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Summary. Since the topology of weak convergence of probability distri- 
butions on the Borel a-field of the space C =  C([0, 1]) is metrizable, it is 
natural to describe the speed of convergence in weak functional limit 
theorems by means of an appropriate metric. Using the metric proposed by 
Prokhorov it is shown that under suitable conditions the rate of con- 
vergence in the functional central limit theorem for C-valued partial sum 
processes based on martingale difference arrays is the same as in the special 
case of row-wise independent random variables where this rate is known to 
be an optimal one. 

1. Introduction and Main Results 

The speed of convergence in functional central limit theorems may be meas- 
ured in various ways. A very natural one originated in [10] is by means of a 
metric for weak convergence of probability distributions on function spaces. 
Using this approach we give the exact rate of convergence in the functional 
central limit theorem for partial sum processes based on special martingale 
difference arrays. 

Let us consider a finite sequence ~-1 . . . . .  ~k of square integrable random 
variables on the probability space (f2, ~-, P) and sub-a-fields ~0 c ~  ~ ... c ~  
of ~ such that ~-i is measurable w.r.t. J~ for i=  1 .. . .  ,k. Furthermore, assume 
that (~ i ,~)  is a martingale difference sequence, viz. E(~i[~i_l)=0 for i 
- -1, . . . ,k ,  where here and throughout the present paper all equalities and 
inequalities for random variables are supposed to hold almost surely. For  

J 
brevity we write Vj= ~ E (~ I .~  1) and assume 

i = l  

k 

V k = ~ E ( ~ [ ~ _  ~)= 1. (1) 
i = 1  
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This restriction has been used by several authors; for example, it occurs in 
some results of the recent paper  [-3] by Bolthausen which presents sharp rates 
of convergence in the ordinary central limit theorem for martingales. 

J 
The partial sum process S(k ~ based on (~-i, 4 )  is defined by S(k)(t ) = ~ ~i if t 

i = 1  

= Vj, j = 0 ,  1 . . . .  ,k, and by linear interpolation on the subintervals [-Vj_I, Vj],j 
= 1 . . . .  , k. Then S(k ) is an almost surely well defined random element taking its 
values in the space C=C([-0,  1]) of all real valued functions on the unit 
interval endowed with the topology of uniform convergence and the corre- 
sponding Borel a-field ~(C) .  

In functional central limit theory one considers a whole sequence 
(~,i, ~i)~<_i<=k., heN,  of martingale difference sequences which is usually called 
a martingale difference array (m.d.a. for short). The interest is in the asymptotic 
behaviour of the partial sum processes S(k,) pertaining to (~,~, ~i)X<=Z<=k, if n 
tends to infinity. Several sufficient conditions are known for 

2.o 

S(k.)--+B 1 as n ~  oo, (2) 

i.e. for convergence in law of S(k,) to a Brownian motion B 1 with time interval 
[0, 11 where convergence in law is to be understood as weak convergence of 
the distributions P o S(~ (induced from P by S(k,) ) to the distribution W of B~, 
which is the Wiener measure on ~(C) .  As shown in [10J, weak convergence in 
C is compatible with the now so-called Prokhorov metric p which for two 
probabili ty measures (21 and Q2 on N(C) is defined by 

P(Q1,Qz)=inf{e>O:QI(B)<Qz(B~)+ e for all Be~(C)} .  

Here B"={ feC:d ( f ,B )<e} ,  where d(f,B) denotes the uniform distance of f 
and B. Since (2) is equivalent to 

p (P o S(~.~, W) --* 0 as n --* 0% (3) 

the rate of convergence in (3) is a natural measure of the speed in (2). 
Furthermore,  any estimate of p ( P o S ~ ,  W) implies estimates of Berry-Ess6en- 
type for real valued functions of S(k,) and B 1 satisfying certain Lipschitz 
conditions, and also for IP(S(k.)EB)-- W(B)] if the boundary of B e ~ ( C )  satisfies 
a Lipschitz condition; for details, see [4], p. 208. 

