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1. Introduction 

A famous result by Cameron-Mart in  I-2] states that, for a d-dimensional 
Brownian motion B(t) with B(0)= 0 on a finite time interval 1-0, T]  and a con- 
tinuous function a: [0, T ] - * R  e, the processes (B(t); O<_t<T) and (B(t)+a(t); 
O<t<_T) are equivalent in the sense that the laws on the path space W e 
= C([0, T]-->R e) are mutually absolutely continuous if and only if a (0 )=0  and 
all components of a are absolutely continuous with square-integrable deriva- 
tives. A generalization of this result is given as follows: let u=(u}(t)) be an 
SO(d)-valued continuous function defined on (0, T] (SO(d) is the set of all 
orthogonal matrices of order d with determinant 1), B(t) and a=(a~(t)) be as 
above and ask when two processes (B(t); 0_< t_< T) and 01(t); 0_< t_< T) defined 

d 

by q=(t)= ~u}(t)B~(t)+a=(t), c~= l, ..., d, are equivalent. As we shall see in 
t~=l 

Sect. 5, they are equivalent if and only if a satisfies the same condition as above 
and u satisfies that all components of u are absolutely continuous on (0, T] and 
T 

t 2 dr< oo, fl= 1, 2, ...,d. 
0 

Since R e is a Riemannian symmetric space and xF--~ux+a, u~SO(d), acR e, 
is an isometric transformation of R e it might be natural to generalize the 
problem to Brownian motions on Riemannian symmetric spaces in the follow- 
ing manner. Let M be a d-dimensional Riemannian symmetric space and take 
an arbitrary point o~M and fix it. The Brownian motion on M is the diffusion 
on M which is generated by • A being the Laplace-Beltrami operator on M. 2 

Let X=(Xt ;O<t<T ) be the Brownian motion on M with Xo=o given on a 
finite time interval I-0, T] and let g=(gt) be a continuous map (0, T]~G 
where G is the connected component  containing the identity e of the Lie group 
I(M) formed of all isometries of M. We want to know when X=(Xt; O<=t<T) 
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and Y=(Yt=gtXt ,  0 < t < T ,  I70--o) are equivalent. The purpose of the present 
paper is to answer this question and our result is the following. Let g be the 
Lie algebra of G an element of which, as usual, is identified with a left 
invariant vector field over G. Let g = m + f  be the usual direct sum decom- 
position (see Sect. 3 for the definition) and let {A1,..., Aa}and {Aa+ 1,.-., An} be 
bases of m and ~ respectively (n = dim (G)). We assume that 

lim gt o = o (A.1)  
t ~ O  

which is clearly necessary in order that X and Y are equivalent. We further 
assume that 

t~--~g t is absolutely continuous on every closed interval of (0, T]. ( A.2) 

Under (A.2),  we can define the coefficient (~ of fi, t~Tgt(G) with respect to the 
basis A1(gt)=(Ax)sETgt(G) for almost all t~(0, T], I = 1 ,  2, ..., n, that is, we can 
write the differential equation for gt as 

dgt= ~ [~Ai(gt)dt O<t<=T 
I = 1  

and we assume furthermore that 

T 

(i) j (Cr)~ at  < oo, ~ = l ,  . . . ,  d, 
0 

T 
t ( i2 (ii) ~ ( t )  dt<oo,  i = d + l , . . . , n .  

0 

(A.S) 

Our main result in this paper now can be stated as follows: under the assump- 
tions (A.1)  (A.2)  and (A.3), the processes X and Y are equivalent. We can also 
obtain an explicit formula of the Radon-Nikodym derivative of the law of Y 
with respect to the law of X. We could not show that these conditions are also 
necessary for the equivalence of X and Y but, in view of the above result in the 
Euclidean case, they look like to be almost necessary. 

Our method in obtaining the above result is as follows. First we construct 
our Brownian motion X on the Riemannian symmetric space M by construct- 
ing a left Brownian motion on the Lie group G and lift the equivalence 
problem for processes on M to that for the processes on G. Writing the 
stochastic equations for these processes on G with respect to the basis {A~, I 
= l ,2 , . . .0n} ,  of the left invariant vector fields, it is further reduced to the 
equivalence problem for semimartingales on the Euclidean space. Then we can 
appeal to known results for such problems, e.g., results by Kailath-Zakai  [12] 
and Ershov [5]. In the above reductions of the problem, an important  role is 
played by the It6-formula for products and inverses of semimartingales on the 
Lie group G which will be discussed in Sect. 2. These formulas may be re- 
garded as a special case of general formulas obtained by e.g. Kunita  [14] and 
Bismut [-1] for the composites of stochastic flows of diffeomorphisms: our 
formulas in the case of a Lie group can be given more explicitly, however. 
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2. Stochastic Differential Equations on Lie Groups 

Let (f2,~,,P) be a comple te  probabi l i ty  space, (~)~>_o be a right cont inuous  
increasing family of sub ~r-fields of ~ such that  ~o contains  all P-null  sets. Let  
B=(B~;  0 < t < o o )  be  a d-dimensional  ( ~ ) - B r o w n i a n  mo t ion  start ing at 0 (we 
follow the te rminology  in I k e d a - W a t a n a b e  [-8]). Let  M be a manifold.  We  will 
assume tha t  all manifolds  discussed in this paper  are always Coo, connected 
and a -compac t .  Let  A 0, A 1, ..., A d be C ~ vector  fields on M. We  denote the 
total i ty  of C ~ vector  fields on M by F~(T(M)). Let us consider the following 
stochastic differential equat ion on M;  

d 

dXt= ~ A~,(X,)odB~ + Ao(Xt)dt (2.1) 
e = l  

X o = x ~ M .  

The meaning  of the equat ion (2.1) is that  X = ( X  3 is a cont inuous  (~t)- 
adap ted  process such tha t  for any Coo-function f on M with compac t  support ,  
it holds that  a t t 

f (X t )  - f ( X o )  = ~ S (AJ ) (Xs )  ~ dB~ + ~ (Aof)(Xs)  ds (2.2) 
a = 1 0  0 

where the symbol  o means  the F isk-St ra tonovich  symmetr ic  integral. It  is well- 
known  tha t  (2.1) has a unique s t rong solut ion up to the explosion time. 

Let  M and M'  be C ~ manifolds  and ~b be a C ~ mapp ing  f rom M into M'. 
Suppose that  Ao,A1 , . . . ,A  d are in FOO(T(M)) and A~), A'I, . . . ,  A~ are in 
FOO(T(M')) such that  

(~O,)x(A~) x = (A'~),(~) c~ = 0, 1 . . . .  , d 

for any x ~ M  where (~b,)~ is the differential of  ~b at x. Let  X=(X~)  and Y=(Y0 
be the solutions of  the following stochastic differential equat ions on M and M' 
respectively;  

d 

dXt= ~ A~(Xt)~ + Ao(Xt)dt 
0~= 1 (2.3) 

X o = x ~ M ,  

d 

dYt= ~ A'~(Yt)~ + A'o(Yt)dt 

~=~ (2.4) 
I7o = @(x)~M'. 

Then the following l e m m a  is easily obta ined  f rom the definition. 

L e m m a  2.1. Suppose that if) is surjective or (Xt) has an infinite explosion time. Let 
Zx and "c r be explosion times of (Xt) and (Yt) respectively. Then Zx <= rr a.e. and Yt 
=O(Xt) for all t up to ~x a.e. 

Let  M be a manifold  and G be a Lie group  acting on M on the right. The  
act ion of an element g in G is denoted by xF--~xg for x~M.  Let  g be a Lie 
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algebra of G, i.e., the set of all left invariant vector fields on G. For  each Aeg, 
the 1-parameter subgroup {exptA; t~R} induces a vector field on M, which we 
denote by A*. The mapping from g into F~176 which sends A into A* is a 
Lie algebra homomorphism (see, e.g., Kobayashi-Nomizu [13], 1.4.). Let us 
consider the following stochastic differential equations on G and M respective- 
ly; 

d 

dgt= ~ A~(gt)~ + Ao(gt)dt 

(2.5) 
g0=e  

d 

dXt= ~ A*(Xt)~ + A3(Xt)dt 

X 0 ~ x  
(2.6) 

where Ao,A 1 ... . .  A a are in g. Define the mapping qb: G--*M by qb(g)=xg. Since 
(4,)g(A~)g=(A~)4(g) a = 0 , 1 , . . . , d ,  g~G, and (gt) is conservative (see, e.g., Mc- 
Kean [19]), the following corollary is an easy consequence from Lemma2.1. 

Corollary 2.1. I f  (gt) and (X~) are solutions of (2.5) and (2.6) respectively, then X t 
=xgtfor all t>O a.e. 

The solution of (2.5) is called the left Brownian motion on G (c.f. [19]). We 
will discuss the processes on the Lie group G in the remainder of this section. 
We will generalize (2.5) to the case that Ao, A1, ..., A e are random and depend 
on the time t. More precisely, let (~0,t)t_>o be g-valued process such that each 
component is in ~111~ where ~lra~ is the set of all measurable and (~)-adapted 
processes (~bt)t_>_o such that 

Ii, ] P q~s[ds<oo for all t > 0  =1 
k0 

and let (~-~,t)t__>0 c~=l , . . . ,d  be g-valued continuous semimartingales. Here a 
continuous semimartingale is a process which can be represented as a sum of a 
continuous local martingale and a continuous process of bounded variation, g- 
valued continuous semimartingale is a g-valued continuous process such that 
each component is a continuous semimartingale. Since all the semimartingales 
which we discuss in this paper are continuous, we sometimes omit the adjective 
"continuous". We consider the following stochastic differential equation on G; 

d 

dgt = ~ ~,t(gt) o dB t + ~0,t(gt) dt 

go =geG.  
(2.7) 

Lemma2.2. The stochastic differential equation (2.7) has a unique conservative 
solution. 

