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Introduction 

This paper was written for the purpose of studying local times of con- 
tinuous vector valued multi-parameter processes by means of an appropriate 
stochastic calculus. As is well known from the theory of one-parameter  semi- 
martingales (cf. for example Azema, Yor [17), Tanaka 's  formula links stochas- 
tic calculus and local times. It can be derived from Ito's formula by extending 
the latter to a larger class of functions. In this sense this paper is basic to the 
study of mult i-parameter local times (see Imkeller [8,9]): several notions of 
stochastic measures and integrals are considered by means of which versions of 
Ito's formula are stated and proved. 

w 1 is devoted to an extension of the formula which was given by Allain [2] 
to lRd-valued continuous processes within Allain's abstract framework. At the 
basis of Allain's calculus is the following observation: a one-parameter  process 
is a semimartingale if and only if it it admits - roughly speaking - a reasonable 
stochastic calculus (i.e. it is an "L0-integrator",  see Bichteler [3], Metivier, 
Pellaumail [11], p. 155). Allain's (real valued) "p-semimartingales of order k" 
by definition give rise to such a calculus in LP-sense. In this paper R<va lued  p- 
integrable processes X are studied, p > 1. If for keN,  some finite measures p~, 
l < l / l < k ,  leN~,  q>l,X is submitted to a so-called "(p~,t<[ll<k;q)*- 
dominat ion"  condition, which is more restrictive than Allain's conditions, but 
looks natural for example for processes with independent increments, the 
existence of the ,,lth variations" #xc~, 1 __< Ill < k (p-stochastic measures which are 
direct generalizations of the "quadratic variation" of one-parameter  semi- 
martingales) can be established. A simple additional condition concerning the 
"fluctuation" of X assures that for k times continuously differentiable 
f :  IRd~IR with bounded derivatives the formula 

f(X,)-f(O)= ~ ~ ~ D<')f(X)d#x(o, t~[0,1] N, 
l_-<[q<k -~'x]O,t] 
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is valid (Theorem 1). (pz, 1 < Ill <k ;  q)*-domination is approximately a "domi- 
nation property" of the variations 

IlS Yd#x,,llp<(SlYlqdp3 a/q, Y previsible, l < ] l l < k  

(see Metivier, Pellaumail [11], p. 20). Contrary to the classical formula, Theo- 
rem 1 yields only an equality of random variables (t is fixed). For the case of 
the (N,d)-Wiener process W however, in w and w an improvement is made 
by using multi-parameter martingale theory. More precisely, by an appeal to 
the multi-parameter versions of Doob's maximal inequalities (Cairoli [5], 
Wong, Zakai [13]), the existence of continuous versions of the integral pro- 
cesses of #w,,, l<l l l  <2N,  can be proved. This is accomplished in w by 
decomposing these processes into "martingales" (Theorem 2) which are de- 
duced from W in the same way as are the integral processes ~.dW, S.dWdW, 
S.d2dW, ~.dWd2, ~.d2d2, well-known from 2-parameter theory (see for exam- 
ple Cairoli, Walsh [5], Wong, Zakai [13, 14, 15], Guyon, Prum V7], Merzbach 
[10]; for N-parameter results see Yor [16], Sanz [12]). One can imagine the 
decomposition of (the 2-stochastic measure) #w,)(f2 x ]0, t]) in the following 
way: for each partition 5- of {1,... ,N} functions qS: Y-~{0,1 . . . .  ,d} are taken 
to note whether #w,) varies in T-direction "linearly" with W j (~(T)=j), 
1 <j<d, or "quadratically" with any W ~, 1 <j<d (~b(T)=0), Te~--. In the latter 
case the variation in T-direction is given by Lebesgue measure. The "order" of 
variation, i.e. 21Y-~ where : - ~  qS(T)=0}, J l = { T : q S ( T ) + 0 } ,  is 
equal to I/I. Thus one obtains components #(:'4)) of #w(~) (2-stochastic measures 
as well) with integrals I (j-'4)), whose integral processes I(. :'4)) turn out to be 
"martingales" possessing continuous versions in consequence of the maximal 
inequalities. 

This result is applied in w 3 to yield an improvement of the formula of 
Theorem 1 : 

1 
f (W.)- f (O)= ~ ~I(.: '~)([D(: '4))f(W)] ~-) (Theorem3). 

( J ,  4)) 

Here D (:'~) is the differential operator which is obtained by applying 15'-~ 
times the Laplacian and differentiating I{T: qS(T)=j}l times in direction j, 
1 < j  < d. Its order is identical with the order of (5,  qS). For any process Y, Y :  is 
a "corner function" of Y (cf. Guyon, Prum [7]): (s~)r~:~Y(supsT). See 

T e g -  

Guyon, Prum [7] for a comparable formula for a class of (2, d)-processes, Sanz 
[12] for (N, 1)-Wiener process. 

In w 4 a modification of the formula of Theorem 3 is developed which is 
particularly useful in applications on local times (Imkeller [9]): it is desirable 
to have a formula in which - besides the term of highest order - all terms are 
of the lowest possible differentiation order. Like in applications of the classical 
formula of Green this is achieved by replacing integrals over intervals by 
integrals over their surfaces, thus reducing the order of differentiation of the 
integrands. For this purpose it is necessary to give a precise meaning to the 
notion of "iterated stochastic integration", to have a "stochastic Fubini's 
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theorem" and to introduce stochastic integrals of W on surfaces of intervals. 
Ideas of Cairoli, Walsh [5] can be employed (see also Guyon, Prum [7], Dozzi 
[61). In the resulting formula (Theorem 4), the above mentioned orders do not 
exceed N. 

w O. Notations and Preliminaries 

For a fixed number N e N ( = { 1 , 2  ... .  }, whereas N 0 =  {0,1, ...}), the parameter 
set is l l=  [0, 1] N. lI is endowed with the usual partial ordering (i.e. coordinate- 
wise linear ordering on [0, 1])"__<", with respect to which intervals are defined 
in the usual way. Let ,3 be the set of all intervals in II of the form ]s,t],s, tell, 
]0, t] being denoted by R r The symbol ~2 is used for the for the set of all pairs 
(S, t)ell  2, s<=t. Vectors of "time points" i (s)i~, are denoted by o whenever there 
is no ambiguity about the index set I. Projections of vectors (intervals) defined 
by subsets H of the index set are always provided with a subscript H. For 
example: if UeH N (set of all subsets of {1, ..., N}), sell, Je.~3, then s v resp. Jv is 
the projection of s resp. J on the U-coordinates; if o=(si)i~ielI z and K c I ,  then 

_ _  i OK--(S)i~K. The set of all Jv is denoted by `3v. For any meN., let m be the 
vector in ]R N, all of whose coordinates are equal to m. A "decomposition 
(partition) of II in `3" is understood to be a decomposition of 10,1] N by 
intervals in .~. 

Given any function f:lI--,lR, any interval J=ls ,  t]e`3 and TeHN, denote 
the "increment of f over the T-boundary of J "  by 

Af f = ~, (--1)ITL-Nf((ss, ts)) 
S e T  

("-" denotes the complement w.r.t, fixed reference sets). For T={1, . . . ,N} the 
superscript T may be omitted. Note that, in case f vanishes on 01RN+ c~ll, by 
setting j r  = [(Of, ST), (Sf, tT) ], 

ATf=Aj~- f  

The "variation of f over ll" is defined by 

~ ( f )=sup{  ~ IAj, f]" (Ji)l<_i<_, is a decomposition oflI  in .3, heN}. 
1 <-i<_n 

Given two measurable spaces (B,~3), (C, ff), the space of all measurable 
functions from B to C is denoted by Jg(~B, if). (f2, ~, P), the basic probability 
space, is always assumed to be complete, (~t)t~, the basic filtration (family of 
a-fields, increasing with respect to the partial ordering on lI) to be augmented 
by the 0-sets of ~. There are several relevant notions of "previsability" with 
respect to (~t)t~: for TeHN, tell, let T ~t = ~(tT,_lw)" Then, for T c Se HN ,  

9t [= {F x Js: Js= lSs, tsle~s, Fe~Ss. t~ J} 

is called "set of T-previsible rectangles in lls"- Let the algebra resp. a-algebra 
generated by 9t / resp. the linear hull of characteristic functions of T-previsible 



538 P. Imkeller 

rectangles in lI s be denoted by 92[ r resp. ~3s r resp. e r. ~ s  r is called "a-algebra of 
T-previsible sets in Ms" , ~ "space of T-previsible elementary functions in lIs'. 
In case f = ~ (S = ~)) the superscript (subscript) T (S) is omitted. 

Let deN.  A stochastic process X with values in Nd is always understood to 
belong to J / ( ~  x ~3(1I), ~B(lRa)). X is said to be "previsible", if X~J~(~3, ~(IRd)), 
"adapted", if XteJ/(~t,~B(]Rd)) for each telI. For telI, the vector 
(sup X~ . . . . .  sup Xds) is denoted by J(t. All stochastic processes to be considered 

s<t s<=t 

here are supposed to fulfil the following conditions 

(0.1) Xt=O for t~0N.Nc~II, 

(0.2) X is adapted and has continuous trajectories. 

In particular, this is the case for the most important process to be studied here, 
W,, the "(N, d)-Wiener process". W is an lR<valued Gaussian random field with 
mean zero and covariance function E(Wj VVj)=~u2N(Rs~Rs), 1<i, j<d, s,t~lI. 
When dealing with W, the filtration (~t)t~g is always assumed to be the natural 
filtration (a(Ws: s < t))t~g, augmented by zero-sets. 

In order to introduce the stochastic integrals belonging to W in w 2 below, 
some special notation has to be established. Set 

or= {5:: 5:~HN,S:# 0 for all S~5:}, z = { ~ - ~ :  Tr for all S, T ~ - } .  

For U ~ H  u denote by a v (zv) the subset of a (z) composed of those 50 such 
that ~ S=  U ("N" is used instead of "{1 . . . . .  N}"). Further, ej being the j  th unit 

SeS: 

vector in IR d, let 

�9 o = {( : ,  r s ~  ~: S:--,N~\{0}}, 

tPo = {(3-, qb): (J,(b)6~o, J -~ % O(S)=iej, i=l,2, 1 <=j<=d, S~J} ,  

~v= {(g,, qS): Y-Ez, qS: J ~ { 0 ,  1,...,d}}, 

A = {(J-, ~b): (Y, ~b)s 7/, q~(r)+0, whenever TeY, IT[ = 1}. 