To obtain a rate in (3) one has to produce a bound of p(P o S~s W) for 
each fixed n. Consequently, it suffices to deal with a single row of the array 
(~,i, ~,i), i.e. to consider a single finite martingale difference sequence ~-1 . . . . .  ~k 
as described at the beginning. Then our main result is the following 

Theorem 1. I f  (1) holds and if there exist a be(O, 3/2) and a real number L k such 
that 

k 

E ([~[ 2 + 26[~_ 1)--< Lk, (4) 
i = 1  

then 
S -1 W)<_K,~L1/(3+2~) P(P~ (k), -- 

for a finite constant K~ depending only on b. 
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Remark. If (1) and (4) are satisfied for some ~ > 3/2, then 

p(p o S(~) 1, W) <~ Ka(g~/4allog Lk[ 3/4) 

for a finite constant Ka depending only on 8. 

For  independent variables and 6e(0, 1/2] the assertion of Theorem 1 has 
been established by Borovkov in Theorem 1 of [4], where, of course, L k 

k 
= ~E(l~il2+2a). An example in [1] shows that this result is optimal for all 

i = l  
6>0.  Therefore, no better result can be obtained in the setup of Theorem 1, 
too. In the martingale case Hall and Heyde have proved estimates under less 
stringent conditions than (1) and (4), see [6], Theorem 4.5, but their bound 
turns out to be weaker than the optimal one when specialized to the situation 
considered here. Borovkov's proof is based on a quantile approximation which 
seems not to be applicable in the dependent case. Hall and Heyde used the 
martingale version of the Skorokhod embedding scheme following the ap- 
proach of Rosenkrantz in [11] in the independent case. Our proof is via the 
Skorokhod embedding, too, but a truncation is added and an appropriate 
maximal inequality for martingale difference sequences is employed to achieve 
the optimal estimate for all fie(0, 3/2) whereas Hall and Heyde's Theorem 4.5 is 
restricted to the range 3e(0, 1]. Since it is known that a rate of order O(n -1/4) 
in the functional central limit theorem cannot be obtained by means of 
Skorokhod's embedding, see [4], p. 224, this method does not allow to prove 

[ n \1 /6  

the assertion of Theorem 1 for 6>3/2 (observe that { ~  E(l#.,Is)| =cons t .  
\ i = 1  ! 

n -j/4 if ~ni=n-1/2~i for a sequence (~i)i~N of independent and identically 
distributed random variables such that E(~ a) = 0, E ( ~ )  = 1 and E([~ 115) < oo). 

For  a m.d.a, which arises in the usual way from a single martingale 
difference sequence Theorem 1 provides the rate O(n -~/(3+2~)) under suitable 
conditions. If in addition the variables are identically distributed, this result 
can be strengthened to some extent. 

Theorem 2. Let (~i)i~N be a martingale difference sequence w.r.t. (~i)i>_o such that 
E(~21~//_ 1) = 1 .  and El'{tl i 2+26 ~_.i_ 1i~--<Ko< oo for some be(O, 3/2) and all ieN.  I f  
the variables ~-i are identically distributed, then 

p(PoS~n) 1, W)=-o(n -a/(a+ia)) as n--+ oo 

where the partial sum processes S(.) are based on the m.d.a. 

(~.i,~i)l<_i<=.,neN, with ~.i-n-1/2~i- and 3*.i~-~-~i. 

According to an example in [8], the rate o(n -~/(3+2~) is optimal even in the 
special case of independent, identically distributed random variables. 

