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Introduction

This paper was written for the purpose of studying local times of con-
tinuous vector valued multi-parameter processes by means of an appropriate
stochastic calculus. As is well known from the theory of one-parameter semi-
martingales (cf. for example Azema, Yor [1]), Tanaka’s formula links stochas-
tic calculus and local times. It can be derived from Ito’s formula by extending
the latter to a larger class of functions. In this sense this paper is basic to the
study of multi-parameter local times (see Imkeller [8,9]): several notions of
stochastic measures and integrals are considered by means of which versions of
Ito’s formula are stated and proved.

§1 is devoted to an extension of the formula which was given by Allain [2]
to Rvalued continuous processes within Allain’s abstract framework. At the
basis of Allain’s calculus is the following observation: a one-parameter process
is a semimartingale if and only if it it admits - roughly speaking - a reasonable
stochastic calculus (i.e. it is an “Lg-integrator”, see Bichteler [3], Metivier,
Pellaumail [11], p. 155). Allain’s (real valued) “p-semimartingales of order k”
by definition give rise to such a calculus in I#-sense. In this paper R%-valued p-
integrable processes X are studied, p=1. If for keN, some finite measures p,,
1SSk, 1eN%, g=1,X is submitted to a so-called “(p,.1=Z|l|<k;q)*-
domination” condition, which is more restrictive than Allain’s conditions, but
looks natural for example for processes with independent increments, the
existence of the “I™ variations” uya, 1 <|[| <k (p-stochastic measures which are
direct generalizations of the “quadratic variation” of one-parameter semi-
martingales) can be established. A simple additional condition concerning the
“fluctuation” of X assures that for k times continuously differentiable
RS R with bounded derivatives the formula

1
f(X)—10)= Zkﬁ | DYf(X)duyw, te[0,11%,

12012 2x10,1]
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is valid (Theorem 1). (p,, 1 <|l|<k; g)*-domination is approximately a “domi-
nation property” of the variations

I§ Yduyoll,£(1Y"dp)', Y previsible, 1=|l<k

(see Metivier, Pellaumail [11], p. 20). Contrary to the classical formula, Theo-
rem 1 yields only an equality of random variables (¢ is fixed). For the case of
the (N,d)-Wiener process W however, in §2 and §3 an improvement is made
by using multi-parameter martingale theory. More precisely, by an appeal to
the multi-parameter versions of Doob’s maximal inequalities (Cairoli [5],
Wong, Zakai [13]), the existence of continuous versions of the integral pro-
cesses of upw, 1Z|Z2N, can be proved. This is accomplished in §2 by
decomposing these processes into “martingales” (Theorem 2) which are de-
duced from W in the same way as are the integral processes {.dW, {.dWdW,
f.dAdw, [.dWdJ, [.dAdA, well-known from 2-parameter theory (see for exam-
ple Cairoli, Walsh [5], Wong, Zakai [13, 14, 15], Guyon, Prum [7], Merzbach
[10]; for N-parameter results see Yor [16], Sanz [12]). One can imagine the
decomposition of (the 2-stochastic measure) upo(@2x710,£]) in the following
way: for each partition J of {1,..., N} functions ¢: 7 —{0,1,...,d} are taken
to note whether uy, varies in T-direction “linearly” with W/ (¢(T)=j),
1<j<d, or “quadratically” with any W/, 1 <j<d (¢(T)=0), TeZ. In the Iatter
case the variation in T-direction is given by Lebesgue measure. The “order”
variation, ie. 2|7°+|7"|, where T°={T: ¢(T)=0}, T '={T: ¢(T)+0},
equal to |ll. Thus one obtains components u”-? of uy,q, (2-stochastic measures
as well) with integrals I'”*®, whose integral processes I7*® turn out to be
“martingales” possessing continuous versions in consequence of the maximal
inequalities.

This result is applied in §3 to yield an improvement of the formula of
Theorem 1:

FW)—f(0) Z 2I;°I IY-9([DY9 f(W)]?) (Theorem 3).

Here D% is the differential operator which is obtained by applying ||

times the Laplacian and differentiating |{T: ¢(T)=j}] times in direction j,

1<j<d. Its order is identical with the order of (7, ¢). For any process Y, Y7 is

a “corner function” of Y (cf. Guyon, Prum [7]): (sp)pes— Y(sups®). See
Teg

Guyon, Prum [7] for a comparable formula for a class of (2, d)-processes, Sanz
[127] for (N, 1)-Wiener process.

In §4 a modification of the formula of Theorem 3 is developed which is
particularly useful in applications on local times (Imkeller [9]): it is desirable
to have a formula in which - besides the term of highest order - all terms are
of the lowest possible differentiation order. Like in applications of the classical
formula of Green this is achieved by replacing integrals over intervals by
integrals over their surfaces, thus reducing the order of differentiation of the
mtegrands. For this purpose it is necessary to give a precise meaning to the
notion of “iterated stochastic integration”, to have a “stochastic Fubini’s
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theorem” and to introduce stochastic integrals of W on surfaces of intervals.
Ideas of Cairoli, Walsh [5] can be employed (see also Guyon, Prum [7], Dozzi
[6]). In the resulting formula (Theorem 4), the above mentioned orders do not
exceed N.

§ 0. Notations and Preliminaries

For a fixed number NeIN(={1,2,...}, whereas N,={0,1,...}), the parameter
set is I=[0,1]". I is endowed with the usual partial ordering (i.e. coordinate-
wise linear ordering on [0,1]) “<”, with respect to which intervals are defined
in the usual way. Let 3 be the set of all intervals in II of the form Js, ], s, tell,
10,¢] being denoted by R,. The symbol 1% is used for the for the set of all pairs
(s, )ell?, s<t. Vectors of “time points” (s),_, are denoted by s whenever there
is no ambiguity about the index set I. Projections of vectors (intervals) defined
by subsets H of the index set are always provided with a subscript H. For
example: if Uelly (set of all subsets of {1, ..., N}), sell, Je3J, then s, resp. J, is
the projection of s resp. J on the U-coordinates; if s=(s"),.;€ll' and K =1, then
ox=(5)ex- The set of all J;, is denoted by J,. For any meR, let m be the
vector in RY, all of whose coordinates are equal to m. A “decomposition
(partition) of Il in 3~ is understood to be a decomposition of 10,17V by
intervals in 3.

Given any function f:I—RR, any interval J=1]s,t]1€J and Tell,, denote
the “increment of f over the T-boundary of J” by

A7 f= 3, (=D f((s5,15)

SeT

(“” denotes the complement w.r.t. fixed reference sets). For T={1,...,N} the
superscript T may be omitted. Note that, in case f vanishes on dRY I, by
Setting JT = [(0T7 ST): (sTa tT)]a

A}‘f: AJTﬁ

The “variation of f over II” is defined by

v(f)=sup{ Y |4, f1:(J); <<, is a decomposition of Il in J, nelN}.

1=<i=n
Given two measurable spaces (B,B), (C,€), the space of all measurable
functions from B to C is denoted by .#(B,€). (2, &, P), the basic probability
space, is always assumed to be complete, (&,),y, the basic filtration (family of
o-fields, increasing with respect to the partial ordering on II) to be augmented

by the O-sets of §. There are several relevant notions of “previsability” with
respect to (&),op: for Telly, tell, let §F =&, |- Then, for TeSelly,

RI={F x Jg: Jg=]ss, t5]€Ts, Fe%(l;s,ly}

is called “set of T-previsible rectangles in II”. Let the algebra resp. o-algebra
generated by R resp. the linear hull of characteristic functions of T-previsible
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rectangles in Iy be denoted by UL resp. PZ resp. EI. PI is called “s-algebra of
T-previsible sets in II”, € “space of T-previsible elementary functions in Ig”.
In case T=0 (S=0) the superscript (subscript) T (S) is omitted.

Let deN. A stochastic process X with values in IRY is always understood to
belong to .#(F x B(M), B(RY). X is said to be “previsible”, if Xe.#(B, B(IRY),
“adapted”, if X,e (T, BIR?Y) for each tell. For tell, the vector
(sup X},...,sup X9 is denoted by X,. All stochastic processes to be considered

s<t s=t

here are supposed to fulfil the following conditions

(0.1) X,=0 for tedRY NI,

(0.2) X is adapted and has continuous trajectories.

