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1. Introduction

A famous result by Cameron-Martin [2] states that, for a d-dimensional
Brownian motion B(¢) with B(0)=0 on a finite time interval [0, T] and a con-
tinuous function a: [0, T]—R% the processes (B(t); 0<t<T) and (B(t)+a(z);
0<t<T) are equivalent in the sense that the laws on the path space W*
= C([0, T] > R? are mutually absolutely continuous if and only if a(0)=0 and
all components of g are absolutely continuous with square-integrable deriva-
tives. A generalization of this result is given as follows: let u=(uj(t)) be an
SO(d)-valued continuous function defined on (0,T] (SO(d) is the set of all
orthogonal matrices of order d with determinant 1), B(t) and a=(a*(t)) be as

above and ask when two processes (B(t); 0=t<T) and (5(t); 0=t < T) defined
d
by n*(t)= ) uj(t) BP()+a*(t), a=1,...,d, are equivalent. As we shall see in
B=1
Sect. 5, they are equivalent if and only if a satisfies the same condition as above
and u satisfies that all components of u are absolutely continuous on (0, T] and

T
fe{i@)>dt< oo, 0, f=1,2, ...,d.
4]

Since R? is a Riemannian symmetric space and x—ux+a, ueS0(d), acR?,
is an isometric transformation of R? it might be natural to generalize the
problem to Brownian motions on Riemannian symmetric spaces in the follow-
ing manner. Let M be a d-dimensional Riemannian symmetric space and take
an arbitrary point oeM and fix it. The Brownian motion on M is the diffusion
on M which is generated by 4, 4 being the Laplace-Beltrami operator on M.
Let X=(X,;0=t=T) be the Brownian motion on M with X,=0 given on a
finite time interval [0,7] and let g=(g,) be a continuous map (0,T]—G
where G is the connected component containing the identity e of the Lie group
I(M) formed of all isometries of M. We want to know when X =(X,; 0<t<T)

*  This research was partially supported by Grant-in-Aid for Scientific Research, (No. 56740095),
Ministry of Education



494 I. Shigekawa

and Y=(Y,=g,X,, 0<t<T, Y,=0) are equivalent. The purpose of the present
paper is to answer this question and our result is the following. Let g be the
Lie algebra of G an element of which, as usual, is identified with a left
invariant vector field over G. Let g=m+I be the usual direct sum decom-
position (see Sect.3 for the definition) and let{4,,...,4,}and {4, ,,...,A4,} be
bases of m and f respectively (n =dim (G)). We assume that

limg,o=0 (A1)
t—0
which is clearly necessary in order that X and Y are equivalent. We further
assume that

t+—g, is absolutely continuous on every closed interval of (0,T]. (A.2)

Under (A.2), we can define the coefficient {7 of g,e T, ,(G) with respect to the
basis 4,(g)=(4,),,€T,(G) for almost all te(0,T], I=1, 2, ..., n, that is, we can
write the differential equation for g, as

dg,= Y (1 A,g)dt O<t<T
I=1
and we assume furthermore that

T
() [((Ydi<owo, a=1,..,4d,

3 (A3)
(i) [e(0)?dt<co, i=d+1,...,n.

0

Our main result in this paper now can be stated as follows: under the assump-
tions (A.1) (A.2) and (A.3), the processes X and Y are equivalent. We can also
obtain an explicit formula of the Radon-Nikodym derivative of the law of Y
with respect to the law of X. We could not show that these conditions are also
necessary for the equivalence of X and Y but, in view of the above result in the
Euclidean case, they look like to be almost necessary.

Our method in obtaining the above result is as follows. First we construct
our Brownian motion X on the Riemannian symmetric space M by construct-
ing a left Brownian motion on the Lie group G and lift the equivalence
problem for processes on M to that for the processes on G. Writing the
stochastic equations for these processes on G with respect to the basis {4;, I
=1,2,...,n}, of the left invariant vector fields, it is further reduced to the
equivalence problem for semimartingales on the Euclidean space. Then we can
appeal to known results for such problems, e.g., results by Kailath-Zakai [12]
and Ershov [5]. In the above reductions of the problem, an important role is
played by the It6-formula for products and inverses of semimartingales on the
Lie group G which will be discussed in Sect.2. These formulas may be re-
garded as a special case of general formulas obtained by e.g. Kunita [14] and
Bismut [1] for the composites of stochastic flows of diffeomorphisms: our
formulas in the case of a Lie group can be given more explicitly, however.
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2. Stochastic Differential Equations on Lie Groups

Let (Q, % P) be a complete probability space, (%), be a right continuous
increasing family of sub o-fields of & such that £ contains all P-null sets. Let
B=(B,; 0=t< ) be a d-dimensional ()-Brownian motion starting at 0 (we
follow the terminology in Ikeda-Watanabe [8]). Let M be a manifold. We will
assume that all manifolds discussed in this paper are always C®, connected
and g-compact. Let 4,, 4, ..., A, be C* vector fields on M. We denote the
totality of C® vector fields on M by I'*(T(M)). Let us consider the following
stochastic differential equation on M;

d
dX,= Y A(X)odBi+A(X)dt 2.1)

a=1

X,=xeM.

The meaning of the equation (2.1) is that X=(X,) is a continuous (%#)-
adapted process such that for any C*-function f on M with compact support,
it holds that i .
FX)—fXo)= ) J(A )X )odBi+ (Ao /)X )ds (2.2)
0

a=10
where the symbol o means the Fisk-Stratonovich symmetric integral. It is well-
known that (2.1) has a unique strong solution up to the explosion time.
Let M and M' be C* manifolds and ¢ be a C*® mapping from M into M’
Suppose that A,,A4,,...,4; are in I'°(T(M)) and A4y, 4;, ..., A, are in
I'*(T(M") such that

(d)*)x(Aa)x:(A;)d)(x) O(———O, 1’ >d

for any xeM where (¢,), is the differential of ¢ at x. Let X =(X,) and Y=(Y)
be the solutions of the following stochastic differential equations on M and M’
respectively;

d
dX,= Y A X)odB{+AyX,)dt

a=1

(2.3)
X,=xeM,

d
dY,= Y, AL(Y)o dBi+ Ap(Y)d:

=t (2.4)
Y, =¢(x)eM.

Then the following lemma is easily obtained from the definition.

Lemma 2.1. Suppose that ¢ is surjective or (X,) has an infinite explosion time. Let
T and ty be explosion times of (X ) and (X)) respectively. Then 1y <ty a.e. and Y,
=¢(X,) for all t up to tya.e.

Let M be a manifold and G be a Lie group acting on M on the right. The
action of an element g in G is denoted by xt—>xg for xeM. Let g be a Lie
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algebra of G, ie., the set of all left invariant vector fields on G. For each Aeg,
the 1-parameter subgroup {expt4; reR} induces a vector field on M, which we
denote by A*. The mapping from g into I'*(T(M)) which sends 4 into A* is a
Lie algebra homomorphism (see, e.g., Kobayashi-Nomizu [13], I4). Let us
consider the following stochastic differential equations on G and M respective-
ly;

d
dg,= ). A,(8)°dB; + Ao(g,)dt
a=1

(2.5)
go=¢€

d
dX,= Y A¥(X)odB:+ A3(X,)dt
a=1

2.
X,=x (26)

where 4y, A,,..., 4, are in g. Define the mapping ¢: G— M by ¢(g)=xg. Since
(D4, (4),=(AF)sy ©=0,1,...,d, geG, and (g) is conservative (see, e.g, Mc-
Kean [19]), the following corollary is an easy consequence from Lemma2.1.

Corollary 2.1. If (g,) and (X)) are solutions of (2.5) and (2.6) respectively, then X,
=xg, for all t =0 a.e.

