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Summary. The existence and uniqueness of solutions of a special type of 
recursive stochastic equations is investigated. Such equations occur in many 
stochastic models in which the stochastic process describing the behaviour 
of the system will be generated by the so-called input. 

For  example, let the input be a stationary sequence {Xt}t+=~ ~ of ran- 
dom variables with values in a measurable space M and let P be the 
distribution of this sequence. Consider an equation of the form Zt+ 1 
= f * ( X t , Z t ) .  Assume that there is a system {A(t,{xl}+~): teF, 
{xi}+__ ~ ~ ~M r} of subsets of the state space Z with the property 

P(f*(Xt,A(t, {Xu}+~_~)))~_A(t+ 1, {Xu}+~_oo ) for all teF, 
X +oo 0 <  IA(0, { u} . . . .  )1 < oo) = 1. 

Then, under some regularity conditions, there is a stationary solution of the 
given equation, i.e. there is a stationary sequence gZ 1+~ for which the 

t t J t = - - O O  

equation almost surely holds with respect to the common distribution of 
({Xt}t+_~ {Zt}t+~_oo). Analogous results are obtained in more general 
models. 

1. Introduction 

Recursive equations occur in many stochastic models in which the stochastic 
process describing the temporal behaviour of the system under consideration 
will be generated by the so-called input. For  almost all realizations of the 
input the "future" of the realization of the generated process, given its present 
state, is determined by means of a measurable function, i.e. a recursive equa- 
tion holds with probability 1. Most queueing systems work in such a way. 
There are some methods to construct queueing processes, i.e. to solve recursive 
equations for queueing systems, cf. e.g. [1, 4, 8]. However, all these concepts 
make use of the special form of these equations given by the type of the 
queueing system. 
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In this paper a general method for the solution of a wide class of recursive 
stochastic equations will be introduced. This method is a generalization of a 
construction given in [-6] where a stationary state distribution was constructed 
for queueing systems without delay. The same method may be used in in- 
ventory and other fields of stochastic modelling, cf. [7]. As a further appli- 
cation a generalization of Wald's Identity for dependent variables was pro- 
vided in [5]. 

2. Basic Notations 

Let [M, 9~] be an arbitrary measurable space. A random element 43 of [M, 991] 
will be interpreted as the input. Let P be the distribution of 43. For  instance, ~b 
may be a sequence of random variables or a random marked point process, cf. 
[4]. Now we consider an abelian group of measurable transformations (shifts) 
O t on [M, ~Jl], where t is an element of an abelian group IS, + ]. Assume that 
an order relation =< is defined on S. Consider S + = { t c S :  0<t}  and an 
arbitrary a-field ~+ of subsets of S +. In the following S will be interpreted as 
the time axis. For applications the cases S = R  (the set of real numbers) and S 
= F  (the set of integers) with the corresponding Borel a-fields are most impor- 
tant. 

The input 4~ is called stationary if its distribution P is invariant with respect 
to all shifts O t, t c S. A stationary input is called ergodic if P(B)=0  or P(B)= 1 
holds for every invariant set B c 9J~, i.e. for every set B for which O t B = B  holds 
for all t c S. 

Furthermore, let a measurable state space [Z, 3 ]  be given. The space Z s of 
functions from S int6 Z will be used as the space of trajectories of the 
stochastic process to be constructed. Consider the a-field 3 s generated by the 
cylinder sets on Z s. Let A cg)l be an invariant set with P(A)--1 and 
9NA~{Bsg3I: B ~ A }  the restriction of g)l to A. The stochastic process under 
inves~tigation is generated by 4~ in the following manner: If qo~A is the 
realization of the input and z c Z  the state of the process at time 0, then the 
state at each time t > 0  is determined by a measurable function f:  [A x Z x S +, 
~A | 3 | ~* 3-" [z, 33. Assume that f fulfills the conditions f(~0, z, 0) = z and 

f(~o, z, t)=f(Ou~o,f((p, z, u), t - u )  (1) 

for all ~0 cA,  z c Z ,  and 0<u_<t. 
In order to formally describe the relations between the input and the 

generated process we consider the product space [M x Z s, 9J~ |  Let ~1 and 
~2 be the projections from M x Z s into M and Z s, respectively. 