In particular, this is the case for the most important process to be studied here,
W, the “(N,d)-Wiener process”. W is an IRR%valued Gaussian random field with
mean zero and covariance function E(W} W/)=5,2%(R,NRY), 1<i, j<d, s,tell
When dealing with W, the filtration (&,),.; is always assumed to be the natural
filtration (¢(W,: s £1)),.y, augmented by zero-sets.

In order to introduce the stochastic integrals belonging to W in §2 below,
some special notation has to be established. Set

c={¥:Feclly,S=+0 for all Se¥#}, 1={Feo:TnS=0 for all §,TeT}.

For Uell, denote by oy (7y) the subset of ¢ (7) composed of those & such
that | ) S=U (“N” is used instead of “{1, ..., N}”). Further, e; being the 7 unit

Se&
vector in R, let

P={(¥,¢): Fea, $: ¥ >N\{0}},
'I’OZ {(9-’ ¢) ('79 (b)G@O,fE‘C, d)(S):le]:l:l:z) ]-é]gd, Sej},
P={7,¢): Tet,: 7 —~{0,1,....d}},
A={(7,¢):(7,¢)e ¥, ¢(T)=+0, whenever Te 7, |T|=1}.
For all of these sets, the subscript U may be added in the same sense as above.

For example, ¥, y is obtained by replacing t by 7, in the definition of ;. One
can consider the following relation “<” on 7 (¥):

F<T (L )<(T,¢)), iff there is a one-to-one mapping g: 7 —& such that
g(T) =T for each TeJ (and W (g(T))=¢(T)).

“<” turns out to be a partial ordering.
For an individual (7, ¢)e ¥, put

T°={TeT: p(T)=0}, T'={TeT:¢(T)=j}, 1=j=d, <°71=1<_<d9‘,-1,
sjs
7=t Z'=UT 7= T Z7=UT
Teg© Te7} TeFt Ted

The integer m(7, p)=|F |+ 2|79, the “order of (7, $)”, is seen to be equal to
the order of the differential operator
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G g1 g1 F0
pYid = plail - 17ah DI I’

which is defined on the space C™7 9 (RY, ID denoting the Laplace-operator.
Note that D% =D@® whenever (%) <(7,$). For keN, CER?(CHRY) is
the subspace of C¥R? consisting of bounded functions (with compact sup-
port). Finally, if ¢ is a mapping from a set 4 to IN¢, then

¢!=T1 11 ¢;@L 19l=(F ¢s(@).... 2. du@) (€NG)

acA12j=d acA acA

For any multiindex keIN%, xeIR*

Occasionally, real valued functions are tacitly assumed to be trivially extended
to larger domains.

§ 1. Ito’s Formula for a Class of Vector-Valued Processes

Let a real number p=1 be fixed throughout this paragraph and suppose X
fulfils the additional condition

(1.1) Xel’(@Q,§ P) forall tell, 1<i<d.

For a class of real-valued (d=1) processes (the so-called “p-semimartingales of
order k,”) Allain [2] proved a transformation theorem (Ito’s formula), employ-
ing the following simple method: take a sequence of partitions of parameter
space whose mesh tends to zero; for each partition, apply Taylor’s formula to
get an approximation of Ito’s formula; study the behaviour of the approximat-
ing finite sums as the partitions become finer; if the process is “good”, these
finite sums converge to stochastic integrals, thus giving the desired formula. In
this paragraph Allain’s result (and method of proof) will be extended to the
Ré-valued case.

To this end, let keN, fe CHIR%), Je3J and (J*"=T]s"" t#"]: 1 £j<r(n)), neN,
be a sequence of partitions of J in 3 whose mesh goes to zero. For each Telly,
1<j<r(n), apply Taylor’s formula to develop f(X . » n) 8t X, ». Sum over T
(alternately) and j to obtain T

12 4/X)= 5 & 5 DS AX+ T REIK,
k*-1

1= Ljsr(m) 1<j<rn)

A
HA

thereby setting

APX= Y (=1 ITix

0+ Telly

X,

(wrvr)

(recall: [ is multiindex; x'= [] x}),
15i<d
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R(fLK k= Y (=n¥'m

Q*+Telly

1
'lllzkﬂ [D(l)f(X("T‘,uT+0T(vT~uT))_D”)f(Xu)] (Xu’f‘s”T)—X")l
for K=TJu,v]e3J, [eN?, suitable 0,¢[0,1].

For an appropriate class of processes the looked-for formula will emerge, as
n tends to infinity in (1.2). We will give a criterion for the existence of p-
stochastic measures gy, 1<|[|<k, such that the integral [D® f(X)duyq is
equal to the limit of the corresponding term on the right of (1.2). As will be
seen below, this is essentially a disguised “dominated property” for the sto-
chastic measures yya, 1 S|| <k (cf. Metivier, Pellaumail [11], p. 20).

First note the following special representation of a previsible elementary
function. Let R be a finite subset of II. Consider the intervals in 3 which
originate from decomposing I by all hyperplanes which are parallel to the axes
and go through at least one point of R. Enumerate them according to the
succession of the points of intersection of the hyperplanes with each coor-
dinate axis by N-multiindices and call this “partition of 1 generated by R” If
Yo=Y aly,,, J;=1s1], is a previsible elementary function, Q a finite

1Zisn
subset of I and (K*:1<k<r) the partition of 1 generated by
Qu{s,t: 1<i<n}, set

o= ai]‘F,»]-{J:Jch}(Ji)z lékér‘

1=5kZr

1A

Then Y,= o, L is said to be a “I-representation of Y, subordinate to Q”
1=k=r

(in case Q=0: “ll-representation of Y,”). Note that, in consequence of pre-
visability, «, is a §-measurable step function, if K*=1u*,v*], L<k=<r.

A

Definition 1. Let kelN, g=1. For [eN¢, 1<|l|<k, let p, be a finite measure on
B (we recall that p is fixed throughout; see (1.1)). X is said to be
“(p), 1 £Y| £ k; g)*-dominated”, if

i} for each finite subset R of Il there is a finite subset Q of 1 containing R
and generating a partition (J: 1 <i<r) of I, such that for all ¥,e€ which have
an l-representation Y,= Y o;1y, and all IeN{, 1 <[l|<k, the inequality

L1sisr

[ o, AP X ||, <(f 1 Ypl?dp)'"
L1sizr ,

is valid,
i) X'~mel4dQ x1,B, p,), LmeNg, m<L, || Zk.

“*_domination” is sufficient for the above mentioned p-stochastic measures
to exist (ie. vector measures on P with values in IP(Q, &, P), see Metivier,
Pellaumail [117). This fact is proved in

Proposition 1. Let X be a (p,, 1 Z|lI<k; g)*-dominated process. Then, for
1eNg, 1<|l| <k, there exist p-stochastic measures iya, whose integrals exist on
QI B, p)), such that the following is true
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(1.3) if FxJeR and if (J*": 1<j=r(n)),y is a sequence of partitions of J (with
intervals belonging to 3) whose mesh goes to 0, then

1p Z A(JZJ)\nX"me(FXJ)a

15j5r(m
(1.4) 1§ Yduxol ,({1Y11dp) for YeIX(Q x 1L, B, p)).
Remark. (1.4) signifies, that the p-stochastic measure uyq is “(p;, g)-dominated”.