For all of these sets, the subscript U may be added in the same sense as above. 
For example, 7/o,u is obtained by replacing z by r v in the definition of kg v. One 
can consider the following relation " < "  on z (7/): 

50 < ~ ((5:, ~)<  (~-, qS)), iff there is a one-to-one mapping g: .Y-~5: such that 
g (T)c  r for each Te~-  (and t~(g(r))=(a(r)). 

" < "  turns out to be a partial ordering. 
For an individual (Y--, q~)e 7/, put 

J ~  ~-]I={Ta~-:#)(T)=j}, l<=j<=d, o~-~= U ~1 ~, 
l ~ j < d  

The integer m(Y, ~b)= ly~l+  2Ix~ the "order of ("J, ~b)", is seen to be equal to 
the order of the differential operator 



Ito's Formula 539 

D(S, 4~) = D(I&*I ..... 19-~ I) lDl:~ 

which is defined on the space Cm{:'o)(iRe), ID denoting the Laplace-operator. 
Note that D {~ o) = D(~, 4), whenever (5~, t)) < (Y,, qS). For k e N, C k(IR a) (C k ORe)) is 
the subspace of Ck(IR a) consisting of bounded functions (with compact sup- 
port). Finally, if ~b is a mapping from a set A to N~, then 

0 ! = [ I  1-I 4j(a)!, Iq~l=(Y~bx(a) . . . .  ,~qSd(a)) (eNd). 
a~A 1 < j < d  a~A aeA 

For any multiindex keN~,xelR d 

xk= ~] X~< 
l<=j<d 

Occasionally, real valued functions are tacitly assumed to be trivially extended 
to larger domains. 

w 1. Ito's Formula for a Class of  Vector-Valued Processes 

Let a real number p > l  be fixed throughout this paragraph and suppose X 
fulfils the additional condition 

(1.1) X{eLP(f2,~,P) for all t~lI, l <_i<_d. 

For a class of real-valued (d = 1) processes (the so-called "p-semimartingales of 
order k0" ) Allain [2] proved a transformation theorem (Ito's formula), employ- 
ing the following simple method: take a sequence of partitions of parameter 
space whose mesh tends to zero; for each partition, apply Taylor's formula to 
get an approximation of Ito's formula; study the behaviour of the approximat- 
ing finite sums as the partitions become finer; if the process is "good", these 
finite sums converge to stochastic integrals, thus giving the desired formula. In 
this paragraph Allain's result (and method of proof) will be extended to the 
IRd-valued case. 

To this end, let keN,  f ~ Ck(IRd), J e ~  and (JJ'"= Is j'", tJ'"]: 1 <j< r(n)), neN, 
be a sequence of partitions of J in ,3 whose mesh goes to zero. For each TeII N, 
1 <=j<=r(n), apply Taylor's formula to develop f(X%,,,~,,)) at XsJ, n. Sum over T 
(alternately) and j to obtain 

(1.2) A j f ( X ) =  1 <=~<k~., <=J<=,(,)E D(')f( X ..... ) AJ},, X + 1 <=j<=,<,)E R(fJJ'",k)  , 

thereby setting 

4 >x= Z ' 
0 # T e H N  

(recall: 1 is multiindex; xl= I ]  xZi'), 
1 <-i~d 



540 P. Imke l l e r  

R ( f  K, k)= y (_I)N-ITI 
O * T~H~ 

" 2 ~ [D(l)f(X(.~,.~+o~-(~.-.~))-Da)f(X.)] (X.-r,.~)- X J  [I[=k �9 

for K =  ]u, v] ~..~, l e n  d, suitable 0re[0, 11. 
For an appropriate class of processes the looked-for formula will emerge, as 

n tends to infinity in (1.2). We will give a criterion for the existence of p- 
stochastic measures #x(z~, l<lll <k, such that the integral ~D(Z)f(X)d#x(~) is 
equal to the limit of the corresponding term on the right of (1.2). As will be 
seen below, this is essentially a disguised "dominated property" for the sto- 
chastic measures #x , -  1 __< Ill < k (cf. Metivier, Pellaumail [11], p. 20). 

First note the following special representation of a previsible elementary 
function. Let R be a finite subset of lI. Consider the intervals in .3 which 
originate from decomposing II by all hyperplanes which are parallel to the axes 
and go through at least one point of R. Enumerate them according to the 
succession of the points of intersection of the hyperplanes with each coor- 
dinate axis by N-multiindices and call this "partition of lI generated by R". If 
Y0 = E a i 1F~xJi, Ji=]si, tl], is a previsible elementary function, Q a finite 

l<_i~n 
subset of lI and (Kk: l<-k<-r) the partition of lI generated by 
Qu{sl, t': 1 <_i <n}, set 

O~k= Z ailF~l{J:S=K~'}(Ji)' J_<k__Gr. 
1 -<k -<r 

Then Yo = ~ ek 1K~ is said to be a "H-representation of I1o subordinate to Q" 
l_<k_<r 

(in case Q=r of Yo"). Note that, in consequence of pre- 
visability, ~k is a ~,~-measurable step function, if K k = ]u k, vk], 1_ <= k < r. 

Definition I. Let keN, q > l .  For l e n  d, 1<Il l<k,  let Pz be a finite measure on 
~3 (we recall that p is fixed throughout; see (1.1)). X is said to be 
"(Pl, 1 < ill < k; q)*-dominated", if 

i) for each finite subset R of 1I there is a finite subset Q of lI containing R 
and generating a partition (ji: 1 <i<r)  of lI, such that for all Yoe~ which have 
an H-representation Y0 = ~ e~ 1j,, and all l e n  d, 1 < Ill < k, the inequality 

l<_i<_r 

II ~ ~AJ!X]lp<(~lYolqdPt) 1/q 
1 <-i<--r 

is valid, 
ii) .~t-md2(~2 • ll,~3, p,,), l,m~Ndo, re<l, ]ll<k. 

"*-domination" is sufficient for the above mentioned p-stochastic measures 
to exist (i.e. vector measures on ~ with values in LP(O,~,P), see Metivier, 
Pellaumail [-111). This fact is proved in 

Proposition 1. Let X be a (Pz, l<]l]__<k; q)*-dominated process. Then, for 
l~Nao, l <=]l]<__k, there exist p-stochastic measures #x(,) whose integrals exist on 
Lq(Q x lI, ~3, Pl), such that the following is true 
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(1.3) if F x Js9t  and if (JJ'": 1 <j<r(n)).~ N is a sequence of partitions of J (with 
intervals belonging to .~) whose mesh goes to O, then 

1F ~ Ajj..(z) X__.#x(,)(FxJ), 
1 < j < r ( n )  

(1.4) II~ Yd#x.>llp<=(~lYlqd&) ~/q for Y~U(Qx]I ,~ ,&) .  

Remark. (1.4) signifies, that the p-stochastic measure #x.> is "(&, q)-dominated". 

Proof. It is sufficient to show: if 11o = ~, e? 1s .... n~N, is a sequence of II- 
l <=i <=. r(n) 

representations of Y o ~ ,  the mesh of (J"" = Is i'n, t i,n] : 1 ~ i <= r(n)).~ N going to 
zero, then ( ~ e?A~J!,nX).~N is a Cauchy sequence in LP(Q,~,P) for all 

1 <-i<-r(n) 
l __< [l[ __< k. In view of (1.3), the limit of such a sequence is the only possible 
candidate for ~ Yo d#x,>. Furthermore, it is uniquely determined. By density of 

in I3(t2 • lI, ~3, &), a familiar extension argument yields the assertion. Let first 
J=]u,v]~.~ and a partition (Ki=]ui, vi]:l_~i<=r) of ]I in .3 be given. Apply 
(1.2) to the functions fl: N d ~ N ,  x ~ x  l, 1 < Ill < k. Hence 

O ~ m s  l <-i<-r 

In case r = l  check, by substituting, that this formula can be "inverted": 

A~'X= ~ ( - 1 ) ' - ~ ( / )  Yl-mA y m  

04-m__</ 

Apply the latter to each K ~ separately and combine. This gives 

(1.5) AJ ) x =  Z E ( -1 ) '  J Z Xl.-J~'. ' K+ �9 
Omm<=lm<j<=l l <--i<--r 

To prove that ( ~ ~?AJ!,,X),~n ~ is a Cauchy sequence, let now h, nMN. Put 
1 <-i<-r(n) 

R=(si'h, ti'h, sV'",ti"": l<_i<_r(h), l<_i'<_r(n)} and let Q be chosen according to 
i) of Definition 1. By (Ki=]u i, vil:l_<i<=r) denote the partition of lI generated 
by Q. For convenience set 

y l ,  j . g =  2 ~i'vg X l 7  J 1J~, g , s + ,  ~ g~lN, j,l~lNdo , O#j<l .  
1 ~i-<r(g) 

Now make use of (1.5), replacing J by y,h resp. J~'", to obtain 

E ~,A~,.. - Z X 
1 <-i<--r(h) 1 ~i<--r(n) 

= ~ ~ ( - - 1 ) ' - J ( ; ) ( J ) ~  (Y:;Zh--Y:;J'")XJ7~At")X 
Ul ~ K l �9 

O~-m<lm<j<l  l <_i<r 

To estimate the right side of this equality, note that the inequality of Defini- 
tion 1, i) can be easily extended to functions of the form ~ (~lj,, the step 

1 -<i--<r 
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functions ei being replaced by random variables (i which have the same 
measurability properties and satisfy ~ (i 1j~s/2(f2 x lI, ~,  P3. Thus 

l _ < i _ < r  

(1.6) II 2 NhA.~ v .ACJT,~Xllp ~X'i AJ J i '  h ~X - -  E ~ i  
1 <--i<--r(h) 1 --<i--<r(n) 

< ~, ~ ( l ' t ( J ) ( s  ~ I(Y~;J'h--Y,l;J'")X~7~lqlK~dPm) 1/q 
O C m < l m = j < l  \ J ]  l <_i<_r 

O ~ m N l m N i < = l  \j ! \Ht/ 

As for geN ,  j, leNao, j<=I, we have Yl'J'g<lYolXZ d, and as X has continuous 
trajectories, an appeal to ii) of Definition 1 and Lebesgue's dominated con- 
vergence theorem completes the proof. 