Proof. The proof is similar to that of McKean [19]. Let us consider the 
following stochastic differential equation on G; 
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dg,= ~ A~(g,)odM~ 
~= 1 (2.8) 

g o = e  

where A1, . . . ,A r are in g and M~=(M~) ( e = l ,  . . . ,r) are semimartingales. First 
assume that G is a subgroup of GL(m,R) for some integer m and hence g is a 
Lie subalgebra of gl(m,R), the Lie algebra of GL(m,R). Since GL(m,R) is an 
open submanifold of R m2, there exist the natural coordinates (x}; i , j= 1 .... ,m). 
Hence each element A in g corresponds to an m x m matrix i (A)i.j= 1 ...... in the 
following manner; 

A =  ~ 
i . j , k=  1 ~ X ~ "  

Then the Eq. (2.8) can be written in the component form as follows; 

c~= 1 k= 1 o~,fl= 1 k , l= 1 (2.9) 

g},o=a5 i , j=l , . . . ,m.  

Here, (A=)~ k,j = 1 . . . .  , m, are the components of a matrix corresponding to As, 
( M  s, M p) c~, fi = 1 .... , r, are quadratic variational processes of M" and M ~ and 
6} is the Kronecker delta. It is well-known that (2.9) has a unique conservative 
solution (see, e.g., Ikeda-Watanabe I-8], Chap. III, Th. 2.1.) and hence (2.8) has 
a unique conservative solution. 

Secondly we consider a general Lie group G. By Ado's theorem there exist 
an integer m and a Lie subgroup G' of GL(m,R) such that the Lie algebra g' of 
G' is isomorphic to g. Hence the universal covering groups of G and G' 
coincide and we denote it by G. Let A'I,.. . ,A' r be in g' which correspond to 
A~ . . . . .  A~ in g under the isomorphism between g and g'. A>.. . ,A~ in ~ are 
similarly defined where ~ is the Lie algebra of G. We consider the following 
stochastic differential equations on G' and G respectively; 

dg',= ~ A'(g',)odM T 

(2 .8 ) '  
g~ =e  

d~,,= ~ ffl=@,,) o dM~ 
a = l  

(2.8)" 

The above result implies that there exists a unique conservative solution of 
(2.8)' on G' and by lifting it we obtain a solution of (2.8)". Then a solution of 
(2.8) on G is obtained by projecting the solution of (2.8)". The uniqueness of 
(2.8) is easy to see. Thus (2.8) has a unique conservative solution. Note that if 
(g,) is a solution of (2.8), then for g in G, (ggt) is a solution of the same 
equation (2.8) with the initial condition, however, replaced by g. 
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N o w  we go back  to the equat ion  (2.7). Let  {A 1 . . . .  ,A,} be a basis of g 
where n is the d imension  of G. If  we write 

(ct , t  ~ i =- ~=, tA i  c~--0, 1 . . . .  ,d, 
i = 1  

{i rioo ~i then (o , , )  is in ~a and (=,,) e = l  . . . .  ,d are semimart ingales .  Define semi- 
mar t ingales  M i = (MI) i = 1 . . . . .  n by 

d t t 
i i a ~i Mr= 2 ~r176 ds" 

c ~ = l O  0 

Then  (2.7) is equivalent  to the following stochast ic  differential equat ion  on G; 

n 

dgt= ~ Ai(gt) o dM I 
i = l  

g o  ~--g" 

(2.1o) 

Therefore  we can conclude by the above  a rgument  that  (2.7) has a unique 
conservat ive  solution. [ ]  

Let  (g,) and (ht) be G-valued cont inuous  processes. If we set kt=gtht, then 
we have  a new G-valued cont inuous  process (kz). Assume that  (gt) and (ht) 
satisfy some stochast ic  differential equations.  Then  we can obta in  the stochast ic  
differential equat ion  of (kt) as follows which may  be considered as a par t icular  
case of  m o r e  general  results due to Kun i t a  ([-14], Prop. 4.2) and Bismut  ([1], 
Th. 2.3). 

Proposi t ion 2.1. Let (r and (tlo,t) be g-valued processes all of whose components 
are in 1),~ c and (~,t), (tl~,t) ~ = 1 .. . .  ,d be g-valued semimartingales. Let (gt) and (ht) 
be the solution of the following stochastic differential equation on G respectively: 

d 

dg, = Y ~ , , (g3  o dB~ + ~ o, t(g,) dt 

(2.11/ 
go = g  

d 

dh,= X rl=,t(h,)~ +rlo,t(ht)dt 
c~=l  

(2.12) 
h 0 =h ,  

where g and h are in G. I f  we put kt=gtht, then the stochastic process (k,) 
satisfies the following stochastic differential equation on G; 

d 

dkt= ~ (Ad(h;-~)~,,+tl~,,)(k,)~ 
a = l  

+ (Ad (hi- *) go,, + r/o ff (k,) dt (2.13) 

k o = g h  



Transformations of the Brownian Motion 499 

where Ad: G ~ G L ( g )  is the adjoint representation of  G. Moreover, if th, t 

= ~rli~,tAi c~=l , . . . ,d  and Ad(ht l )A~= ~ ad(ht-1)}Ai by f ix ing a basis 
i = 1  i = 1  

{A 1 . . . .  ,An} in g, then (Ad(ht-1)})ij= 1 ...... satisfies the following stochastic differ- 
ential equation; 

dAd(ht-1)~= ~ i - - l k  I ct Ckl Ad(ht ) jG, t~  
a = l  k , l = l  

+ ~ C~zAd(ht-1)~/~,tdt (2.14) 
k,l=l 

Ad(h ~ 1)~ = Ad(h- 1)~ 

i , where Ckl S are the structure constants, i.e., 

[Ak, All .= CklAi.i 

Proof. It is enough to prove the first assertion only locally. Let (x 1 . . . . .  x"), 
(yl, . . . ,y,) and (z 1 . . . . .  z ") be local coordinates on neighborhoods of g, h and gh 
respectively. Define the mapping F i by Fi(x ,y)=zi(xy) .  By the It6 formula, we 
have 

d 

dFi(gt ,  h t )=  2 ~ i l i {((G,t)~ F )(gt, h)+((G,t)y F )(gt, ht)} ~ dB~[ 
a = l  

+ {((~o,t)~Fi)(gt, ht) + ((rlo,t)yU)(gt, ht) }d t  

where (~,t)~ and (G,t)y stand for the differentials with respect to the first 
variable and the second variable respectively. But generally we have that, for 
A6g, 

d i AxFi(x, y) = A~(zi(x y)) = ~ z  (x exp tA Y)lt = o 

= A (z f o Ry)(x) = ((Ry, A) z i) (x y) = Ad (y -  1) A z i(x y) 

since Ry,=Ad(y  -1) where Ry: G--~G is the mapping defined by Ry(g)=gy .  
Similarly we have 

d i AyFi(x, y )= Ay(Zi(x y))=d~ Z (x y exp t A)[t= o = A zi(x y) . 

Thus we have 
d 

dzi(gtht) = ~ (Ad(ht- 1) ~a,t q_ tlc~,t ) z'(gtht) o dB~ 
~ t = l  

+ (Ad(h7 z) ~0,t + No,t) z~(g,h,) dt 

and this proves (2.13). 
To show the second assertion, note that G acts on g on the right in the 

following manner; Ag=Ad(g-1)A for Aeg and gsG. From the remark after 
Lemma2.1, there exists a Lie algebra homomorphism A~-*A* from 9 into 
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F~ such that if we define ax: G ~ g  for Xeg  by ax(g)=Xg,  then (ax ) .A  
=A* for Aeg. Since {A 1 . . . .  ,A,} is a basis of g, we can represent Xsg  as X 

= ~ XiA~ and (X 1 . . . . .  X") forms a system of local coordinates in g. Since g is a 

vector space, we can identify Tx(g ) and g for any Xeg. We denote this 
isomorphism from g into Tx(g ) by t x. Then we have for X, Yr 

d d 
(Y*)x = (ax*)e Ye = d t  ax(exp t Y)I,= o = ~  Ad(exp( - t Y))X]t = o 

d 
= d t  e x p ( -  t ad Y)XI,= o = t x ( -  ad Y(X)) 

= 1 x X i A i ,  Y J A j  = I X X i Y J  C k j A k  
.= z 1 j=  1 \ i , j , k= 1 

i , j ,k= l X 

where ad: g--.gI(g) is the adjoint representation of g, i.e., a d X ( Y ) = [ X , Y ] .  
Thus we have 

(rl~,Jx - C~j 
i , j ,k= l X" 

Since Corollary2.1 also holds for more general stochastic differential equations 
of type (2.7), we can apply it to the Eq. (2.12) and thus obtain (2.14). [] 

The following corollary is easily obtained from the above proposition. 