Proof. 1t is sufficient to show: if Y= )  ofl,,., neN, is a sequence of II-

1=<iZr(n)

representations of Y,e€, the mesh of (Jo"=7s""t""]: 1<i<r(n)),.n going to
zero, then (Y of AR . X),. is a Cauchy sequence in I(Q, &, P) for all
1<iZr(n

1=k In' view of (1.3), the limit of such a sequence is the only possible
candidate for | Y, duyw. Furthermore, it is uniquely determined. By density of
€ in I4Q x1I,%B, p,), a familiar extension argument yields the assertion. Let first
J=1u,v]e3 and a partition (K'=TJu,v"]:1<i<r) of I in I be given. Apply
(1.2) to the functions f;: R—IR, x—x', 1 <|/|<k. Hence

4;X'= Y (l) Y XimARX.

oxm=<i YU/ 1<izr

In case r=1 check, by substituting, that this formula can be “inverted”:

I
APx=Y (—_1)1—'"( )Xff’”A,X'".

o*msl m

Apply the latter to each K' separately and combine. This gives

15 %=y ¥ (;1_)11'(]’,) (rfn) T XX AW X,

O+¥m<ims <l i1gisr

To prove that (Y. of 4%, X),. is a Cauchy sequence, let now h,nelN. Put

1<i=r(n)
-

R={sbh b 5" ¢ o 1<i<gr(h), 1<i'<r(n)} and let Q be chosen according to

i) of Definition 1. By (Ki=u!,v"]: 1<i<r) denote the partition of I generated
by Q. For convenience set

Yhite= N ot X1,  geN, jleNg, 0%j=<L

1=i=v(g)

Now make use of (1.5), replacing J by J* resp. J*", to obtain

Yoot ARL X — Y AR X

1=isrh) 1=<isr(m

- T3 () () 2w x
v () ()

Oxm<im<jsl Y <isr

To estimate the right side of this equality, note that the inequality of Defini-
tion 1, i) can be easily extended to functions of the form Y ¢{;1;, the step

1=i=zr
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functions «; being replaced by random variables {, which have the same
measurability properties and satisfy Y {;1,,€I4Qx 1L, P, p,). Thus

|
WA
A

16 | 3 oAB,X— Z AN X,

1=igr(ly

<

1
l) ( ) (Yih— Yhim XI=m(a1,, dp y1a
1<l<r u u m

0#m<lm<]<l(]

(Jl) ( )(f (Y85 Yhn Xi-m]adp, )1,

A

04=m<lm<1<

As for geN, j,leN?, j<I, we have Y"*¢<|Y,| X'/, and as X has continuous
trajectories, an appeal to ii) of Definition 1 and Lebesgue’s dominated con-
vergence theorem completes the proof. _I

Definition 2. Let X be a (p,, 1 Z|l|<k; g)*-dominated process. For 1 <|[| <k the
p-stochastic measure piyq, which exists according to Proposition 1 is called “I™
variation of X”.

Go back to (1.2) for a moment. If X is *-dominated and the derivatives
of f not too “big” the existence of the limit of the first term on the right is
assured by Proposition 1. But the convergence of the rest term to zero must
still be forced by an additional condition.

Theorem 1. Let keN, such that X is a (p;, 1<|l|Sk; q)*-dominated process. For
J=1s,t1e3 let (JE"=]s""t""]: 1<i<r(n)),.x be the sequence of partitions of
I generated by Q,={s, t}u{— Qflfﬂ} For Je3, Telly, 1eIN¢ such that
|l|=k+1, suppose that X satisfies

(1.7) mE( Y (X ggngm— X)) =0.

n—00 1 ZiZr(m

Then there is a unique number ko <k such that py.,=+0 for at least one IeN%,
| =k, and pya,=0 for all [eN%, k,<|l|<k. For each fe C**(RY) satisfying

(1.8) DO f(X)e (@ XL, B, p), 1=k,
and for each J€3 the equation
1
AJf(X): l~ j D(l)f(X)d.ux(n
1=l|=Zko QxJ

is valid.

Remark. For Ae3, 1Z|l|£k, we adopt the notation j Yduyw” instead of
“jl YdﬂX(l) .

Proof. A familiar approximation argument shows, that it is sufficient to consid-
er feCE+I(RY). Let Je3J and (J>": 1 <i<r(n)),o be as above. Write down (1.2),
with k in place of k+1, and simplify the k™ and (k+1)* terms to obtain

19) A, /(X)= 3

1=

Z DOf(Xum AR X+ ) S(£,J" k)

l'lé =r(m izizr(n)

A
II/\
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thereby setting

1

S(f: K: k): Z (_‘1)N_|T| Z ﬂD(l)f(X(u’fs“T+9T(UT*'4T))) (X(“T,UT)_X“)Z
QFTelly Hl=k+1*%"

for K=1u,v]es3, suitable 6,¢[0,1].

At first, the convergence of the I'* term on the right side of (1.9) will be
established. To do this, let ¥, be a previsible elementary function, and for nelN
let ,= Y oaflg.,K""=]Ju""¢v""], be an I-representation of Y, subor-

1=iZq(m .
dinate to Q,={s""t"":1<i<r(n)}. The following inequality produces three
terms which will be evaluated separately:

110y | Y DYf(Xu)AR.X— | DPf(X)duywl,
1=<i=r(n 2xJ

<l Y DUf(Xu)AR. X~ Y arAd.X],

SiZr(n) 1=i=qm)

1
+1l Z “?A(I?imx— j Yodﬂme,,

1=izq(m QxJ

+ j Yoduyw — j D(l)f(X)d,“xm”p-

QxJ QxJ

For the first, argue as in the proof of (1.6). For neN, j,l[eIN%, 0% <1, set

Yhir= Y DO F(X ) X Ln,

1=izr(n)
Fhin= F DO FX) X5,
1=zisr(n)
Zhin= Nt X
i ul.n .1
Deduce 1<iZqn)
(111 | DOf(Xp)ASl . X— Y AR X,
1=izr(n) 1=i=q(n)

= ¥ % () (1) gnyeins pringiomedp, e

J
OFm=im<jsi \J/ M

+ 2y (V) qureen—zemxempap,)e
oxmsim=,<! Y/ \M

By definition, the integrands of the 2°¢ term on the right side of (1.11) can be
estimated by [D® f(X)— Y,| X'~™ Thus, the density of € in I4(Q xIL,B, p,,) and
ii) of Definition 1 imply, that the third term on the right of (1.10) and the 2™
term on the right of (1.11) can be made arbitrarily small. For the first term on
the right of (1.11), use dominated convergence and path continuity of D® f(X).
Finally, Proposition 1 assures the convergence of the 2" term on the right of
(1.10).

So far we have shown that both sides of (1.9) converge in I?(Q2, &, P). Using
(1.7) for identification, we see that the limit of the “rest term” of (1.9) must be
zero. Now the asserted formula follows by setting

ko=max{j<k: uy,=+0 for at least one I, |l|=j, iy, =0 for |I| >j}.
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The uniqueness of k, is a consequence of (1.7) and the uniqueness of ., on

B

Definition 3. Let keN, X be a (p,, 1<|l|<k; g)*-dominated process satisfying
(1.7). The number k, which exists according to Theorem 1 under these hy-
potheses, is called “I-order of X ™.

Remark. If X is a (p;, 1}l Sk; g)*-dominated process, then in consequence of
Proposition 1 and (1.2) applied to f(x)=x' there exist p-stochastic measures
Py, 11k, determined by py(F xJ)=1,4,X" for FxJeR. A real-valued
process X for which py, 1<I=<k, exists as a p-stochastic measure, is called “p-
semimartingale of order k” (cf. Allain [2]). In Definition 3 the letter “I” is
added in order not to conflict with this notion of “order” (for example, (1, 1)-
Wiener process is a 2-semimartingale of order oo, but of I-order k,=2, k,
indicating the maximum order of differentiation involved in Ito’s formula).

§ 2. Existence and Decomposition of the 2-Stochastic Measures )

In this paragraph we show, that the (N, d)-Wiener process is *-dominated and
that pyq exists as a 2-stochastic measure for all [eIN%. As a consequence of
this fact, Theorem 1 yields a transformation theorem for W, But, compared to
the classical Ito’s formula for (1, 1)-Wiener process, it has a considerable
disadvantage: while the classical formula equates stochastic processes, Theorem
1 merely gives an equation of random variables (J is kept fix!). The reason is
this: in the definition of Wiener integral martingale methods are used in a
crucial way; path continuity is proved via the powerful Doob’s inequality. By
applying the tools of multi-parameter martingale theory in this and the follow-
ing paragraph, the transformation theorem for W is improved to be an equa-
tion of process (Theorem 3). The most important step in this direction is the
decomposition of the “processes” (tym (2 X R)),p into “martingales” (Theorem
2). We first recall the well-known notions of multi-parameter martingales (see
for example Cairoli, Walsh [5], Wong, Zakai [13], Merzbach [10]). The
following generalization of the famous (F4)-condition of Cairoli, Walsh [5] is
assumed to be satisfied by all processes that are considered in this paragraph:

(2.1) for each bounded ae.#(F,, B(R)), each tell and all S, Telly, ST

E(|§)=E(E@F)IF ).

In particular, (2.1) is fulfilled by the filtration of W.