The solution of (2.5) is called the left Brownian motion on G (cf. [19]). We
will discuss the processes on the Lie group G in the remainder of this section.
We will generalize (2.5) to the case that 4,, 4,, ..., 4, are random and depend
on the time ¢. More precisely, let (&, )5, be g-valued process such that each
component is in L{° where L$° is the set of all measurable and (%)-adapted
processes (9,), >, such that

t
P [j|q§s|ds<oo for all @0]:1
0

and let (£, )50 *=1,...,d be g-valued continuous semimartingales. Here a
continuous semimartingale is a process which can be represented as a sum of a
continuous local martingale and a continuous process of bounded variation. g-
valued continuous semimartingale is a g-valued continuous process such that
cach component is a continuous semimartingale. Since all the semimartingales
which we discuss in this paper are continuous, we sometimes omit the adjective
“continuous”. We consider the following stochastic differential equation on G;

d
dg,= ). &, (g)edB; +¢&, (g)dt
a=1
2.7)
80=g8€G.

Lemma 2.2, The stochastic differential equation (2.7) has a unique conservative

solution.

Proof. The proof is similar to that of McKean [19]. Let us consider the
following stochastic differential equation on G;
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dg,= ) A,(g)odM;
=t (2.8)
go=¢€

where A,,..., A, are in g and M*=(M?) («=1,...,r) are semimartingales. First
assume that G is a subgroup of GL(m,R) for some integer m and hence g is a
Lie subalgebra of gl(m,R), the Lie algebra of GL(m,R). Since GL(m,R) is an
open submanifold of R™, there exist the natural coordinates (xj.; i,j=1,...,m).

Hence each element A in g corresponds to an m x m matrix (4%, ;_, , in the
following manner; " 3
A = i-Aj e
i.j,;: J o
Then the Eq.(2.8) can be written in the component form as follows;
dgi,= Y Y g ANAMi+L Y Y g (AJKA M MP,
a=1k=1 a,f=1kl=1 (29)

g o=0, ij=1,..,m

Here, (Aa)’; k,j=1,...,m, are the components of a matrix corresponding to A4,,
(M* M?y a,B=1,...,r, are quadratic variational processes of M* and M* and
63. is the Kronecker delta. It is well-known that (2.9) has a unique conservative
solution (see, e.g., Ikeda-Watanabe [8], Chap. III, Th. 2.1.) and hence (2.8) has
a unique conservative solution.

Secondly we consider a general Lie group G. By Ado’s theorem there exist
an integer m and a Lie subgroup G’ of GL(m,R) such that the Lie algebra g of
G’ is isomorphic to g. Hence the universal covering groups of G and G’
coincide and we denote it by G. Let 4;,...,A. be in g which correspond to
A,,...,A, in g under the isomorphism between g and g. A,,...,4, in § are
similarly defined where § is the Lie algebra of G. We consider the following
stochastic differential equations on G’ and G respectively;

¥

dg,= ) A(g)edM;

o (2.8)
go=¢€
dg,= Y A(§)odM;
) a=1 (28)//
go=¢€

The above result implies that there exists a unique conservative solution of
(2.8) on G’ and by lifting it we obtain a solution of (2.8)". Then a solution of
(2.8) on G is obtained by projecting the solution of (2.8)". The uniqueness of
(2.8) is easy to see. Thus (2.8) has a unique conservative solution. Note that if
(g,) is a solution of (2.8), then for g in G, (gg,) is a solution of the same
equation (2.8) with the initial condition, however, replaced by g.
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Now we go back to the equation (2.7). Let {A,...,4,} be a basis of g
where # is the dimension of G. If we write

ZZ ;,tAi a=0a17---:d7
i=1

then (£ ) is in I and (¢) a=1,...,d are semimartingales. Define semi-
martingales M'=(MY i=1,...,n by

d t
Z f s© dBoC + j go s
a=10
Then (2.7) is equivalent to the following stochastic differential equation on G;

= Y Ag)odM!
=1 (2.10)
8o —8-

Therefore we can conclude by the above argument that (2.7) has a unique
conservative solution. [J

Let (g,) and (h,) be G-valued continuous processes. If we set k,=g,h,, then
we have a new G-valued continuous process (k). Assume that (g,) and (h,)
satisfy some stochastic differential equations. Then we can obtain the stochastic
differential equation of (k,) as follows which may be considered as a particular
case of more general results due to Kunita ([14], Prop. 4.2) and Bismut ([1],
Th.2.3).

Proposition 2.1. Let (¢, ) and (1, ,) be g-valued processes all of whose components
are in I)¥° and (o) (n,,) @=1,...,d be g-valued semimartingales. Let (g,) and (h,)
be the solution of the following stochastic differential equation on G respectively:

d
=Y &, (g)odBi+¢&, (g)dt
a=1

(2.11)
g0=8

dh - Z Ha, t(h dB?"—’?O,t(ht)dt
=1 2.12
ho=h (2.12)

where g and h are in G. If we put k,=g.h,, then the stochastic process (k,)
satisfies the following stochastic differential equation on G;

d
dk,= Y, (Ad(h7NE,  +n,,)(k)odB]

a=1

+H(Ad(h ) ot 110,)(k) dt (2.13)
ko=gh
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wh'ere Ad: G- GL(g) is the adjoint representation of G. Moreover, if n,,
—Zn“ i a=L...,d and Ad(h7NA,;= ZAd h 'Y, A, by fixing a basis

{Al, ..y A,} in g, then (Ad(h; 1);)w:1 Satzsfzes the following stochastic differ-
ential equation;

d n
dAd(h z Y, Ci Ad(h, MYirl, o dB?
a=1klI=1

n

+ Y Ciy Ad(hy Yan, dt (2.14)

ki=1
Ad(hg Y= Ad(R™Y),

where CL/s are the structure constants, i.e.,

n
[AkaAl] = Z C;clA

Proof. 1t is enough to prove the first assertion only locally. Let (x!,...,x"),
(%, ...,y™ and (2%, ..., z") be local coordinates on neighborhoods of g, h and gh
respectively. Define the mapping F' by Fi(x,y)=z(xy). By the It6 formula, we

have J

dF' (g, h)= 3 {6 )eF )80 h) + (1,0, F)g,, b))} o dB;

=1

+ {((éo,t)xFi)(gt’ ht)+ ((no,t)yFi)(gt: ht)} dt

where (&, ), and (n,,), stand for the differentials with respect to the first
variable and the second variable respectively. But generally we have that, for
Aeg,

, . d .
AP )= A2 xy) = 2 (x exptA Vo
=A(z' o R )(x)=((R,.A)z)(xy)= Ad(y ") AZ'(xy)

since R.=Ad(y~") where R, G- G is the mapping defined by R J8)=gy.
Slmllarly we have

. . d . .
A F(x, )= A, (xy) = p 2 (xy exptA)l,_o =47 (xy).

Thus we have
dzt Z (Ad(h,NE, 41, 2 (g,h,) dB?

+(Ad(hz 1) gO,t+ ’70,:) Zi(gtht) dt

and this proves (2.13).

To show the second assertion, note that G acts on g on the right in the
following manner; Ag=Ad(g~!)A for Aeg and geG. From the remark after
Lemma2.1, there exists a Lie algebra homomorphism A+ A* from g into
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I'*(T(g)) such that if we define o,: G—g for Xeg by o4(g)=Xg, then (oy),4
=A* for Aeg. Since {4,,...,4,} is a basis of g, we can represent Xeg as X

=Y X'4;and (X',...,X") forms a system of local coordinates in g. Since g is a
i=1
vector space, we can identify Ty(g) and g for any Xeg. We denote this

isomorphism from g into Ty(g) by 1. Then we have for X, Yeg
. d d
(Y=o, o= 0x(expt V)l_o = Ad(exp(~t V)Xo

d
= exp(—tad V) X/|,_,=14(—ad Y(X))

=1X([ XA, ZYjAj])le( 5 XinijAk)
i=1 j

j=1 i, k=1
n . . a
= Xiyick, (———)
i,j,;.—-l Y\oX* Jx

where ad: g—ql(g) is the adjoint representation of g, ie, ad X(Y)=[X, Y].
Thus we have

" o 0
(3 )x= > ini’tq;j (E’X—k)x

i,j,k=1

Since Corollary 2.1 also holds for more general stochastic differential equations
of type (2.7), we can apply it to the Eq.(2.12) and thus obtain (2.14). []

The following corollary is easily obtained from the above proposition.