Definition 2. Let X be a (Pz, 1 < Ill < k; q)*-dominated process. For 1 < 14 < k the 
p-stochastic measure #x,~ which exists according to Proposition 1 is called " l  th 

variation of  X".  

Go back to (1.2) for a moment. If X is *-dominated and the derivatives 
of f not too "big' ,  the existence of the limit of the first term on the right is 
assured by Proposition 1. But the convergence of the rest term to zero must 
still be forced by an additional condition. 

Theorem 1. Let kEN, such that X is a (Pl, 1 < I l l<k ;  q)*-dominated process. For 
J = ] s, t] ~.~ let U i' ~ = ] s i" ~, t i" ~] : 1 <_ i <<- r(n))~ N be the sequence of partitions of  

r  "x 

lI generated by Q~= {s, t } ~ t ~ :  O<_i<_n~. For J~.~, TeHN, l~Nao such that 
t. J 

I l l - k +  1, suppose that X satisfies 

(1.7) lim E( Z t(X<s~.~)-X~,,JI)=O. 
n ~ o o  1 < i < r ( n )  

Then there is a unique number ko<k  such that px.~=~O for at least one lEN~, 
Ill--ko and #x., = 0 for all l~Ndo, k o < Ill < k. For each f ~  Ck~ d) satisfying 

(1.8) D{~ x lI, ~3, p~), 1 < Ill < k0, 

and for each J e.3 the equation 

1 < [ l l = k  o . f 2 x J  

is valid. 

Remark. For A e ~ ,  l__<lll__<ko we adopt the notation "~ Yd#x , f '  instead of 
"~ 1A Yd#x.),," A 

Proof. A familiar approximation argument shows, that it is sufficient to consid- 
er f~C~+~(P.d). Let J~.~ and (ji,.: 1 <_i<_r(n)).~ be as above. Write down (1.2), 
with k in place of k+  1, and simplify the k th and (k+ 1) ~* terms to obtain 

(1.9) AaS(X)= ~ <=~ <k N.1 ~ <-,<-~(,)~ D ,) f (X , , , . )Ax ,~X  ~ -<~-<~(,)~ S(f,j~,~,k), 
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thereby setting 

S(f ,K,k)= ~ ( - 1 )  N-ITI ~ 1D(OftX(,,,,T+OT(vT :~)>)(X(,,r, VT)--XJ 
O+TeI I~  I l l = k +  1 

for K=]u,  vie3,  suitable 0Tel0, 1]. 
At first, the convergence of the I th term on the right side of (1.9) will be 

established. To do this, let Yo be a previsible elementary function, and for h e n  
"1 �9 Ki , , -qu  i'" vi'"], be an I-representation of Yo subor- let Yo = ~ 0q K .... - J  , 

1 <-i<--q(n) 
dinate to Qn={si, n, ti,n: l<_i<_r(n)}. The following inequality produces three 
terms which will be evaluated separately: 

(1.10) II ~ Da) f t X  ~ Aa) X +,, ~,~1 j,,~ -- ~ D(t)f(X)dPx<',]lp 
l <_i<_r(n) Ylx J 

-<_11 2 D(~)f(Xs',")AJ ! , " X -  ~ ~' A~!.,, Xl l ,  
1-<i-<r(n) l <=i <_q(n) 

+il Y', ~.A<~> Y :~:K ... . .  - 5 Yodpx<'>llp 
l <=i <=q(n) f2x J 

+11 ff Nod#x.,- ~ D(~ 
.QxJ  .QxJ  

For the first, argue as in the proof of (1.6). For n eN,  j, leN~, O=#j < l, set 

yZ , j ,n__  E D(~ s,,W ] X t s , , . j l s  . . . .  
1 -<i-< r(n) 

Y"J'"= ~ D(~ X'/7, J. ls .... 
1 ~i<-r(n) 

z"J'"= ~, o~'~Xt.7..J. 1K,.. 
l <_i<q(n) Deduce 

(1.11) II ~ Dt')f(X~,.)dJt,~ X -  ~ c(]A~!,.XIIp 
1 <-i<--r(n) !<=i<=q(n) 

y l , j , n _  R J-my dp,.) 1/q 
O::t-m<=lm<=j<=l J 

O*m<_Im<_]<=l \ j l  \ r t t ]  

By definition, the integrands of the 2 "d term on the right side of (1.11) can be 
estimated by IDmf(X) - Yo[ j~Z-m. Thus, the density of ~ in /J(tl x lI, $ ,  Pro) and 
ii) of Definition 1 imply, that the third term on the right of (1.10) and the 2 "a 
term on the right of (1.11) can be made arbitrarily small. For the first term on 
the right of (1.11), use dominated convergence and path continuity of Dmf(X). 
Finally, Proposition 1 assures the convergence of the 2 nd term on the right of 
(1.10). 

So far we have shown that both sides of (1.9) converge in LP(Q, 3, P). Using 
(1.7) for identification, we see that the limit of the "rest term" of (1.9) must be 
zero. Now the asserted formula follows by setting 

ko=max{j__<k: #x.,+O for at least one l, Ill=j, ~Zx+=0 for Ill >j}. 
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The uniqueness of k o is a consequence of (1.7) and the uniqueness of #xc,) on 

Definition 3. Let keN,  X be a (Pt, l<ll[<k;q)*-dominated process satisfying 
(1.7). The number k o which exists according to Theorem 1 under these hy- 
potheses, is called "I-order of X".  

Remark. If X is a (Pz, 1<1l] <k ;  q)*-dominated process, then in consequence of 
Proposition 1 and (1.2) applied to f ( x ) = x  ~ there exist p-stochastic measures 
#x,, l < l<k ,  determined by # x ~ ( F x J ) = l v A j X  ~ for FxJe~.fl. A real-valued 
process X for which #x,, 1 __< l < k, exists as a p-stochastic measure, is called "p- 
semimartingale of order k" (cf. Allain [2]). In Definition 3 the letter " I "  is 
added in order not to conflict with this notion of "order" (for example, (1, 1)- 
Wiener process is a 2-semimartingale of order o% but of /-order ko=2, k o 
indicating the maximum order of differentiation involved in Ito's formula). 

w 2. Existence and Decomposition of the 2-Stochastic Measures Pw.) 

In this paragraph we show, that the (N, d)-Wiener process is *-dominated and 
that #w<o exists as a 2-stochastic measure for all IeN~. As a consequence of 
this fact, Theorem 1 yields a transformation theorem for W. But, compared to 
the classical Ito's formula for (1, D-Wiener process, it has a considerable 
disadvantage: while the classical formula equates stochastic processes, Theorem 
1 merely gives an equation of random variables (J is kept fix!). The reason is 
this: in the definition of Wiener integral martingale methods are used in a 
crucial way; path continuity is proved via the powerful Doob's inequality. By 
applying the tools of multi-parameter martingale theory in this and the follow- 
ing paragraph, the transformation theorem for W is improved to be an equa- 
tion of process (Theorem 3). The most important step in this direction is the 
decomposition of the "processes" (#w(~)(s x Rt))t~a into "martingales" (Theorem 
2). We first recall the well-known notions of multi-parameter martingales (see 
for example Cairoli, Walsh [-5], Wong, Zakai [13], Merzbach [-10]). The 
following generalization of the famous (F4)-condition of Cairoli, Walsh [5] is 
assumed to be satisfied by all processes that are considered in this paragraph: 

(2.1) for each bounded ~eJ~(~ l ,  ~0R)), each te]I and all S, TelIN, S c  T 

E(~ I~t ~) = E(E(~ I ~f)  I ~,~s). 

In particular, (2.1) is fulfilled by the filtration of W. 
Let SeI1 N. A real valued adapted stochastic process M such that M t is 

integrable for all t e l I  is called "weak S-(sub-)martingale", if E(A s Ml~u)(~_)0 for 
J = ]u, v] e~, "S-(sub-)martingale", if E(M(u s vs)[ ~u) (>=) 0 for (u, v)zH 2, "'strong S- 
(sub-)martingale", if E(AjMIV~)(>==)O for J=]u , v ]e3 .  (Weak, strong) 

ir 

{ 1,..., N}-martingales are simply called (weak, strong) martingales. 

Remark. Of course, the hierarchy of the different notions of "martingale" is as 
indicated by the words "weak" and "strong" and is in general strict. More 
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precisely, we have the following relations. Let S, S 1, S2EIIN, S 1 ~$2, be given. 
By (2.1), 

E(ASMI~u)=O iff E(AsMI~S)=O for J=]u,v]e.3. 

Therefore, weak Sl-martingales are weak S2-martingales. Evidently, (strong) S a- 
martingales are (strong) Sl-martingales. Furthermore, strong S-martingales are 
S-martingales and S-martingales are weak S-martingales. Consequently, M is 
an S-martingale iff M is an {/}-martingale for all ieS. 

Let now M be an S-martingale. Wishing to establish a maximal inequality 
of the Doob-Cairoli type, one has to keep in mind, that M is a (one-parameter) 
martingale in every direction i for itS, but nothing can be said about its 
behaviour in the S-directions. If M is right continuous, sup M t can be estimated 

by sup~(M(.,ts) ). M is said to be a "proper S-martingale'; if v(M(.,• ) is 
ts~]IS 

integrable. If M is a proper S-martingale, the generalization of an observation 
made by Wong, Zakai [13] shows that (v(M(.,t~)))ts~ s is an [SI-parameter 
positive submartingale. Thus Cairoli's [4] inequality can be applied to yield 
the following result. 

Proposition 2. (inequalities of Doob, Cairoli, Wong, Zakai): Let SEIIN, p > l .  
Then there are constants Cl, c2, c 3 such that for every right continuous proper S- 
martingale M and all 2 > 0 

i) 2P(sup IMtl >,~) < cl E(v(M(., !~)) l~ (v(M(., ! ~)))1 v (ISl- 1)) + C2 ' 
tell 

ii) E (sup ]M t [ v) < c 3 E (~ (M(., ! s))v) �9 
tMI 

The proof of Proposition 2 will be omitted, as it can obtained by direct 
generalization of the ideas of Wong, Zakai [13], p. 574. 