Example 1. Chain Dependent Random Variables 

Let (J.).>=o be a Markov chain with finite state space I and transition matrix 
(Pjk)j,k~r A sequence (~-.).~N of random variables is chain dependent w.r.t. 
(J.).>__o if for all j e I ,  t eR  and n e N  
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P({J, =j} c~ {~,__< t}l~_ 1) = P({J~ =j} c~ {~, =< t}lL_ 1) =PJ, ~,jFj . . . .  ~(t), 

where ~,  ~ is the a-field generated by Jo, J1 . . . . .  J,-~, ~1 . . . . .  ~,,_~ and where 
Fig, j, keI,  are given distribution functions. Then 

P {~i~ t i } lJo ,  J1 . . . .  ,Jn = P(~- i~ t i IJ i - l ,  Ji), 
i = 1  

i.e. the variables ~,, n~N, are independent given the chain (J,),_>o. Suppose 
that ~tFjk(dt)=O , ~tZFjk(dt)= 1 and ~ [tlz+2OF~k(dt)< oe. Then F~ = ~ p~kFjk is a 

distribution function for every j ~ I  such that ~tFj(dt)=O and ~tEFj(dt)=l.  
Furthermore, ~,,i=n-1/2~i , i=1  . . . .  ,n, nEN, and " ~ = J i ,  i=0 ,1  . . . . .  n, neN, 
form a m.d.a. (~-,i, ~ i )  such that (1) and (4) are satisfied for each row: 

and 
i = i  i=1 i = i  

2 + 2 6  o~ E(l~.iI I ~. , i_1) 
i = 1  

i = l  i = 1  

= n - l - J ~  Z P J  . . . .  jS 2 + 2 6  It] F s . . . .  j(dt)<=Kan -6 
i= 1 j~l 

where K~ < I JImaxpjk ~ I tl 2 + 2~ Fj k (d t) < oQ. Thus for 0 < 6 < 3/2 by Theorem 1 
j, keI 

p (PoS~)  1, W)=O(n -6/(3+2~)) as n ~ o e ,  

where S(.) denotes the partial sum process pertaining to (~.~, ~.~)1 __<~__<.. 

Example 2. Stationary Linear Processes 

Following [-7] we consider the stationary linear process 

~.= ~ flje._j, neN,  (5) 
j = O  

where fit, J-->0, are real numbers and where (ej)j~z is a stationary and ergodic 
martingale difference sequence w.r.t, the a-fields ~ ,  jEZ,  generated by the 

2 ~ 2 + 2 3  ~ "  variables % i<=j. Suppose that E(e i 1~i_1)=1 and E(leiI [ ~ i _ l ) = K o <  oe for 
each i eZ  (by stationarity it is enough to consider i=0)  and some ~e(0,3/2). If 

~,f12< 0% then the series in (5) converges almost surely. Let us assume here 
j = O  

the more stringent conditions 

flj and flk are convergent, and a = flj + 0. 
j = 0  j = l  , t ~ = j  j = O  
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Put ?S= L 3 k  for j ~ N .  Then t/ .= ~ ?je._j  is well defined and, using the 
k= s 1 = 1  

dominated and the monotone convergence theorem and a moment inequality 
of Burkholder, cf. Theorem 2.11 in [6], we obtain with some finite constant K 
depending only on 

E([~I.I z + za) 

< E  ax = l imE max [ X 7. ses] / 
- -  \ m e n  j 1 ] ) j ~ n - j  M ~  l < - m < M l j = n - - m  ] / 

< limsup K [E ( ( ~ I M  \l+aX 

t?, <l imsupK 7j + X 17jlz+ZaE(Ie.-j[ 2+26) 
M ~  S -  j = l  

_<_K [ 2 7 2 1  +Ko(maxlyjI  a ~ ) 2 7  <~176 
\ j =  1 ! j~N j=  i J 

Obviously, 4. = a e . +  t / . - t / .+  1 for all neN .  Define the partial sum processes S(.) 
k k 

and SI. ) by S ( . ) ( t ) = a - l n - 1 / 2 ~ r  and S i . ) ( t ) = n - 1 / 2 ~ e i  if t = k n  -1 for k 
i = 1  i = 1  

= O, 1, ..., n, and by linear interpolation on the intervals [ ( k -  1) n-  1, kn-  1] for 
k = 1, ..., n. By Theorem 2 

p(PoSi~l,W)=o(n -6/(3+2~)) as n~oo,  

whereas for all e > 0  by inequality (1.7) in [8] 