Definition 1. Let qocA be fixed. Then the element ( o r  s is called an 
extension of (p iff. )z1~5 =(  p and 

rc2(o(t)=f(O,nl~o, )z2~(u), t - u )  hold for all t, u c S  with u<=t. (2) 

That means, given the effect of the input at time u and the state at this 
time, the whole future of the realization of the process may be calculated by 
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means of the function f. In this sense (2) is a recursive equation. This is 
especially clear in the case of S--F. Here, in view of (1), the function f is 
uniquely determined by f*  (q~, z) ~ f(~0, z, 1), q~ E & z ~ Z. Then the condition 

n20(t)=f*(Ot_lnl(o, n2(o(t-1)) for all t e F  (2') 

is equivalent to (2). 

Definition 2. Consider the input 05 with the distribution P. A random element 
45 of the space [M x Z s, 9Jl | 3 s] is called an extension of 05 iff. its distribution 
t5 fulfills the following conditions: 

P((. ) x zS)= P(. ), (3) 

and there exists a set C ~ 9)l | 3 s with P(C) = 1 and C _  {0:~5 satisfying (2)}. 

The latter condition means that Eq. (2) may almost surely hold. Thus an 
extension is a solution of a recursive stochastic equation of the form (2). In the 
theory of stochastic differential equations our type of solution is sometimes 
called a weak solution since there is no requirement about the existence of a 
measurable mapping ~o~-,~5. The second component n245 of an extension 45 
may be interpreted as a state process controlled by 05. This was the reason to 
investigate extensions in special queueing models, cf. [6, 7]. In the following 
we will deal with the existence and uniqueness of extensions for a given input. 

3. Existence of a Solution 

The following definition will play a central role in our solution of the existence 
problem. 

Definition 3. A family 9.1--{A(t,q~): teS,  q)~A} will be called potential state 
system iff. the following conditions are fulfilled: 

(A) A(t, q0)_cZ and A(t, qo),t=O hold for all ~0~A and t~S. 
(B) The elements of A(t,~o) are numbered for every t e S  and qo~A with 

IA(t, q~)] < oo: 

A(t, ~o)={zl(t, ~o), z2(t ,  ~o) . . . .  , zlA(,:~)l(t, ~o)}. 

(C) Let i~F~ i>l,  and t s S  be fixed. Then {~o: i<lA(t, cp)[<oo} egJ~A, and the 
mapping (p ~--~zi(t , qo) defined on {q~' i=< ]A(t, ~o)1 < oo} is measurable. 

(D) f(Ourp, A(u, qo), t-u)~_A(t, ~o) holds for all q ~ A  and t ,u~S with u<t. 

Now suppose that there is a potential state system 9.I. We define 

n(v, q))~ t~< f(Ot(p, A(t, q~), v - t )  

for all q~ E A and v ~ S. 
Assume that there is a countable subgroup {ti: j e F} ~S with the following 

properties: 
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(i) tj = i t  x for all j e F. 

(ii) t~<t k f o r j < k .  

(iii) For  every t e S there is a j ~ F with t j_<_ t. 

(The existence of such a sequence {tj.}f_~176 is trivial in the cases of S = F  
and S = R  since t i= j suffices the conditions.) Then 

- o o  

q,)= 0 f(o y, A(tj, q,), 
j=O 

holds. Let 
j(v, q~) ~ sup {j 6 F: f (Ot~ (p, A (t j, q~), v -- t j) = B(v, (p)}. 

The condition j(v, ~ o ) > -  oe is sufficient for B(v, (p)4=O since 

[f (O,j(v,~ cp, A(tj(~,~), q)), v -tj(~,~))[ => 1 

holds because of (A). It follows from (1) and property (D) that 

B(v, (p)~_ f (O, cp, A(u, ~o), v - u )  

~_ f (Oecp, A(t, (o), v - t )~_A(v ,  (p) (4) 

holds for u < t_< v. From there we obtain 

B(v, (p)= ~ f(Ourp, A(u, ~o), v - u  ) 
u<=t 

=,0<_~ f(O*~~ (Ou~~ A(u, ~o), t -u) ,  v - t) 

= f(Ot~o, B(t, (#), v - t )  (5) 
for all t _ v. 

