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Summary. Let P be the distribution of a stationary real-valued random 
sequence ~ = { X i } ~ o ,  and z(~) a stopping time with Evz(q))<oo. Then 
there exists a distribution Q of a stationary sequence T = { [ x i ,  Y~]}~o, 
Y~ e {0,1}, with the properties 

(I) Q(Yo= 1) >0, Q({Xi}~'o~(.))=P(~e(.)). 

( (e ) - lX~Yo=l)  Yo=l)EpXo . (II) E e .  ~ o  =Ee(z(~)]  

Equation (II) is a generalization of Wald's identity. 

1. Introduction 

We consider the problem of calculating the expectation of a sum constituted 
by a random number of random variables (r.v.'s). The classical result by Wald 
[11] is as follows: Let Xo,X 1 .... be a sequence of i.i.d.r.v.'s, and let z be a 
stopping time with respect to this sequence, i.e. the e-field generated by 
X o . . . . .  Xn_ 1 includes the event {z=<n} for all n. The distribution of the given 
sequence will be denoted by P. Then under some integrability conditions of the 
usual kind we have 

Ep ~, X~=(Epz)EpX o. (1) 
i = 0  

The proof by Wald [11] (see also Sirjaev [10], Borovkov [1]) may not be 
extended to the case of dependent variables. However a very simple proof of a 
generalization of (1) was provided in a somewhat different model by Franken 
and Streller, cf. [4]. This approach will be summarized in Chap. 2. Then the 
problem arises as to whether this new model is equivalent in some sense to the 
initial model of a stopped sequence. This question will be answered positively 
in Chap. 4. In this way we get a formula that generalizes (1) for a stationary 
sequence of dependent r.v.'s and a stopping time �9 with finite expectation. 
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2. One Approach to Wald's Identity 

(a) 

(b) 

(c) 

and 

Now we will introduce a model, in which Wald's identity (in a generalized 
form) is very easy to obtain. This approach is closely connected with the 
concept of random marked point processes and Palm distributions. 

Let T = {[Xi, Y.]~ +~176 be a (strictly) stationary sequence taking values in E i ~ i=  - oo 

• K. Here E and K are separable metric spaces. The distribution of ~ will be 
denoted by Q. For a realization ~ of ~ we define the shift operator Tj via 

X +oo 
q'={[  i,y,]},=-o~ ~ {[x ,+j ,y i+s3}+2~.  

We consider a subset L___ K with 

Q(4+ {i: YieL}=oQ)=l ,  (2) 

It follows from (2) that Q(Yo eL)>0 holds. 
Furthermore, we define 

v(~b)=inf{i: i>0,  yieL}. 

Consider the conditional distribution Qs  IYoeL) and let TL 
= X L {[ ~, y L]}+__oo_~ be a random sequence with the distribution QL. We regard 
the sequences 7 j and g'c as random marked point processes on F (the set of 
integral numbers) with the mark space E x K. Then QL is the Palm distribution 
of Q with respect to E x L, cf. [3, 5]. Hence it has the following properties: 

QL(Yo ~ e L) = l, 

EQ,_ v(~L) < oo, 

QL(T,~'L) TL e (.)) = QL(~L e (.)), 

1 v(tI"L)- 1 

- -  EQL E l{WiT'Le(.)}" (d) 0(V'E(.)) E o , y ( ~  0 i=o 

Equation (d) is the well-known inversion formula for point processes. Using 
standard techniques of integration theory, we get from (d) the validity of 

1 ~0vL)- i 
= Eo_~ E f(T~ tPL) (3) E~2f(T) EQLV(VVL) ,~o 

for all measurable functionals f with defined EQf(T). 

Example. Let ~ be the invariant probability measure of an irreducible ergodic 
Markov chain {X~} with the state space E. Define Yi = 1A(X 3, where A is a 
measurable subset of E with ~(A)> 0. Using the notations 7/= {IX i, Y~]}, 

~((.)c~A) 
~A(.)-  ~(A) ' K=(0,  l}, L={1}, 

ZA=V(gL) - the hitting time of A, we get from (3) for every f e L l ( P )  
~:a-- i 

E.~ ~ f(X,) = (E~'CA) Eaf(Xo). (4) 
i -O  
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Formula (4) is well-known in the theory of Markov chains, cf. Chung [2] for 
discrete E. 