- 1  t - 1  t p(PoS(.)  ,PoS( . )  )=<2e+P( sup IS(.)(t)-S(.)(t)l >2e) 
O_<t_< l  

< 2 e + P  ( m a x  L(Y]i--~i+I)>2[tT]en 1/2) 
\ l < k < n  i = 1  

< 2 e + P (  max It/k+ 1 --rhl > 2  lal en 1/2) 
l<=k<=n 

<=K[~q-e-z-ean-aE(lt7112+2aI(lrlll => [o-1 enl/2))]. 

Putting 

e=n-6/(3+ a,~)[n-1/(6+4a) + E(lrll[2+ 2e, I(lq1[>=]alnl/(3+ 2,',)))]l/(4+4 a) 

we get p(P o S(.)-1, p o S(.)'-1) .=o(n-a/(3+26)) as n--, oo, hence 

p(PoS~) 1, W ) = o ( n  -~/(3+26)) as n~oe .  

2. Proofs 

The following martingale inequality is related to those given in [5]. 

Lemma 1. I f  41 . . . .  , ~k is a martingale difference sequence w.r.t, the non-decreas- 
ing ~-fields o~o, o~, ..., ~ k, then for  all 7, u, v > 0 
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P max ~ i > _ 7  <=~P(l~iI>u) 
\l<=j<kli=l [ i=1 

+ 2 P  E ( r  +2exp[yu-l(1-1og(yuv-1))]. 
\ i= 1 / 

Proof. It suffices to show for all 7, u, v > 0 

P max ~>? < P(~i>u) 
\1 <-_j<=k i i= 1 

+ P t~__ lE(~Y,~_ l)> v) +exp[,u- l(1-1og(yuv-1))]. 

To this end we write rli=~iI(~.i<u) and (i=rli-E(rli[o~i_ 0 for i=1  ....  ,k and 
note that th< ~ because of E(rh[ ~ _  0 < 0  which follows from 

Thus 
O= E(~.~I.~_ I)= E(~I~I .~_ i) + E( ~I  (~ > u)I ~ _  I). 

J J k 

p (lm<=aXk i~=l~i~]))~ p (lm<=axk i~=ll~i~)..~p t _ ~  1 {/~iz~=~i}) 

< P  max (i >7  + ~  P(~i >u). 
\l<j<k i=1 i=1 

To produce a bound of the first summand we set 

4)(2, u)=u-2(exp(2u)-l-2u) for all 2, u > 0  
and 

(J  J ) 
2 Sj=exp 2 ~  ~,-O(2, u)~,E(rl,[~,_l) for j = 0 , 1 , . . . , k  (So=l) .  

\ i = i  i=1 

From [9], p. 155, we know that exp(2y)<__l+Ay+yZ(a(2, u) for all 2, u > 0  and 
- oo < y =< u. This implies 

E(exp(2r/j+ i)1.~)__< i + 2E0/j+ I 1~)+ q5(2, u) E(q}+ 11~) 
__< exp(2E(t/j+ 11~)) exp (q~ (2, u) E (t/z+ 11~)), 

i.e. E(exp(2(j+l)[~.~)<=exp(dp(2, u)E 2 .~ . (r/j.+ 21 j)), hence 

E (Sj +21 ~)  = S t exp ( - 4) (2, u) E (q}+a I ~ ) )  E (exp (2 ffj +~)l o~) =< S t. 

Thus So,S1,...,S k is a nonnegative supermartingale w.r.t. J~o,-~ .. . .  , ~  for all 
2, u>0 .  Using the maximal inequality given in Proposition II-2-7 of [9] we 
obtain 

P ( max 
\l <=j<=k i~=l ~i~])) 

J 

<P(maxSj~exp(27-O(2, u)v))+P E( r /2 ]~_0  >v  
l<=j<=k .= 

( <-_exp(r u) v - 2  7)+ P 
~ = 1  " - " 
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Minimizing the first s u m m a n d  w.r.t. 2 gives exp (7u -  1 _ (Tu- 1 
+v u- Z ) log ( 7uv - l+ l ) )  which is smaller  than  exp[Tu-l(1-1og(Tuv-1))]. This 
finishes the proof. [ ]  

We  also need an est imate of the oscillations of a Brownian  mo t ion  which is 
well known;  see, for example,  [6], p. 113. 