Corollary2.2. Let (£, ,) be a g-valued process such that each component is in I'°
and (¢,,) a=1,...,d be g-valued semimartingales and let (g) be a solution of the
following stochastic differential equation on G

d
dg,= Z C.i(8)odBr + éO,t(gt) dt
=1

(2.15)
80o=8&
Then (h, =g ?) satisfies the following stochastic differential equation on G;
d
dh,=— ). Ad(g) &, (h)edBi — Ad(g) &, (k) dt
=t (2.16)

-1

ho=g ,
Proof. Let (h,) be a solution of (2.16). Then by Proposition 2.1, we have

d
d(hg)= Y {Ad(g, )(—Ad(g), )8+, (hg)} o dBY

o=

+{Ad(g; (= Ad(g)&o, ) (&) + &0, (i85 dt
=0

and h,g,=e. Hence h,g,=e for all t=>0 a.e. and this completes the proof. []
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3. The Brownian Motion on the Riemannian Symmetric Space

Let M be a d-dimensional Riemannian manifold, O(M) be the orthonormal
frame bundle and let m: O(M)—M be the natural projection. Let w be the
Riemannian connection form on O(M) (see, e.g., [13]) and 6 be the canonical 1-
form on O(M), ic., the Révalued I-form™ defined by 6,(X)=u"'(n,X) for
ueO(M) and XeT,(O(M)) where we regard an element ueO(M) as a linear
isomorphism from R? onto T, (M) which preserves the inner product. We
associate with each £eR? a vector fields B(£) on O(M) such that w,(B(£),)=0
and 0,(B(&),)=¢ for ueO(M). B(&) is called a standard horizontal vector field
corresponding to ¢. Using these notations, we can construct the Brownian
motion on M by the following method of moving frames (c.f. [18]). Let (U) be
the solution of the following stochastic differential equation on O(M);

d
aU,= ). L,(Uy)odB;
1

A=

- (3.1)

where L =B(e,), ¢,=(0,...,0,1,0,...,0) and ueO(M). Then (z(U)) is a Brown-
ian motion on M starting at 7(u).

If in particular M is a Riemannian symmetric space, a Brownian motion on
M is constructed from a Brownian motion on a transformation Lie group of M
as follows. Let G be an connected component containing e of the isometric
transformation group I(M) of M. It is well-known that the Lie group G acts on
M on the left transitively. Take any points oe M and uy,e0(M) such that =(u)
=0 and fix them. Hereafter we consider the Brownian motion on M starting at
o. Let K be the isotropy subgroup of G at o and A be the linear isotropy
representation of K, i.e, A is a homomorphism from K into GL(T, (M)) defined
by A(k)=(k,),. Then 4 induces a homomorphism A: K —O(d) defined by A(k)
=uytol(k)ou, for keK. Let s be the symmetry at o and ¢ be an involutive
automorphism of G defined by o(g)=s0gos for geG. We can easily see that ¢2
=id; where id; is the identity mapping of G. Let ¢, be the differential of o.
Then o, induces an involutive automorphism of g denoted by o, also. Since ol
=id,, g, as a vector space, is a direct sum of eigenspaces for 1 and —1,
denoted by t and m respectively. Then Aeg can be represented uniquely as 4
=A,+A, such that 4,em and A,el. We denote A, and 4, by 4 and 4,
respectively. It is known that f is the Lie algebra of K and m is invariant under
Ad(K), i.e., Ad(kym<m for any keK. This fact plays an important role later.
Since G acts on M, G acts on O(M) in the following manner; gu=(g,),, °u for
geG and ueO(M). This means that gu is a composite mapping of u which is an
inner product preserving linear isomorphism from R? onto T, (M), and (g,).
which is an inner product preserving linear isomorphism from T, (M) onto
T,rw(M). Then G can be regarded as a closed submanifold of O(M) by an
inclusion map 1: G —» O(M) defined by 1(g)=gu,. Since G acts on M and O(M),
I-parameter subgroup {expt4; teR} for Aeq defines a vector fields on M and
O(M), denoted by A* and A respectively. We define a linear map L: m— T,(M)
by L(A)=(A4%*), for Aem. It is easy to see that L is a linear isomorphism.
Hence there exists an inverse map of L and we denote it by I. For £eR? we
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define A(¢) in m by A(E)=I(uy(&)). Then it holds that 1, A(£)=B(£) and
Ad(k) A(E)= A(A(k)E) for keK.

Now we can construct a Brownian motion on M by using a Brownian
motion on the Lie group G. The following proposition is announced in M.P.
Malliavin, P. Malliavin [17],

Proposition3.1. Let (h) be a solution of the following stochastic differential

equation on G;
d
dh,='Y. Ale,)(h)odB;
a=1
32
hy=e. G2

Then (X,=h,0) is a Brownian motion on M starting at o.

The proof is easily obtained from Lemma?2.1. It is obtained at the same
time that a Brownian motion on M is conservative.

4. Main Theorems

We keep the same notations as before. In the following we consider processes
only on the time interval [0, T] for some fixed constant T, so for example, the
Brownian motion (B,) is defined for te[0, T]. Without loss of generality we can
suppose that the Brownian motion (B,) is canonically realized on the probabili-
ty space (W, #(Wg), PY), ie, W is a set of all continuous paths w:
[0,77—R? such that w,=0, B(Wg) is a Borel o-field, P” is the Wiener
measure and B,(w)=w,. Set %,(W)=c(w,; 0=<s=<1). Let Z(W) be a com-
pletion of Z(W{) with respect to P¥ and let 4" < (W) be a set of all P¥-null

sets. Set Q=W;, P=P", #F =23(W) and F,=B,W)v A for t[0,T]. In the
sequel we will consider on this specific probability space (2, Z, (%), <,<r) We
define a class of processes I5° by

L= {CD =(P,; 0=t<T)| @ is a real measurable (#)-adapted
T
process on Q such that | @Zdr<oo a.e}.
4]

Now we give here a precise formulation of the theorem. Let t—g, be a G-
valued continuous function on (0, T]. Instead of continuity of g, at t=0 we
assume the following condition;

limg, o=o. (A1)

t—0

Let W,(M) be as in Sect. 1. We define the transformation I of W, (M) by

0 if t=0
Iw),= 4.1
(W {gtw, if 0<t<T @D
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Then I is well-defined, ie, Iw is in W, (M) by the assumption (A.7). In fact,
lim d(g, w,, 0) Slimd(g,w,, g,0)+1imd(g, 0, 0)=limd(w,,0)=0 where d is the
t=0 t=0 t—0

Riemannian distance. Let (h,) be a solution of the following stochastic differential
equation on G;

a
dh,= ) A,(h)edB}
w=1 (4.2)

ho=e

where A, =A(e,)em for a=1,...,d, were defined in the previous section. Set X,
=h,0. Then (X,; 0<t<T) is a Brownian motion on M starting at 0 by
Proposition 3.1. We denote the law of (X,) on W, (M) by u. Let v=pol~! be
the induced measure of u by the mapping I. Our main problem then is to
study the condition on (g,) so that two measures p and v on W, (M) are
equivalent. Let n:dim(G) and p=dim(K). Then it holds that n=d+p. Take
any basis {4;,,,...,4,,,} of T and fix it through the argument. Then
{4,,.., 45, A441, ..., A4, ,} forms a basis of g. In the sequel we use the follow-
ing conventions. Indlces LJ.K,L, ... run over 1,2,....n=d+p, indices
« f,7,0,... run over 1,2,....d, and indices i,j,k, L ... run over d+1,d+2,...,d
+p. Following the usual convention we omit the summation signs for re-
peated indices and we do so even if they appear in the top or in the bottom at

the same time, e.g., &'A; for Z & A,, & A, for Z &'A, and ff"dB" for
- i=d+1
Z jf"‘ dB?, etc.