Corollary 2.2. Let (~-o,t) be a g-valued process such that each component is in ~lrl~ 
and (~,t) ~ = 1 . . . . .  d be g-valued semimartingales and let (St) be a solution of the 
following stochastic differential equation on G; 

d 

dgt = ~ ~,t(gt) ~ dB~ + 40,t(gt) dt 
==* (2.15) 

g0 =g'  

Then (ht=g ~ l) satisfies the following stochastic differential equation on G; 

d 

dh, = - ~ Ad(g t) ~,t(ht) o dB~ - Ad(g,) ~o,t(ht) dt 

~=1 (2.16) 
ho=g -1 

Proof Let (h,) be a solution of (2.16). Then by Proposition2.1, we have 

d 
d(htgt) = ~ { Ad(g t- 1)(_ Ad(gt)~a)(h,gt)+ ~,t(htgt) } o dB~ 

+ { ad(&- 1)( _ Ad(g,){o,t)(htg,)+ ~o,t(htgt)} dt 

=0  

and hog0=e. Hence htgt=e for all t > 0  a.e. and this completes the proof. [] 
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3. The Brownian Motion on the Riemannian Symmetric Space 

Let M be a d-dimensional Riemannian manifold, O(M) be the orthonormal 
frame bundle and let ~z: O(M)--+M be the natural projection. Let co be the 
Riemannian connection form on O(M) (see, e.g., [13]) and 0 be the canonical 1- 
form on O(M), i.e., the Re-valued 1- form defined by O,(X)=u-a(~.X) for 
ueO(M) and XeTu(O(M) ) where we regard an element uEO(M) as a linear 
isomorphism from R d onto T~(u)(M ) which preserves the inner product. We 
associate with each ~eR d a vector fields B(~) on O(M) such that c%(B(~),)=0 
and 0,(B(~),)=~ for ueO(M). B(~) is called a standard horizontal vector field 
corresponding to 3- Using these notations, we can construct the Brownian 
motion on M by the following method of moving frames (c.f. [18]). Let (U~) be 
the solution of the following stochastic differential equation on O(M); 

d 

dUt= ~ L~(Ut)~ 
~=1 (3.1) 

Uo =U 

where L~=B(e~), e~=(0 . . . .  ,0, 1,0 . . . .  ,0) and ueO(M). Then (n(Ut)) is a Brown- 
ian motion on M starting at re(u). 

If in particular M is a Riemannian symmetric space, a Brownian motion on 
M is constructed from a Brownian motion on a transformation Lie group of M 
as follows. Let G be an connected component  containing e of the isometric 
transformation group I(M) of M. It is well-known that the Lie group G acts on 
M on the left transitively. Take any points o~M and uoeO(M) such that ~(u0) 
= o  and fix them. Hereafter we consider the Brownian motion on M starting at 
o. Let K be the isotropy subgroup of G at o and 2 be the linear isotropy 
representation of K, i.e., 2 is a homomorphism from K into GL(T o (M)) defined 
by ,~(k)=(k,) o. Then 2 induces a homomorphism A: K~O(d) defined by A(k) 
=Uo~o2(k)ouo for keK. Let s be the symmetry at o and a be an involutive 
automorphism of G defined by a ( g ) = s o g o s  for geG. We can easily see that 0 -2 
= i d  G where id o is the identity mapping of G. Let a ,  be the differential of ~. 
Then a ,  induces an involutive automorphism of g denoted by a ,  also. Since 0 "2 

=ida, g, as a vector space, is a direct sum of eigenspaces for 1 and - 1 ,  
denoted by tE and m respectively. Then AEg can be represented uniquely as A 
= A I - I - A  2 such that A~em and A2~[. We denote Ax and A 2 by A m and A~ 
respectively. It is known that [ is the Lie algebra of K and m is invariant under 
Ad(K), i.e., Ad(k)m~=m for any keK. This fact plays an important  role later. 
Since G acts on M, G acts on O(M) in the following manner;  gu=(g,)~(,)o u for 
geG and ueO(M). This means that gu is a composite mapping of u which is an 
inner product preserving linear isomorphism from R e onto T,~(,)(M), and (g,)~(,) 
which is an inner product preserving linear isomorphism from T~(,)(M) onto 
Tg~(,)(M). Then G can be regarded as a closed submanifold of O(M) by an 
inclusion map l: G~O(M) defined by l (g )=gu  o. Since G acts on M and O(M), 
1-parameter subgroup {exptA; teR} for Aeg defines a vector fields on M and 
O(M), denoted by A* and/1  respectively. We define a linear map L: m ~  To(M) 
by L(A)=(A*)o for Aem. It is easy to see that L is a linear isomorphism. 
Hence there exists an inverse map of L and we denote it by l. For  ~eR a we 
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define A(() in m by A(()=l(uo(~)). Then it holds that 1.A(~)=B(~) and 
Ad(k)A(~)=A(A(k)~) for kEK. 

Now we can construct a Brownian motion on M by using a Brownian 
motion on the Lie group G. The following proposition is announced in M.P. 
Malliavin, P. Malliavin [17], 

Proposition3.1. Let (ht) be a solution of the following stochastic differential 
equation on G; 

d 

dht= ~ A(e~)(ht)~ 

~=~ (3.2) 
h 0 ~ - - e .  

Then (X t = h t o) is a Brownian motion on M starting at o. 

The proof is easily obtained from Lemma2.1. It is obtained at the same 
time that a Brownian motion on M is conservative. 

4. Main Theorems 

We keep the same notations as before. In the following we consider processes 
only on the time interval [0, T]  for some fixed constant T, so for example, the 
Brownian motion (Bt) is defined for te l0 ,  T]. Without loss of generality we can 
suppose that the Brownian motion (Bt) is canonically realized on the probabili- 
ty space (Wo ~, N(WOe), pW), i.e., Wo e is a set of all continuous paths w: 
[0, T ] ~ R  a such that Wo=0, ~(Wo e) is a Borel or-field, pW is the Wiener 

measure and Bt(w)=w~. Set N~(WJ)=o-(w~; O<s<t). Let N(WOe) be a com- 

pletion of ~(WOe) with respect to pW and let Y~N(WOe) be a set of all pW-null 

sets. Set f2= WOe, p=pW,  y = ~ ( W o  ~) and ~---~t(Woe) voA; for tE[0, r ] .  In the 
sequel we will consider on this specific probability space (~2, Y,, P, (4)o  _<t_< r). We 
define a class of processes/2~~ by 

/ 2 ~ 1 6 2  = (Or; 0_-< t < T)[ r is a real measurable (~)-adapted 2 - -  

pr~ ~ ~2 such that i q~tz dt < ~ a'e'} " o 

Now we give here a precise formulation of the theorem. Let t~--~g t be a G- 
valued continuous function on (0, T]. Instead of continuity of gt at t = 0  we 
assume the following condition; 

lim gt o=o. ( A.1) 
t ~ O  

Let Wo (M) be as in Sect. 1. We define the transformation I of Wo (M) by 

(iw)t=~o if t = 0  (4.1) 
(g  tw~ if 0 < t <  T. 
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Then I is well-defined, i.e., Iw  is in Wo(M ) by the assumption (A.1). In  fact, 

lira d (gt wt, o) < lim d (gt wt, gt o) + lim d (gt o, o) = lim d (w t, o) = 0 where d is the 
t~O t--~O ~ 0  

Riemannian  distance. Let  (ht) be a solution of the following stochastic differential 
equat ion on G; a 

dht= ~ A~(ht)~ 
= 1 (4.2) 

h o ~ e  

where A~=A(e~)em for c~= 1, . . . ,d, were defined in the previous section. Set X t 
=hto. Then (X,; O<t<_T) is a Brownian mot ion  on M starting at o by 
Proposi t ion 3.1. We denote the law of (Xt) on Wo (M) by #. Let v=#oI  -a be 
the induced measure of  # by the mapping  I. Our main problem then is to 
study the condit ion on (g,) so that two measures # and v on Wo(M) are 
equivalent. Let n = d i m ( G )  and p = d i m ( K ) .  Then it holds that  n = d + p .  Take 
any basis {Ad+l, . . . ,Ad+p} of  t~ and fix it th rough  the argument.  Then 
{A1, ...,Ad, Ad+ a ... .  ,Ad+v} forms a basis of  g. In the sequel we use the follow- 
ing conventions.  Indices I , J , K , L  . . . .  run over 1,2 . . . . .  n = d + p ,  indices 
~, fi, 7, 6 . . . .  run over 1, 2, . . . ,  d, and indices i,j, k, l,... run over d + 1, d + 2, . . . ,  d 
+p .  Fol lowing the usual convent ion we omit the summat ion  signs for re- 
peated indices and we do so even if they appear  in the top or in the bo t t om at 

T 

the same time, e.g., ~'A r for ~ ~IA~, ~iA i for ~, ~ 'A i and ~ d B ~  for 
d T I - - 1  i - d + l  0 

f ~tdB;, etc. 
~ - 1 0  

Next  we assume that  (gt) satisfies the following condit ion;  

t~---~ gt is absolutely continuous on every closed interval of (0, T]. ( A.2) 

Under  the condit ion (A.2) (gt) satisfies the following differential equat ion on 
G; 

dgt = (t dt for 0 < t < T (4.3) 

where (teg, 0 < t < T ,  is the unique left invariant  vector field on G such that  

etA1 then clearly ~] ( [ Id t<~  for I = l , . . . , n  (t(gt)= ETg,(G). If  we write (t = q 
E 

and conversely, given such a system of functions (~ if we set (t = ~ A~ then any 
solution (gt) of  (4.3) defines a cont inuous curve gt: (0, T ] ~ G  which satisfies 
(A.2). Fur the rmore  we assume that  

T 

(i) ~ (~ t )  2 dt < oo for ~ = 1 . . . .  , d, 
o (A.S) 
T 

(ii) ~t(~i)Zdt<oo for i = d + l  . . . . .  n. 
0 

N o w  we can state the main  theorem. 
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Theorem4.1. Under the assumptions (A.1), (A.2) and (A.3), p and V=#o/-1 
are equivalent. 