L e m m a  2. I f  (B(t))t >= o is a Brownian motion, then for all a, e > O  and 0 < 7 <  1 

P( sup IB(s)-B(t)[ =>e)=< 12 (a+  1)(2~7)-1/2e -1 exp( -e2 /187) .  
O <=s,t <-a 
I s - t i N T  

Theorems  1 and 2 are immedia te  consequences of  the following lemma.  

L e m m a  3. Under the assumptions of Theorem 1 there exist constants 
K1, Ke~(O , oo) depending only on 6 such that for Lk < K  e 

p(P o S~) 1, W) <= K 1 ILk/(3 + 2 ~)[1OgLkl 1 

k .  

Proof For  the sake of simplicity we write L and S instead of L k and S(k), 
respectively. K always denotes  some finite constant  which m a y  depend on 6 
but  on nothing else. Fo r  brevity we set 

d -- L 1/(a + 26) I log L I -  6 

k E ~ 
] 1 / ( 3 + 2 ~ )  

e=6L1/(a+2~)]l~ i~1 ([ i]2+2~I([ i [>d))]  

and for i = 1  . . . .  ,k  

and 
~i = ~.,I([g,I > d) - E(~. fl(Ig~l > d) l ~ _  1)- 

By const ruct ion r/l, . . . ,  t/k and if1,--', (k are mar t ingale  difference sequences w.r.t. 
~0, ~ , - - - , ~  such that  ~ = r / i + (  ~. Let  the r a n d o m  element S in C be defined 

J 
by S(t) = ~ t h for t = Vj, j = 0, 1 . . . . .  k, and by linear in terpola t ion on the in- 

i = 1  

tervals [-V~_I, V~], j =  1 . . . .  , k. Then  

p(PoS  -1, W ) < = p ( P o s - l , P o s - 1 ) +  p (PoS  -1, W). 

Using the e lementary  est imate (1.7) in [8] we obta in  

p(P o S -  1, p o S -  1) ( 8 ~- P( sup IS(t) - cS(t)l >- ~) 
O_<t_<l 

_ < e + P  ( m a x  ~=l~i-i - -  \ l < j < k l i = l  - \l<=j<=k i ~=1 ~ > ~  < e + P  > e  " 



530 E. H a e u s l e r  

An application of Lemma 1 with e, e/2 and d - 2 6 L  instead of 7, u and v, 
respectively, yields 

since 

P (max  (i >~ < ~P( l~ i I>e /2 )+  Ke-4d-4~L2 ,  
\ l < J  <k i = 1  i = l  

k k 
2 o~ E(( i ]a*i_~)< ~ E ( ~ 2 I ( l ~ l > d ) l ~ _ l ) < d - Z 6 L  by (4), 

i = 1  i = 1  

i.e. P E(~21~ >Ld-26 =0. For L sufficiently small we have 
i 

e-4  d -4~  LE < K~ and 

k k 

P(l(z[ >~/2)~ Kg-2-2a Z E(l~i]2+2aI(l~z[ >d))< Ke. 
i = i  i = I  

Thus it remains to prove p(PoS -I, W)<=Ke for small values of L. Here we use 
the Skorokhod embedding scheme for martingales which enables us to estimate 
p(po ~- i, W) by another application of inequality (1.7) in [8]. Without loss of 
generality we may assume that the space (f~, Y, P) is rich enough such that 
there exist nonnegative random variables O=zo, Zl,...,z k and a Brownian 
motion B= (B(t))t>=o on (O, ~,  P) with the following properties: 