=10

Next we assume that (g,) satisfies the following condition;
t— g, is absolutely continuous on every closed interval of (0,T]. (A.2)

Under the condition (A.2) (g,) satisfies the following differential equation on
G;
dg,={,dt  for 0<t<T 4.3)

where C eg, 0<t<T, is the unique left invariant Vector field on G such that

{(g)= T,,(G). If we write {,={] A, then clearly f]C’Idt<oo for I=1,.

and conversely, given such a system of functions (! 1f we set {,={! A, then any
solution (g, of (4.3) defines a continuous curve g,: (0,T]->G Wthh satisfies
(A.2). Furthermore we assume that

T
0 [@Pdi<co  for a=1,....d,
: (A.3)
() fe(l)?di<oo  for i=d+1,....n.
0

Now we can state the main theorem.
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Theorem 4.1. Under the assumptions (A.1), (A.2) and (A.3), p and v=pol~!
are equivalent.

If u and v are equivalent, then the natural question arises: What is the
Radon-Nikodym derivative Z—;? We will give the expression of Z—ZL Let W,(G)
be the set of all continuous paths in G defined on the interval [0, T] starting at
e. Since (h,) is a strong solution of (4.2), there exists a measurable and non-
anticipative mapping Z: W¢— W,(G) such that (h.)=Z(B.). Let P* be the
induced measure of P¥ by =, ie, P"=P".E~!. Define the mapping p:
W,(G)— W, (M) by p(h.),=h,o. Then the measure y is nothing but the induced
measure of P* by p. Notice that there exist inverse mappings of = and p,
denoted by D and H respectively; H: W,(M)— W,(G) is the “stochastic hori-
zontal lift” defined by P. Malliavin [18], (see also [23]) and D: W,(G)— W¢ is
the “stochastic development” defined by Ikeda-Manabe [7], ie.,

Dh.),=( | o ..., | oy

h[0,1] h{0,t]
where ®q,...,0,;, ©4,1,...,0, are the dual l-forms of the vector fields
Ay, ..., A, defined by w,(4,)=06,; for I,J=1,...,n,and [ o, is the integral of
h[0,1]

the 1-form w, along the path (h; 0<s<1) (see, e.g, Ikeda-Manabe [7], Ikeda-
Watanabe [8]) Namely we have that HOp—-—ldW (G)P -a.e., feH=idy, ,g,p-ae,
DoZ=idye P"-ac. and EoD=idy g P"-a.e. Hence we can represent the pro-
cesses (B,) and (h,) as the non-anticipative functionals of the Brownian motion
(X) on M, ie, (h.)=H(X.) and (B.)=DoH(X.). Define a mapping F
=(F',...,F): gx G—>R? by F(4,g)=(gu,)” " A, which is often called a scalar-
ization function of the vector field A*. Then the Radon-Nikodym derivative is
given by the following form;

Theorem 4.2. Under the same assumptions of Theorem4.1,

—(X) exp{fF“ Ad(g) &, h)dB; — %gll(Ad(gz)C:)indt} (4.4)

where * stands for the homomorphism from g into I'*°(T(M)) defined in Sect.3
and ||+ is the norm on T(M) defined by the Riemannian metric {*,* .

If in particular, (g,) is defined on [0, T] and smooth (at least C* class) then
we can express the density as the functional of (X,) more explicitly;

2 (x)=exp {j 04X~} | [div(Ad(g) {)* (X)
H 0 0 (4.5)

+(Ad(E) )] dz}

where w, is the 1-form defined by w,(*)=<{(Ad(g){)*, .
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Remark. In the right hand side of (4.4), we regard (k) and (B,) as the function-
T
als of the Brownian motion (X,) on M. In the right hand side of (4.5), | w,0dX,
0
is the integral of the l-form (w,). Note that (w,) depends on the time ¢ and
T

hence we need a slight generalization in defining | w,cdX,. See [23] for details.
0

5. Proofs of the Theorems

In this section we give the proofs of Theorems 4.1 and 4.2.

Proof of Theorem4.1: Firstly we shall prove that v is absolutely continuous

with respect to u under the conditions in Theorem 4.1. Let (I,) be the solution
of the following differential equation on G;

dl=(GA))de=(C)()dt  0<t<T

[p=e.

Note that ([) is defined only for 0<t<T. From now on we omit the variable [,
in the above equation for simplicity. Thus we write df,={' 4,dt in place of dI,
=({*A4,)(l)dt. This convention will be used for all differential and stochastic
differential equations considered in the future.

From Corollary 2.2, (I-'!) satisfies the following differential equation on G;

dl-'=~Ad(D)(¢)dt O0<t<T

[1=e.
Set i, =g, [7*, then from Proposition 2.1, we have
dim,={Ad() {,— Ad()(( )} dt=Ad() () dt  O<t=T

We denote the components of Ad(l}) with respect to the basis {4, ..., A} by
Ad();, ie, Ad(l)A,=Ad(l)} A;. Hereafter we use this convention without
mentioning. Since m and f are invariant under Ad(K), it holds that Ad(k)!
=Ad(k):=0 for keK. Moreover (Ad(k)p) is in O(d) because (Ad(k)3)=A(k). We
use these facts frequently. Thus (7#,) satisfies the following differential equation
on G;
i, =Ad(L ; Ay di=Ad(F)((),dt  O<t<T
Wr=gr.
By the assumption (A4.3) and the boundedness of (Ad(l:);), (Ad(L) (%) be-
longs to I*([0, T]). Hence (/%,) is defined on [0, T]. i.e., 1, =lim#, exists and it
-0

can be shown that my,eK. In fact m,o=limM,o=limg,I ' o=limg,0=0 from
t—0 t—0 =0

the assumption (A.1). Set m,=m,my ' and [,=#i, 1, then g,=m,l, and (1), (I7")

and (m,) satisfy the following differential equations on G respectively;
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dl,=(C)dt O<t=T (5.1)
Iy =myekK,
di7t=—Ad()()dt  0<t<T (5.2)
7' =mg?
dmt: Ad(lt)(ct)m dt (53)
my=e.

Note that /,eK for all te(0, T].
From (4.2) (5.1) (5.2) and Proposition 2.1, we see that (I,h, /") satisfies the
following stochastic differential equation on G;

Al 17 )= Ad(1) A,odB: + {Ad(, b ) () — Ad () () de
= Ad( AyodB:+ {CH(Ad (R =) Ad(L)] 4,3 dt.

Again by Proposition 2.1, (Ad(h,)}) satisfies the following stochastic differen-
tial equation;

d Ad(h7 ")y = Ci, Ad(h; )f dB; +5 C, CL, Ad(h ')y dt

(5.4)
Ad(hg 'Y, =3.

Since this is a linear equation in Ad(h, ')}, there exists a constant ¢, such
that E[(Ad(h, H)))*]1<c, for I,J=1,...,n and te[0, T]. We have

t t
Ad(h; ');—85=| Ci, Ad(h; N5 dBi+5 | Ci, CF, Ad(h]1)j ds
0 0
and hence
E[(Ad(h;");—89)]

t B t 2
<2E [{f cL, Ad(hgl)dez} |+E [{j cL, C5, Ad(h;l)éds} |
0 0

<22 [ [T (Ch Ad(h 51 ds | +1E [ | S(CE, € T (adh 1%as]
a L
<@2n*de,c+n*d*c ¢ Tt
where ¢, = max |Ct ] Setting ¢;=2n?*dc, ¢;+n*d?c, ¢; T, we have therefore
E[(Ad(h7 )3 —0)* 1S eyt (5.5)
Let (h,) be a solution of the following stochastic differential equation on G;

dh, = Ad(1), AgodBi + ({[Ad(h, )]~ 6] Ad(L)] A, dt

e (5.6)
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By the assumption (A.3) and (5.5), the coefficients on the right hand side of
the above equation belong to L'Y° and hence (h) is defined on the whole
interval [0, T]. Now it is easy to see that (I, h, -1 h7Y) is constant in te(0, T].
Set y=I,h,I7'h ' Since K is compact and [eK, there exists a sequence

{t,}en Of (0, T] such that lim 1, =0 and lim [, exists, say 4. Then we have

k— o0 k— oo
n=lml h, I ' h '=iel ‘e=e
ko0

and hence h,=Lh I "
By (5.3) and (5.6), (m,h,) satisfies the following stochastic differential equa-

tion on G;
d(m, h)=Ad(l) A,odB*+{Ad(,h; ) {,— Ad(I)({ )} dt

myhg=e.

