~_~ <-_C IFk-luH2~_l+Hub[g+ [V~u[I 
i 

<__ C {HFk- lu]I2 _ I + ]Lull2 + E(l(gu, u)DI)+ I[guH02,~}. 

When Y= V/k +~zik, it is similar to the estimation for the first order term in 

H6rmander's theorem which is obtained by using the adjoint operator; here, 
the notion of adjoint for L has no meaning, so we replace it by the following 
lemma. 

Lemma. Let u and v be in f;~ . Then: 

[i~S(iv [ ~  + ~ z ,  X ] ~  u6f f )  dx = ( L X u ,  v)M(t ,o))-(Lu,  X*v)M(t, o3 ) . (9) 

Proof (LXu ,  v ) g =  ~ v~MXu+~vSYiXu3fi  i dx 
[i" 0 

(Lu, X*V)M= y X*vcSMu+~X*vGu3f l  i dx. 
[I n 0 

First: 

y 
[in \ 0  I n 

On the other hand, applying Lemma 2.7, we get: 

) S V t ~ M X I d = y V  ~ X I A - } - X u j  lSfl j 
o o c~zj 

?X__ ~Xi ~ i f X = ~ X  ix-  . where 
i=lZ" ~Zj ~ X  i i=1 O X  i 

Then: 

Now, we express the second member of (9) as a stochastic integral with respect 
to  ft. 
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(LXu,  v)M= ~ VfMXU+ vSFiXu6fl i dx 
�9 .~ 0 

t 

(LXu,  V)M-- <Lu, X* V)M 
t 

=~(~ ( - X u C ,  v -  X*vL,  u+ Xu(~i* + 5~i)v)dx)ffl'. 
O TR~ 

So, (9) implies: 

[ v [ ~ + ~ , X ]  udx=  (. ( - X u L ~ v - X * v L ~ u +  X u ( ~ *  +~LPi)v)dx. 

Taking v = T 2c~- 1 u, we get '  

If  2kc~< 1, 
conclude. 

IlFkull2_~=E( ~ ( - -XuL,kv--X*vLiku+ Xu(Sf* + SC~)v--v[g~k,X]u)dxdt. 
~ x R + 

Let us examine each term separately: 
gTZ~-i  

a) Liv=vi + Y l v =  u + [oL,('i, T2~- l] u + TZ~- l Liu. 

b) X ' v = - X v + ( X * + X ) v = - T Z ~ - I X u - [ X ,  T2~-I-lu+(X* + X)v. 
c) 5ei* + ~ik is of order 0. 

So: 

I lFkul [~_, < C { L I U - '  ull ~,_, + I lu l lo  ~ + l iLull2o,~}. 

Inductively, we then obtain: 

2 I[fkull2_~ <C [IViull2k~_a +[lulLZo+Llgullo,~a �9 
i 

IIV~ull~.=_~<=llV~ull~,Vk<__X, and we use the energy inequality to 

2.12. A second Sobolev a priori estimate. 

Proposition. Assume H. I f  U is a bounded open set in ~ + * x N " ,  there exist 
% > 0  and C~>O such that for e < e  o and u in 5~z(U): 

ILull~+~_- < C~{E(I<Lu, A2%>D])+ HUH2+ HLull2,~tt}. 

Proof. We apply Proposit ion 2.11 to A'~u (in the following, we identify A s and 
A '~ as their difference is of order - ~  and gives a trivial contribution to the 
estimations). 
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llA~ull2~ < C {E([<LA~u, ASu)D])+ [IA~uLI~ + ]LLA~uII~,~a}. 

Let us first examine klLA~NI[~,~a. 

P 

LILASuLIg,~a = ~ {HgiA~u[12o +KgiA~u,  2#,A~u)ol} �9 
i = l  

We calculate LfA~u: 

LiA~u = ASui + ~f iA~u= A~ Liu + [ Lf i, A ~] u. 

As [~ i ,  AS] is of order  c~, we have:  

ligA~ull 2o,~u = < C { ll gull~,.~ + ]lulL~ + g (  j ([ ~f i, A~] u, A%Lfiu)d t) }. 
p.+ 

For  the last term, in order  to lower the degree of the opera to r  acting on u, we 
use the adjoint  of  the opera to r  in the same way as to prove  that :  (V~u,u) 
=�89 u). We define: T = ~  i A [Lfi, A ] 

T* = - [2.W~*, A s] A~& a, = - [ ~',, A ~] A~f~ * 

+ te rm of order  2 c~ = - [~Lfi, A ~] ~o, A ~ _ [~Lfi, A ~] [A ~, .L#i. ] 

+ t e rm of order  2 e = - T -  [[Lfi, A~], L~'i* A ~] + te rm of order  2 e. 