If # and v are equivalent, then the natural question arises: What is the 

Radon-Nikodym derivative dv9 dv d#" We will give the expression of ~ .  Let We(G ) 

be the set of all continuous paths in G defined on the interval [0, T] starting at 
e. Since (h) is a strong solution of (4.2), there exists a measurable and non- 
anticipative mapping ~: W ~ W e ( G  ) such that (h.)=S(B.). Let ph be the 
induced measure of pW by ~, i.e., Ph=PWo3-1.  Define the mapping p: 
We(G)--* Wo(M) by ~(h.)t=ht o. Then the measure # is nothing but the induced 
measure of ph by /~. Notice that there exist inverse mappings of 3 and p, 
denoted by D and H respectively; H: Wo(M)-~ We(G) is the "stochastic hori- 
zontal lift" defined by P. Malliavin [18], (see also [-23]) and D: We(G)--* Wo d is 
the '~ development" defined by Ikeda-Manabe [7], i.e., 

D(h.)t=( ~ col,... ,  ~ r 
h[0,t] h[0,t] 

where col . . . .  ,cod, cod+l . . . .  ,co,, are the dual 1-forms of the vector fields 
A 1 . . . . .  A, defined by co/(Aj)=~ir J for I , J = l  .... ,n, and ~ co s is the integral of 

h[0,tl 

the 1-form co s along the path (hs;O<s<t) (see, e.g., Ikeda-Manabe [7], Ikeda- 
Watanabe [8]). Namely we have that H@=idweta)ph-a.e., poH=idwo (M)#-a.e., 
Do~=idwo~PW-a.e. and 3oD=idwo(G)Ph-a.e. Hence we can represent the pro- 
cesses (B~) and (ht) as the non-anticipative functionals of the Brownian motion 
(Xt) on M, i.e., (h.)=H(X.) and (B.)=DoH(X.). Define a mapping F 
= (F  1 . . . . .  Fd): g x G--*R d by F(A,g)=(guo)-lAg * which is often called a scalar- 
ization fimction of the vector field A*. Then the Radon-Nikodym derivative is 
given by the following form; 

Theorem 4.2. Under the same assumptions of Theorem4.1, 

d~d T 

~fi(X.)=exp {!  F (Ad(gt)~t, ht)dB~-�89 } (4.4) 

where * stands for the homomorphism from g into F~(T(M)) defined in Sect. 3 
and [[" II is the norm on T(M) defined by the Riemannian metric ( ' ,  "). 

I f  in particular, (gt) is defined on [-0, r ]  and smooth (at least C 4 class) then 
we can express the density as the functional of (Xt) more explicitly; 

(X.) = exp cot~189 ~ [div(Ad(gt) ~t)* (Xt) 
o (4.5) 

+[](Ad(gt)(t)x~[l 2 dt t 

where cot is the 1-form defined by cot(')= ((Ad(gt)~t)*, "). 
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Remark. In the right hand side of (4.4), we regard (ht) and (B,) as the function- 
T 

als of the Brownian motion (Xt) on M. In the right hand side of (4.5), 5 co, odX t 
0 

is the integral of the 1-form (%). Note that (cot) depends on the time t and 
T 

hence we need a slight generalization in defining ~ cotodXt. See [-23] for details. 
O 

5. Proofs of the Theorems 

In this section we give the proofs of Theorems 4.1 and 4.2. 

Proof of Theorem4.1" Firstly we shall prove that v is absolutely continuous 
with respect to # under the conditions in Theorem 4.1. Let (/) be the solution 
of the following differential equation on G; 

dlt-(~tAi)(lt)dt=(~t)~(~)dt O < t < T  

lT=e. 

Note that fit) is defined only for 0 < t <  T. From now on we omit the variable 
in the above equation for simplicity. Thus we write ~ i dlt=~tAidt in place of d~ 
=(~iAi)(~)dt. This convention will be used for all differential and stochastic 
differential equations considered in the future. 

From Corollary 2.2, (lt -1) satisfies the following differential equation on G; 

d~ -l=-Ad(~)(~t)~dt O < t < r  

1r 1 = e .  

Set rht=g t ~-1, then from Proposition 2.1, we have 

dr~ t = {ad(~) ~ ~ ~ t -  Ad(l,)(~t)~} dt ~ ~ =Ad(It)(~t),,dt 0 < t < T .  

We denote the components of Ad(() with respect to the basis {A 1 . . . . .  An} by 
Ad(lt)5, i.e., adfft)Aa=Adfft)IsAr Hereafter we use this convention without 
mentioning. Since m and t~ are invariant under Ad(K), it holds that Ad(k)7 
= Ad(k)i~ = 0 for k eK. Moreover (Ad(k)~) is in O(d) because (Ad(k)~)= A(k). We 
use these facts frequently. Thus (rfit) satisfies the following differential equation 
on G; 

dr~t=ad(It~tA~dt=Ad(~)(~t)~dt O<t<=T 

~ r = g r .  

By the assumption (A.3) and the boundedness of (ad(r,)~), (Ad(f,~ (~) be- 
longs to L2([0, T]). Hence (mr) is defined on 1-0, T]. i.e., m0 =limrat exists and it 

t ~ 0  

can be shown that r~oeK. In fact r~oo=limr~to=limg, T~-lo=limgto=o from 
t ~ O  t ~ O  t ~ O  

the assumption (A.1). Set mt=l~tr~o 1 and lt=r~ o ~, then gt=mtl t and (It), (I t 1) 
and (mr) satisfy the following differential equations on G respectively; 
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dlt=(~t)~dt 0 < t <  T 

lT=rho6K, (5.1) 

dl; -1= -Ad(lt)((t)~dt O<t<T 
- ( 5 . 2 )  

l~ 1 =rho 1 

dm t = Ad(lt)((t) mdt (5.3) 

m 0 ~ - e .  

Note that  ItsK for all tE(0, T]. 
F rom (4.2) (5.1) (5.2) and Proposit ion 2.1, we see that  (lt htl; -~) satisfies the 

following stochastic differential equation on G; 

d(lt ht 12 1) = Ad(lt) A odB7 + {Ad(lt h t  1)(~t)f_ Ad (lt) ({t),} dt 

= Ad(/t) ~ A~odB7 + {~i(Ad(ht- 1)~_ 6~) Ad(/,)JAj} dt. 

Again by Proposit ion 2.1, (Ad(h~-~)5) satisfies the following stochastic differen- 
tial equation; 

d Ad (h t- 1)5 = C / e  Ad (h;- ~)~ dB~ + �89 C~ C~ Ad (h t- ')~ d t 
Ad(h ~ 1~i _ ,~i (5.4) 

] j  - -  w j .  

Since this is a linear equation in Ad(h~-l)~, there exists a constant  c~ such 
that  E [ (Ad(hf  1)~)2] 5 c l for I, J = 1, ..., n and t~ F0, T]. We have 

t t 
~I  ~ 1 Ad(ht- ~)~_ s=~ Cl Ad(h71)~dBs+~ CK CL Ad(h~-I)jL ds 

0 0 

and hence 

E [ ( A d  (h t- ~)~ - b~)2] 

Ad h - ] 

<2E 2{CK~ad(hs )j} ds +rE (C~ ~ 2 CK~) ~(Ad(h2')f)2ds 
M 

<(2n2 dcl c~ +n~ d2 cl c~ r) t 

where c 2 = m a x l  Cj~I.I Setting c 3 =2n2dcl c~+n4d 2 c 1 c 4 T, we have therefore 
I , J , K  

E [(Ad(h t- 1)5 - ~)21 < c 3 t. (5.5) 

Let (/~t) be a solution of the following stochastic differential equation on G; 

- 1 I  I d~=Ad(lt)~A~odB~ +#i[Ad(h , )~-5,] Ad(lt){ Ajdt 
(5.6) 

]~0 ~ e, 
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By the assumption (A.3) and (5.5), the coefficients on the right hand  side of 
11oo and hence (/~t) is defined on the whole the above equat ion belong to ~2 

interval [0, T].  Now it is easy to see that  (lthtl; -1 hd 1) is constant  in re(0, T] .  
Set rl=lthtl2lhu 1. Since K is compact  and lt~K, there exists a sequence 
{tk}k~ N of (0, T]  such that  lira t k=0  and lim ltk exists, say 2. Then  we have 

k~oo k~oo 

t /=  lim lt~h~, r ls 1 /~1 = 2 e 2 - 1  e = e  
k~OO 

and hence/~t = It ht 121. 
By (5.3) and (5.6), (ruth t) satisfies the following stochastic differential equa- 

t ion on G; 
d(m, fit) = Ad (/t) A~odB~ + {Ad G h F 1) ~ _  Ad(l~) (~)~} dt 

(5.7) 
rno/~o =e .  