(5.7)

Let (k,) be a solution of the following stochastic differential equation on G;

dk,=Ad(1)(Ad(h7 1) {,—L)dt = Ad(L)(Ad(h7 ;=) ([ 4;dt
ky=e.
Since the coefficients of the above equation belong to I)5° by (4.2) and (5.5),
(k,) is defined on [0, T]. By Corollary 2.2, (k1) satisfies the following differen-
tial equation on G;
dk7 ' = — Ad(k L) {(Ad (R ) () — ()} dt

—1_
kot=e.

(5.8)

Then from (5.7) and (5.8), we see that (m,h,k; ') satisfies the following stochas-
tic differential equation on G;

d(m, Bk )= Ad(k, 1) A,°dB: + Ad(k, 1) (Ad(h ) (), dt
=Ad(k,); Ad(1Y} A,°dB] (5.9
+ Ad( s Ad(LY Ad(h 11 A, dt
myhykyt=e.
Now if we prove the equivalence of the laws of (h,) and (m, h k1), then we
can conclude the equivalence of u and v which are just laws of (h,0) and (g, h, 0)
respectively. In fact since k,leK and g=m,l, it holds that mhk ‘o

=m,Lhl *k to=g,h0. Define a d-dimensional continuous process (Z,)
=(Z!,...,Z% by

t t
Z:=[ Ad(k.); Ad(LY, dB: + | Ad(k); Ad(L)) Ad(h ) {Lds. (5.10)
0 [¢]
Further (Ad(k)}) and (Ad(L)}) satisfy the following differential equations re-
spectively from Proposition 2.1
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d Ad(k,); = Cy Ad(k)g Ad(I)I(Ad(r ), —op) {dt

5.11
Ad (ko)f' = 55 ( )
d Ad(1); = Cly Ad() L de 512
Ad (ZT).IT = Ad(ﬁlo)§-
Then we can rewrite the Eq. (5.9) as follows;
d(m bk )=A,0dZ*
(mt tvt ) a t (513)

moho ko ' =e.

Here we used the fact that Ad(k); Ad(L)YodB}=Ad{k); Ad(l)}dB} but it is
easily obtained from (5.11) and (5.12). Note that the stochastic differential Egs.
(4.2) and (5.13) have the unique strong solutions and hence, (h,) and (m, h, k%)
are non-anticipative functionals in the same form of (B,) and (Z,) respectively:
(h.)=®(B.) and (m.h.k.')=B(Z.). Therefore the equivalence of the laws of (k)
and (m, h k1) follows at once from that of the laws of (B,) and (Z,). Thus it
remains now only to show that the laws of (B,) and (Z,) are equivalent.

Note that (Ad(k,);) and (Ad(l,);) are in O(d). Hence the martingale part of
(Z) is a d-dimensional Brownian motion and the integrand of the second term
of (5.10) belongs to L)Y by the assumption (A4.3) and (5.5). Now by the
following theorem of Shepp and Kadota, we can conclude that the law of (Z,)
is absolutely continuous with respect to the Wiener measure P¥.

Theorem 5.1 (Shepp-Kadota [10]). Let £=(£,;0=5¢<T) be a d-dimensional con-
t

tinuous process given by E¥=B+ [ @*ds (a=1,...,d) such that (}) is in L'y for
0]

o=1,...,d. Then the law of (&) is absolutely continuous with respect to the
Wiener measure.

Secondly we shall prove that u is absolutely continuous with respect to v.
First we will show that (Ad(h,")}) and (Ad(k,);) are non-anticipative function-
als of (Z,). For this we show that (Ad(h,")}) satisfies the following stochastic
differential equation with respect to dZ,;

dAd(h7 1Y = CL, Ad(h” YE Ad( 1Y Ad (kY odZ;
— Cl, Ad(h7 M) Ad(hyy; (fdt (5.14)
Ad(hg Yy =5t

In fact, the right hand side equals to

Cioa Ad(h7 15 Ad(7 )5 Ad (kYo {Ad(k,); Ad(L); dBy}
+{Ch, Ad(h71)F AD( 1) Ad (k1) Ad(k )y ALY Ad (7 L L7
~ Cio Ad(h7 ) Ad(h 1) (Y de
= Ci, Ad(h")jodB; =d Ad(h V)]
by (5.4). Here we used the fact that (Ad(/, ")) and (Ad(k, ! i) are the inverse

matrices of (Ad([,);) and (Ad(k,);) respectively which follows from the fact that
I, and k, are in K.
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On the other hand, since (Ad(k)) is in O(d) for keK, Ad(l7");=Ad ()} and
Ad(k7 M= Ad(k,)" Combining this with (5.11) and (5.14), we can see that
(Ad(LYD), (Ad(k)) and (Ad(h;")}) satisfy a system of stochastic differential
equations with respect to (Z,). Note that Ad(l) is uniquely determined as a
non-random function. But it is not evident that (Ad(k)}) and (Ad(h,")}) are
obtained as strong solutions of these equations because (! are singular at ¢ =0.
This difficulty is overcomed by a general result given in the next section (see
Theorem 6.1) and therefore, as strong solutions of these equations, (Ad(h, 1))
and (Ad(k,);) are non-anticipative functionals of (Z,). Now we can appeal to
the following theorem due to Kailath-Zakai and Ershov.

Theorem 5.2 (Kailath-Zakai [12], Ershov [5]). Let (¢,; 0Zt<T) be a d-dimen-
sional continuous process satisfying the following stochastic integral equation;

t
g=Br+ [ (E)ds  a=1,....d,
0

where @ is F-measurable function from W{ into R. Assume further that both
(@*(E.)) and (®%(B.)) belong to IS a=1,...,d. Then the law P* of (¢,) and the
Wiener measure P¥ are equivalent. Moreover the Radon-Nikodym derivative is
given by

AP¢ T 4T
W(B.):exp{f@‘;(B.)dB‘; 1y [o (B.)st}
0 =10

What remains to be shown is the part “(¢7(B.))e 5" in the above theorem
and this can be obtained by repeating a similar discussion as above. First (m,)
be a solution of (5.3). Then (m; ') satisfies the following differential equation on
G;

dmt_1 = Ad(mt lz)(Ct)mdt

my ' =e.
Hence (m,; ! h,) satisfies the following stochastic differential equation on G;

d(m h)=A,odB*— Ad(h™" m, 1)((,),, dt
— A odBr— Ad(h m)L Ad(LY * A, dt (5.15)
mg ' hy=e.
Similarly (I, ' m,; ! h,1,) satisfies the following stochastic differential equation on
G;
di; " m; b l)=Ad(I7 ") A edB*+ {({ )y~ Ad(L"  h, P m, 1)} dt
= Ad(l ) A,0dB?

+{Ad( (6] — Ad (P m))) ALY 4, (5.16)
—Ad(7Y) Ad(h my)] Ad(l) (BAYdL
0<tT

By (5.15) and Proposition 2.1, (Ad(h; ' m,)) satisfies the following stochastic
differential equation;
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dAd(h ' m), = Cy, Ad(h; * m)¥oaB?
— O, Ad(R m) Ad (- )k Ad(L)M £ dy
Ad(hg ' my)y =61
Hence

t t
Ad(h; " m);—0y=| Ci, Ad(hs ' m)f dBi+ | { Ci, Cig, Ad(hy my)j!
0 0
5.17
— Cir Ad(h m)y Ad(hy 't m)f Ad(L) 5} ds. o7

For any N >0, define a stopping time t=1, by

VT i { Y =6.