Let Selly. A real valued adapted stochastic process M such that M, is
integrable for all tell is called “weak S-(sub-)martingale”, if E(45M|&,)Z 0 for
J=1u,v]e3, “S-(sub-)martingale”, if E(M, , |%,)20 for (u, v)el?, “strong S-
(sub-)martingale”, if E(A, M|V FHN20 for J=]Ju,v]eI. (Weak, strong)

ieS

{1, ..., N}-martingales are simply called (weak, strong) martingales.

Remark. Of course, the hierarchy of the different notions of “martingale” is as
indicated by the words “weak” and “strong” and is in general strict. More
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precisely, we have the following relations. Let S,S,,5,elly, S, <8S,, be given.
By (2.1),

E(ASM|E)=0 iff E(4,M|§5)=0 for J=Tu,v]e3.
J u J

Therefore, weak S,-martingales are weak S,-martingales. Evidently, (strong) S,-
martingales are (strong) S,-martingales. Furthermore, strong S-martingales are
S-martingales and S-martingales are weak S-martingales. Consequently, M is
an S-martingale iff M is an {i}-martingale for all ieS.

Let now M be an S-martingale. Wishing to establish a maximal inequality
of the Doob-Cairoli type, one has to keep in mind, that M is a (one-parameter)
martingale in every direction i for ieS, but nothing can be said about its

behaviour in the S-directions. If M is right continuous, sup M, can be estimated
tell

by supe(M ). M is said to be a “proper S-martingale”, if v(M ) is

tgell
integsrals)le. If M is a proper S-martingale, the generalization of an observation
made by Wong, Zakai [13] shows that (v(M ,o)iscrs 18 an [S|-parameter
positive submartingale. Thus Cairoli’s [4] inequality can be applied to yield
the following result.

Proposition 2. (inequalities of Doob, Cairoli, Wong, Zakai): Let Selly, p>1.
Then there are constants ¢y, ¢,, 5 such that for every right continuous proper S-
martingale M and all =0

1) AP(sup|M |z =c, E(’U(M(.,15))10g+(“(M(.,1s)))1V(lsl_l))‘]"cz»
tell - -
ii) E(StuI?IMJp)éCs E@(M 1))

The proof of Proposition2 will be omitted, as it can obtained by direct
generalization of the ideas of Wong, Zakai [13], p. 574.

We are now ready to demonstrate, that W is a *-dominated process, and
thereby decompose its variations pi,.q, as indicated above. For F x Je®R consid-
er the approximations 1, AP W of p,a(F xJ). We will write them as a sum of
expressions which, on one hand, prove to be “natural” for deriving the
“domination inequality” (i) of Definition 1) and, on the other hand, are
approximations of stochastic integrals with martingale properties connected
with the Wiener process. Therefore, the following two lemmas give condition i)
of Definition 1 and a basis for the desired martingale representation of
(:uW(')(‘Q x Rt))te]l'

Lemma 1. For (7,¢9)ed,y, Je3I set A7 P W= T[] (4,c W)*D. Then, for
leNG\{0}, J=Ts,1]€3 res

!
AOW = AT W,
(7, P)e®o, n, |P|=1 d)

Proof. For Telly, observe that R, \R,= ) J®and put
QST

A= (Y M\ >N, V=) {S: y(S)+0}  for yeA.
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Then, by additivity of 4 W/, 1 <j<d, and the polynomial theorem
AP W= Z (=DF-I1Tl H ( Z Ay WY

@ *Telly 1<js5d 9#5ScT
I
= > SO Y (=) ] s Wy,
ved, [yi=1 lﬁ Vy<Telly O +Selly

Now note that Y (=1~ is O resp. 1, if ¥, *{1,..., N} resp.={1, ..., N}
V< Tely

and, for yed, set 7 ={S: Yy(S)*0}, ¢ =y|,. The asserted formula follows. _I

Lemma 2. Let (7, §)e®, y. Then there is a constant c,€R and for each finite
subset R of I there is a number ngeN, such that for all nZng, all Y,€€ having

an Il-representation Yo=Y o1, (recall that i and r(n) are WN-valued
iZr(n)

1=
indices) with respect to the partition (J'":1<i<r(n)) generated by

0,=R|) {—:; Q§i§ﬂ}, the following inequalities hold

I

1

1=i

i 1 .
o A% W\lzélfz co(JI Yo lPd(P x AN)'2, i (7, 9)¢Y, v,
r(n)

GATOW— Y o [] Agune WP TT NI,

r(n) 1Zisr(m) TeT TeJ 9

!I/\

é]/% cy([IY2d(P < A2, if (T, d)e¥W 5, T '={TeT:|$(T)|=1},
TO={TeT: |$(T)|=2}.
Proof. To derive the first inequality, set
F={TeT: ¢,T)is odd for at least one j, 1 <j<d} L= T

TeS
Write the integrand of its left side as a double sum over i, k. From the fact,
that W has independent increments with zero odd moments, and the inde-

pendence of WY, 1<j<d, conclude that there is no contribution from terms
such that iy, k. Thus

22 | Y «AZPwWIli= Y E( Y o ATOW)?
15isr(n) lysigsring lgsigsring
< E((@ %2 W) ][] r(n), (Cauchy-Schwartz)
1SiZr(n) ke&
=ci 2, EW@)) IT T1AAW*)) P[] rn)
1<iZr(n) 15jsd TeT kes
[T[1$(T) 7 ..
Sy o J1Y|d(P x /IN)( )Z ( + L+ |RNZI(Y, is previsible)

. 1\
(M) (ﬁ) rSn+ 1+ R)),
putting ¢y, ¢— sup sup E((W )2¢J(T))

<jsd TeT
Now from (2 2) it becomes clear, that the first inequality is a consequence of

23) Y TN -N—-{ZL|=1.

Tes
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But since (7, ¢)¢ ¥, y, there is at least one Te& with |¢(T)|>1 or Te& with
|¢(T)|>2. This implies ) |T||¢(T)|—N—|L|> Y [T|+23, |T|-N—|#|20,

whence (2.3). Ter Tes Tes
In a similar way, the second inequality is proved. It is trivially true in case
FO%=0. Assume J°+0 and enumerate its elements by Tj, ..., T,. For con-

venience, omit the index » in the following estimation. By telescoping

24 I Y A7 W= 3 o [T (Agye WD T 2V,
. r Ted 1

1 1=i=r Ted©

YOI Y o [T Wyye WD T (dgyyr, WP

1£ksq 1<5iSr Ted!l 15j<k—1

A gyr WY =ANYT T AN

kt+igjs

IA

7ANN

Fix k, 1=k<gq, and replace & resp. & by I 'U{T;} resp. | ) TUT, in the
TeT !
above arguments. Observe that [(4 4z, W)*™ — A¥((J)™)] has mean zero and

variance cA¥((J')™)* where ¢ is a constant not depending on n. This gives the
desired conclusion for the k™ term on the right of (2.4). k being arbitrary, the
proof is complete. _I

Combined with Lemma 1, the inequalities of Lemma 2 signify, that
gets no contribution from (7, @)-terms such that (7, ¢)¢'¥, y, whereas for
(7, p)e¥, y there is a contribution which is asymptotically equivalent to an
“elementary stochastic integral” of Wiener process on a space containing the

set
D={ ) ailFiln(Ji)T:YOZ Y. alp,,,€€},

1izn Tes 1Zisn

where it is defined by

Y oalnl o = Y aly [T Gy W TT 24D,
1<ign eI Ted ! Teg 0

It will now be discussed how to define those integrals, how to extend them and
what are the martingale properties of the corresponding integral processes. As
will be shown in §4, they can be obtained by “iterated stochastic integration”.
With this in mind, we will define integrals not only for ey, but for arbitrary
T et. Note that the o-field generated by D on Q xII7, contains all sets of the

form Fx [ J¥, F x JeR. But the latter class is not closed for relative comple-
TeJ
ments. This fact makes plausible, that we may start with the following defini-

tion.

Definition 4. Let Tet.

L Iy={s=(sT)per€ll”: st>s§ for S,TeT, S*+T} is called “set of 7 -
ordered points”, R, :={Fx [[ AT: AT=]s",1"T]e3, st=t for S,Ted, S=+T,

Ted

Fe§ \%—ST} “set of T -previsible rectangles” (c Qx1,). Let A, denote the ring
generated by R, P, the c-algebra generated by R, (“o-algebra of T -pre-
visible sets”). €4, the linear hull of characteristic functions belonging to R, is
called “set of 7 -previsible elementary functions”.
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2. Let Y= ) be a J -previsible elementary function,

.1 72
1§i§nal F‘-XTI—LA’T
AF=1s"1 1", and for Q<1 let (K/: 1<j<r) be the partition of II generated
by

QuisTitT i 1gisn, TeT}, a,= 415, [T Ly ke aryK*)
1<izsn TeT

fIA
fIA

for £=(kT);.5, 1SkT<r, Te . The representation Yo=Y a£1H g 18 said

<kT <
1=kTzr Ted

to be a “Il ,-representation” of Y, “subordinate to Q7 (in case Q=0 “Il-repre-
sentation” of Y,).