J 

(i) For j = 0 ,  1 . . . .  ,k Tj= ~ z i is a Markov time w.r.t. (M(t))t=> o where M(t) 
i = 0  

is the a-field generated by the variables B(s) for 0_< s_< t. 
(ii) th=B(T~)-B(T~_I) for i = l , . . . , k .  (6) 

(iii) If N ~ = { F ~ Y : F n { T ~ < = t } ~ ( t )  for all t>0} denotes the a-field of all 
events observable before Ti, then for i=  1,..., k 

E(zzl Y3f_ 1) = E(t/} I Mz_ 1) = E(~/~ I r/l, ..-, th- 1). (7) 

(iv) For any p > 1 there exists a constant Lp < oe depending only on p (with 
L 2 < 4) such that for i = 1 . . . .  , k 

E(~2P[Mi- 1) ~ ZpE(lrlil zPI~r 1) = Zl, E(I qr 2PI~l . . . .  , ~ -  1). (8) 

The variables "Co,'C 1 .... ,'Ok may be constructed as in [2], Sect. 37. 
Billingsley's proof is formulated for independent variables only, but it is 
straightforward to give a martingale version using conditional distribution tech- 
niques. In this construction To, T 1 . . . .  , T k are Markov times w.r.t, the Brownian 
motion B whereas a larger filtration is used in Strassen's original Theorem 4.3 
in [12]. This point, however, is not essential for our application; we could 
work with Strassen's theorem also. For the remaining part of the proof we 
write 7= L2/(a+ 26)llogL[ - 3, u =  L2/(a+ 26)llogL[ -4 and v = e -  2 L4/(a+ 26)llogL[- 7. 
Let B 1 denote the restriction of the Brownian motion B to the time interval 
[0, 1]; then we have 
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p(poo ~-l ,  W)=p(PoS-J,PoB[1)<2~+P( sup IS(t)-B(t)i>2e) 
O_<t_<l 

< 2 e + P  ( m a x  ~tli-B(V~)>~) 
\ 1  <j<=k[i= 1 

+ P (  max sup ]B(s)-B(t)] >e). 
1 <=j<=k V j -  1 <=s,t<Vj 

Lemma 2 implies 

P( max sup IB(s)-B(t)[ >e) 
1 <=j<=k V j -  1 <=s,t<= Vj 

~V( sup [B(s)-B(t)[ >=~)<=Ke-lV-1/2exp(-e2/187)<=Ke 
O <=s,t <= l 
Is-t[<=~ 

for L sufficiently small since then by (4) 

max ]Vj- Vj_I[ = max E ( ~ I ~ _ l l )  
l <j<k l <j<k 

/ k \ 1 / ( 1 + 5 )  
= [ V  (]/= t2 + 251 0~" ~ /  < L  1/(1 
< I/--.. E~"~i' ~'~i--lII = +5)~7"  

\ i =  1 / 

J 
From (6) we get ~ t/i = B(Tj) for j = 1,..., k, hence 

i = 1  

\1 =J=kli= 1 1-- / 

< P (  max ITs- Vii >27)+P({  max IB(Tj)--B(Vj) 1 >e l  c~ { max ITs- Vii <27}) 
i <=j<=k i <-j<-k i <=j<=k 

where the second term on the right hand side is easily handled by another 
application of Lemma 2. To bound the remaining probability we write taking 
(7) into account 

P( max ITj- Vj. 1 >27) 
l<=j<=k 

<P \l<=j<=k[i=l(max ~ ( ' f i - - E ( ' f i [ ~ i _ l ) )  > 7 )  