We will show that E[(Ad(h 1 m,, )i —87)*]1<c,t for some constant ¢, which
may depend on N. Set ¢ =max sup {|Ad(k)}|}. Then from (5.17) we have
I,J kekK

{inf{te [0, T1|max |Ad(h, ! m)i|= N}
I,J
T

E[(Ad(h; ) m,, )y ~8)7]

tAT

TAT 2 tAT ‘2
<3E [{ [ cL, Ad(hs‘lms)}‘dB;‘} ]+3EH [ 1CL, CX, Ad(hy ' m))! ds} ]
0

0

taT 2
+3E [{ | Chy Ad(h*mf Ad(h;* m)fy Ad(L c:ds} ]
0

ITAT

<3F H Z{CQaAd(hs—lms)f}lds]
+36E ﬁ;f{% CL CE_Ad(h:! ms)y}ms]
+3tE [j CL, Ad(h; m)X Ad(h,t m)%, Ad (L)Y ()2 ds]
0
§3tn4szc§+%tTn4d2Nzc§+3tTnGdN“cﬁZE(C?)Zdt

et

T
where ¢, =3n*dN?c2+3Tn*d* N> ¢4 +3Tn®dN*c2 ) j({)*dr. From this and
(A.3) we have «0

E[ T tAd( 9506 — Adtr m) AdG; 27 |
0

T
< Y S JEQO - Ad(h;m,, )1 dt
J, i, 4]
! T
snfclc,y [t dt<oo.
i 0
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T
This shows that { {Ad(l;7")}(6] — Ad(h, ' m)) Ad(1); (J}? dr < oo a.e. on a set {ty
0

=T}. But since P” {ty=T} 11 as N — co, we have
T
p¥ [ [ (AU D67 — Ad(ry ! m)!) Ad(L), Cy > de < oo] _1.
0

Thus all the coefficients of the Eq. (5.16) belong to I'y°. Hence we can consider
the following stochastic differential equation on Gj;

dn,={({)— [Ad(” ! h” ! m, 1) {1y} dt
=[Ad (7 1)} (0] — Ad(h7 P m)) Ad(L) G A,
—Ad(7 h m, L) (2 A de
ng=e.
Then (n, ) satisfies the following stochastic differential equation on G;
dn; t= {Ad(l’lt) [Ad(lt_ ! ht_ ! m, lt) gt]t - Ad(nt)(ct)f} dt
ngl=e.

(5.18)

Hence by (5.16), (5.18) we have

A7 m oY)
=Ad(n, I 1A, 0dB*— Ad(n)[Ad(, 1 h, P m, 1) (], dt
= Ad(n, 71 AyedB: + {Ad(n); Ad( (5! — Ad (R m)) Ad(L)L L 4,
—Ad(n); Ad(T W P m LY A de O<t<T
It can be shown that the coefficients of the above equation belong to I)S° by a
similar method and hence we can consider the following stochastic differential
equation on G;
dp,=Ad(n, 17 ) A,0dBy— Ad(n) [AA( " BT m, 1) (], dt

po=e.

(5.19)

Then we can prove that p,=I1"'m~'hln ' for 0<t<T ae. Note that
Ad(p;Y)=Ad(n, L7 b7  m,1). Hence by (5.19) and Proposition 2.1, (Ad(p, ')}
satisfies the following stochastic differential equation;
d Ad(p7 ")y = Ck, Ad(p; )} Ad(n, I );odB!
— Ci, Ad(p, 1)j Ad(p g (dt (5.20)
Ad(pg ), =9}

Also from (5.1), (5.2) and (5.18), we see that (I,n, [ ') satisfies the following
stochastic differential equation on G;
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d(ln I7Y)={Ad(n Y —TAd(R  m, 1)) dt
={Ad()j(Ad(m; )] —D LA,
—(Ad(h P m) =) Ad(L); [ A}de 0<t=<T.
We can show that the coefficients of the above equation belong to I as

before. Hence if (g,) is a solution of the following stochastic differential equa-

tion on G;
dq,={Ad(l,n; ) )—[Ad(h; " m, 1) ]} de

— (Ad(, 7, = Ad (R m, L) U0} A de (521)
qo=¢
then it holds that g,=In, 7! for 0<t<T ae. By (5.21) and Proposition 2.1,
(Ad(g; 1)) satisfies the following stochastic differential equation;
dAd(g; )= Cx; Ad(g ) {Ad(n, Yol — Ad (k7 m, 1)L CE de

Ad(gz D =¢. 622

On the other hand, since Ad(g): g—g is a Lie algebra homomorphism for
geG, it holds that
Ad(g)[4y, Ad(g~ 1A, ]1=[Ad(g) 4}, 4,]=[Ad(2)f A, A;]
=Ad(g)f CirAn-
But the left hand side equals to

Ad(g)[4;, Ad(g™ 1)} Ax]=Ad(g) Ad(g™ ")} Crx AL
=Ad(g)y Ad(g ™)} CrxAy-
Thus we have C¥, Ad(g)¥=Ck Ad(g)¥ Ad(g~')%. By noting this and gq,
=lnl ek, p7 =nl""h 'ml, we can rewrite (5.22) as follows;
dAd(g; );
= CjL Ad(g; g Ad(g)f {Ad(Ln; 1Yl — Ad(h P m, 1)y, ('} dt
={C¥; Ad(g; i Ad(g,ln; )il — CF; Ad(g, Mg
x Ad(q,h”m, LY, (M) dt
={CJ Ad(g, Vg Ad(n I 7 L
—CX Ad(q s Ad(n 7 Y m, LY, (MY de
={C§; Ad(g, Nk Ad(L);¢] - CF Ad(g, Mg AD(LY; Ad(p, MLET} de
=C5 Ad(g; Nx Ad(L),{Ad(p; )Y, — o} (Fde.
In the last line we used the fact CX=—CX. Thus (Ad(g,")}) satisfies the
following differential equation;
dAd(g; );=Cl Ad(g, x Ad(L); {Ad(p, ")y, — oL} (P dr

N (5.23)
Ad(gq ');=95.
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Also we can rewrite (5.20) as follows;

dAd(p;*);=Ck, Ad(p, 1)F Ad(I7"); Ad(g,); < dB]
~ Ck, Ad(p, )F Ad(p; Dplrde (5.24)
Ad(pg )y =0}

Comparing the equations (5.11), (5.14) and (5.23), (5.24), we see that
(Ad(h 15, (Ad(k)) and (Z) correspond to (Ad(p; ")), (Ad(g, ")) and (B)
respectively. Hence (Ad(p,!))) and (Ad(g, *)!) are represented as non-anti-
cipative functionals of (B,) in the same way as (Ad(h, ')} and (Ad(k)}) are
represented as non-anticipative functionals of (Z,). In the above argument we
saw that (Ad(g,”"); Ad(1)} Ad(p; )}(]) belongs to L$° which corresponds to the
part “(®%B.))eLs*” in Theorem 5.2. Thus the proof of the equivalence of the
laws (Z,) and (B,) is now completed.

Proof of Theorem4.2: We will obtain the Radon-Nikodym derivative. We
denote the law of (Z,) by P% Then from Theorem 5.2, we have

dPZ T
(B exp [ Adla7 ) AdC, At 0B
(5.25)

T
—3 g Y. (Ad(g ") Ad (L)) Ad(p, M)? dt}-
On the other hand, it holds that Ad(g;'); Ad(L)} Ad(p, );=Ad(g, *1,p; ')
=Ad(Ln 7 i 7 h tm L)t =Ad(h7 1 g):. We defined the function F:
gxG-R? by F(X,g)=(gu,)~" X%, for Xeg and geG. Let L: m—T,(M) be
as in Sect.3 and g, be the mapping from G into M defined by o ,(h)=hgo.
Define the mapping p: G—M by p(g)=go. Then it holds that g~ *o Ogo=D° A4
where A -, is the automorphism of G defined by A,-:(h)=g~'hg. Note
that (4,-.),=Ad(g™"), p,l,=L and u5'oL(4,)=e,. Then if we write X =X"4,
for Xeg, we have

F(X,g)=(guo) ' X5, =ug o (87 1)y 0(0,0) X, =uy o p(Ad(g™ 1) X),
=g ' op,([Ad(g™ ") X],).=u5 ' o L(Ad(g™1); X" 4,)
— Ad(g~ g Xle,.
From this it follows that
F(Ad(g)L,, h)=Ad(h7 )] Ad(g)5 (] = Ad(h g5 ¢].
Since gu,: RY—T,(M) preserves the inner product we have Y F¥X,g)?

=X |%. Therefore (4.4) is now obtained from (5.25).