So T +  T* is of order  2c~ and this allows us to est imate 

E( ~ ([2f~,A~]u,A%Lf~u)dt) by clhull~. 

In the same way: 

(LA~u,A~u)D=(Lu,  Aa~u)o+ ~ (A~u,[Lfo, A~]u)dt. 

For  the last term, we lower the degree as previously. 

d) Regularization 

In  this paragraph ,  we shall regularize and localize the dis tr ibut ion u satisfying 
the hypothesis  of Theo rem 1.1 and apply  the a priori  inequalities to the 
regularized maps.  

2.13. Definition. Let  ~, ~1 be in Cff(IR +* x l ( ' ) ,  such that  ~1=1 on supp~ and 
go e Cff (n(") be a even function with integral  one. 

We define: go , (x)=t / - "cp( t / - lx )  and:  

u, (t, x, o~) = j % (x - y) ~ (t, y) ~,(cl y) = s ,  ~ u (t, x, co). 
~.n 

2.14. Proposition. For every tleN. + *, u, is in ~ .  

Let us first show that  u, is in 6~0 c~ 9~. i), ii), iii) of 6#~ are clear f rom the 
proper t ies  of  ~,  ~ and ~0. 
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To study property iv), we have to estimate: 

S E(~D~.(x-Y)~(t,y)~,(dy))qdxdt 
R ~ x N  + N~ 

= ~ E((#tD~cp, (x- . )  ~(t,.)))qdxdt<= CsupE(I]#,ll~(~.)), 
N. n x ~.+ t E K  

where K is the projection on N+ of supp~, and this is finite by property f~ ii). 
The semi:martingale property (5~0, iii)) comes from the equation satisfied by 

u. Using the fact that 2,~ O<i<p,  is in s~', we can prove easily that the (u,)~, 
O<i<p  are in 5~1 . 

2.15. Proposition. Let c~ be a real number. Then, there exists a constant C(c 0 
independent of rl such that, for all e smaller than %: 

Ilu, ll=+~< c(~) IIr IICh(.,fl.)lL=+ 2 II~h~(.,/~.)ll=+l . 
i=1  

Proof By Proposition 2.13, we can apply Proposition 2.12 to u, and we get: 

liu, ll2+~ < C= {g(l(gu,,  A2~un)D])-I- Ilu,[12 + Ilgu, ll2.~}. 

In order to estimate the second member of this inequality by an expression 
independent of I/, we need to adapt some known properties of the Friedrich 
mollifiers to the present case. 

Let us denote by tIJm(~'~,~x-n ) the space of random pseudo-differential oper- 
ators on IR". We shall work on the subalgebra of ~u (~,lR") generated by s)  
and the S,'s, 0 < tl < 1. 

2.16. Lemma. i) Let u be in ~. Then: 

IIS,~ull=<=llr 
where II~u[l~ is defined as ]lvH~ when v is in 5702 . 

ii) Friedrich lemma: I f  A (resp. B) is an element of ~ of order m (resp. m'), 
then the brackets [Sn, A ] (resp. [[S, ,A],B])  are in a bounded set of the space 
~P~_I(f2,1R") (resp. ~+~,_2((2,N")) when ~1 varies in [-0,1] and A (resp. B) in a 
bounded set of 7J,,(f2,1R ") (resp. 7~,,,(~2,1R")). 

Proof Inequality i) is obtained by integrating on f2 x 1t + the classical one. To 
prove ii), we integrate the classical proof on f2 x N + and use the particular 
form of the elements of s )  as in Lemma 2.8. 

From the first part of the lemma, we get first that: 

Ilu, l/= _<_ I1r ull= __< c [1~ ulI=. 

Now, we examine IILu, ll2,~. 

p 

[I gu n ][2,~t~ = 2 { [I Eiu, I] 2 + I<g~ u,, ~ u,)~l}. 
i=1  
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In order  to compute  Liu,, we put down the equat ion satisfied by u,: 

u,(t .x.~o)= S - . d s - Y s , 4 ~ j a ~  
0 0 

+ 5 h (t, y, co) (pn(x - y) { (t, y) d y. 
IR ~ 

So: (u,)i= -S,{s162 i and Liu,= [~q'i,S,41 u+Sn4h i. Using the formula:  

[s s .  42 = [2p,, s . ]  4 + s .  [24, 42, 
we obtain:  

Ilg~u, ll~ < C {ll41ull2 + ]14hll~} 

where C is independant  of t/ by the second part  of L e m m a  2.16. On the other  
hand:  

( Liu,,o~C'iun}~=( A={[s -1 u + S.4 hi},A~5~'iSn4u)o 

(A~S,4hl, A:SiSn{u)o = (A=S, {hl, [A ~, 2'i] S,4u)o+ (s A~S,4u)o . 