We are now ready to demonstrate, that W is a *-dominated process, and 
thereby decompose its variations #w(z) as indicated above. For F x Je91 consid- 
er the approximations IFA(J)W of #wm(FxJ). We will write them as a sum of 
expressions which, on one hand, prove to be "natural" for deriving the 
"domination inequality" (i) of Definition 1) and, on the other hand, are 
approximations of stochastic integrals with martingale properties connected 
with the Wiener process. Therefore, the following two lemmas give condition i) 
of Definition 1 and a basis for the desired martingale representation of 
(#w,,)(O x Rt))t~. 

L e m m a l .  For (f ,~b)~o,N,  J~.~ set Acf-'~)W= I~(Aj~W) 4~(r). Then, for 
l~Nao\{0}, J= ]s, t]~.3 r~9- 

A? w :  - -  AV, ' w. 

Proof. For TSlIN, observe that R(sv, t~)\R~= ~ js  and put 
O~SmT 

A = { O :  1/11 ]-/N\{0}--l']sd), V ~ : = U { S :  ~b(S)=#0} for 0sA.  
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Then, by additivity of A. W j, 1 < j  < d, and the polynomial theorem 

AJ ) w =  Z ( - 1 )  s-ITI [~ ( Z A,~WJ) '' 
O*T~HN l <=j<=d O * S c T  

lT 
= Z 2 l l  

~ A , I ~ [ = /  I//. Vr T~HN O*SEHN 

Now note that ~ ( - 1 )  N-Irl is 0 resp. l, if Vo+{1 . . . . .  N} resp.={1 . . . . .  N} 
V~, ~ T6Hr~ 

and, for OeA, set J - = { S :  0(S)=~0}, qS=Ob-. The asserted formula follows. 

Lemma 2. Let (~,, O)eq)o, ~. Then there is a constant c4,eR and for each finite 
subset R oflI there is a number nR~N , such that for all n>=nR, all Y o ~  having 
an lI-representation Yo = ~ ~ 1ji,~ (recall that i and r(n) are NN-valued 

1 <i<r(n) 

indices) with respect to the partition (ji.,: l <_i<_r(n)) generated by 

Q, = R ~ { ~ : O <_ i <_ n } , the following inequalities hold 

II ~ ~nA(~,~)~,, Wtl2<=]/l%(fflYolZd(px,~))a/2, if (~,,~b)6~os, 
l_<i<r(n) [ rt 

I[ ~ c~TA(s~,~)W - ~, ~7 I~ (A(J',,)~W)e(T) I~ 2u((J~'")r)llz 
l<=i<r(n) l_<i_<r(n) T ~ - ~  T ~ - o  

<=]/~%($lgol2d(p• ~/2, if (Y;, 4)e%,u, 3-1 = { T e J :  1~5(Y)[ = 1}, 

j - o  = { T ~ J :  Iq~(T)l =2}.  
Proof To derive the first inequality, set 

5P= {T~Y: ~bj(T) is odd for at least one j, 1 <__j<=d} Y =  U T. 
TES 

Write the integrand of its left side as a double sum over i, k. From the fact, 
that W has independent increments with zero odd moments, and the inde- 
pendence of W j, 1 <j<d, conclude that there is no contribution from terms 
such that i_~ 4= k_se. Thus 

(2.2) I[ ~ ~,A(J-~)i ~J,,- Wl12 2= ~ E(( y' ~i~s,,,~'"A(~'4')W~2~,,,, 
l_<=i<r(n) 15,~<=ise<_r(n)5,, l~<=ij<r(n)_g 

< ~ E((e7)2(A(s~g) W) 2) I~ r(n)k (Cauchy-Schwartz) 
1 <- i < r(n) k~g  

=c1,r ~ E((c~7) 2) [ I  ~I2N((J~'")r)r 
1 <i<=r(n) 1 < j < d  Te~- kE_g 

<=cl,4,~lYolad(Px2N)(1)~)r'14(T)l-N(n+l +[RI)I'I (Y 0 is previsible) 
\ l  

(2N((Ji'")r) < , r(n)k<=n+ 1 + Iel), 

putting c1,~= sup supE((W_ll)2~(r)). 
l <j<_d Te~- 

Now from (2.2) it becomes clear, that the first inequality is a consequence of 

(2.3) ~ I TI Iq~(T)l- N -  I_gl __> 1. 
T s J  
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But since (J,, qS)$To,N, there is at least one T~6 e with Iq)(T)[>l or T~_g with 

Iq~(r)l>2. This implies ~ ITII4)(T)I-N-I_JI> ~ Irl+2 ~ IZl-g-I_gl>_-0, 
whence (2.3). r e :  r~s~ T~  

In a similar way, the second inequality is proved. It is trivially true in case 
: -0=O.  Assume ~-~ and enumerate its elements by T1, ..., Tq. For  con- 
venience, omit the index n in the following estimation. By telescoping 

(2.4) II 2 ~iA(j ~e))W- ~ c~i I~ -x~b(T) (A(j,)T W) I ~  ~N((Ji)r)II2 
l<_i<_r l<=i<=r T e J  1 T ~  o 

<= Z tl Z ~ [I (A(~,: W) *(~) H (A(,:, W)+(~, ) 
1 N k N q  l g i g r  T e 3  - I  1 < j N k - - 1  

�9 [(A(j,:~ W)*(T~)--,~N((y)T~)] [I "~((Y)ToII~" 
k + l < j < = q  

Fix k, l<=k<q, and replace 6 ~ resp. _6 e by J-lw{T~} resp. r~=TwT~ in the 

above arguments. Observe that [(A(j~)T~ W)O(r~)-2~((di)r~)] has mean zero and 
variance c2N((ji)T~) 2, where c is a constant not depending on n. This gives the 
desired conclusion for the k th term on the right of (2.4). k being arbitrary, the 
proof is complete. _A 

Combined with Lemma 1, the inequalities of Lemma 2 signify, that #w,) 
gets no contribution from (~,q))-terms such that (~,,qS)~o,N, whereas for 
(~ ,q ) )~0 ,~  there is a contribution which is asymptotically equivalent to an 
"elementary stochastic integral" of Wiener process on a space containing the 
set 

~3={ ~ aile, lIT(ss'go= ~" ailv,• 
l < i < n  Te~- l <--i<-n 

where it is defined by 

a i 1F, 1 I7I -~ ~' ai 1~, ~I (A(j,: W) ~ 1~ 2N((di)T)" 
1 <-i<-n r~,at,t,)r 1 < i < n  T o 9  - t  T E ~  - ~  

It will now be discussed how to define those integrals, how to extend them and 
what are the martingale properties of the corresponding integral processes. As 
will be shown in w they can be obtained by "iterated stochastic integration"�9 
With this in mind, we will define integrals not only for YEZN, but for arbitrary 
J ~ z .  Note that the o--field generated by ~3 on f2 x lI: ,  contains all sets of the 
form F x 1-I j r ,  F x JE91. But the latter class is not closed for relative comple- 

T~J 
ments. This fact makes plausible, that we may start with the following defini- 
tion. 

Definition 4. Let ~--ez. 
1. ~Ij= {.O=(ST)T~9-e]I3-: T S sr>s r for S,T~3-, S@T} is called "'set of 3__ 

ordered points", 919-:={Fx 1-[ At :  Ar=]sT, tT] e'~, S~'>tSr for S, T~J,, S~= T, 
T ~ J -  

~/sT} "set of Y-previsible rectangles" (of2  • ). Let ~l 9- denote the ring 
T~- 

generated by 91~-, ~ :  the c~-algebra generated by 9t9- ("~-algebra of J'-pre- 
visible sets"). ~ - ,  the linear hull of characteristic functions belonging to 9 t : ,  is 
called "set of J~-previsible elementary fimctions'. 
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2. Let Yo = ~ a~ls•  I]Af be a J--previsible elementary function, 
l <=i<=n 

AT=Is T't, t T ' i ] ~  and for Q c l I  let (KJ: l_<j<r) be the partition of ]I generated 
by 

Qk){s T'i, tT'i: 1 <_i<n, TEJ-}, ~ =  2 ai lr~ I~ I{K:K=AT}(KkT) 
l <=i <=n T e f f  

for A = (kT)T~9 -, 1--< k T <_r, T~J-. The representation II0 = ~ ~ l f [  K~ is said 
1 ~kT<--r T~W 

to be a "lIg--representation" of Yo "subordinate to Q" (in case Q=O "ll~-repre- 
sentation" of Yo). 

3. Let 5g~z be such that ~- is a "refinement" of 5 ~, i.e. each Se~ a' is the 
union over ~s = {TsY-: T c S } .  Further let Ye~C/(~s,, ~3(R)). Set 

Y~-: OxlI~-~lR,(co, o)--,Y(co,(sup T s 
Te~-s 

The process Y~- is called "J-corner function of Y'" 
For Ae~3 s. let A ~- be the set defined by la~- =( la)  ~-. 

Example. Let N = 2 .  For ~ ' =  {{1, 2}}, we have lI~-=lI, 9t~-=~tl, ~3~-=~, ~ 
=~ .  For ~--={{1}, {2}}, lI~- consists of pairs of time points which are "incom- 
parable" w.r.t. "__<". The following sketch may help to visualize {{1},{2}}- 
previsible rectangles. 

II 
t{l} 

- - ~ {2} s{~l / t 

The {{1}, {2}}-corner function of YeJ//(~3,~3(R)) is just Y(m,s ~1}, s {2}) 
= Y(co, s {1) v s{2}). 

Remarks. 1. Let Yo = ~ % I I ] K ~  be an lI~--representation of Yoe~, such 
1 ~kT<--r T~Sr 

that KJ--]u j,vj], l<=j<=r. Then, for every A, ~ is a ~u~-measu rab l e  step 
function which vanishes if l-[ KkTr 119-" T~ 

T G ~ -  

2. J--corner functions are ~3j-measurable. If J -  is a refinement of ~ Ye 
~ ' (~Y,  ~3(1~.)), then obviously yg-=(y~)J-.  If F x JeeR and (JJ'": l<j<r(n)),~ N 
is a sequence of partitions of ]I in .~ whose mesh goes to zero, then 

U e • F[ (JJ'"F+(F • JV. 
1 = < j < r ( n )  T ~ J -  

(This gives the relation between ~ (cf. p. 547) and the corner functions.) 
3. The linear hull of {1 v 111 j~ : F • J~9t} is identical with ~9-. 
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For (3, ~b)eT o the elementary integral whose approximation appears in the 
2 no inequality of Lemma 2, can be introduced on ~ - .  Note that it does not 
depend on the information provided by ~b on 3 -o (cf. Lemma 2). Therefore we 
may use T instead of T o. 