Next we will consider the case that (g,) is smooth with respect to t. Let o,
be the 1-form defined in Theorem4.2. For geG, let (guy)*: T} (M)—(RY* be a
dual operator of gu,: R~ T,,(M). Then for & eR?, it holds that

((gue)* w,, &) =(w,, (guo) &) =<[Ad(g)(,]*, (guo) &>
= <(gu0)_ 1[Ad(gt)5t]*7 £> = <F(Ad(gt)Ct’ gt)7 &>



514 1. Shigekawa

where ( , ) is the natural bilinear form between the vector space and its dual
space. (gu,)* w, is called a scalarization of w, and we denote its components by
(w,),(guo) @=1,...,d. Hence we have (w,),(gu,)=F*(Ad(g,){,, g). The integral of
the 1-form along the path (X,) is represented by the scalarization, iec., the
following equality holds (see, e.g., [7], [8], [23])

[0,0dX, =] (@,),(hu0)dBI+% | (G0, )(X ) ds
0 4] 4]

O ey 4

FY(Ad(g){, h)dB+3 | divI(Ad(g)L)*](X,)ds

where 6 is the dual operator of the exterior derivative d. Thus (4.5) is obtained
and this completes the proof.

Remark. We have studied only the sufficient condition and it is left open
whether (A.1), (A.2) and (A.3) are the necessary conditions for equivalence of
u and v. The condition (A4.1) is evidently necessary in order that our problem
is well-posed. In the Euclidean case we can actually prove that (4.2) and
(A.3) are necessary as we shall see.

Let (B,; 0=¢t=<T) be the d-dimensional Brownian motion starting at 0. Let
a continuous mapping t—u(t) from (0, T] into SO(d) and a continuous map-
ping t—a(f) from [0, T] into R? such that a(0)=0 be given. Define the d-
dimensional continuous process E=(¢{,; 0=<t=T) as follows;

G=uj(O)Bf +a*(t) a=1,...d

where (u3(f)) and (a’(t)) are the components of u(f) and a(t) respectively.
Suppose that the laws of (B,) and (&) are equivalent. Since (£,) is a Gaussian
process, we can appeal to the following theorem due to Shepp. Here we need
the necessary condition part of his theorem which may be stated as follows:

Theorem 5.3. (Shepp [19]) Let n=(n,; 0=t<T) be a d-dimensional Gaussian
process with mean (m(t); 0=t <T) and the covariance (R(s,t); 0=s, t<T);

m*()=E[#’] oa=1,...,4,
R (s, )=E[(nz —m* &)l —m (e)] o, f=1,....d.

Suppose that the law of nw=(n,) and the Wiener measure are equivalent. Then
(m(t)) and (R(s,t)) satisfy the following conditions:
(i) for every o there exists a function k*eIZ([0, T]) for which

t
m*(t)= | k*(s)ds,
0
(i) for every o, B there exists a function K*#eI2([0, T] x [0, T]) for which

st
R%(s,t)=8"(s At)+ | | K*P(u,v)dudv.
00
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In our case, the mean vector (m(t)) and the covariance matrix (R(s, ?)) of (£,)

are given b
s m*(t)=a(t), (5.26)

R* (s, ) =ul(s)ub(t)(s A 1). ' (5.27)
From the condition (i) of Theorem 5.3 and (5.26), we have that (a%(t)) is
T

absolutely continuous and | d*(t)*dt < oo. By the condition (ii) of Theorem 5.3

0
and (5.27), there exists a function K**eI*([0, T] x [0, T]) such that
st
ui($) bty (s At)=0"(s At)+ | [ K™ (u, v)dudv. (5.28)
00

Hence it is easy to see that (ug(t)) is absolutely continuous on (0, T]. From now
on we will consider on the set s<t. By differentiating the both hands of (5.28)
with respect to s and ¢ successively we have

K*(s, )= (d3(s)s + u3(s)) b (0).
Hence

Y ?dtf{K“"(s t)ds=) j"dtj {(d3(s)s + us(s)) ul(1)} > ds
a,p 0 4] a,p 0

=£dtj{u (s) tig(s) % + (u5(s) () + u2(s) i%(s))s
+ul(s) us(s)} (1) ub(r) ds.
By noting that u(s)u;(s)=0,, and ui(s) u5(s)+ul(s) u}(s) =0, we have

Zjdth"‘/’ (s, 1)? ds—fdtf{u (5) tin(s) ()i (2) % +4ill(1) il (1) 6., } ds

a,f O 0

=Y idt j {us(s)ub(t) s} ds+ Y j tuf(r)> dt.

wpO 0 YAY

T
Since K*#eI([0, T]x[0,T]), we have [tuf(t)>dt<co. Thus we obtained the
0

necessity of (A.2) and (A.3) and this proves that (A4.1) (A.2) (A.3) are
necessary and sufficient conditions in the Euclidean case.

6. Some Remarks on the Stochastic Differential Equation
with the Singularity

We give here the proof of the fact which was reserved in the previous section.
Let the indices o, f,...,1,j,... and I,J,... be as before. Let a,=(al), b,=(bl) and
cri=(cy;) be R”—Valued continuous functlons defined on R”. Assume that a,, b,
and c;; satisfy the following condition; for any N>0, there exists a pos1t1ve



516 I. Shigekawa
constant L= Ly such that for any x, yeR", |[x|< N, |[y|=N,

2 la,(x) = a,()1? + 3 1by(x) = b, ()| +; e () —cI* < Lylx—yI*  (6.1)

where || is the n-dimensional Euclidean norm, i.e., [x|*=) (x")%. Let n,=(/) be
I
an R%valued function defined on te[0, T] satisfying

T
f @ di< oo a=1,...,d, (6.2)
0

T
[ty di<oo  i=d+1,..,n (6.3)
4]

We consider the following stochastic differential equation;

A1 = al(X,) B + {bAX )z + e (X ) (X! =) de 4
o (64)
0 0

where x,=(x{) is a fixed point in R”".
First we establish the uniqueness of the solution of (6.4). We prepare some
lemmas which are the extensions of Gronwall’s inequality.

Lemma61 Let ¢ and x// be non-negative measurable functions on [0,T] such
that j¢(t)dt<oo and jtt//(t)dt<oo Let {u,(t)},_o.1,.. be a sequence of non-

negatwe measurable functzons on [0, T]. Suppose that there exist constants a and
¢ such that

upt)<ar and

u,, 1(t)§ct+j[ u,(s) d)(s)ds+tjfun(s) Y(s)ds n=0,1,...
0 0
Then if we set p(t)=i (d(s)+ sy (s))ds, it holds that

= 1 Y3 1 71
un(t)§ctm§0 M,o(t) -I-atﬁp(t) , n=0,1,...
Proof. Define a sequence of functions {I,(t)},_,. ;.. inductively by
I,(t)=1 and

Lo @®={ @O +5YE) LA n=0,1,...

1 )
Then it is clear that In(t)=—'p(t)”. Hence it suffices to show that
n!

n—1

uO)<ce Yy I, +atl ) n=01,.. (6.5)

m=0
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We prove it by induction on n. It is clear when n=0. Assume (6.5) for n. Then

n—-1

unH(t)éct—t—i{cs Y Im(s)+as1n(s)}¢(s)ds

-HJ{CS

1Im(s)’—l-asl,,(s)}lp(s)ds
Sci+ct 21 sz ) {Pp (Y +sy(s)}ds

0

+atj1n(s){¢(s)+Sl/J(s)} ds

=ct i L@®+atl, (0.

m=0
This completes the proof. []

Lemma 6.2. Let ¢ and  be as in Lemma 6.1 and u be a non-negative measurable
Sunction on [0, T]. Suppose that there exist constants a and ¢ such that

u(®)<at and
u(t)§ct+§u(s) ¢(s)ds+tiu(s) Y{s)ds

Then it holds that
u(@)Zctexppl(t) (6.6)

where p(t)=j (p(s)+sy(s))ds. In particular, if ¢=0 then u(t)=0 for t[0, T].
(0]

Proof. From Lemma 6.1, we have

n—1

1 1 1
u(t)gctmgo%—!p(t)—i-atn—!p(t)_gctexpp(t)—!—atn—!p(t).