We denote the power of B(v, ~o) by i~(v) and obtain 

io(v)<io(t) for t<v  (6) 

from (5). It follows from (4) that j ( v , ( p ) > - o o  and l < i o ( v ) < o o  hold for all ~o 
with ]A(v, cp)l<oo. Let y e S  and ~0eM with IA(v,~0)l<oe be fixed. We number 
the elements of B(v, q)) in the same order as they occur in A(v, q)) and denote 
them by z~(v, ~o) . . . . .  z~(~)(v, ~o). Then the mappings 

~o ~ {(p'" i<= i~,(v) <= IA(v, (P')I < oo} ~--~ zi(v, ~o), 

i>  1, v e S, are measurable. For  abbreviation, the notation 

M ~ { c p :  [A(tj, ~o)1 < oo for al l j  with t j<0} 

will be used. Now we choose a cp e M~ and an element z~(0, ~o)eB(0, ~0). Then 
it follows from (5) that there is an element z ~ B ( t  ~, (p) with 

f (O,_cp ,  z, q ) =  z~(0, ~o). (7) 

We choose that solution z of (7) which has the minimal number among the 
elements of B(t_ 1, (p) and denote it by z(i, t l , (p). This construction may be 
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continued recursively: Let j >  1 and z(i, t_j, q))~ B(t_j ,  ~o) be given. Then there 
is an element z e B(t_j  1, ~o) with 

f(Or_j_,qo, z, t l )=z(i ,  t j, ~o) (8) 

because of (5). The solution z of (8) with the minimal number will be denoted 
by z(i, t j_~,~o). In this way a sequence {z(i, t j, ~0)}F=~ is defined for every 
i e {1 . . . .  , i~(0)}. We define 

, ( f(Otjqo , z(i, tj, qo), t - t3 )  
z(i, t, (oj ~ ~ f (~o, z'(O, ~o), t) 

for t j < t ~ t j + l , j < O  , (9) 
for t>O. 

Now from (7), (8), (9), and (1) we get that Oi(~o)~(r q~)) is an extension of 

(p for every i<i~o(O ). It follows from (C) and from our construction that the 
mappings ~0~--~0~(q)), i>1,  which are defined on {(p:cp~M~, i____i0(0)}, are 
measurable. The result of the construction may be summarized as follows: 

Theorem 1. Consider the input (b with the distribution P and assume that there is 
a potential state system 9.1 with P(M~)=I .  Then O~(q~) is an extension of  4). 

Consider a random element ~P of  [M x zS,?Ol| with the distribution Q 
defined by 1 iv(o) 

Q(T~('))$~TTA~ ~, ll{Oi((~ (10) 
%t,,s i = 1  

Then 7 j is also an extension of  r 

(The proof of Theorem 1 will be completed in Sect. 6.1.) In order to prove 
the existence of a solution of the given recursive equation it suffices to show 
the existence of a potential state system 9.I with P(M~)= 1. The special exten- 
sion ~P of ~b will be of interest in the following chapters. 

4. Existence of a Stationary Solution 

Stationarity and ergodicity are defined for extensions in a natural way: 

Definition 4. An extension 45 of the input q~ is called stationary if its distribu- 
tion 15 is invariant with respect to all transformations 

Tt:(o~MxZS~--~Tt(o=(OtTrl(o, Tr2Cp((.)+t)), t eS .  

A stationary extension 45 is called ergodic (metrically transitive) i f /5 (C)=0 or 
/5(C)=1 holds for all C ~ g J I |  s for which T~C=C holds for all t e S .  

If the extension 45 is stationary, then the components rc145 and rc245 are 
stationary, too. Now our question is, whether there is a stationary extension 45 
for a given stationary input ~b. For that reason the construction from chapter 3 
will be considered under the additional assumption that �9 is stationary. Let ~I 
be a potential state system with the property 

(E) A(t,~o)=A(O,O,qo) foral l  (p~A, t aS .  
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Then the construction becomes much simpler as the following Lemma shows: 

Lemma.  Let 9.I be a potential state system with (E) and let P be the distribution 
of the stationary input q~ with P(M~)= 1. Then 

1 < i~o(t ) = io~e(O ) = i~o(0 ) < oo (1 1) 

holds for almost all ~o and all t e S. 