Definition 5. Let (3, q~)e T. 
1. The linear mapping 1(o a~' ~): ~9-~L2(~2, 5, P), 

Z aile,• [[ AT Z ally, l~ AAT we(T) 1~ )'nfAT~ - - ~  T \ i I '  
1 < - i < n  T e f f  1 <- i<-n  T e ~  1 T e J  ~ 

is called "elementary (J, ~)-integral'" Let p~o 9-'~) be the restriction of I~o J' ~) to 
characteristic functions of sets in 9t x. 

2. The linear mappings I(X'o,. ~)'- @~- ~ L2 (O • II, ~,  P • 2N), Yo ~ 1(o9' ~)( Yo ( 1 n • 
is called "elementary (J, ~))-integral process". 

Example. In case N = 2 ,  Definition 5 just gives the elementary versions of the 
well-known stochastic integrals of Wong and Zakai for the Wiener sheet. More 
precisely, the integrals ~.dW and ~.dWdW, necessary for the description of 
"martingales" which are measurable w.r.t, the Wiener filtration (see Wong, 
Zakai [15], p. 118), are covered by "q~= 1": 

i~{1, 2 }},1) corresponds to ~.dW, i~o},{2}},1) to ~.dWdW. 

In order to obtain a fully developed stochastic calculus, Wong and Zakai [13], 
Sect. 3, p. 574, studied another type of "iterated" stochastic integrals, the 
"mixed are integrals". For the Wiener sheet, they are recovered by taking 

q~({1})= 1, q~l({2})=O, q~2({1})=0, q~2({2})= 1- 

I(0 ({a}'{z}}'~') corresponds to ~.dudW, I(0 ({1}'{2}}'~z) to ~.dWdu. 

Finally, " r  = 0" yields integrals w.r.t. Lebesgue measure: 

I(o ({1'2}}'~ corresponds to ~.du, I(o ({1}'{2}}'~ to ~.dudv or ~.UlUzdU. 

See Wong, Zakai [14] for a stochastic calculus with the above integrals. For 
extensions of Wong's and Zakai's notion of "iterated" stochastic integration 
see for example Cairoli, Walsh [5], Guyon, Prum [7], Merzbach [10], Yor 
[16], Sanz [12]. 

Remark. For Yoe~x the process I (x'r ~ has continuous trajectories. By the 0 , .  ~,*01 

following lemma, 1(o x'o) is "dominated". This makes an easy extension pro- 
cedure possible. 

Lemma 3. Let (3, dp)~T, Yo~x .  Then 

III(oJ'~)(Yo)ll2=E( ~ ( ~ Yo(.,o)dv~-o)2 d~x~). 
li  J 1  ii 3 -o  

Proof The following arguments are similar to those used to prove Lemma 2. 

Let an ]I-representation Yo = ~ ~ II]K~ of Y0 be given. Insert this repre- 
l <--kT <--r T ~  
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sentation on the left side of the asserted equality to write it as a double sum 
over d,j~(NN) f .  Observe that there is no contribution if d f , 4= j f~ ,  since W 
has independent increments with mean zero. Therefore 

III~of'*)(go)ll~= ~ E(( ~, c~ I~ JtN(gkT)) 2 I~ (AKkrW4~(T)))2 
l<=kT<=r,  T e f  ~ l < k T < = r ,  T e f  o T ~ f  o T a r  1 

= Y~ E(( ~, ~ [I  ~(K~))  ~ 1-[ ~ ( K ~ )  
I ~ = k T ~ r ,  T E ~  - t  l G k T ~ - r , T ~ J  -0 T ~ f  0 T ~ f  1 

(Vo ~ Jg(~f,  ~(R))) 
=E( ~ ( ~ Yo(.,~)dofo)2dof~). 

lI f l  i i  f o  

Lemma 3 makes clear, how a "natural" domain of extension of I ~  ~'4) must 
look like. 

Definition 6. Let (J-, q~)~ ~. For Y ~ / ( ~ f ,  ~B(IR)) set 

IIYH(f.4)=[E( ~ ( ~ IYl( . ,o)dofo)2dof~)] 1/2, 
]i f ~  l [ f  ~ 

L(f ,4)= {Y: g e J N ( ~ f ,  ~3(IR)), I] YH(f,0)< oo}. 

Remark. For (J-, qS)~V', L(f,~) is a Banach space with respect to the 
norm II.ll(f,,~, in which Nf  is dense. For Y~./C/(~f, ~3(IR)), the inequality 
IIg[ltf,~) < [[gl]2 is valid. 

Proposition 3. Let (~--,4))e~P. Then #~-'~) can be extended to ~3f such that, 
denoting the extension by #(f,4,),#(f,o~ is a 2-stochastic measure. I~J '~) can be 
extended to L(f,4,) , such that its extension I (f'~) (the " (J ,  4))-integral") is a 2- 
stochastic integral satisfying 

Proof. By Lemma 3, 

IlI(f'~ for YeLcf,~o). 

II/~oJ'~)(Yo)]12~lhY0[l<f,~) for Yo~f .  

~ f  being dense in L(f,4,), the proposition follows. _J 

The extension of elementary integral processes is based upon the following 
martingale property. 

Lemma 4. Let ( J - , ( b ) ~  N, Y o ~ f .  Then I(~/~)(Yo) is a continuous d__ ~ l -  
martingale. 

Proof Evidently, 1((,;~ is ~t-measurable and integrable for all tMI. By the 
remark to Definition 3, Remark 3 to Definition 4 and by linearity of I~  ~-' 0) it is 
sufficient to prove 

• I~vs)=o, (2.5) E(I(oY'4")(I~ I H K~(ln f 

F x K ~ 9 1 ,  K=]s , t ] ,  d=]u,v]  ~0, i ~ S ~ Y  1. 
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Observe that 

f le l~KT(1Q• =lFl[ iK~nJrxK~,K~c~JrxK~c]O,  u v s  ] for T:~S, 
T e J  Te~-  

KSc~JsxKSc~]O, uvs-]=~ by definition of J and S. 

Since W has independent increments with mean zero, (2.5) follows. / 

Remark. An analogon of Lemma4 can be proved for arbitrary (J-,~b)e~: 
i(f,o) ~v ~ is an JZparameter Zl-mart ingale,  Yoe~9 -. But since Yo is adapted 0, (.,AW)~ * o~ 
only With respect to the filtration 9- (~-) t~ ,  nothing can be said about the 
dependence of the elementary integral process on the __W-coordinates. With the 
Z-coordinates fixed, the following extension procedure could therefore also be 
carried out in this case. 

We might try to extend the elementary integral process to L(r But, in 
general, L(f,e) may be too large to produce continuous _Jl-martingales. Since 
it is sufficient for the purposes of the following, we restrict our attention to 
L2(t2 x ]I~, ~3y, P x (2N) I~1) (although we could take a larger "intermediate" 
space). For ZeJ/g(~3, ~3(~)) set NZII(2, co) ~- ][sup IZtl ]12 and 

t e l I  

/~2, ~) (n  x II, ~3, P ) =  {Z :  Ze,////(~3, ~3(]R)), IlZll(2,oo> < oo}. 

Note that L(2'~)(OxlI,~3,P) is a Banach space with respect to the norm 
1[-1[(2,~). Lemma4 does not tell all the truth about the elementary integral 
processes. As the proof of Proposition 4 shows, I~'~')(Yo) is a proper 
__~-martingale. Moreover, thanks to Proposition 2, I(J,; "~) maps ~ y  into 
/j2, o~)(O x ]I, ~3, P). This important fact will be exploited in 

Proposition 4. Let (3--, ~)eTJN. The linear mapping I (9-'~'~" ~j__.).~(,2,~)(~r~ X ]I, ~ , P )  
0 , .  " 

can be extended to I~(~2 x lIg- , ~3~,P x (2~)1~-I). The extension, denoted by I! ~'~) 
(the "(~, (~)-integral process") is linear, continuous and satisfies the following 
conditions 

i) II I J ,  6) (Y)II (=, ~o) =< c II r H =, yeL2( f2 x II~-, ~ - ,  P x (2N)I~I), 

c being a universal constant, 

ii) II~-'O)(Y)=I~r'~)(Y(ln• tell, y~L2(O x lI~-, ~3~-,P x (;]V)l~-I). 

For each yeL2(s x]I~,~3~,P x (2]v)l~q), IJ-'~ is a continuous proper ~_~- 
martingale. 

Proof. We will show 

_ y , ,  2 ( 2 . 6 )  E(#(I~('.~-I)(Yo))2)~= II o112, Yoe%. 