Let  (kt) be a solution of the following stochastic differential equat ion on G; 

dk t = Ad(lt)(Ad (ht- 1_) ~t-  ~t)~ dt = Ad(lt)~( Ad(h ~ ~)~- (5~) (r t Aj dt 

ko ~e .  

Since the coefficients of the above equat ion belong to /2~ r by (A.2) and (5.5), 
(kt) is defined on [0, T].  By Corol lary  2.2, (k/1) satisfies the following differen- 
tial equat ion on G; 

dk;- 1 = _ Ad(k t it ) {(Ad(h t- a) (t)~ - (~t)~} dt (5.8) 
kO1 ~ e .  

Then from (5.7) and (5.8), we see that (mt htkt  1) satisfies the following stochas- 
tic differential equat ion on G; 

d (m t/~t kt- 1 ) = Ad (k t lt) A~ o dB~[ + Ad (k t l,) ( Ad (h t- ~ ) ~t),. d t 

= Ad(kt)} Ad(/t) ~ A~odB~ (5.9) 

+ Ad(kt) ~ Ad(/,)~ Ad(h~- 1)~ ~ A~, dt 

mo ]Io ko  l = e .  

Now if we prove the equivalence of the laws of (ht) and (mt a t k;-1), then we 
can conclude the equivalence of # and v which are just laws of (ht o) and (g~ h t o) 
respectively. In fact since kt, lteK and gt=mtl ,  it holds that  mthtk;-lo 
=mt it htl21 k;- ~ o = g~ h t o. Define a d-dimensional cont inuous process (Zt) 
= (Z l . . . .  , Zt a) by 

Z~= Ad(k~)}Ad(l~)~dB~+~ ad(ks)~Ad(l~)~Ad(h21)~ds. (5.10) 
0 0 

Fur ther  (Ad(k,)~) and (Ad(/t)~) satisfy the following differential equations re- 
spectively from Proposi t ion 2.1 
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d Ad(k,)~ = CjjK Ad (k,) K1 Ad(it){(Ad(h;-1)~L_b~L)~Ldt 
(5.11) 

Ad(ko)~ = , ~  

d Ad(lt) ~ = Ci~ Ad(lt) ~ ~i dt (5.12) 

Ad (lr) ~ = Ad (r~o) ~. 

Then we can rewrite the Eq. (5.9) as follows; 

d(m t 1~ t k;- 1)= A~odZ~ 
(5.13) 

mohoko 1 =e. 

Here we used the fact that Ad(k,)~Ad(lt)~odB~t=Ad(kt)~Ad(lt)~dB~ but it is 
easily obtained from (5.11) and (5.12). Note that the stochastic differential Eqs. 
(4.2) and (5.13) have the unique strong solutions and hence, (h~) and (m, fltk; -1) 
are non-anticipative functionals in the same form of (Bt) and (Zt) respectively: 
(h.)= r and (m.h .k_l )=r  Therefore the equivalence of the laws of (ht) 
and (nhh, k~ 1) follows at once from that of the laws of (Bt) and (Zt). Thus it 
remains now only to show that the laws of (Bt) and (Zt) are equivalent. 

Note that (Ad(k,)~) and (Ad(l,)~) are in O(d). Hence the martingale part of 
(Zt) is a d-dimensional Brownian motion and the integrand of the second term 
of (5.10) belongs to /2~ ~ by the assumption ( A . 3 ) a n d  (5.5). Now by the 
following theorem of Shepp and Kadota, we can conclude that the law of (Zt) 
is absolutely continuous with respect to the Wiener measure pW. 

Theorem 5.1 (Shepp-Kadota [10]). Let ~=(~,; O<=t < T) be a d-dimensional con- 
t 

tinuous process given by ~ = B~ + ~ ~ ds (a = 1 . . . .  , d) such that (q~) is in I2~ ~ for 
0 

a = l , . . . , d .  Then the law of (~t) is absolutely continuous with respect to the 
Wiener measure. 

Secondly we shall prove that # is absolutely continuous with respect to v. 
First we will show that (Ad(h~-l)~) and (Ad(kt)~) are non-anticipative function- 
als of (Z~). For this we show that (Ad(ht-l)xs) satisfies the following stochastic 
differential equation with respect to dZt; 

d ad(h~- 1)~ = C~:~ Ad(hF 1)jK ad( l  t- ~)} ad(k  t- 1~ odZ~ 
I - - 1 K  a L 

- CK~ Ad(h t )j Ad(ht) L ~ dt (5.14) 

Ad(h ~ 1~I ,~x ] j  ~ ~ j .  

In fact, the right hand side equals to 

C ~  Ad(h] a)K Ad(/t- ~)} Ad(kt- 1)~ o { Ad(kt)~ Ad(lt)~ ~ dB~} 

Ad(k, )7 Ad(k0o Ad(lt)~ Ad(ht )L~, +{CtK~Ad(h~_~)K Ad(I~-~)~ -~ p ~ ,~ - ~  L 

-- C ~  ad(h  t- 1)~ Ad(ht- 1)~ ~L} dt 
1 - -1  K a )y  = c,,~ Ad(h~ ).,odB, =d Ad(h? ~ 

by (5.4). Here we used the fact that (Ad(l(1)~) and (Ad(k~-~)~) are the inverse 
matrices of (Ad(l~)~) and (Ad(k~)~) respectively which follows from the fact that 
l t and k t are in K. 
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On the other hand, since (Ad(k)~) is in O(d) for k e K ,  Ad(lt-1)~ =Ad(lt)~ and 
Ad(k~-l)~=Ad(kt){. Combining this with (5.11) and (5.14), we can see that 
(Ad(lt)Ij), (Ad(kt)~) and (Ad(ht-i)~) satisfy a system of stochastic differential 
equations with respect to (Zr). Note that Ad(lt) is uniquely determined as a 
non-random function. But it is not evident that (Ad(kt)~) and (Ad(ht-1)~) are 
obtained as strong solutions of these equations because ~i are singular at t--0. 
This difficulty is overcomed by a general result given in the next section (see 
Theorem 6.1) and therefore, as strong solutions of these equations, (Ad(h21)~) 
and (Ad(kt)}) are non-anticipative functionals of (Zt). Now we can appeal to 
the following theorem due to Kailath-Zakai and Ershov. 

Theorem 5.2 (Kailath-Zakai [12], Ershov [5]). Let  (~-t; O<_t<_T) be a d-dimen- 
sional continuous process satisfying the following stochastic integral equation; 

r 

~ = B ~ +  ~ ~ ( ~ . ) d s  c~= 1 . . . .  ,d, 
0 

where cb t is ~ -measurab le  function from Wo e into R. Assume further that both 
(4~(~.)) and (4~(B.)) belong to IJ~ ~ e = l , . . . , d .  Then the law P~ of (it) and the 
Wiener measure pW are equivalent. Moreover  the Radon-Nikodym derivative is 
given by 

dP~ B 
dp  w ( . )  = exp ~b~(B.) dB~- �89  ~ ( B . )  2 ds 

~=i0 

What remains to be shown is the part ~' ~ ~ .... (~t(B.))e/22 in the above theorem 
and this can be obtained by repeating a similar discussion as above. First (mr) 
be a solution of (5.3). Then (m;- ~) satisfies the following differential equation on 
G; 

dm 2 ~ = - Ad (mt It) (~r)m dt 

m o  1 : e .  

Hence (mr -~ ht) satisfies the following stochastic differential equation on G; 

d (m~- ~ ht) = A~ o dB~[ - Ad (h~- ~ ,n r lr)(~t)~, d t 

= A~ o dB~ - Ad (h t- 1 mt)~ a Ad(lt)~ ~t A~ dt (5.15) 

mo I ho=e .  

Similarly (l~-1 mf  ~ hr lt) satisfies the following stochastic differential equation on 
G; 

d(l 2 ~ m t- ~ h, It) = Ad(l 21) A odB~ + {(~r)~ - Ad (l~- ~ h 21 mr lr ) (r} dt 
_ -lfl - Ad(l~ )~A~odB r 

+ {Ad(l t- ~)~(8[ - Ad(ht -~ mr)l) Ad(lt) } ~ A ,  (5.16) 

- Ad(171)~ Ad(h~ -a m~) s Ad(lt) ~ ~ AI} dt 

0<t_<T. 

By (5.15) and Proposition2.1, (Ad(ht-imt)~) satisfies the following stochastic 
differential equation; 
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T 

This shows that  y {Ad(/t- 1)~(6[- Ad(hd 1 mr) [) Ad(/,)} (~}2 dt < oo a.e. on a set (z N 
0 

= T}. But since pW {z N = T} ]" 1 as N ~ o% we have 

] [ !  ~,I~J Ad(h[- lmt)Si)Ad(l t )}~}2dt<oo =1. pW {Ad(/d , s w i -  

Thus all the coefficients of the Eq. (5.16) belong to rlor Hence we can consider ~ 2  �9 

the following stochastic differential equation on G; 

dnt = {((,)2- [AdG-  1 h~- 1 mt it ) ~t]f} dr 

m,) 0 Ad(/,); ~;, A t = lAd (/;- ~)j (a~_ Ad(h71 ~ k 

_ Ad(/t- 1 ht-1 i mt lt)~ (t All dt 

tlo ~ e .  

Then (n~-1) satisfies the following stochastic differential equation on G; 

dn~ 1 = (Ad(nt) [Ad(it- ~ h7 ~ mt lt) ~t]~- Ad(nt) (~t)~} dt 
(5.18) 

gtO 1 ~---e. 