3. Let et be such that & is a “refinement” of %, i.e. each Se¥ is the
union over Jy={TeZ : T <S}. Further let Ye.Z(*B,, B(R)). Set

Y7: QxI,-R, (0,9 Y (o, (sup s sey)-
TeTs
The process Y7 is called “J -corner function of Y™
For Ae,, let A7 be the set defined by 1,5 =(1,)”.

Example. Let N=2. For 7 ={{1,2}}, we have I,=I, R,=R, P,=P, €,
=E€. For 7 ={{1}, {2}}, I, consists of pairs of time points which are “incom-
parable” w.r.t. “<”. The following sketch may help to visualize {{1},{2}}-
previsible rectangles.

I
A1
AL
S 7’ 12
S §2
s

The {{1}, {2}}-corner function of Ye.Z (B, B(R)) is just Y(w,s', s¥)
=Y (o, s v s,

Remarks. 1. Let Yo= 3 ocrfll—I * be an Il-representation of Y€€, such

T
1=kTzr Tes

that K/'=Tu/,v7], 1<j<r. Then, for every £, o, is a 36_ --measurable step
function which vanishes if [] K*" 41 Tes

Ted
2. 9 -corner functions are PB,-measurable. If 7 is a refinement of &, Ye

(P, B(R)), then obviously Y7 =(Y?)”. If FxJeR and (J*": 1<j<r(n)),n
is a sequence of partitions of Il in I whose mesh goes to zero, then

Fx [T 0PnT—(FxJ)”.
127Er(n) Ted
(This gives the relation between D (cf. p. 547) and the corner functions.)
3. The linear hull of {1, 11_1 ot Fx JeR} is identical with €.

Ted
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For (7, ¢)e ¥, the elementary integral whose approximation appears in the
2™ inequality of Lemma 2, can be introduced on €,. Note that it does not
depend on the information provided by ¢ on 7° (cf. Lemma 2). Therefore we
may use ¥ instead of ¥,.

Definition 5. Let (7, ¢p)e V.
1. The linear mapping I{*9: €, —>I*(Q, &, P),

>, a alp, ar™ Y alp [] 4 WO T AN4)),

15isn P 1<iZn Teﬁ'~1 Ted 0
= g

is called “elementary (7, ¢)-integral” Let u-9 be the restriction of I % to
characteristic functions of sets in R .

2. Thelinear mappings I§9: €, » QXL P, P xAV), Yo I P(Yo(1g, r)7 )
is called “elementary (7, ¢)-integral process”.

Example. In case N =2, Definition 5 just gives the elementary versions of the
well-known stochastic integrals of Wong and Zakai for the Wiener sheet. More
precisely, the integrals [.dW and {.dWdW, necessary for the description of
“martingales” which are measurable w.r.t. the Wiener filtration (see Wong,
Zakai [15], p. 118), are covered by “¢p=1":

I§-20D corresponds to {.dW,  I§-CRD 4o [LdWAW.

In order to obtain a fully developed stochastic calculus, Wong and Zakai [13],
Sect. 3, p. 574, studied another type of “iterated” stochastic integrals, the
“mixed are integrals”. For the Wiener sheet, they are recovered by taking

o,({11) =1, ,({2})=0, $,({1})=0, ¢,({2})=1:

I§1-3040  corresponds to [.dudW, 1§12 to [ dWdu.
Finally, “¢ =0 yields integrals w.r.t. Lebesgue measure:
I§H20 corresponds to [.du, I{*™»Z:0 to {.dudv or [.uju,du.

See Wong, Zakai [14] for a stochastic calculus with the above integrals. For
extensions of Wong’s and Zakai’s notion of “iterated” stochastic integration
see for example Cairoli, Walsh [5], Guyon, Prum [7], Merzbach [10], Yor
[16], Sanz [12].

Remark. For Y,e€, the process I -?(Y,) has continuous trajectories. By the
following lemma I(J ? s “domlnated” This makes an easy extension pro-
cedure possible.

Lemma 3. Let (7, ¢)e ¥, Y,e€ . Then

7' 17°
Proof. The following arguments are similar to those used to prove Lemma 2.
Let an I-representation Y= 3 oc,glH g of Y, be given. Insert this repre-

<ET <
1=kTzr TeT
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sentation on the left side of the asserted equality to write it as a double sum
over £, 7e(NV)”. Observe that there is no contribution if £5 4,1, since W
has independent increments with mean zero. Therefore

HI(()%@(Yo)“%: Z E(( Z o n AN(K"T))Z n (AKkT W¢(T)))2

,Teg't 1=2kT=r, Teg® Tego© TeJ !

- ; E(( a, [] ANEY TT ANEK)

,TeT ! 1<5kTZr, TeF O Teg© Teg!

(Yoe (R 7, BR)
=E([ (] Yo(.,0)dogo)dog).

17t p7°

Lemma 3 makes clear, how a “natural” domain of extension of I§ ¢ must
look like.

Definition 6. Let (7, ¢)e V. For Ye.# (B, B(R)) set
HYH(g—,d;)=[E( f ( I |Y|(-55)d33‘0)2 derl)]l/Z’
17! g 7°
L(ﬂ',(ﬁ):{Y: Yedl(PB 5, BR)), | Y“(Jr, H=< o0}.
Remark. For (7, ¢)e¥, L 4 is a Banach space with respect to the

norm |. [l 4, in which &, is dense. For Ye.Z(P,, B(R)), the inequality
H Y“(f, ¢)é | Y”Z is Valid.

Proposition 3. Let (7,¢)e¥. Then u7 % can be extended to B, such that,
denoting the extension by u'”+®, u7>9 is a 2-stochastic measure. I ? can be
extended to Ly 4, such that its extension IV-? (the “(7, ¢)-integral”) is a 2-
stochastic integral satisfying

7PN, <Y 7y for YEL, ).

Proof. By Lemma 3,

HIE)'%@(Yo)Hzé Y, H(g‘,(p) for Y,e€,.

€, being dense in L, 4, the proposition follows. |

The extension of elementary integral processes is based upon the following
martingale property.

Lemma 4. Let (7,$)ePy, Y,e€,. Then I'7:P(Y,) is a continuous I '-
martingale.

Proof. Evidently, I(Ogjt"")(YO) is §,-measurable and integrable for all tll. By the
remark to Definition 3, Remark 3 to Definition 4 and by linearity of 1§ it is
sufficient to prove

(25) E(I(Ofdj)(ll’]‘n KT(IQXJ)ylguvs)zoa

Ted

FxKe®R, K=]ls1], J=Juv]¥® ieSes "
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Observe that

1F1H KT( QXJ) F H KInJ, XKT,K;(\JTXKTZC]O,MVS] for T:FS,

K3nJgx K§n]0,uvs]=0 by definition of J and S.
Since W has independent increments with mean zero, (2.5) follows. _l

Remark. An analogon of Lemmad4 can be proved for arbitrary (7,¢)e¥:
1§92, 7(Yp) is an Z-parameter 7 1—martmgale Y,e€, . But since Y, is adapted
only with respect to the filtration (§Z),.q, nothmg can be sald about the
dependence of the elementary integral process on the J-coordinates. With the
F-coordinates fixed, the following extension procedure could therefore also be
carried out in this case.

We might try to extend the elementary integral process to Ly 4- But, in
general, L, , may be too large to produce continuous J '-martingales. Since
it is sufficient for the purposes of the following, we restrict our attention to
CF(QxT,, B, Px (AN (although we could take a larger “intermediate”
space). For Ze (B, B(R)) set | Z]| . ,,)=lIsup|Z,], and

tell

[N QXIL P, P)={Z: Ze (B, BR)), | Zl| 1, )< 0}.