So: IKA~Sn~hi, A~2'iSn4u)ol < C{tl~ull2 + 114h1112+ 1}. 
It remains to estimate: (A~[s176 i, S,r u, A~2'iSn4u)o which can be written: 

(T1A~{1u, A=41U)o-t-(TNA~{u,A"{u)o+O(l[41u[[2) 
where: 

r~ = (s176 S, {)* S, [s ~] 

r~ = (~el s,)* ESi. s j .  

This can be easily seen by commuting  a = with [5r SnESfl, 4] and s We 
compute  now Tj + Tj*, j = 1, 2. 

r~ + r? = [~, ~i* + <] s. < s. 4 + [<, {] s . (< + ~ei*) s. ~ - [<, 4] s. [s s, ~] 

- [se,, 4] s .  [s . ,  ~] ~ei* - [ [~e  i, ~] s. ,  (2e, s . )*]  - (~e, s . )* [ [ s  ~]. s.] .  

Using the second part  of L e m m a  2.16, we see that  T, + T* is in a bounded  set 
of ~Vo(f2,1R" ) when t l varies in [0, 1] and so: 

I (TIA~I  u, A"~I U)o I = 1�89 + T*)A~I  u, A~41U))ol =< C I141Ul[a 

Using the same argument,  we get the same estimate for (TaA~u,A~4u)o. The 
last term to examine is: E(I(Lun, A2"un)D]) which is equal to: 

IA2"un,[~o, Sn4]u+Sn~u+Sn(ho4+h~t ) )o  

and it leads to the same estimates as before. 

e) End of the Proof of Theorem 2.1 

Let U and V be two bounded  open sets in F , + * x l R "  such that  U c V .  Uo, 
U 1 ... Uk... is a decreasing sequence of open sets satisfying: 
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We choose a fitted sequence of smoo th  functions ~k on ~ +* x 1t" such that:  

i) ~ k = l  on g k. 

ii) supp ~k c U k_ 1. 
Let us show that,  for ~ C ~ ( N + * x N  ~) with suppor t  in U: Ll~ull~<+oo, 
Vc~IR. First, u being a R a d o n  measure  on 11(" satisfying p roper ty  ~ ii), 
II~kull_.< + ~ ,  VkeN. 

Then,  apply ing  Propos i t ion2 .14  with {=~2 ,  we get that  IIS.~2ull_.+~<__c, 
C independant  of  t/. We  deduce f rom this and a stochast ic  version of Lem-  
m a  1.10 that :  Ll~2ull _.+~< + ~ .  So, inductively,  we have:  

II~kull_.+(k_m<+O0 a n d s o :  II~utl~<+oo, V.~IR. 

Now,  to deduce f rom that  the smoothness  of ~u w.r.t, x, we cannot  conclude 
directly as we saw in w and so we use the same me thod  as in the p roof  of 
T h e o r e m  1.1. 

If  q~ is in C~ (~"),  we have:  

( ~ #t,D~q~) = - i { ( ~ #~,~,~D~ ~o) + (~s #~,D~ ~o) } ds 

t t 

0 0 ~ .  n 

In tegra t ing  by parts  and  using the fact that  the coefficients of  the s176 are in 
C~,  we get: 

E(  sup I(~#,,D%~)l)<-_Cll~ull~+2+C'< +00 
t < T  

II~ll == 1 

and, so, a.s. all the derivatives of  ~#~, t < T ,  are bounded  measures  which 
proves,  by L e m m a  1.13, that  ~#~, for t < T, has a smoo th  density. 