Hence by (5.16), (5.18) we have 

d(121 m21 ht l tn t  1) 

= Ad(n, l 21) A~ o dB~ - Ad (n,) [Ad (l 21 ht- 1 mt l,) ~t]m d t 

=Ad(n~l, -~)~AeodB,+~ ~ {ad(n~)~Ad(121)~(cS~-Ad(h?lm~)r)Ad(l~)}({A~ 

__ Ad(nt) ~ Ad(l t- 1 - 1 ~ (~ h, mtlt) ~ t a ~ } d t  0 < t < T .  

It can be shown that  the coefficients of the above equation belong to /2~ ~ by a 
similar method and hence we can consider the following stochastic differential 
equation on G; 

dp~ = Ad (n, l~ 1) A~ o dB~ - Ad (nt) [ Ad (1 t- ~ h t- 1 1Tit It ) ~t] m d t 
(5.19) 

Po=e. 

Then we can prove that p, = l,- a m,- a h, l~n 2 ~ for 0<t_-<T a.e. Note  that  
Ad(p t- 1) = Ad(n, l;- 1 h;- 1 mt lt). Hence by (5.19) and Proposit ion 2.1, (Ad(p t- 1)tj) 
satisfies the following stochastic differential equation; 

d Ad(Pt- 1)~ = C~, Ad(p t-1 )j rCAd(ntlt~)~odB~t 

1 --1 K --1 ~ (Ldt  (5.20) 
- -  C~a Ad(pt )J Ad(pt )L 

- 1 1  Ad(Po )j = 8 5. 

Also from (5.1), (5.2) and (5.18), we see that  (ltn, l, -1) satisfies the following 
stochastic differential equation on G; 
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d(l t n t l? a) = {Ad(/t n? 1) (r - [Ad(h? 1 mt it ) ~t],} dt 

= { Ad (/t)~(Ad(nt- l~jk -- Vk/"~j~ ~tk Ai 
_ ( A d ( h ? l  i i m,)i-cS~) Ad(lt)rj{[ A~} dt 0 < t < T .  

We can show that the coefficients of the above equation belong to 11oo ~ 2  aS 
before. Hence if (qt) is a solution of the following stochastic differential equa- 
tion on G; 

dq t = { A d ( l t  nF 1 ) ( ~ t ) ~ _  [Ad(ht- 1 mt it ) Ct]~} dt 

= { A d ( l t n t  l i  ~J - lmtl t) i i~t}Aidt  )j ~t - ad(ht (5.21) 

qo=e 

then it holds that qt=ltntl;  -1 for 0 < t < T ,  a.e. By (5.21) and Proposition2.1, 
- l I  (Ad(q t )j) satisfies the following stochastic differential equation; 

dAd(qt- 1 x _ mtlt)Lr t }dt  )s - C ~  Ad(q t- ~)f {Ad(l~n? ~)}~{- Ad(hF 1 ~ ~L 

Ad(q ~ l~rjs = ~s'~x. (5.22) 

On the other hand, since Ad(g): g ~ g  is a Lie algebra homomorphism for 
geG, it holds that 

ad(g) [Ai, ad(g  - ~)Aj] = lad(g)A, ,  As] = [Ad(g)fAK, Aj] 

= Ad(g)f C~sA M. 

But the left hand side equals to 

Ad(g) [A~, Ad(g-  1)~ AK ] = Ad(g) Ad(g-  a)~ C~[K AL 

= Ad(g)f  Ad(g-  1)ff C~[rAM. 

Thus we have c~jad(g) f=C~KAd(g)~Ad(g-~) f f .  By noting this and qt 
=itn f l? l~K,  p s i  =nt l? lh?lmf l t ,  we can rewrite (5.22) as follows; 

d a d ( q ?  ~)~ 

= CKjL Ad(q? 1)~ Ad(qt) ~ {Ad(l tnt  ~ ) ~ _  Ad(ht- a mt lt)~ ~ff} dt 

= { C~ i Ad(q t- 1)/Ad(q t l tnt 1~i rJ _ cK q~t ~si Ad(qt- 1),~ 

x Ad(qthF 1 mtlt)i~(ff} dt 

= { Cj~ Ad(q? ~)~ ad(ltntl 21 It hi- ~)} (Jr 
- Cs~ Ad(qF 1)~ Ad(1,nflyl h7 ~m,l,)b~ff } dt 

= { C~; Ad(q? ~)~ Ad(/,)~ ~1 - C~ Ad(q? ~)~ Ad(/t)} Ad(pt- l~2,L~trLt, dt 

= C~ Ad(qF ~)r Ad (/,)~ { ad(p~- 1){ _ 6{} ~ dt. 

the last line we used the fact C ~ =  C~ji. Thus -~ * 
- (Ad(q t ) s )  satisfies the I n  

following differential equation; 

d Ad(q t- 1)~ = C~ Ad (q~- 1)/K Ad (It) ~ {Ad(p? :t)~ _ 6~} ~L dt 
- - 1 1  Ad(q o )j =,5~. 

(5.23) 
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Also we can rewrite (5.20) as follows; 

dAd(pF~)~=C~Ad(p[-1)~ Ad(l~ -1 ~ )~ Ad(qt) , o dB~ 
I - 1 K  - - l c ~  L 

- CK~Ad(pt )s Ad(pt )L~t dt (5.24) 

Ad(PolV AI I J  ~ ~ J  

Comparing the equations (5.11), (5.14) and (5.23), (5.24), we see that 
(Ad(hgl)~), (Ad(kt)/) and (Z,) correspond to (Ad(pT~)~,), (Ad(q?l)~,) and (B,) 
respectively. Hence (Ad(pt-1)~) and (Ad(q~l)~) are represented as non-anti- 
cipative functionals of (Bt) in the same way as (Ad(ht-1)/) and (Ad(kt)~) are 
represented as non-anticipative functionals of (Zt). In the above argument we 
saw that (Ad(qt-1)~ Ad(lt) ~ Ad(p t- 1)~[) belongs to/2~ ~ which corresponds to the 
part " : lor (~t(B.))E/J2 in Theorem5.2. Thus the proof of the equivalence of the 
laws (Zt) and (Bt) is now completed. 

Proof of Theorem4.2: We will obtain the Radon-Nikodym derivative. We 
denote the law of (Zt) by pz. Then from Theorem 5.2, we have 

dpz fr 
Ad(/t), Ad(pt )i(t dB~ dpw(B.)=exp~ ! Ad(qt- 1)~ ~ - 1 , i  

t v 

r ~ (5.25) 
�89 ~ ~ (Ad(qt- 1)~ Ad(lt)~ Ad(pt- 1)/~ ~[)2 dQ. 

0 ) 

On the other hand, it holds that Ad(q;-1)~Ad(lO~Ad(p~-l)~=Ad(q;-lltp~)~ 
=Ad(ltn~-ll;-lltntl;-lh;-lmtlt)~=Ad(h;-Xgt) ~. We defined the function F: 
fixG--*R a by F(X,g)=(guo)-lXg * for Xefi and g~G. Let L: m-~To(M) be 
as in Sect. 3 and %0 be the mapping from G into M defined by %o(h)=hgo. 
Define the mapping p: G-~M by p(g)=g o. Then it holds that g-1o %0 =P ~ A~_~ 
where Ag-~ is the automorphism of G defined by Ag_~(h)=g-~hg. Note 
that fAg_x), =Ad(g-a) ,  p . lm=L and UoaoL(A~)=e~. Then if we write X = X ; A  I 
for X~g, we have 

F(X, g) = (gu0)-i X ,  ~ = Uo ~ o (g- 1), o (%o). X~ = uo ~ o p . ( a d ( g -  1)X)~ 

= u o 1 o p.([Ad(g - 1) X]~,)~ = u o 1 o L(Ad(g- 1)~X~A~) 
= Ad(g- 1)~Xle~. 

From this it follows that 

F~(Ad(gt)(t, ht)= Ad (h~-1)~ Ad(gt)~ ( [ = Ad (h~-1 gt)} r [. 

Since gUo: Ra~Tgo(M) preserves the inner product we have ~F~(X,g) 2 
cr 

= nX~o II 2. Therefore (4.4) is now obtained from (5.25). 
Next we will consider the case that (gt) is smooth with respect to t. Let co x 

be the 1-form defined in Theorem4.2. For g~G, let (gUo)*: Tg*(M)~(Ra) * be a 
dual operator of gUo: R d ~  T~o(M ). Then for ~ER a, it holds that 

((g u o)* cot, ~) = (cot, (g Uo) 4) = ( lAd  (gt) ~t]*, (g Uo) ~) 

= ((gUo)-l[Ad(gt)~t]*, ~) = (F(Ad(gt)(t, gt), ~) 
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where ( , ) is the natural bilinear form between the vector space and its dual 
space. (guo)* co t is called a scalarization of co, and we denote its components by 
(cot)~(gUo) a =  1 . . . .  , d. Hence we have (cot)~(gUo)=F~(Ad(gt)(t,g). The integral of 
the 1-form along the path (Xt) is represented by the scalarization, i.e., the 
following equality holds (see, e.g., [7], [8], [23]) 

t t t 

o~o dX~ = ~ (COs) ~ (h~ Uo) dB~ + �89 ~ (6 co~)(X~) ds 
0 0 0 

t t 

= ~ F~(Ad(gs) (~, h~) dB~ + �89 ~ div [(Ad(g~) ~)*] (X~) ds 
0 0 

where 6 is the dual operator of the exterior derivative d. Thus (4.5) is obtained 
and this completes the proof. 