Note that L**(Qx1,B,P) is a Banach space with respect to the norm
[-ll(2,00y- Lemma4 does not tell all the truth about the elementary integral
processes. As the proof of Proposition 4 shows, I{:#(Y;) is a proper
Z '-martingale. Moreover, thanks to Proposition 2, I(J *? maps €, into
L% =(Q x 1L, B, P). This important fact will be exploited in

Proposition 4. Let (7, $)e¥y. The linear mapping 1§ :9: €, —»I*(Q <1, B, P)
can be extended to LZ(QXIIf,‘BJ,Px(/IN)|"|) The extension, denoted by I +%)
(the “(7, ¢)-integral process™) is linear, continuous and satisfies the following
conditions

D) O 000 S Y15, YL@ %Ly, By, P (1)),
¢ being a universal constant,
i) I (Y)=1""Y (1o, p)7), tell, YeX(Q x U7, B, P x (AN,

For each YeI?(Q x1, B, Px (NN, 1Y) is a continuous proper T *-
martingale.

Proof. We will show
(2.6) E(U(I(OJ( ¢)1y1) Yo))2)§ [ Yo”i Y,e€

7
Once this is done, Lemma 4 and Proposition 2 yield a constant ¢, such that
2.7 G P (Y) 1,00 S CE@UE (P g ()), Yoe€s

Now combine (2.6) and (2.7) to obtain i) for J -elementary functions. Use
density of €, in I2(Qx1,,B,, P x (A1), familiar extension arguments and
the definition of ||. || ; 4, to finish the proof.



552 P. Imkeller

To prove (2.6), set U:=7"° and let (J;,=7]sk,15]: 1<i<n) be a partition of
I, in 3, o= ) o« [] 1,r and I-representation of ¥,e€, subordinate to

1=kT=r Ted

Q={(u,1 U) (v}, 15): 1<i<n}. Linearity of the elementary integral and of the
operation “Y— Y7 together give the following equation, valid for 1,<k,<r,

(2.3) AK"UIE)‘F(’@W)(YO)=I(y’¢)(y (IQkaUx(Rl)ﬁ)f)
=1 MY, 1, H lKkaHT) n 1p

TeJ©

= > ae TT 5K TT A WO

1=2kT Zr, kL =kt for Teg O TeJ© Ted

Sum (2.8) over ky to obtain

E( Y My 1600 (YD)

<k, <
1 Sk Sry

=E( > | Y Y oo [] MK [ A W)
kF<rr !

Lrskfsrr LEKOSr irskr<r Te7© Te7
Teg 0 T 3
- T AT
TeJd©
T T
< Z E(( Z Z oy 1_[ AT (KkT) 1—[ AKkT W¢(T))2)
z p T T r g0 G 1
lT%g;gr %gﬁ_%rl %g;_oér'r Ted Ted
gL AR (Cauchy-Schwartz)
TeJ©

<[ 1Y d(P x (AMH=11%, 113

(cf. proof of Lemma 3, remark to Definition 6).
Since the partition (K% U:1,Sky<r,) is finer than (J§:1=i<n), (2.6)
follows. _I

Equipped with the (7, ¢)-integrals of Proposition 3, we now apply the
results of Lemma 2, to get *-domination for W and to decompose its vari-
ations.

Theorem 2. 1. For each [cIN4\{0} there is a constant c,, such that for all keN

W is a (¢, P x AV, 1 Z|l| £ k; 2)*-dominated process.
2. For each leN$\ {0}

LT s
pwa(d)= Z 17O 0 M 47), Ae,
(T Oy - i1y 2 (1—|«/-|),
-7 I —————2 !
1 7o o~ .
§Ydpyo= > e | 6.1| 17-9(Y7),
BT = 2 (l—|J I)
ket 2

YeI2(Q x I, B, P x A¥).

Remark. Since for (7, ¢)e¥y, we have m(7,¢)<2N, Theorem 2 particularly
says, that pya,=0 for |[|>2N.
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Proof. 1. Lemmata 1-3 and the easy inequality

1Y <|Yl,, YeIX(@xILP,PxiM,

l. o=

yield constants ¢;,/eINg\ {0}, such that condition i) of Definition 1 is satisfied
for py=c,Px ¥, q=2. As W/ is a strong martingale, and all moments of W/
exist, 1 £j<d, condition ii) of Definition 1 can be derived from Proposition 2.

2. By definition of all appearing integrals and by linearity, it is enough to
prove the first of the asserted equalities for A=FxJe®R Let
(J*": 1<j<r(n)), neN, be a sequence of partitions of J in I whose mesh goes
to zero, and define the “projection”

I x— W, (7,0)>(7,Y), where

VT —{0,1,....d}, T— 0, if |¢(T) =2,
j, il ¢(T)=¢;, 15j<d.

Then
29) ppoFx))=E—)liml, Y A%.W (13)
n— oo 1<j<rn)
= ¥ ——(L2 Jlim 1, Y AW (Lemmata 1,2)
(7, $)e¥o,nN, |@|= l¢' n- oo 1<i=r(m)
-y e ) lim yT (] Fx [T @7
T D) Fon 1pl=1 P! n- 15j%r(m) Tes

(Lemma 2, Definition 5)
¥ [ qbl‘
T ¥y LT, o= ¢!

| @<,
(Remark 2 to Definition 4)
Now, by definition of I' and ¥, y, ¢!=2!7"! for (7, $)eI'~* (7, ¥)), and

7!

(7, 0): (7, d)el ~M (T, ), 1ol =1} =W Lonir = 1= 7 11 200y
v
5!

where, of course, “7°” and “J'” are with respect to . Inserting this into
(2.9) yields the desired equality. _|

Corollary. Let [e2IN2, [I|=2N. Then for F x JeR

1 IIN!
MW(1>(FXJ) ‘AN 1 Fj H u]iv_ldu'
2 ( ) J1=Zi<N
Proof. Put & ={{i}: 1<i< N}, ¢ =0. (#,¥) is the only clement of ¥, satlsfymg
m(&,y)=2N, since for (7, ¢)e ¥, such that 7'+

m(7, $)<2(7°|+|7)=2N.
But
K@ RPN =[] Ry, sell,

Te¥
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whence by definition of I, and Theorem 2 the asserted equality follows for
J=R,, sell. Use u " V(FxJy)=1,pu7P(QxJY") and additivity of p-¥
to complete the proof. _|

§ 3. Ito’s formula for (N, d)-Wiener Process

(N, d)-Wiener process satisfies condition (1.7) of Theorem 1, as will be shown
below. Therefore, by Theorem 1, we get a (“weak”) version of Ito’s formula.
Using the decomposition of Theorem 2 and the extension of Proposition 4, we
obtain another (“strong”) version which is an equation of processes.

Theorem 3. Let fe C*¥(RY).
1. For each IeN%, | 2N, suppose that DV f(W)e2(Q x 1L, B, P x AY). Then

A, fw)= Y [ DOfW)duyaw, JES.

1s(i[s2N l- QxJ

2. For each (7, ¢)e Wy suppose D7 P f(W)e [*(Q x I, B, P x AY). Then

A fW)= %If”r"”)((D(“)f(W))F)-

(. $)e¥ N
Proof. 1. To verify (1.7), let J=]s, t]e3, Telly, [eN? such that |[[=22N+1
and (J"=]s"" 0] 1<j<r(n) be the partition of I generated by
0,={s, t}u %1Q§i§ﬂ , nelN. Since for u, vell, usv, p=1, 1<j<d the p®
moment of WJ/—W/ is a constant multiple of [A¥(R,)—AY(R)]??, and since

N
by choice of the partition [AY T ANR )L <— r(n)<n+2, there is a
constant c,, such that
N\J/2 N2
E( (Wegn, o — Wos ) < (,) < +2N(ﬁ) _
1§Jz§:r<w o = Wl D= 1§Zgr(n) n sa(n+2) n

As ||22N +1, this implies (1.7). Use this together with Theorem 2.1 to verify
the hypotheses of Theorem 1.

2. By Proposition 4, the processes IZ#(DZ® f(W)”) are continuous. This
fact and ii) of Proposition 4 assure that we are done once we have checked

(3.1 Ay f(W)y= ) %I‘f¢)((IQUD(£¢)f(W))Jf), Je3.
(7, )Py
The following equation is a consequence of Theorem 2.2 and linearity:
A=Y g
1sfTeon I s ATy 1 2177 (l—lf'.ll)!