Once this is done, Lemma 4 and Proposition 2 yield a constant c, such that 

(2.7) I(o.~.'4'(Yo) ~2 ~)<cE(v(I(o~,~'.~.[~o (Yo))2), Yoee~ �9 

Now combine (2.6) and (2.7) to obtain i) for ~--elementary functions. Use 
density of ~ in L2(~ x lI~, ~3~-,P x (2u)lJI), familiar extension arguments and 
the definition of II. 11(2,~) to finish the proof. 
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To prove (2.6), set U.'=___~ ~ and let i _  i . ( J~-  ]sv, t~v] 1 < i < n) be a partition of 
lI v in ~, Yo = ~ ~,~ H 1KkT and ]I : representat ion of Yoe~3. subordinate to 

l < k T < ~ r  T e 3 .  
~ _ ~  i i . {(uv,la), (vv, lc). 1 <-i<- n}. Linearity of the elementary integral and of the 
operation " Y ~  Y3." together give the following equation, valid for 1v< k v < r v 

t(3.,~) IV ~--1(3.,4')/V (1  ,. V/~  (2.8) AK~v.O,(.,l_a)t~O:--.O k~Ot .12xK~Vx(R1)rY:  ] 

=I(J'~)(Y01~ H I(K~• H ln) 
Tr T~3.1  

= E ~ H ~N(K:) H A~: w~('. 
1 <-kT~--r, k T = k T  for T e 3 .  ~ T e 3 .  ~ T~3 .1  

Sum (2.8) over k v to obtain 

E(( E I ,. ,AK~ o,(.,• o,,, , 
L v < k v < = r u  

=~(( E I E E a,~ [ I  2LTI(K~ : )  1-[ At::WO(T)I 
1 <kTT<rT l < ~ k T < r l _ r  T ~ - ~  T s ~ J  __T = = 

T~3.o - T ~ 3 .  I- T~3.o 

�9 ~ I  2 : t ( K : ) )  2) 
T ~ 3 .  o 

<-- Z E(( Z E ~ H Z~(K~ ~) FI A,:W~(') ~) 
1.r<_k~<_r,r l <kT<-rl.F<__k~<:r~V TE9  -0 TE3.1 
- -  T ~ -  O- - T~3.1- T~3.o 

H 21rl(K~ S) (Cauchy-Schwartz) 
T e 3 .  o 

< ~lyo [ 2 d (P x (AN) 13.1) = ]l Yo 1] 22 

(cf. proof of Lemma 3, remark to Definition 6). 
Since the partition (KkvU:l_ v < k  v<rv) is finer than (Y~: l< i<n) ,  (2.6) 
follows. _3 

Equipped with the (3, ~b)-integrals of Proposition 3, we now apply the 
results of Lemma 2, to get *-domination for W and to decompose its vari- 
ations. 

Theorem 2. 1. For each I~N~\{0} there is a constant Q, such that for all k e n  
W is a (Q P x 2 N, 1 <= Ill <: k; 2)*-dominated process. 

2. For e a c h / e N ~ \ { 0 }  

1 It IJ-~ g(3.,O)(A3.) ' A ~ ,  

(~,, r re(J ,  ~ ) =  I11 l 
1-13. '11e2Ng 

1 l! I~~ i(3.,r ' z 
(3- ~)~/ '~r rn(3., 4~) = Ill I 

l - -  3.1 e 2 N g  

y~L2(O X IF[, ~[~, P x 2N). 

Remark. Since for (3-,qS)~T N we have m(:-,g~)<2N, Theorem2 particularly 
says, that #w(z)=0 for I/I >2N.  
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Proof 1. Lemmata 1-3 and the easy inequality 

IIYg-11(9- ~)~IIYII2, YeI~(g2xlI,~,Px2N), 

yield constants % le]N~\{0}, such that condition i) of Definition 1 is satisfied 
for pz=ctP• q=2.  As W j is a strong martingale, and all moments of W~ 
exist, 1 =<j =< d, condition ii) of Definition 1 can be derived from Proposition 2. 

2. By definition of all appearing integrals and by linearity, it is enough to 
prove the first of the asserted equalities for A = F x J e ~ R .  Let 
(JJ": 1 <j=<r(n)), ne]N, be a sequence of partitions of J in .~ whose mesh goes 
to zero, and define the "projection" 

Then 
(2.9) 

r :  % , ~  7"~, (3-, r ~), 

~: 3--+{0,1 .... ,d}, T-+I?' 
(a, 

where 

if [~b(T)] =2, 
if qS(T)=% l<j<d. 

#wm(F • lim lv ~ A~,, W ((1.3)) 
n~oo  1 < j < r ( n )  

~/~'V,(L2-) lira 1F y. A~ff,,'j ) W (Lemmata 1,2) y, 
(J ,  ~)e'P0,N, Icbl=l t42" n~oo 1 <=j<r(n) 

= ~ F• I~(JJ'")T) 

(Lemma 2, Definition 5) 

( ~ - , ~ ) E ~ N  L r ( ( f , r  (~ "  ~//) t/*' . J 

(Remark 2 to Definition 4) 

Now, by definition of F and ~o,N, r ! =21~~ for (J', 0)EF-1((3--, g,)), and 

I{(Y-, r (Y-, r  ,p)), 14)1 = l}l-- lY~ ! 1{.,(3-,,)= I,l,t-19-.q~2~g}, 

where, of course, " 3  -~ and , , j- l , ,  are with respect to ~. Inserting this into 
(2.9) yields the desired equality. 

Corollary. Let/e2N~, [l] =2N.  Then for F • Jeer 

1 l ! N !  
#wm(F• (�89 lr~ <[I.< u{7 -ldu. 

J 1 = i = N  

Proof Put 5~={{i}: l<_i<N}, ~ = 0 .  (5~,~) is the only element of T N satisfying 
m(5 p, ~ )=2N,  since for (3-, 0)ET N such that ~--140 

m(~-, 0 )<  2(]J~ + [ y l [ ) = 2 N .  
But 

#(s~, r ((D • Rs)a~) =(2N)laq( I-[ RsC~ll~), sdI, 
T e 5  a 
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whence by definition of lIs~ and Theorem 2 the asserted equality follows for 
J=R~, s~]I. Use #(s~, o)(( F x J) s~ = 1~ #(s~, q')(((2 x j)s~) and additivity of #(s~, o) 
to complete the proof. A 

w 3. Ito's formula for (N, d)-Wiener Process 

(N,d)-Wiener process satisfies condition (1.7) of Theorem 1, as will be shown 
below. Therefore, by Theorem 1, we get a ("weak") version of Ito's formula. 
Using the decomposition of Theorem 2 and the extension of Proposition 4, we 
obtain another ("strong") version which is an equation of processes. 

Theorem 3. Let f ~ c2N(~-~d). 
1. For each l~Neo, Ill <2N, suppose that D(~ f(W)~L2(~2 x lI, ~3, P x 2N). Then 

1 
A j f ( W ) =  ~ ~. ~ D(~ J~.~. 

I < I I I < 2 N  ~?xJ  

2. For each (J,, 0)~ (Ps suppose D(~'*) f (W)eL2((2 x II, ~ ,  P x 2N). Then 

1 
AR.f(W)= 2 219-ol I}f'*)((D(J~'~)f(n))9-) �9 

( J,, 4 ) e't" N 

Proof. 1. To verify (1.7), let 3=]s, tJe~, Tells,  l~Neo such that 1 I I>2N+I  
and UJ"=]sJ'n, tJ'"]: l < j < r ( n ) )  be the partition of II generated by 

g - _ _  " h  

t}wt~:  O<i<n~, nEN. Since for u, v~lI, u<v, p>l ,  l<__j<d the pth on = {s, 
k ' "  .)  

moment of W j - W j  is a constant multiple of [2N(Rv)-2S(R,)] p/2, and since 

by choice of the partition [2N(R(s4~t~,,))--2N(RsJ,,)] <N,  r (n )<n+2 ,  there is a 
constant c> such that n 

z <c1(n+2)  s 
I < j<r (n )  1 < j<r (n )  \ II / 

As [/1>_-2N+1, this implies (1.7). Use this together with Theorem2.1 to verify 
the hypotheses of Theorem 1. 

2. By Proposition 4, the processes I!~'~')(D(~'~)f(W) 3-) are continuous. This 
fact and ii) of Proposition 4 assure that we are done once we have checked 

1 
(3.1) Aj f (W)  = ~)~ 21fo ~ I(~'~)((1~• jD(Yi'4~)f(W))J), JES. 

(J ,  

The following equation is a consequence of Theorem 2.2 and linearity: 

1 1 I!13-~ ! 
A j f ( W ) =  ~ 17 . ~" 21~-Ol ( ~ )  

I<II I=<2N (J,, ~ ) ~ N ,  m ( ~  d))= t] 
l--[3-. 1 ~2Nod ! 

�9 I(~'*)((1~• j O(~'*)f(W)) 9-) 

([ ( Y" ) 1 i ( ~ , ~ )  l t~x J Z " D (l) f (W)  
(Y;, 4,)e~/"N \ \ m(~,, 4,)= Ill 

l - I F ~ | ~ 2 N o  a ! 
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S ince  

I:-01! Y 

(3.1) follows. .A 

:~ D(2k) D(I~..,I) De) = ~ k t 
km~qg, Ikl= I:~ 

=IDIX~ (:'~~ for all (J,, qS)eTn, 

Corollary 1. Let ~ = { { i } :  l <=i<N}, ~b=O. In the formula of Theorem 3.2 the 
term belonging to (~, ~) (the term of highest order) is given by 

1 i(~O)((D(~O,f(W))S~)=~_~ ~R. lDsf(W),,  F[ u~ r 
2 Is~~ " l<=i<=N 

Proof Look at the proof of the corollary of Theorem 2 and observe 
ID N = D (:, ~). 

Corollary 2. (N, d)-Wiener process has I-order 2N. 

Proof Use Theorem 3 and the corollary of Theorem 2. __J 

w Iterated Stochastic Integration; Modification of Ito's Formula 

In a forthcoming paper, the stochastic calculus developed here will be used to 
compute local times (especially for (N, d)-Wiener process). For  the needs of this 
application, a modification of Ito's formula (Theorem 3) will now be derived. 
The idea is, that a "transformation formula" is available, in which - besides 
the term of highest order (cf. Corollary 1 to Theorem 3) - all terms are of the 
lowest possible differentiation order. It is established by "partial stochastic 
integration", a method whose classical counterpart may be found in appli- 
cations of "Green's formula". The most important tools are a notion of 
"iterated stochastic integration" and a stochastic version of Fubini's theorem. 
We have to consider Wiener process on the affine submanifolds 

{(tv, re): tv~lIv}, taelIv, U~II  N. 