Remark. We have studied only the sufficient condition and it is left open 
whether (A.1), (A.2) and (A.3) are the necessary conditions for equivalence of 
/~ and v. The condition (A.1) is evidently necessary in order that our problem 
is well-posed. In the Euclidean case we can actually prove that (A.2) and 
(A.3) are necessary as we shall see. 

Let (Bt; O<_t<T) be the d-dimensional Brownian motion starting at 0. Let 
a continuous mapping t~-*u(t) from (0, T]  into SO(d) and a continuous map- 
ping t~--~a(t) from [0, T] into R d such that a (0)=0 be given. Define the d- 
dimensional continuous process ~ =(~t; 0<t__< T) as follows; 

~=u~(t)B~+a~(t) ~=1 . . . . .  d 

where (u~(t)) and (a~(t)) are the components of u(t) and a(t) respectively. 
Suppose that the laws of (Bt) and (it) are equivalent. Since (~t) is a Gaussian 
process, we can appeal to the following theorem due to Shepp. Here we need 
the necessary condition part of his theorem which may be stated as follows: 

Theorem5.3. (Shepp [19]) Let t/=(t/t; O<_t<_T) be a d-dimensional Gaussian 
process with mean (re(t); O<_t<_ T) and the covariance (R(s, t); 0=<s, t__< T); 

m~(t)=E[tl~] a = l ,  ...,d, 

R~(s, t) = E [(r/~ -m~(s))(tl~t -m~(t))] c~, fi = 1 .... , d. 

Suppose that the law of t/=0lt) and the Wiener measure are equivalent. Then 
(re(t)) and (R(s, t)) satisfy the following conditions: 

(i) for every c~ there exists a function k~L2([0, T]) for which 

t 

m~(t) = ~ kS(s) ds, 
0 

(ii) for every ~, fl there exists a function K~sL2([0,  T] x [0, T]) for which 

s t 

R~(s, t) = 6~(s /x t) + ~ ~ K~(u, v) du dr. 
O 0  
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In our  case, the mean  vector  (re(t)) and the covar iance  matr ix  (R(s, t)) of ({~) 
are given by 

m~(t)=a~(t), (5.26) 

R~(s, t)= U~(S) u~(t)(S /X t). (5.27) 

F r o m  the condi t ion (i) of  Theorem5 .3  and (5.26), we have that  (a~(t)) is 
T 

absolutely cont inuous  and 5 d~(t) 2 dt< Go. By the condi t ion (ii) of  T h e o r e m  5.3 
0 

and (5.27), there exists a function K~aeL2([0, T]  x [0, T])  such that  

s t 

u~(s) u~(t)(s /x t) = 8=e(s/~ t) + ~ j K~(u, v) du dr. (5.28) 
O 0  

Hence  it is easy to see tha t  (u~(t)) is absolutely cont inuous  on (0, T].  F r o m  now 
on we will consider on the set s < t. By differentiating the bo th  hands  of (5.28) 
with respect  to s and t successively we have 

Hence  
K~e(s, t) = (~(s)~ + u~(s)) ~,~(t). 

T T 

~ dt i K~'(s,t) 2 ds= 2 ~ dt i {(ff~(s)s +u~(s))zi~(t)} 2 ds 
~,fl 0 0 a ,B 0 0 

T t 

: [ d t f ~ "~ 2 .c~ a a {u,(s) u,(s)s + (u,(s) u,(s) + u,(s) a;(s))s 
0 0 

+ u~(s) u~(s)} a~,(t) a~(t) d~. 

By not ing that  u~(s)u~(s)= as, and ti~(s)u~(s)+u~(s)~i~(s)=0, we have 

T t T t 

Z ~ dt ~ K~P(s, 0 2 ds = ~ dt ~ "~ "~ "~ "P 2 "~ ff~(t) 3~n } ds {us(s) u,(s) us(t)u,(t)s + us(t) 
a , f l O  0 0 0 

T t T 

= ~ Sdt ~ {ff~(s) ~/~(t)s} 2 ds + ~ ~ tti~(t) 2 dr. 
~,fl 0 0 13,s 0 

T 

Since K~a~L2([O,T] x [O,T]), we have ~tli~v(t)2dt<oo. Thus we obta ined  the 
0 

necessity of (a .2)  and (a.3)  and this proves  that  (A.1) (A.2) (A.3) are 
necessary and sufficient condit ions in the Euclidean case. 

6. Some Remarks on the Stochastic Differential Equation 
with the Singularity 

We give here the p roof  of the fact which was reserved in the previous section. 
Let the indices r fi, ..., i,j .... and 1, J . . . .  be as before. Let  a~ = (a~), b~ = (b~) and 
c,=(c~i ) be R ' -va lued  cont inuous  functions defined on R n. Assume that  a~, b~ 
and cii satisfy the following condi t ion;  for any N > 0 ,  there exists a posit ive 
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cons tant  L = L  N such tha t  for any x, yeR",  Ixl __<N, lYl < N ,  

~[a~(x ) -a~ (y ) [2+~]b~(x ) -b~ (y ) [2+~[c , i ( x ) - cu (y ) ]2<gN[x -y l  2 (6.1) 
a a l , i  

where ]-[ is the n-dimensional  Eucl idean norm,  i.e., Ix] 2 = ~ (x*) 2. Let  r h = (t/I) be 
I 

an Rd-valued funct ion defined on t~[0,  T ]  satisfying 

T 

(t/t) 2 dt < ~ a = 1 . . . .  , d, (6.2) 
0 

T 

~ t(tl~)2 dt < oo i = d  + l, . . . ,n. (6.3) 
0 

We consider  the following s tochast ic  differential equat ion;  

1 I {b~(X,)~t +crsi(Xt)(X{_ s dXt  _a~(Xt)dBt  + i �9 Xo)rlt} d t 
i _  i (6.4) 

X 0 - -  X 0 

where x o = (x~) is a fixed point  in R ". 
First  we establish the uniqueness of  the solut ion of (6.4). We prepare  some 

l emmas  which are the extensions of Gronwal l ' s  inequality. 

L e m m a 6 . 1 .  Let ~9 and ~ be non-negative measurable functions on [0, T]  such 
T T 

that ~ r  < oo and ~ tO(t)dt  < oo. Let {un(t)},=o, 1 .... be a sequence of non- 
0 0 

negative measurable functions on [0, T].  Suppose that there exist constants a and 
c such that 

Uo(t ) < a t  and 
t 

U,+l( t )<ct+iu~(s)4)(s )ds+t~u~(s)~(s)ds  n = 0 ,  1,. . .  
0 0 

t 

Then if we set p ( t ) = ~  ((~(s)+sO(s))ds, it holds that 
0 

u,(t)<=ct ~ p ( t ) "+a t  p(t)", n =0,  1, ... 
m = O  

Proof Define a sequence of functions {I,(t)},= o, 1 .... inductively by 

Io(t )= 1 and 
t 

I ,+~(t)=~((a(s)+sO(s))I ,(s)ds n = 0 , 1 , . . .  
0 

Then  it is clear tha t  I , ( t ) = l p ( t )  n. Hence  it suffices to show tha t  

n - 1  

u , ( t ) < c t  ~ Im(t)+atI , ( t )  n = 0 ,  1, ... (6.5) 
m = 0  
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We prove it by induct ion on n. It is clear when n = 0 .  Assume (6.5) for n. Then 

, (  . - 1  "1 
u,+ i(t)< ct + v! . ,..-~cs=~-oI"(s) + as I,(s)}. (o(s)ds 

t (  n - -1  "1 

+ t !  ~cS ~=oIm(s)+asI,(s)~O(s)ds 

n - l t  

N c t + c t  ~ ~I~(s){dp(s)+sO(s)}ds 
m=O0 

t 

+a t  S L(s) {4,(s)+sO(s)} ds 
0 

=ct  ~, Im(t)+atI.+x(t ). 
m=0 

This completes the proof. [ ]  

Lemlna6.2.  Let (a and 4' be as in Lemma6.1 and u be a non-negative measurable 
function on [0, T].  Suppose that there exist constants a and c such that 

u(t)<at and 
t t 

u(t)<=ct + ~ u(s)(a(s)ds +t ~ u(s)O(s)ds. 
0 0 

Then it holds that 
u(t) < ct exp p(t) (6.6) 

t 

where p( t )=~  (O(s)+ sO(s))ds. 112 particular, if c = 0  then u ( t )=0  for t~[0,  TJ. 
0 

Proof. F r o m  Lemma6.1 ,  we have 

. - 1  1 1 1 
u(t) N ct ~, ~ .  p(t) + at ~. p(t) N ct exp p(t) + at ~T. p(t ). 

~=0  * " 

By letting n ~ ~ we have (6.6). [ ]  

Now we go back to the uniqueness of the solution. 

Theorem6.1.  Suppose that the conditions (6.1), (6.2), (6.3) are satisfied and let X 
=(X,)  and Y=(Yt) be any tow solutions of (6.4). Assume further that both X and 
Y satisfy the following conditions: for any N > 0 ,  there exists a constant c=c  N 
such that 

E[lX,-xol 2 l{t__<,~,}] =< ct 
(6.7) 

E l i  Yt - -Xo]  2 l( t<~ M] ~ ct 

where ~iv and c~ N are exit times of X and Y from B(xo;N)---{xeR" I ] X - X o l < g  } 
respectively. Then p w [ x t =  Y, for all t e [0 ,  T ] ] =  1. 