3. Applications 

a) Background Material 

We denote  by ~ (resp. ~>) the space ~g(R+,~m) (resp. ~(~+,~P)). A point  of 
:tK (resp. ~ )  is denoted by  w (resp. v~). Let  Q (resp. (~) be the Wiener  measure  
on ~K (resp. ~gTr) with Q ( w o = 0 ) = l  (resp. ( ~ ( # o = 0 ) = 1 ) .  If  X is a s tochast ic  
process on ~K x ~ , ,  N x  is the a-field N(X~,s<=t). X o, X 1 . . . . .  X m ,  2 1 ..... Xp, are 
re+p+ 1 vector  fields defined on lR"x  N p, such that:  

X,(x, zl= y~ Xf(x,z)--, 
j= 1 ~ X j  

2i(x, z)=j~= " 0 

11 ... Ip are p functions defined on P." x 1R p. 

O<_i<_m 

l<i<p 
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We assume that the components of the vector fields and the li's are in C~ 
(cf. 2.a). 

Let (x t, zt) be the solution of the stochastic differential equation on (~K x ~,, 
~w,~ QxO): 

t ' 

d x t = X o (xt, zt) d t + X i (xt, zt) d w~ + 2 i (xt, zt)(d wl + li (x,, zt) d t) 

d z t = d wt + 1 (xt, zt) d t (1 O) 

Xo, z o fixed. 
We let the l~'s appear in the first equation in order to simplify the Girsanov 

transformation. 
If we set yt=(xt,  z,), Eq. (10) can be written: 

dy ,= Yo(yt) dt  + Y~(y,)dw~ + ~(yt)(d~i +l/(yt)dt), (11) 

Yo fixed 

where" Yi = Xi and ~ = 2 i  +~z,z,.' or, in matricial notations: 

Yi= (0~),  O<_i<_m; Y i :  (o/~izi) l < i < p .  

In the following paragraphs, we show that, under appropriate hypoellipticity 
assumptions, the conditional laws n,, T defined by ~Zt, r f=E(f(xt)[~Pr) ,  where f 
is a bounded measurable function, have a C a density. We treat first the 
filtering case (t = T) and deduce from it the smoothing case (t < T). 

We introduce now the Lie algebras which are involved in our two hy- 
poellipticity hypothesis. 

We call 5r ..., X,,) the Lie algebra with coefficients in C~ ~ generated by 
X 1 . . . . .  X,, and, for N~N,  ~N(X1 ... .  ,X,,) is the subspace of 5~(X1, . . . ,Xm) 
generated by the brackets of X1,. . . ,  X m whose length is smaller than N. 

Let N ~ be the Lie algebra, with coefficients in C~ generated by X 1 .. . .  ,X  m 

and the brackets of X 1 . . . . .  X m, 21-t ~?zl,...,2p+~_z___ where, at least, one X i 

appears; we denote by ~N the subspace of N generated by the brackets whose 
length is smaller than N. 

We obtain our regularity result by applying Theorem 1.1 under the restrict- 
ed H6rmander  condition: 

Hi :  for every compact set K of N.", there exists N e N  such that: 

~N(X1 . . . . .  X m ) ( x , z ) = R  n at each point ( x , z ) e K x N P .  

And then we obtain the same regularity result by applying Theorem 2.1 under 
the extended H6rmander condition: 

H2: for every compact set K of Nn, there exists N s N  such that: 

NN(x,z)=N" at each point ( x , z ) ~ g •  p. 

In two of the following regularity results, we need an other assumption: 
H3: the projection on IR" of the supports of 21  ... 2 . , ,  11 ... Ip is bounded. 
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b) Filtering (cf. [4]) 

Let us examine first two particular cases (without interest in the filtering 
theory). 

i) li=O , J f i=0 ,  l<=i<=p. 
Thanks to a theorem of C. Dol6ans-Dade [7], one can fix z a.s. in Eq. (11) 

and solve it on ~ The problem amounts then to proving the regularity of the 
law of a diffusion whose coefficients do not depend regularly on time. We get 
the answer by applying Theorem 1.1 under assumption H 1. 

ii) l~=0, Xi4=0 , l<=i<p.  

One cannot fix any more # in Eq. (11). Nevertheless we shall see that all is 
going as if the conditional law were the law of the diffusion associated to the 

m 

"opera tor"  � 8 9  X~ + Xo + - d~vi X i ~ - ,  the drift splitting up into (p + 1) independant 
i = l  

components  X0, 2 1 ... )?v" 
In the general case (14:0), we define a new probabili ty measure Qo on 

x ~/~ such that: 

dQ~ ~'#'~ 
dQ|  =L; I '  

where 

~ i  1 L t = e x p  li(ys)bWs+5~ 12(y~)ds . 
0 1 = 1  

As usually, we define the unnormalized filter: 
ptf=Eo(f(xt)Ltl~Jt)  which is related to n t by the Kushner formula [18]" 