Definition 7. Let UeII  N. 
v _{~=(sr)r~:ellJv: srr>s s for S, T~J,, S +  T} is called "set 1. Let : -~z  v. l I : -  

of J-ordered points in lIv" , 

9lvj = {F x I~ AT: AT =J sT, tT] ~v,~ ST>tTT S 
Te3- 

for S, T e J ,  S4=T, F ~ / ( : , 1 ~ ) }  
T ~ Y  

"set of(J,, U)-previsible rectangles". Analogously to Definition 4, using lI v resp. 
9t v instead of II s- resp. 9t9-, 9.I v v : ,  ~3j ("a-algebra of  (J,, U)-previsible sets"), ~ v  
("set of (J,U)-previsible elementary functions"), "lIV-representations '' and 
"(J,, U)-cornerfunctions" are defined. 
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2. Let (J,, ~b)e ~v, telIu and put 

j/// v et: (~ . ,  ~30R))~g('~.-, ~(F.)), Y-~Z, 

where Z(.  r r , (s)Tea-)= g(' ,  (Sv)rJ) 1-I I(R,)a(sT) �9 
Te~-  

Then 
II V I1'r IIBt(V)ll(~,), Y e ~ ( ~  v, ~(I()), 
/~:,4) = {Y: Ye/:d(~3 v ,  ~3(I()), [I YIIt<:,,)< oe}, 

I(J'*,t): Lt(~,o)~L2(y2, ~3, P), Y~I(:"r 

(The meaning of "#(~*'t)", "I(o :'*'t)'', "#(o s-' *'t)'', "I (:'~ is obvious.) 0 , .  

Remark. As in Lemma 4, it can be verified that I~9'~ Y o e ~ ,  has mar- 
tingale properties. The extension of Proposi t ion4 could be considered. But 
since this is irrelevant for the sequel, it will be omitted. 

The following lemma on "L~ '' (cf. Cairoli, Walsh [5], p. 132), on 
one hand, is an important tool in the proof of the "stochastic Fubini's theo- 
rem" and, on the other hand, yields an extension of I (~'4) resp. I(o ~'4'') to L(:,,) 0 , .  

resp. L~:,,), (~,, qS)~ ~r' v. 

LemmaS.  Let (~,,0)~7/, (A,(5, v) a finite measure space. Further, let Y, 
Y, E J [ ( $  r x (5, ~B(IR)), Z,e.//{(~ x (5, ~B(I()), heN,  be such, that 

lim ~ ]l Y,(., x ) -  Y(.,  x)[[~j,~)dv(x)=O, 
n ~ c o  A 

Z,( . ,  x)=I(~'~)(Y,(., x)) for v-a.e, xeA.  

Then there exists ZeJg(q~ x (5, ~(IR)) satisfying 

[IZ,(., x ) -  Z(. ,  x)ll 2 =< I[ Y,(., x ) -  Y(., x)l](~o) for v-a.e, xeA,  

Z(.,x)=I(~'4')(Y(.,x)) for v-a.e, xEA. 

In particular, Z,--+ Z in measure (P x v). 

Proof. By hypothesis and Proposition 3, (Z, ) ,~  is a Cauchy sequence in 
measure (P x v) and 

][Z,(., x ) - Z , , ( . ,  x)ll 2 < II Y,(., x ) -  Ym(', X)II(~,~) for n, meN,  v-a.e, xeA.  

The limit Z of (Z , ) ,~  has the desired properties. _3 

Corollary. Let U e l I  u, (~,, O)e~Pv. 
1. Let p be a finite measure on ~(II). Then for each YeL(~,4,) there exists 

X (:" 4')e Jg (~3, ~B (~,)) satisfying 

XI:,4')=I(~'4')(Y(ln• -) for p-a.e, t e l l  

2. Let p on ~B(II) be the product of finite measures Pi, 1 <_iNN. Then for each 
Ye~g (~3, ~(~,)) such that 

(4.1) j" Ill r ( . ,  ~- ~a 2 tv) II(:,~)] dpa(ta)< o% 
IIo 
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there exists Z(Xr (~, f~(P,)) satisfying 

ZI y'o)=I(~'~215 Y(',tv)) F) for p-a.e, tell. 

Proof 1. Observe that ~ -  is dense in L(~-. ~) and 

II(Y-2)(1~ • RY II(~-, ~)< II Y-Zll(~, ,), Y, zeg(~., r 

Apply Lemma 5 with (A, (5, v)=(ll, !B(ll), p). 
2. ~ is dense in the set of previsible functions satisfying (4.1). Furthermore, 

fEN [(Y(., t r : ) -Z(- ,  tv) ) ~ ' ~  2 
lr 

<Pv(llv) I [ I[(Y(., te) ~ ' ~  - z ( . ,  t~)) 11(9=,,)] d,o~(t& Y, z e ~ ( $ ,  $(~'.)). 

Since for Yea the assertion is true, Lemma 5 with (A, (5, v)=(lI, !B(ll), p) can be 
applied, d 

Proposition 5 ("stochastic Fubini's theorem"). Let U, VelIN, U~V=r 
(J,, r Tv, (5~, 0)~ Tv, ~#: = ffwS'~, Z:=~bu0,  Y e J g ( ~ ,  ~3(1t_)) such that 

Let p be a finite measure on ~(ll). Then: 
i) for (2N)lXl-a.e. o j ,  11 Y( . . . .  ox)][(~0) is finite, 

ii) there exists Z(~O)edd(9(3e,- x ~ I ) ,  ~(I()) satisfying 

Z (~o) (., o9- , .)ed//(!13 , !B(lR)) for all ~9-, 

Z(~*)(., ~-, t) =I(~~215 R~)~(.,., os~)) for (2N) I~-I X p-a.e. (of,  t )elI j  x lI, 

iii) ~[IZ(~O)(.,., t)[[~.o)dp(t)< o% 

iv) there exists X(e'z)ed4(~, ~(IR)), such that 

X}~'z)=I(Xe)(Z(~*)( ....  t))=I(~'z)(Y(lexR,) e) for p-a.e, tell. 

Proof i) is evident. For Y0e~e the assertion follows easily from the definition 
of the elementary integral. Let Y~dd(!l)e, ~3(9t)) be given, satisfying the above 
finiteness hypothesis, (Y~)),~ a sequence of q/-previsible elementary functions 
such that 

(4.2) ! i~  II(Y- Yg) (le • R,)~(', ", ~y)l]'2~(~,, 4o doxdp(t)-~O (n-~oo). 

This sequence owes its existence to the density of ~ in L(~,z ) (cf. proof of 
corollary of Lemma 5). For nEN, oa-elI~-, t61I let 

Z(~O)~ ~ t)=I(~'0)(Yg(l~• . , ' ,  ~x)). n \ 0 ,  o j ,  

Put A = l l y  xll, v=(2N) 19-1. Then, by (4.2), the functions Y(lr2• ~ Yg(lo• ~ 
and Z ~  ~ fulfil the conditions of Lemma 5. Hence there exists 
z(S~' ~')~/r x ~3(1I), ~3(IR)), such that ii) and iii) are valid, in particular 
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(4.3) S II z(,S<' ~ . . . .  t)-z(Sr . . . .  t)ll~J,4,)dP(t) 
I[ 

_-<! ~ II(r- Yg)(l~x R~)~(.,., ~)LI~,+) d ~  ap(t) 

Let X(, ~u'z) correspond to Z~ sr176 and satisfy iv), nEN. Set A=II,  v=p. This time 
Z (sr176 Z(, sr176 and X(, ~u'z), according to (4.2), (4.3), fulfil the conditions of Lemma 
5. Consequently there exists X(~162 ~(11)) which has the desired proper- 
ty iv). _2 

Corollary ("stochastic Fubini's theorem for corner functions"). Let U, V~IIN, 
U c~ V=O, (~,,(a)~gtv, (5~,O)~7Sv, dl l=g~5~, Z = O ~ O ,  Y~JC[(~3wv, fB(iR)) such 
that 

~ [ 11 (y~v~s" II ~ o)] 9- d~9- < oo. 

Let p be a finite measure on fB(lI). Then: 
i) for 2N-a.e. sVelI, II(Y~V~s'(.,., sU)ll(s~ 0~ is finite, 

ii) there exists z(Se'q')~J[ (~ v x fB(lI), fB(IR)) satisfying 

z(Sr s v, . ) eJg(~  w v ,  ~(11)) for each sVell, 

z(Sr176 s v, t)=I(~~ le• R)~v)~s'](.,., sV)) for 2 N x p-a.e. (s v, t)slI 2, 

iii) S II(Z(Sr t)) J I1~,)dp(t) < o% 

iv) there exists X(e'z)~J/[(~ v'~V, fB(IR)) such that 

X}~'z!=I(X'~176 t))~-)=I(e'z)((Ylr~• ~) for p-a.e, t e l l  

Proof. According to Remark 2 after Definition 4 

Therefore, by hypothesis, 

li ~- 

Apply Proposition 5 to ye.  

Now observe that, by scaling, Wiener process on the affine submanifolds 

{(t v,tv): tv~lIv}, tv~lI a, UeII~, 

can be transformed into I UI-parameter Wiener processes. This basic fact is 
exploited in the following lemma which, as a link between stochastic integra- 
tion over intervals and stochastic integration over their surfaces, could be 
considered to be an elementary "stochastic Green's formula" (see Dozzi [6], 
Guyon, Prum [7], Cairoli, Walsh [5]). 

Lemma 6. For U ~17 N let (~ll, Z)~ ~Pv. Suppose that f ~ C 21vl (IR e) satisfies 

f(W),D(SC'~ PxZN), (5~,0)~7~. 
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Let p on ~(lI) be the product of finite measure Pi, 1 <iNN, such that 

(4.4) y [/f(W(.,tg)) 9- I[t(~.4~)-lZdpj(tw)< oo, (ul[, Z) < (J,, ~b)~ ~. 

Then, for (ql, 7,)< (~,, ~b)e ~, there exist X(~'r e Jg ($, ~(IR )), such that 

X}~'4')=l(~'O'tY)([la• 9-) for p-a.e, tElI, 

1 
Z (-- 1)l~l-lvl X} ~'0)= Z 27W~I}S~'ouz)((D(zO)f(W))s~Ue) 

(~, z) < (Y;, #)~'/' (~, 0)e~Pt7 

for p-a.e, tell. 

Remark. According to the hypothesis, (4.4) is satisfied for p = 2 N. 

Proof In consequence of the hypothesis, by a (classical) Fubini argument, for 
2N-a.e. sV~lI, we have 

(4.5) II[D(~'o)f(W){U)~](.,.,stJ)ll2 is finite, ( ~  r v. 

Pick sVElI satisfying (4.5). Note that 

is a l~71-parameter Wiener process, g: Re->N, x--*f((sV)l~x), has the differentia- 
bility properties of f and 

D(~O) g(x)=(sg)t/Zm(~O) D(~O) f (y), y=(sg)l~- x, (5~, O)StPU. 