(The proof  of the Lemma is contained in Sect. 6.2.) For  abbreviation, we 
denote the number  ie(0) by i~. It follows from (E) and the stationarity of 
that  the process {IA(t, ~P)[, teF}  is stationary, too. Hence P([A(O, ~b)l < oo) = 1 is 
equivalent to 

P(IA(t~, (p)[ < oo for all j )=  1. 

That  means, one can replace the assumption P(M~) = 1 by P([A(0, ~/')l < oo) = 1. 
Under  the assumptions of the Lemma the extension ~ is defined via 

Theorem 1. We obtain 

Theorem 2. Consider the stationary input ~b with the distribution P and assume 
that there is a potential state system 91 with the property (E) and 
P(]A(0, ~b)[ < oo) = 1. Then 

Q(7 ~ e ( . ) )=~ i~ i=a ~ 11 {~9~(q~) ~(.)} P(dq~) (12) 

defines a stationary extension 7 j of ~). 

(The proof  is given in Sect. 6.3.) The extension Ol(~b), however, is not 
stationary in general, cf. Corollary 2 in Chap. 5. 

We consider the special case S = F. Then property (D) is equivalent to 

(D') f*(Ot(o,A(t , (p))~_A(t+l,  cp) for all (peA,  t e F .  

Theorem 2 provides 

Corollary 1. Let P be the distribution of a strictly stationary sequence ~b 
= {X,}t+_ ~ - oo with values in an arbitrary measurable space, and f * : A  x Z- - ,  Z a 
measurable function. Assume that there is a system 91 = {A(t, (p): t e F, ~o ~ A} of 
non-empty subsets of Z with the properties (B), (C), (D'), (E), and 
P([A(0, ~b)[ < oo) = 1. Then there is a stationary solution of the recursive equation 

Z t + l = f * ( O ~ , Z , ) ,  t e F ,  (13) 

i.e. there is a distribution of the pair (~b, {Z,}+~ ~) for which (13) is fulfilled 
almost surely, where {Zt}+ ~ - 0o is a strictly stationary sequence. 

Via (12) the solution {Zt}+=Z~ is given by Zt=)Zz~(t ). Thus our problem 
has been solved constructively. 

5. On the Uniqueness  of  the Solution 

Consider  the distribution P o f  a stat ionary input ~ and a potent ial  state 
system 91 with P(]A(0, ~)] < ~ )  = 1 and (E). Furthermore,  let �9 be ergodic.  The 
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sets {q~: i~ = i}, i=  1, 2, . . . ,  are disjoint and invariant. Their union has probabili- 
ty 1. Hence there is an integer ip > 1 with P(ie = ip)= 1. Then the distribution Q 
of the constructed stationary extension 7 ~ (cf. Theorem 2) has the form 

Now an additional condition on the potential state system ~I will be in- 
troduced: 

(F) For  every stationary extension ~ of 

p(q5 e {01(zr 1 43) . . . .  ,0ip(~ 145)} ) = 1 

holds. (Here/5 denotes the distribution of $.) 

Definition 5. Let �9 be stationary. A potential state system 9.1 is called sufficient 
iff. (E), (F), and P([A(0, ~b)l < oe)= 1 hold. 

The interpretation of this definition is as follows: If 9.1 is a sufficient 
potential state system, then the construction from Chap. 3 almost surely yields 
all extensions of the realization (p of ~b. It especially follows that the number ip 
is the same for all sufficient potential state systems. Hence ip is characterized 
only by P if it exists. The constructed extension 7 j is not the only stationary 
extension in general, as examples in [6] show. In order to investigate the 
uniqueness problem, first a method from queueing theory (cf. [4]) will be used. 
Let 2I be a sufficient potential state system. 

Definition 6. Let ~o ~ A be fixed. An element t '~ S is called construction point if 
there is a t ~S and a state z' ~Z  with f(Otcp, A(t, (p), t ' - t ) = { z ' } .  