7~t f - -  
Pt 1 

and Pt verifies the Zakai  equation: if f is in c~2 (~,) ,  we have: 

where 

Bi = f i  i + li, 

or equivalently: 

where 

t 

P t f  = Po f +  i P, C f ds + [. psBi f az~ (12) 
0 0 

) +Xo+l,2'+ 
i = 1  i = 1  i = 1  (~Zi 

t t 

P t f  = P o f  + SPsAf  ds + SpsBi f  dz~s (13) 
0 0 

m p v ~ l  i 

z i i= 1Xi + X ~  - - 2 i -  - t~Zi 

By Girsanov theorem, z is a brownian motion under Qo. 
We can now state the regularity result for the filter. 
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3.1. Theorem. Under condition H2, a.s., for every t>0 ,  rct has a C ~ density. 

Proof. From the Kushner formula, we see that it is equivalent to prove that Pt 
has a C ~ density. To get this result, we apply Theorem 2.1 to Eq. (12), setting: 

Vo=Xo+l i2~  + ~ ~72~ 
i = 1  ~ Z i  ~ 

V~=X~, l <_i<_m; ~ = 2 i ,  l <i<=p, 

f = 0 ;  gi=l~, l<i<=p; h~=0, O<=i<p. 

(~2, P) = ('r x ~ Qo); f i=z.  
We only have to prove that p~ is in ff and this is straightforward. 
An other way to get this result without using stochastic partial differential 

equations is to work on an ordinary partial differential equation derived from 
the Zakai equation (cf. [4]). From now on, we suppose H 3 verified. 

Let us introduce the flow OPt, vt)(z,.) associated to the system (cf. [1, 2, 13, 
14]): 

dyt= Yo(Yt) dt + ~(yt) dzl 

dh t = l~ (Yt) 6 z t~ - ~' 12 (Yt) d t 
i -  

Yo fixed 

ho = 0. (14) 

Applying the generalized Ito's formula ([2, 14]), we get: 

LogLt = vt(z, Yt) - i 
V s 

o ~ ( Z , L ) d Y s  

where Yt = ~t-1( z, Yt), Yt being the solution of (11): 
This allows to fix z in L t and to associate to pt an operator v t defined in the 

following way: 
Let g be any bounded measurable function on R";  we set: 

t 

where Eo ~ is the expectation w.r.t, the trace of Qo on ~r and ~ is the projection 
of y on R". 

v t and Pt are then linked by the relation: 

Pt f  = vt(exp v t (z, ., Zo) f o p 10t) 

where Pl is the projection on IR", and this shows the equivalence between the 
smoothness of Pt and that of % The main interest of v t is that for a.e. z, it 
satisfies the following P.D.E.: 
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(i ,~t ~ F , (0 ,* -1~ )~  - ( (G*- lr~)v)~ ,~*- l~  v, 
i = 1  i = 1  

m 

+ ~ (�89 *-1Yiv)2-( t )  *-1Yi)2v)vt=0 (15) 
i=1 

where o denotes the adjoint. 
The regularity of v t under H 1 is a direct consequence of Theorem 1.1; 

indeed, assumption H is easily deduced from assumption H~ and the properties 
of the flow 0. 

c) Smoothing 

If H 3 is verified the result of regularity for the smoothing problem can be 
obtained directly from the filtering case by the following method: first, we 
have, for every bounded measurable function f :  

E(f (x~)l~)-E~ (xt)Lr]~) = E~ (xr162176 v ~ - ) l ~ )  
Eo(LTI~T) Eo(LTI,~T) 

Now, by a result of J.M. Bismut-D. Michel [4] (cf. Theorem 3.10 and the proof 
of Theorem 3.12), there exists a function u" ~ x N + x N+ x N ' ~ I R  such that: 

Eo(Lr_~l~ ~' v .~'~.) = u(z, t, T - t ,  -~t)- 

So, the conditional law ~t,r admits the density x--+p~(x) u(z,t,T 
- t  P l0 t - I (  z, x, Zo) ) where p~ is the density of the conditional law lr r We, then, 
deduce the regularity of ~t,r, under assumption H2, from Theorem 3.1 above 
and Theorem 3.10 of [4 I. 

d) Remark 

We point out that assumptions H 1 and H 2 are global conditions and so are 
much stronger than in [4] where the condition on the Lie algebra was only 
supposed to be verified at the starting point of the process y. 

Acknowledgements. The authors are much indebted to the two referees for every helpful remarks. 
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