Let the ( ~  r integrals belonging to X be denoted by the letter "J" .  
Then, by definition, 

I(~O)(B=g(y))=I(~q',=g)(y) =(sUu)l/2m(Y'O)d(~'O)(g), YeL(mq, ), 

Use this to translate Ito's formula for X (Theorem 3.2) into the language of W: 

(4.6) A~,qf(W)=A~=~-,aeg(X ) 
1 

1(~ 0)(/1 D(~,I,) g(X)) s~) = ~ 21S~Ol ~ t~*~ • ]s~, tlv 
( ~  O ) s ~  ry 

1 
= X 21~o-~ ~(~' ~)([(l~• . . . .  s%). 

(~, q0 eq 'a  

Next observe that for U c TeIIu the set ILu can be written as the (2U)l~ 
(pairwise disjoint) union of lI~-, ~ < ~ ,  Y-ez r. Thus, using (4.4), we obtain for 
p-a.e, telI 

(4.7) I(e'z)((la• A~.,qf(W)) ~) 

=I(~'Z)([I~• Z (--1)lTI-IVlf(w(..*,)) -I~u) 
U ~ T ~ H N  

= ~ ( - 1 )  ITl-lvl ~" I(~'r215 
U ~ T~FIN (ell, ~) < (~, d))~tI~r 
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Now combine (4.6) and (4.7) in the following way to complete the proof: from 
the corollary of Lemma 5, conclude, that there are X(X'o)eJ//(~, ~B(R)), such 
that 

XIJ, ~)= I(:, ~,t_~)([l~ • (ROj~f(W(.,t_~))]:) 
for p-a.e, t~H, (~ 

finally apply Fubini's theorem for 5 : u ~ - c o r n e r  functions to (4.6) and com- 
pare. d 

Lemma 6 is the corner stone in the proof of the following modification of 
Theorem 3. 

Theorem 4. Let f ~ c2N(~-~ d) be such, that 

D(:'~) f(W)~L2(y2• ~3, P• (J,~)~PN" 

Let p on ~3(1I) be a product of finite measures Pi, 1 <-_i<-_N, such that 

(4.8) ~ [][O(X'*)f(W(.,,s [[t(~. j 2 dpw(t~)< 0% (~,, ~))~ T. 

For (J,, d~)eA define 

c~(~,O)= 1F-[ ( I T I - 1 ) ( - 1 )  '-~'-1 ~ ~ (-1)'J'-I-i(ki)ile'-'. 
T~ 9-~  0_--<i_-< 19-I i<k<l~-I 

Then: 

for each (Y,, ~)~A there exists X t~)~Jg(~  • ~(~2), ~ ( ~ ) ) s u c h  that 

i) X(:'*)(., s, .)eM//(~, ~B(IR)), selI, 

ii) X(xr s, t) = A1=,O F I (: 'r215 ~s,,~ D(:'e)f(W(.,.))]s-) 

for p • p-a.e. (s, t)eH 2, 

1 
iii) A]s,t]f(W )= 2 ~(Xr ~ X(Xr S, t) 

(~, ~)~A 
1 

+ ~  ~ IDN f(W)= [I u~ -~ du 
]s,t] 1 <_i<_N 

for p x p-a.e. (s, t)6~ 2. 

Remarks. 1. According to the hypothesis, (4.8) is satisfied for p = 2  ~. 
2. For (~,, qS)~A we have m(~,,~))<N. This means that the orders of differ- 

entiation corresponding to X (:'~) in iii) do not exceed N. 
3. According to ii) and the definition of/(~'~'~), X (:'~) may be considered as 

a stochastic integral on the surface of Is, t ]y.  

Proof As p is a product measure, a (classical) Fubini argument shows, that the 
assertion follows, once we have established: for each (~-,q~)~A there exists 
X( : ' o )~(~ ,~3( IR) )  such that ii) and iii) are valid with s=0.  Regarding Lem- 
ma 6, it is enough to prove 
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1 gl 
(4.9) ARtf(W)= ~ " - - - r ( ~ ' ~ " J ) t r l  D(:'-o)f(W(.,,:))] : )  

(J,, (;b) EA -- --  

+~--NRStlDN f(W)u l<-i<-NI~ U~ -1 du for p-a.e, tell. 

Pick t~ll such that HD (:' ~) ~- t~ f(W(.,r_~)) I[(~%~)< ~ for all (3--,q~)EA. According to 
(4.8), this is true for p-a.e, t~II. 

For 3-~z, k~N o put 

fl:,k-----1{5:: 5: is a partition of :-, [5:[ = k +  1}]. 

Further, let 

h: ~P~A,  (~--, ~b)~(5:, ~), where 5 : = { T ~ : - "  [q~(T)]+0, if IT]= 1}, ~b=~b[z. 

Then, by induction on k, 

(4.10) ~ ,  IDN f(W)" l<_i<_NI~ u~ -~ du 

1 
=AR,f(W)+ X 2 ~ (  <<~ (--1)J-aflr 

(~ z ) e A  0 = j = k - -  1 

( _  1)[Yl-I~l I(N 4o, tX)([la • (R')~ D(~ 4,) f(W~.,r 
(o//, Z) < (~,  ~b)eA 

t V l _ _ t r  I(~")"1 R D(~")f(W))~). + ( -  1) k- L., oleo I k'hl(~,,rl),k \~ ax 
(f, r/) ~/qv :- 

TO argue " k ~ k + l " ,  note that h is one-to-one and fix (s#,ig)~A\As. Apply 
Lemma 6 with p = e(t ~ to get 

1 
fl~,~ 2hr ~(~,z) Ih- ~ (~'x) ( [  la•  Rt Dh - ~ (~' ~) f (W)]hr ~(~'x)) 

1 
= f i~,k 210uol ~ ( -  1)1 zl-I-~l I(<*,'~):rl_ ,~ a• (Ra: D(X<')f(W(.,t~))] :) 

(q/, Z) < (,~, ~b)~A 

~. 1 (r..,) 
-- flO~,k 2~N I ((la• f (W)):). 

(~  n) et/ tN, h ("f#, r/) ~ (o//, Z) 

Now sum this equation over (q/,)06A and observe 

h(~, 7) ~ (~ ,  X) 

Since for k>=N-1 the last term on the right side of (4.10) vanishes, we are left 
with the following assertion 

(4.11) e(:,o) = - ~, ( -  1)IYI-I-~I( ~ ( -  l)J- 1 fi:,j), 
A~(  v~', Z) < (J,, ~b) 0 _-<j _-< I~-[ 

(: ' ,  ~b)~A, fl:,F-fl~,J, if :# < Y-). 
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O n  o n e  hand ,  by  the  gene ra l  a d d i t i o n  t h e o r e m  a n d  the  p o l y n o m i a l  t h e o r e m ,  
we h a v e  for  0 __<j __< IJI 

,~j+l.l ,~=:~ 1! - Z ( - 1 )  ~s~ Z l, 
SeII:+l  ,eN~+l- lSl ,  l l l = l J  I �9 

O_<i_<j+l  

O n  the  o t h e r  hand ,  by  the  b i n o m i a l  t h e o r e m ,  

Z ( _ 1)1-~1-I_~l 
A~( ~ Z) < (~,, ~) 

= l ~  ( ~ ( - -1 )  I r l - ls l )  ~ [  ( Z ( - -1 )  ITl-lsl) 
T ~ J  -o S c T ,  ISI>2 T~J-1 S=T ,  IS[>=I 

=(_l)lZl-I:l 1-I (Irl-1). 
T ~ - o  

H e n c e  (4.11) fol lows.  / 

Bibliography 

1. Azema, J., Yor, M.: En guise d'introduction. Ast6risque 52-53, 3-16 (1978) 
2. Allain, M.F.: Semi-martingale index6s par une partie de ~d et formule de Ito. Cas continu [To 

appear in Z. Wahrscheinlichkeitstheorie verw. Gebiete] 
3. Bichteler, K.: Stochastic Integration and LP-Theory of Semi-martingales. Ann. Probability 9, 

49-89 (1981) 
4. Cairoli, R.: Une in6galit6 pour martingales ~ indices multiples et ses applications. S6m. de 

Prob. Strasbourg IV. Lecture Notes Math. 124, pp. 1-27. Berlin-Heidelberg-New York: 
Springer 1970 

5. Cairoli, R., Walsh, J.: Stochastic Integrals in the Plane. Acta Math. 134, 111-183 (1975) 
6. Dozzi, M.: Uber stochastische Integrale mit mehrdimensionalem Parameter. Dissertation, Uni- 

versitgt Bern (1979) 
7. Guyon, X., Prum, B.: Semi-martingales /t indice dans F, 2. ThSse, Universit6 Paris-Sud, Centre 

d'Orsay (1981) 
8. Imkeller, P.: Local Times for a Class of Multi-Parameter Processes. To appear in Stochastics 
9. Imkeller, P.: Stochastic Analysis and Local Times for (N,d)-Wiener Process. To appear in 

Annales de l'Institut Henri Poincar6 
10. Merzbach, E.: Processus stochastiques /t indices partiellement ordonn6s. Rapport interne 55, 

Centre de Math6matiques Appliqu6es, Ecole Polytechnique (1979) 
11. Metivier, M., Pellaumail, J.: Stochastic Integration. New York: Academic Press 1980 
12. Sanz, M.: Calcul diferencial estoc/tstic per a procesos amb param~tre n-dimensional. Disser- 

tation, Univ. Barcelona (1977) 
13. Wong, E., Zakai, M.: Weak Martingales and Stochastic Integrals in the Plane. Ann. Probabili- 

ty 4, 570-586 (1976) 
14. Wong, E., Zakai, M.: Differentiation Formulas for Stochastic Integrals in the Plane. Stoch. 

Proc. Appl. 6, 339-349 (1978) 
15. Wong, E., Zakai, M.: Martingales and Stochastic Integrals for Processes with a Multi-Dimen- 

sional Parameter. Z. Wahrscheinlichkeitstheorie verw. Gebiete 29, 109-122 (1974) 
16. Yor, M.: Repr6sentation de martingales de carr6 int6grable relative aux processus de Wiener et 

de Poisson 5. n paramStres. Z. Wahrscheinlichkeitstheorie verw. Gebiete 35, 121-129 (1976) 

Received March 25, 1983; in revised form September 17, 1983 