From the definition it follows that construction points exist a.s. at most in 
the case of ip= 1. Conversely, in the case of ip= 1 all t '~S  are construction 
points for almost all ~o since t=tj(t.,~ ~ (cf. Chap. 3) and z '=z(1,  t', ~o) fulfill the 
conditions of Definition 6. The concept of construction points is due to Borov- 
kov [2, 8], Franken and Kal~ihne [3]. These authors defined special kinds of 
construction points in queueing systems. Now we have seen that the existence 
of construction points is equivalent to ip = 1 in our general context. 

Consider an additional proposition: 

(G) For every z ~Z  it holds that 

P(There is a t~ ~ S with f(eb, z, t~) ~ A(t~, ~)) =- 1. 

The following theorem is a generalization of a theorem by Franken and 
Kal~ihne [3] for queueing system without delay, cf. [4]. 

Theorem 3. Let P be the distribution of a stationary ergodic input q) and assume 
that there is a sufficient potential state system 9.1 and that ip = 1 holds. Then the 
following statements are valid: 

(a) 7 j is the only stationary extension of q). 

(b) 7 j is defined on the probability space [M, ?01, P]. 
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(c) Let (G) be fulfilled and let X be an arbitrary random element of [M x Z s, 
9Jl | 3 s] with the marginal distribution P of the first component. Then 

Var 
g ( f ( g l X ,  7~2X(0), t) E ( . ) ) ~  Q(7c 2 T(0) E(.)) 

Vat 
holds. (Here V denotes the distribution of X and --+ stands for the con- 

vergence in variation.) 

(The proof is contained in Sect. 6.4.) Of course, the condition iv = 1 is not 
necessary for the uniqueness of the solution, cf. [6]. In the general case we 
obtain 

Theorem 4. Consider the stationary ergodic input 4) with the distribution P and 
assume that there is a sufficient potential state system 9X. Then 7 j is the only 
stationary extension of 4) if and only if 71 is ergodic. 

The proof of this theorem is formally the same as in the special case 
considered in [6]. (We omit it here and refer to [6].) Unfortunately, the 
ergodicity of 7 j is hardly to check already in simple cases. 

Corollary 2. Let the assumptions of Theorem 4 be fulfilled and let 7 t be the only 
stationary extension of 4). Then 7 j is defined on [M, 9J~, P] if and only if ie = 1 
holds. 

(The proof is given in Sect. 6.5.) Corollary 2 shows that the assumption i e 
=1 (i.e. the existence of construction points) is sufficiently general if one is 
only interested in extensions defined on [M, 99/, P]. Finally we get 

Corollary 3. Let the assumptions of Theorem 4 and (G) be fulfilled and let 7 j be 
the only stationary extension of ~. Then 

T 

P(T- I~  l l { f (q~ ,z , t )~B}dt  T ~ Q ( n z } P ( O ) e B ) ) = I  
0 

holds for all z ~ Z and all B ~ 3. 

This result immediately follows from the individual ergodic theorem. 

6. Proofs 

6.1. The proof of Theorem 1 

It remains to show that 7 j is an extension of ~b. In fact, 

i ir 

Q(nl}/'e('))=~ ~ i=I ~ ll{n'O~((Ple(')}P(dq)) 
1 i,o(o) 

= J " / ~  ~=~2 ~l{~o~(.)}P(dq)) 

=e(~( . ) )  
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holds. Consider  the set 

C = { ( p  �9 7/;1( ~ � 9  q~ �9 {~/1(7cl (p) . . . .  , @i~l~, (o)(TCl (P)}} �9 

For  all :~ �9 C 

are extensions of ~z~(~. Hence  it follows 

io(O) 

i = I  
i~(0) 

= F~ ~ {r s {~(~o), ..., 0,o~o~(q')}} = i A  0) 
i = l  

for all q0 �9 M~, and thus Q ( C ) =  1. The proof  of Theorem 1 is completed. 

6.2. The proof of  the Lemma 

It follows from (E) that  B(t,~o)=B(O, Otq~ ) holds for all ~o�9 and t ~ S ,  and 
thus 

ir = io, o(0) 

is valid for all ~o ~ M~. Tha t  means, the process {i~(t), t �9 S} is stationary. For  
every ~o e M~ the function io(t) is non-increasing in t, Hence  the realizations of 
the process {ir t �9 S} are almost surely constant :  

io(t)  = io(0) ,  t e s .  

The L e m m a  is proved. 