Proof. For  any N > 0 ,  take L and c satisfying (6.1) and (6.7) respectively. Set ~: 
-- ~N/x a N. Since X and Y are solutions of (6.4), we have 
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Since 
have 

t a l c  t A K  

I f a l t X ,  a 
0 0 

t A , ~  

+ ~ {~(x~) ' ~ ~ - cj~(Y~)} (Xs - Xo)~, ds 
0 

t a l c  

+ [. i ,1 c,,(Y~)(X s -- ~'3,{~ as. 
0 

Hence by Schwarz's inequality we have 

(Xt ^ lc - Yt~ ~)2 __< 4 (a~(X~) - a~(Y~))dB~ 

t A l C  

+ 4t ~ ~, (b~(Xs) - b~(Y~)) 2 2 (t/~) 2 ds 
0 e 

t A K  

I 2 + 4 t  ~ Z (c~,(Xs)-Cs,(Y~)) E ( X f  - xg )2  E Ol{)Z ds 
0 J , i  K j 

t a l c  

+4t  ~ ~c~i(Y~) 2 ~  tr (x~ - v~)  ~ ~ (~)~ ds. 
0 J , i  K j 

ci[s are continuous, M =  sup ~[cri(x)]2<oo. Hence from (6.1) we 
xeB(xo ;N)  I , i  

E[IX,  A ~ - ~ lcl 2 ]  

=<4E a~ s -a~ 2 ds 
k 0 

t A l ~  

+ 4 t E l  ! ~lb~(X~)-b~(Y~),z~(.~)2ds] 

[T ] + 4 t E  2 Icj~(X~)- cjg(Y~)] 2 IX~-xol 2 Z (11~) 2 ds 
Y,i  j 

[T ] + 4 t E  21cj i (Y~) lZlxs-Ys[22(~)2ds  
Y,i  J 

IT' ] [i ] < 4 L E  Xs-y~12ds + 4 t L E  X s -  ~ )  ds 

+ 4 t L N 2 E  IX~-Y~[ 201s) ds + 4 t M E  S [Xs-y~[22(Q~) 2ds 
i -o  j 

t t 

<= 4L ~ E[[X~ - Ysl 21~< lc}] ds + 4 TL ~ E[ IX~-  g[ 21~<= j Y, (~)~ ds 
0 0 a 

+ 4 t (LN  2 + M) i E[[X s -  Ys] 2 l ~ < J  ~' (r/~) 2 ds. 
0 i 

If we set u(s )=E[[Xs -  Ysl z l ~ < J .  then we have 
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u(t)~ o}U(S){4L+ 4 TL ~ (r/:) 2} ds+t  o}U(S) 4(LN2 + M)y'i (~:)2 ds. 

F r o m  (6.7) it is easy to see that  u(t)<2ct and, by Lemma6.2 ,  we can conclude 
that  u( t )=0 .  Hence  we have z N = a  N a.e., and p W [ x t = Y  t for t < z N ] = l .  By 
letting N ~ oo, we obtain a desired conclusion. 

Remark. Without  assuming (6.7), the uniqueness may fail. Fo r  example, let us 
consider the following ordinary differential equat ion on the interval [0, ~],~ �9 

dX t = - (X jr log t) dt 
(6.8) 

X o = 0  

1 / 2  

Since j {t/(tlogt) 2} dt< oo, (6.2) and (6.3) hold. But for any constant  c, X, 
0 

= c / l o g t  is a solution of (6.8) and hence the uniqueness does not  hold. No te  
also that  X t = 0  is a unique solution which satisfies (6.7). 

Next  we will discuss the existence. 

Theorem6.2.  Let ~l be as in Theorem6.3. Suppose that a~,b~ and c~ satisfy the 
following conditions; there exist positive constants L and K such that 

[a~(x) - a~(y) l 2 + ~ [b~(x) - b~(y)t 2 

+ }~ [c,,(x)(x'  - X~o) - c; ;(y)(fl - x/)l 2 __< LI x - y l 2 
i 

for x, y~R" and 

(6.9) 

la~(x)l 2 q-~ Ib.(x)12 ~ K(1 + Ix-x0l z) 
ct 

(6.10) 

]c,~(x)] 2 < K (6.11) 
I, i  

for x~R  n. Then there exists a solution of (6.4) such that E[[Xt-xo[2]<=mt, 
O<_t< T for some positive constant m. 

Proof. We construct  a solution by the method  of successive approximations.  We 
define a sequence {Xr=(Xr(t))}r=0,1 .... of n-dimensional cont inuous processes 
inductively by 

XIo(t)= x;o and 

t t 

X~+ l(t) = x o + S a~(Xr(t)) dB7 + ~ {b~(Xr(t))~ (6.12) 
0 0 

+4, (x~( t ) ) (x~( t )  " '  -Xo)r]t}dt r = 0 ,  1, ... 

By Doob-Kolmogorov ' s  inequali ty we have 
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E[  sup IXr+ l(s)-Xo[ 2] 
O<_s<_t 

< 3 ~ E  [ sup a~(Xr(v))dB: + 3 2 E [  su p ~b~(Xr(v))rl,~,dv 
LONs<~t  I L O N s - < t  {.0 

+ 3 Z E  [ sup c~,(Xr(v))(X~(v)-XJo)rl{,dv 
I LO-<s -< t  (.0 . )  J 

<12E la:(X,(s))lZds +3tE Ib~(X,(s))12~(tl~s)eds 
LO a f l  

I , i  j 

<=12E [i K(l + [X,(s)-xol2) ds] + 3tE [i K(l + 'Xr(s)-xol2) ~ (rl:)Z ds ] 

+ q 

If we set u~(t)=E[ sup IX~(s)-XolZ], then we have 
O<_s<_t 

ds u~+~(t)<= 12K+3~fZI.:)2ds t+!u~(s) 12K+3TKZ(.:) ~ 
0 

+ t i u,(s) 3K ~ (tli~) 2 ds. 
0 i 

Note also that Uo(t)=0. Then from Lemma6.1, we have 

~-i 1 k< ur(t) < c t ~ ~. p (t) = c t exp p (t) 
k = O  " 

where 
T 

c=12K+3K~ v~ ~'2ds 2_. tq~) , 
0 a 

t 

p (t) = y {12K + 3 TK ~, (t/~) 2 + 3 K s ~ (t/'s) 2 } ds. 
0 a i 

This implies that (6.12) is well-defined. We also have 

~[ sup txr+ l(s)-Xr(s)?] 
O<_s<_t 

[iz ] +3rE Ib~(Xr(s))-b~(Xr_l(S))122(rl~)Zds 
LO ~ fl 

- c,i(X ~_ ~(s))(X~_ ~(s) - x~)[ 2 ~ (t/Js 2 ds] 
J 

(6.13) 
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t 

< 12L f E[IX~(s) -S  r_ 1(s)123 ds 
0 

t 
e 2  + 3 TL ~ EEIX~(s)-- Xr-  I(s)I 2] ~ (~s) ds 

0 c~ 

+ 3 t L i E [[X~(s) - X,_l(s)[ 2] ~ (rfs) 2 ds. 
0 i 

If we set vr(t)=E [ sup IXr+l(s)-Xr(s)l=] then we have 
O < s < ~ t  

t 

0 ~ 0 i 

From (6.13), it holds that vo(t)<=ct. Then from Lemma6.1, we have 
v~(t) < c t ~ (t)r/r ! where 

-i ~(t)-  (12L+3TL~Ol~)2+3Ls~(n~)2}ds .  
0 ct i 

Hence we have 

pw [ sup IX, + 1 (t) -- X,(t)[ > 1/2"] < 2 2r c T{ (T)*/r !. 
O<~t<=T 

By Borel-Cantelli's lemma we see that (X,(t)) converges uniformly on [0, T] 
a.e. Set Xt - - l im X~(t). By letting r ~  ov in (6.13), we have 

r ~ o o  

E [  sup IXs-xol2]<ctexpp(t ) .  
O<_s<_t 

On the other hand, since E [  sup [X~+l(S)-X~(s)lZ]<=ct~(t)'/r!, we have for 
p, qeN,  p<q o<~<_t 

E [ sup [Xa(t ) --Xp(t)[ 2] <= C t 
O<_s<_t 

By letting q ~ 0% we have 

E [  sup [Xt-Xp(t)[ 2] <=ct 
O<--s<~t k = p  

Now it is easy to see that (Xt) is a solution of (6.4) and this completes the 
proof. [] 

If we assume only (6.1), (6.2) and (6.3), then the global solution may not 
exists, But we can show, by a truncation argument, that there exists a unique 
solution satisfying (6.7) up to the explosion time. Note that this solution is non 
anticipative functional of the Brownian motion (Bt): in fact this is clear from 
the above construction by successive approximations. If we replace the Brow- 
nian motion by a semimartingale (Zt) such that the law of (Zt) is absolutely 
continuous with respect to the Wiener measure, then the same result holds. 
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Moreover both functionals on W0 a coincide. This fact is exactly what we 
needed in the previous section. 

Acknowledgement. The author wishes to express thanks to N. Ikeda and S. Watanabe for their 
valuable suggestions. 
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