+ . . . .  >,). 
Lemma 1 implies 

P ( m a x  ~, ( ' f i - - E ( ' f i [ ~ i _ l ) ) >  7) 
\1 <=j<k I i= 1 

<= P(lzi-g(zil~i_l)l>u)+2e g(z~l~i_x)>V 
i= l  i-- 

+2 exp[yu l(1--1og(yuv-1))]. 
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N o w  by (8) 

k k -- 4k 

P(Iz/- E(v/I ~ i -  ~)1 > u) < g u - 4  ~ E(z~) <= Ku ~ E(rf)) 
i = 1  i = 1  i = 1  

k 

< = g u - 4  E E(~8 I(1~/[  <=d))<=Ku-4d6-2ag<= K~ 
i = 1  

and also exp [7 u -  1 (1 - log (y u v - 1)) ]  ~ K e for L small enough. Furthermore 

k k 

Z E(r/~ I ~ _  ~) < 16 ~ E ( ~  I(l~[ < d)l~_ 1) 
i = 1  i=l 

k 

116dl-2'~__lE(l~i[z+2a]~_l)<= 16dZ-2~L if 0 < 6 < 1  
"= 

[16 2 E(~l~'~-x) <16La/a if 1 < 6 < 3 / 2  
i = 1  

where for 1 < 6 < 3/2 we have used (1), (4) and H61der's inequality to obtain 

k k 

E(ff~ I G _ 1) = E E(l~il (z+2~)/~ ~, 
i = 1  i = 1  

/ k \1/6 [ k \ ( 6 - 1 ) / 6  

~i= 1 \i= 1 / 

k 
Thus ~, E(rl~[~i_l)<v/12 for 0 < ~ < 3 / 2  and small values of L. Combining (8) 

i = 1  

with this last conclusion, we get 

P (i~=E('cz[Ni_O>v <P i~_lE(rl4ilrh,...,rli_O>v/4 

= < P  E rh, . . . , rh_ 1 - r /  >v  
i =  

k 

k 

<=Kv-2 Z E(tlS) <=Kv-2 d6-2~L <=Ka 
i = 1  

Finally 

I ~ _ 0 - g ( ~ . 2 1 ~ _  
1 = j = k  i=  1 

k 

<2 ~ g(~ 2 I(IGI > d ) l ~ - l ) < 2 d - 2 ~ L < U 3  
i = l  

for L sufficiently small, hence 
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\ l = j = k l i = l  

+ P  ( m a x  ~ ( ~ / { - E ( t l 2 [ ~ _ I ) ) > 7 / 3 ) .  
\ l  <-J<kli= l 

These probabilities are estimated by another  application of L e m m a  1 with 7, u 
and v replaced by 7/3, u/3 and v/9, respectively, and now straightforward 
calculations. This finishes the p roof  of  L e m m a  3. [ ]  

Proof  o f  Theorem 1. For  the constants  K 1, K 2 occurr ing in L e m m a  3 which 
depend only on 6 we may assume w.l.o.g, that  0 < K z < e  -1 < 1 < K  1 < oo. Then 
for L k ~ K  2 by L e m m a  3 

p (P o S(k) 1, W) ~ 2K 1 Llk/C3 + Z~) 

and for Kz  < L  k 
p (p  o S(~) 1, W) <= 1 < K 21/(3 + z'~) Llk/(3 + 2'~). 

Taking K ~ = m a x ( 2 K 1 ,  K 2  1/(3+2~)) finishes the proof. [ ]  
To prove the remark following Theorem 1 put 

d= l,l:4allogL1-2/3, e=6et/21921/'*L1/4~ ' 

7 = 1921/2eU/ZOllogLl l/z, u =  1921/2eL a/2a 

and v = 192 L 1/a in the p roof  of L e m m a  3. Then for 3/2_< 6 < 3 all arguments  go 
k 

th rough  unchanged,  whereas for 6 > 3  one has to replace ~ E(rlSl)<=d6-ZaL by 
k i = 1  

E(~si)<L 3/a obtained from (1) and (4) by H61der's inequality. 
i = 1  

Proof  of  Theorem 2. An application of  L e m m a  3 with ~, l , - - - ,~ ,n  and L n 
= K o  n-~ instead of 41,---, ~k and Lk, respectively, yields the desired result since 

IlogL.l-1--*O and nl/2Lln/t3+2'~)[logLn]-6----~oo as n--+oo. [ ]  
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