6.3. The proof o f  Theorem 2 

Via Theorem 1 Eq. (12) defines an extension of r It remains to show that  T is 
stationary. 

For  almost all q0 the sets B(t, ~o), t e S, have the power io (by the Lemma).  
Then  the solut ion of Eq. (7) resp. (8) is uniquely determined, cf. Chap. 3. Thus 
for all fixed t and almost all qo the following s ta tement  holds: For  every 
i e {1, ..., ir there is exactly one number  j(i, t, qo) ~ {1 . . . . .  io} with 

F r o m  there we get 
z(i, (.)+t, ~)= z(j(i, t, (o),., Otto ). 

~, ll {(O,(p,z( i , ( . )+t ,  q~))eB} 

= ~ ]l{(OtcP, z ( i , . ,O, (o) )eB}  
i=1 

for all t ~ S, B e 9)l | 3 s, and almost all (p. 
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Now the stationarity of T can easily by proved: 

((. ) + t)) B) 

=~ i-- Z ]1 {(O,(p,z(i,(.)+t,~o))eB}P(d(p) 
i=1 

=$1 
i~o ~=1 ~ ll{(O'cP'z(i'"Otq)))sB}P(dcP) 

lot  0 

= =  1 {(~o, z(i , . ,  (p)) e B} P(d~o) = Q ( ~  e B) 
l(p i 

holds for all t s S, q.e.d. 

6.4. The proof of Theorem 3 

It follows from Theorem 2 that T = ~l(~b) is a stationary extension defined on 
I-M, 9)l, P]. Thus (b) is shown, and (a) immediately follows from property (F). It 
remains to prove (c). 

tj - tj(t~,~o) < ~ (14) 

holds for all j E F and almost all (p. By means of property (E) we obtain 

t j+  k - -  t j ( t j  + k, q~) ~ t j  Jr k t  1 m t j ( t j  + ktl ,  tp) 

-~- t j  - -  t j ( t j  ' Oktl ~) 

for all j, k ~ F and almost all cr Hence the sequence 

is stationary. Furthermore, it is ergodic. Consider the events 

A , ~  {(p: There is a j e F  with tj-t j(t j ,e)<n }, n>l .  

It follows from (14) that there is a number n with P(A,)>0.  Since A, is 
invariant with respect to all transformations ~O~-~Ok,~q~, k eF,  the equation 
P(A,)---1 holds. Now 

P(]{j: j > 0 ,  t j - - t j ( t j ,  q~ ) <n}[  = o 0 ) =  1 (15)  

follows. Let z e Z  be arbitrary but fixed. From (G), (D), and (15) we obtain that 
the following statement holds for almost all 9: There is a t e S with 

f (~o, z, tj(,,,)) ~ A(tj(t,,), ~o) 

and hence f((p,z,t)=~Zz~l(~o)(t ). For  all t '>t  the functions f((p,z,t ') and 
~2$~((p)(t') coincide. From there one can obtain (c) by standard calculations, 
cf. e.g. [4]. 
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6.5. The proof of Corollary 2 

In  the case of  i p =  1 the extens ion 7 j is defined on  [M,  gJl, P ]  by means  of 
T h e o r e m 3 .  N o w  let i p > l .  Suppose  there were a measu rab le  m a p p i n g  
h: M ~ M  x Z  s with T~h(~o)=h(O, cp) for all t e S  and  P -a lmos t - a l l  q) and  h(q~) 
were an  extens ion of  q~. Let  q~ e M~ be a rb i t r a ry  but  fixed. Then,  by  means  of 
(F), there  is a n u m b e r  iae{1,...,ip} with h(cp)=Oih(q~ ). N o w  we number  the 
cons t ruc ted  extensions in a new order :  

Then  

O*(qo) ~ ~ (~o) = h(q)), 

~Oi_l(q))" for l<i<ih ,  
~ * ( q o ) ~ , ( r  for i>i  h. 

holds,  and  ~*(45) is a s t a t iona ry  extension.  In  the case of  i p >  1 this con t rad ic t s  
the e rgodic i ty  of  7*. Thus there is no measu rab le  m a p p i n g  h with the above  
m e n t i o n e d  proper t ies .  Co ro l l a ry  2 is proved.  
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