(1, , DO fW))

1 o A
" gy 7T ([19“( A
& e m Bl ( . )!
2

po) o]}
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Since
g 0|1 a7 0|1
7" 0 — 7 |'D(2k)D(|ﬁi‘|)
Z l a1 k'
7=l -7\, KeNg, k= |70 K:
1— |7 e2Nd B :

(3.1) follows. _J =DV DI =D for all (7, d)et
. OlIOWS.

Corollary 1. Let & ={{i}: 1Li<N}, ¥=0. In the formula of Theorem 3.2 the
term belonging to (%) (the term of highest order) is given by

1

j DY f(w), ] u¥-‘'du.

1<i<N

Proof. Look at the proof of the corollary of Theorem 2 and observe
D¥=p¥ ¥, |

Corollary 2. (N, d)-Wiener process has I-order 2N.
Proof. Use Theorem 3 and the corollary of Theorem 2. _|

§4. Iterated Stochastic Integration; Modification of Ito’s Formula

In a forthcoming paper, the stochastic calculus developed here will be used to
compute local times (especially for (N, d)-Wiener process). For the needs of this
application, a modification of Ito’s formula (Theorem 3) will now be derived.
The idea is, that a “transformation formula” is available, in which - besides
the term of highest order (cf. Corollary 1 to Theorem 3) - all terms are of the
lowest possible differentiation order. It is established by “partial stochastic
integration”, a method whose classical counterpart may be found in appli-
cations of “Green’s formula”. The most important tools are a notion of
“iterated stochastic integration” and a stochastic version of Fubini’s theorem.
We have to consider Wiener process on the affine submanifolds

{(ty, ty): tyelly}, tpelly, Uelly,.

Definition 7. Let Uell,,.
1. Let Tery. 1Y ={s= (s Nyes€lly s sE>s3 for S, TeT, S+ T} is called “set
of 7 -ordered points in 1,”

—{Fx [] AT: AT=15",71e3y, sT> 15
TeT
U
for S, Ted, S+ T, FE€F, (r 1}

Ted

“set of (7, U)-previsible rectangles”. Analogously to Definition 4, using Y. resp.
RY. instead of I, resp. R, NS, BY (“o-algebra of (7, U)-previsible sets”) (GPA
(“set of (F,U)-previsible elementary functions”), “lIY-representations” and
“(F, U)-corner functions” are defined.
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2. Let (7, ¢)e ¥, telly and put
B,: M(P5, BR)—.A (P, BR)),Y-Z,
where Z(., (")) =Y (o, 5Dresr) 11 LiryoS8)-

Then "~
1Y {5 4y = 1BVl (57 4> Y- M (PG, B(R)),
Ly ={Y: Yed(PB5,BR), |Yis4 <o),
[00: [ ST2(Q, B, P), Y—IT9(B,(Y).
(The meaning of “yl7 07 «“[(7¢:07 « (Fén> <[5 60> js obyious.)

Remark. As in Lemma 4, it can be verified that 1Y #9(Y,), Y,e€%, has mar-
tingale properties. The extension of Proposition4 could be considered. But
since this is irrelevant for the sequel, it will be omitted.

The following lemma on “I°-extension” (cf. Cairoli, Walsh [5], p. 132), on
one hand, is an important tool in the proof of the “stochastic Fubini’s theo-
rem” and, on the other hand, yields an extension of I§"# resp. 1§ %7 to L,
resp. Lig 4, (7, $)ePy,.

Lemma 5. Let (7,¢9)e¥, (A,®,v) a finite measure space. Further, let Y,
Yed (Ppx ®,BMR)), Z,e.4(F*x G, B(R)), ncN, be such, that

lim [[|Y,(.,x)—=Y(., %)% 5 dv(x)=0,

n—w A
Z. (., x)=I1"9(Y,(.,x)) for v-a.c. xeA.
Then there exists Ze M (F x ®, B(R)) satisfying
1Z,(e, X)=Z(, ), =Y, (0, %) = Y (., X)|| (5 4 fOT v-ae. xed,
Z(.,x)=I?(Y(.,x)) for v-ae. xeA.
In particular, Z,—Z in measure (P X v).

Proof. By hypothesis and Proposition 3, (Z,), is a Cauchy sequence in
measure (P x v) and

HZn('= x)—Zm('7 x)“Zé H}};l(" x)_ Ym(" x)”(9:4>) for n, mEINa v-a.e. xe.

The limit Z of (Z,),o has the desired properties. _|

Corollary. Let Uelly, (7, $)e'¥,.
1. Let p be a finite measure on B(). Then for each YeL g, there exists
X9 4 (P, B(R)) satisfying

ngf,@___l(ﬂ?(b)(y(lgx Rt)jﬁ) for p-ae. tell

2. Let p on B(I) be the product of finite measures p;, 1 <i< N. Then for each
Ye. # (B, B(R)) such that

(4.1) § Y (., ) 1G] doglty) < o,
Ig
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there exists Z7 Ve 4 (B, B(R)) satisfying
Z&P =11y, ryw Yo, 1)) for p-ac. tell
Proof. 1. Observe that € is dense in L, 4 and
HY—=2)(1,, Rt)f ”(3‘, &) =|Y- ZH(g‘, é) Y, ZEL(% @)
Apply Lemma 5 with (A4, , v)=(II, B(), p).
2. € is dense in the set of previsible functions satisfying (4.1). Furthermore,

f[ll[Y( to) = Z(., to) 1o ryo]” (G ) dp(0)

Spullly) § LY, t0)=Z (s 1) 15001 dpolte), Y, ZeM (P, B(R)).

Since for Ye€ the assertion is true, Lemma 5 with (4, ®, v)=(I[, B(I), p) can be
applied. _I

Proposition 5 (“stochastic Fubini’s theorem”). Let U,Vell,, UnV=4,
(7, P)e ¥y, (S Y)eW,, U:=T 0, yi=0 Y, Yel (By, B(R)) such that

g_HY(n v 3|y dog < 0.
i

Let p be a finite measure on B(L). Then:
D) for (M7 -ae. o7, 1 Y(., . 95) sy I8 finite,
ii) there exists Z‘g"l’)e,/%("BJr x B M), BR)) satisfying

ZYW(, 5., )M (P, B(R)) for all 4.,
ZOD(, oy, )=1D(Y(1g, g )"(es e 05)  for (M) 1x p-ae. (55, 1)l x 1,
iii) NZ(SW)(-: - t)”(zy—.w)dp(t)< 0,
i
iv) there exists X% Pe # (B, B(R)), such that
XE0=JONZED( ) =1"D(Y(14,5)%) for p-ae tell

Proof. i) is evident. For Y€€, the assertion follows easily from the definition
of the elementary integral. Let Ye #(B,, B(RN)) be given, satisfying the above
finiteness hypothesis, (Y}), @ sequence of #-previsible elementary functions
such that

(4.2) I T IY=Y9) (g r) (.o, 90y das dp(—>0  (n—o0).
I

7

This sequence owes its existence to the density of €, in Ly, , (cf proof of
corollary of Lemma 5). For nelN, s,€ll,, tell let

ZED(., 55, ) =T1CD (Y10, g ) (s e 35)):

Put A=, xI, v=(2""1. Then, by (4.2), the functions Y(I4, £)* Y3(lo, )"
and Z% " fulfil the conditions of Lemma 5. Hence there exists
Z Ve it (B, x B(I), B(R)), such that ii) and iii) are valid, in particular
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@3)  [I1ZEP( o D= ZO(, s D)2 dp(O)
I
<= Y0 (o) (oo, 05, o (o).

Let X2 correspond to Z¥*¥ and satisfy iv), neIN. Set A=1II, v=p. This time
Z@N 79 and X2, according to (4.2), (4.3), fulfil the conditions of Lemma
5. Consequently there exists X% Y. # (P, B(R)) which has the desired proper-
ty iv).