By letting n— oo we have (6.6). [
Now we go back to the uniqueness of the solution.

Theorem 6.1. Suppose that the conditions (6.1), (6.2), (6.3) are satisfied and let X
=(X,) and Y =(Y) be any tow solutions of (6.4). Assume further that both X and
Y satisfy the following conditions: for any N >0, there exists a constant c=c,

such that
E[X,—x,l* i<l Sct

, 6.7)
E[Y,—xo? 1yzp 1S ct

where Ty and oy are exit times of X and Y from B(x,; N)={xeR"||x —x,| <N}
respectively. Then PY[X,=Y, for all te[0, T]]=1.

Proof. For any N >0, take L and ¢ satisfying (6.1) and (6.7) respectively. Set x
=Ty A0y. Since X and Y are solutions of (6.4), we have
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tAK tAK

Xl = Y= f {a,(X)—ay(Y)} dBi+ f {ba(X ) —by(Y)} 3 ds

tAK

+ [ {GdX ) =SV} (X = xDnids
4]
tAK
+ | A OXI =Y )i ds.
0

Hence by Schwarz’s inequality we have

(XM—K’A,C)2§4{M§K<aI(X) al(Y)) dB“}Z
+4t ({ Z(bﬁ(xs)—bi(lc»zg(nf)ws
4t }sz_wﬁxxs)—ci,-(x»zz<XK—x0>2 > ) ds

tAK

+40 [ T b (02T (XK Y2 Y (ri) ds.

0 J,i K

Since ¢;;s are continuous, M= sup ) [¢;(x)|*<oo. Hence from (6.1) we
have xeB(xo; NY Ii

E[X,, =Y. "]

tAK

<4E [ [ SlaX)-a(m)ds]
0 «a
et [ T In00)-h 0P S 02 ds

B[ T T lenX )= (TP X, —x,f? ZW)st]

- 0 J,i

+4tE_AjKJZ|CJ1 VI 1X,—Y[? Z(n’)zdS]

tAK

tAK
<ALE [j IXS—YSIst]-I—4tLE[ ) ]XS—YS|ZZ(I7°;)2615]
0 0 a
tAK tAK
+arLNE [ T 1X, = 2 Y2 ds |+ 4eME | ] 1X, Y T 0 s
0 i 0 J
t i
§4L§EUXS—YSIZ 1{s§k}]ds+4TLjE[|Xs—Y;Izl{sgx}]Z(n:)zdS
4] 0 a

+4t(LN?+M) [ E[|X,— Y|* 1 ;i< 01> (1) ds.
0 i

If we set u(s)=E[|X,— Y,|* 1,41, then we have
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u(t) §§ s){4L+ 4TLY (17‘;)2} ds+t i u(s)4(LN?+ M) (1)) ds.
4] o 0 i

From (6.7) it is easy to see that u(t)<2c¢r and, by Lemma 6.2, we can conclude
that u(t)=0. Hence we have ty=0y ae., and PY[X,=Y, for t<ty]=1. By
letting N — oo, we obtain a desired conclusion.
Remark. Without assuming (6.7), the uniqueness may fail. For example, let us
consider the following ordinary differential equation on the interval [0,1];
dX,=—(X jtlogt)dt
t ( t/ (6'8)
X,=0
1/2

Since | {t/(tlogt)*}dt <oo, (6.2) and (6.3) hold. But for any constant ¢, X,
0

=c/logt is a solution of (6.8) and hence the uniqueness does not hold. Note
also that X,=0 is a unique solution which satisfies (6.7).
Next we will discuss the existence.

Theorem 6.2. Let n be as in Theorem6.3. Suppose that a,,b, and c,; satisfy the

w? Yo

following conditions; there exist positive constants L and K such that

2la,(x)=a, () + ) |b,(x) = b, ()

+ Z leri () (" —xg) — (N (' —xp)? < Lix—y|? (6.9)

Jor x,yeR" and
2 a,(1* + 315, ()* S K (1 +|x —xo|?) (6.10)
Yl <K (6.11)

1,i

for xeR". Then there exists a solution of (6.4) such that E[|X,—x,|*] <mt,
0=t=T for some positive constant m.

Proof. We construct a solution by the method of successive approximations. We
define a sequence {X,=(X,()},_o.,,... of n-dimensional continuous processes
inductively by

Xit)=x} and
X )= x0+ja )dB"+j {bEX () (6.12)

+ch(X r(t))(Xf(t)—xO)nt} dt  r=0,1,...

By Doob-Kolmogorov’s inequality we have
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E[ sup |X,, 4(s)—Xol"]

0=s=t

<3| sup {J a(X,(0) de} ]+3 YE| sup {f P (o) nidv}z]
I 0

0=s=t {0 0<s=t

+35 sup (e mnecio—dan) |

O0=s=t

<12E [jzm s))|2ds]+3rE [§z|b (X ,(5))2 Z(nf)zds]

+3tE [jzk:,l(x E)21X,(5)—x,|? 2(171) ds]

<12E [j K(l+ ]X,(s)—xolz)ds] 1 3(E [f KO 41X,5)—x) Y () ds]
0] 0 3
+3¢E [j KIX,(5)—x,2 Z(ng)st] .

If we set u,(t)=E[ sup |X,(s) — xo|*], then we have

O=s=t

U, (O (12K+3sz “)st>t+§u (s){12K+3TKZ(n:) }
+tj u,(s) 3K Y ()% ds.

Note also that u,(t)=0. Then from Lemma 6.1, we have

r—1

1
< o)< 13
ur(t)_ctk;0 PO Sctexpp() (6.13)
where

T
c=12K+3K | ) (n%?*ds,
0 a

p0=] (12K +3TK T02P+3Ks Y () ds.
This implies that (6.12) is well-defined. We also have
E [OS;Z X 1(5)— X, (9)1*]
<12E[ ] T o, (X, 0)—a X, ) ds]
+34E [iglba(X,(s))—ba(X,_l(s»lz;wffds]
38 [[ e (X6 - xb

e, DO = T trds
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t
S12LJE[X,(5) =X, _((s5)1*]ds
0
t
+3TL{E[X,(5)—X,_,()P1Y. (n9)*ds
0 o

+3tL{E[X,(5)—X, (1Y (1) ds
0 i

If we set v,(t)=E[ sup |X,+1(s)—X,(s)|2] then we have

v, (t) gjt" v, _ 1(5){12L+3TL2(11§)2}ds+tivr_l(s)?aLZ(ni)zds.

From (6.13), it holds that v,(t)<ct. Then from Lemma6.l, we have
v(t)SctE(t)y/r! where

5(z)=}{12L+3 TLY (1)*+3Ls Y ()%} ds.
¢ a i

Hence we have
PY[ sup |X,, ()= X, (0)>1/27]<22 ¢ TE(TYr!.
O=Zt=T
By Borel-Cantelli’s lemma we see that (X,(¢)) converges uniformly on [0, T]
a.e. Set X,=1im X,(¢). By letting »r — oo in (6.13), we have

r— oo

E[ sup |X,—xol*]<ctexpp(t).
0=sst
On the other hand, since E[ sup |X,, ,(s)—X, (5)*1=Zct (o) /r!, we have for
p.qeN, p<q 0Fs2t

q—1 2
ELsup X,0-X, 0 1=ct ('3 VEGTK).
ssst k=p

By letting g — o0, we have

EL sup 1X,~X, (0] 5t T V/E0fkT).

Now it is easy to see that (X)) is a solution of (6.4) and this completes the
proof. [

If we assume only (6.1), (6.2) and (6.3), then the global solution may not
exists. But we can show, by a truncation argument, that there exists a unique
solution satisfying (6.7) up to the explosion time. Note that this solution is non
anticipative functional of the Brownian motion (B,): in fact this is clear from
the above construction by successive approximations. If we replace the Brow-
nian motion by a semimartingale (Z,) such that the law of (Z) is absolutely
continuous with respect to the Wiener measure, then the same result holds.
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Moreover both functionals on Wy coincide. This fact is exactly what we
needed in the previous section.

Acknowledgement. The author wishes to express thanks to N. lkeda and S. Watanabe for their
valuable suggestions.
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