Corollary (“stochastic Fubini’s theorem for corner functions”). Let U, Vell,,
UnV=0, (7, $)e¥y, (KWW, U=T 0¥, 1=¢ Uy, Yel (B’ B(R)) such
that

L1217 doy <o,

I

Let p be a finite measure on B(). Then:
i) for iN-ae. sUell, (YPY7(.,., ") ., is finite,
ii) there exists Z Ve # (BY x B(), B(R)) satisfying

Z¥0N(, s, Vel (PUYY, BR))  for each sUell,
ZEN(L U ) =T"([(Y1g, g)V71(., ., 8Y)  for ¥ xp-ae. (sU, nell?,
i) [IZEV(., . 0)7 15 dp(0) < o,
I
iv) there exists X% Pe # (PUY, B(R)) such that
X0 =[FO(ZED(,, ) )=ICD(Y1g, o)) for pae. tell
Proof. According to Remark 2 after Definition 4

Ll Y{U}Uy”(y;,/,)]y(-, wag)=| Y%('n o Of)n(y;.p)-
Therefore, by hypothesis,

FUIY%(, e o)y do s < 0.
i

Apply Proposition 5 to Y%, _|

Now observe that, by scaling, Wiener process on the affine submanifolds
{(ty, ty) i tyelly}, tgelly, Uelly,

can be transformed into |Ul-parameter Wiener processes. This basic fact is
exploited in the following lemma which, as a link between stochastic integra-
tion over intervals and stochastic integration over their surfaces, could be
considered to be an elementary “stochastic Green’s formula” (see Dozzi [6],
Guyon, Prum [7], Cairoli, Walsh [5]).

Lemma 6. For Uell, let (U, y)e'¥,. Suppose that fe C*IV(RY) satisfies
f(W)a D(‘%w)f(W)GLZ(QX]Ia ;‘BvaﬂN): ('% l/j)ellllj'
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Let p on B() be the product of finite measure p;, 1<i<N, such that

(“4.4) § SOV ) G g1 dpzliz) < o0, (U, 1) <(T, $)e ¥.

1
Then, for (U, ) <(T, ¢p)e P, there exist X" Pe M (B, B(R)), such that
XPO=19"D (g, gy, S W )17)  for p-ac. tell,
g g, 1 U U U
(=DOIXEO= 3 g [T (DS (W)
W, 1)< (T, $)e¥ N g
for p-ae. tell.
Remark. According to the hypothesis, (4.4) is satisfied for p=A".

Proof. In consequence of the hypothesis, by a (classical) Fubini argument, for
AN-a.e. sUell, we have

(4.5) [P f(WY7(., 5%, s finite, (S )€y
Pick sUcll satisfying (4.5). Note that

__(Jh=1/2
XtU - (SU) msg,tﬁ)

is a |Ul-parameter Wiener process. g: R>IR, x—f((s)*2 x), has the differentia-
bility properties of f and

DUV g(x) = (SHIRMERDEN [(y),  y=(si2x,  (LY)e .

Let the (% )-stochastic integrals belonging to X be denoted by the letter “J”.
Then, by definition,

I (B (1)) = [4D(V) = (YH2L0 N (Y),  YeLef,, (%)ety.
Use this to translate Ito’s formula for X (Theorem 3.2) into the language of W:

4.6) AgU,t]f(W):A]sU,t]ﬁg(X)
1

= Z PIE&d J(xw)((lgx]sU.z]gD(xw)g(X))y)
[EATE 474
1
= % s I (g r DO S WYCs 5,

&) ¥y

Next observe that for UcTell, the set I, can be written as the (1¥)l-as.
(pairwise disjoint) union of I, # <9,  €1,. Thus, using (4.4), we obtain for
p-a.e. tell

A7) I™D((1g, & 47 1 (W)
=IOl Y (=DT=WFW, 1%

UcTelly

= Z (_I)ITI—IUI z I(f’q&’tf)([lgx(Rt)Tf(VV(.,tf))]F)-

Uc Telly (U, 1)< (T, P)e¥r
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Now combine (4.6) and (4.7) in the following way to complete the proof: from
the corollary of Lemma 5, conclude, that there are X" ?®e.# (P, B(R)), such

that (I, ¢) I, ¢, t7 T
X79=1"% 1)([1!2><(Rt)_g_—f(wl(,,tz=))] )

for p-a.e. tell, (U, x)<(T, P)e ¥,

finally apply Fubini’s theorem for & U%-corner functions to (4.6) and com-
pare. _l

Lemma 6 is the corner stone in the proof of the following modification of
Theorem 3.

Theorem 4. Let fe C*N(RY) be such, that
D@ f(W)e2(QxI, P, P x A), (T, p)e¥.
Let p on B(l) be a product of finite measures p;, 1 Li<N, such that
(4.8) Hf_[I\D‘F"")f(VV(_,@)f lZ 1?2 dpz(tz) <o, (7, 4)e¥.
7

For (7, p)eA define

i RN
%gp= 1] (T|=D(=1Z-+ Y k;m(_l)w_l(i)ild '

TeT© 0giz|g| ix

Then:

for each (7, p)e A there exists XT e 4 (F x B(I?), B(R)) such that
i) X%9(,s,.)e (B, BR)), sell,
ii) X(ﬁid’)(.’s, t)zA]s,z]JFI(F’d”')([lgx]s,t]gD(y’d’)f(VV(.,.))]Jr)

for pxp-ae. (s, t)ell?,

1 -
111) A]s,t]f(W): z a(ﬂ:qﬁ)WX(J"m("S’ t)

(7: d)ed
1

+v [ DYOV), T w''du

Is,t] 1<i=N

for pxp-ae. (s, t)eli®

Remarks. 1. According to the hypothesis, (4.8) is satisfied for p= A"

2. For (7, ¢)eA we have m(Z, )< N. This means that the orders of differ-
entiation corresponding to X% in iii) do not exceed N.

3. According to ii) and the definition of I %9, X% ¢ may be considered as
a stochastic integral on the surface of s, ¢] 7.

Proof. As p is a product measure, a (classical) Fubini argument shows, that the
assertion follows, once we have established: for each (7,¢)eA there exists
X7 9e (P, B(R)) such that ii) and iii) are valid with s=0. Regarding Lem-
ma 6, it is enough to prove
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1 = . pu
(49) dg fW)= ) “(%¢)WI(J’¢”2)([1gx(Rosz’mf(VV(.,@)]J)

(7, ¢)ea

1
+§ﬁ fDYfw), J] w~'du for p-ae. tell
R: 1<i<N
Pick t<ll such that | DY ¢’f(m_’t7))yl|2§:,¢)<oo for all (7, p)eA. According to
(4.8), this is true for p-a.e. tell.
For J e, kelN, put

Br=I{&: & is a partition of 7, |¥|=k+1}|.
Further, let
h: Uy A, (T,0)>(L ), where & ={TeT :|p(T)+0,if |T|=1}, y=4¢|,.

Then, by induction on k,

(4.10) 2iN lngNf(W)u IT «¥-'du

1=isN

1 .
=4p S+ Y sm( T (<17 )
(U, Y)ed 0gjsk—1
(— 1)IZ|—I@I 1(3‘,4:,:5)([19)( g D(j;d))f(wl(_,ty:))]!/—)
(WU, x) <(F, ped - -
1
+(=1F Y Wﬁhl(%n),kﬂv’")«lgxRtDW’")f(W))V)

me¥N

To argue “k—k+17”, note that k& is one-to-one and fix (%,y)eA\Ay. Apply
Lemma 6 with p=¢, to get

1
ﬂ”k,k 2h1‘1(”ﬁ,x)

1
=B >0

L4 ([lg.r DF @0 f(W )] 1)

@ <Fw A(_l)ul M D [ g gy DO O SV i590]7)
s X< s €

1
- > Bawzror 17" (g, DHP F(W)7).

me¥ N h(hEn) g (%, x)

Now sum this equation over (%, y)e A and observe

B%,kzﬁhl(v,n),kﬂ-
h(Em g (U, 1)

Since for k=N —1 the last term on the right side of (4.10) vanishes, we are left
with the following assertion

(4.11) Ygpy=— O (*1)'@_'%'(0 ZI i(—l)j_lﬁzj)=

A3, 1) < (7, $)

= T
(gvsd))EAa ﬁﬁ_,j:ﬁﬂk’j, 1f%<g-)
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On one hand, by the general addition theorem and the polynomial theorem,
we have for 0<j <17

|7|! Eak
e eV G D VT
leNi+1(l[= 7| t* Sell; 41 LeNfT 1181 |1|= 77| *:
R A
= 3 o (e
0<igj+1 1

On the other hand, by the binomial theorem,

>

(— 1)IZ‘|—IZII
As(%, x) < (7 d)

=T1LC ¥ (=)™ [T (¥ (=1ym-

TeF0 ScT,|8|22 TeT! SeT,[5|=1
—(=1)2-171 T (TI-1)
TeJ o

Hence (4.11) follows. _I
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