Now we choose r iO)=  xo in (3) and obtain 

v(kuL)- 1 

EQ~ ~ Xf=(EQL~(~2))E~X o. (5) 
i--O 

Comparing (5) with (I) we notice a formal analogy. To clarify the relations 
between (5) and (1), we consider a sequence (b = {XI}/+=~ oo of i.i.d.r.v.'s and a 
stopping time ~ with respect to {Xi}~_ o. The distribution of ~ will be denoted 
by P. The well-known property that the sequence {X~+~}~_ o has the same 
distribution as {Xi}i~ o, cf. e.g. Borovkov [1], provides the existence of a 
random sequence 7J r = {[X/L, ELq~+~ ~,i=- oo, ~ Y/re {0, 1}, with the distribution QL, L 
= {1}, satisfying the conditions (c), 

and 

L + ~  Qr({X~ }~= ~ e( . ) )  = P ( e  e(.)),  (6) 

X L L QL(( o,'", X~CVL)- *, v(TJL)) e( ' ) )  
(7) 

= P((Xo, ..., X~_l, z) E(. )). 

That means, the stopping rule z defines the first occurrence of a 1 in the 
second component of ku L and then the stopping mechanism starts again, 
terminates at the next 1 and so on. Condition (a) is fulfilled in view of (c) and 
condition (b) holds in the case of Eez < oo. Thus QL is the Palm distribution 
with respect to R x L of a stationary distribution Q given by (d). Since the 
events {V(7~L)__< i} and {X/L <x} are independent for arbitrary i and x, 

Q(Xo<x)_ 1 ~ QL(V(7~L)>i, XL<x ) 

_ 1 V ( Q . r ( x , c < x ) _ Q ~ r ( X ~ < x ,  v(tllL) ~ i)) 
EeL v(~r) i= 

1 
- EeL V(~r ) i~=o Qr(X~ < x) (1 - QL(V(~Pr) <= i)) 

= Q r ( x ~ < x )  

holds for all xeR.  Then (1) immediately follows from (5), (6), and (7). Thus 
Wald's identity (1) is a special case of (5) if Eer  < oe holds. 

In the case of dependent r.v.'s, however, the Eq. (5) cannot be reduced to 
the simple form (1) in general, as the following example shows: 

Let {X~}~= o be a homogeneous Markov chain taking values 1, 2, and 3. Its 
distribution P may be defined by the transition matrix 
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and by the stationary initial probabilities ql =qz---q3 = 1/3. Consider the stop- 
ping time 

z = l + i n f { i :  i>0,  Xi~{1,2}}. 

Then Eev=4/3, E e X o = 2  , but 

"r 

Ep ~ Xi = 7/3 =t = 2. (4/3). 
i ~ 0  

A formula for the difference 

EI, ~ Xi-(El~'c)EpXo 
i = 0  

was given in the case of a stopped irreducible Markov chain with finite state 
space by Kiichler and Semenov [6]. (In [6] a somewhat general model was 
investigated.) We mention that this formula is quite complicated and hard to 
u s e .  

Example. We apply (5) to the analysis of a queueing model G/G/1/oo, where 
C~ +oo the sequence {[ ,,/?n]},=-oo of interarrival and service times is only assumed 

to be strictly stationary and ergodic, and to satisfy p=Ee~o/Ee%<l .  Then 
there exists a uniquely determined stationary and ergodic sequence 

W +oc = {[- ,, fin, n]} . . . .  with a distribution Q satisfying 

Q(wn+ 1 =(W,--an+fi,)~- for all n )= l ,  

cf. e.g. Loynes [8], and [4]. The variables w n are the waiting times of cus- 
tomers. The distribution Q has the property 

Q(~ {n: w , = 0 } = o o ) = l .  

For the analysis of a generic busy cycle we have to investigate the sequence ~u L 
L L L = {[~n,/3,,, Wn] } with the distribution QL(. ) = Q(. I wo = 0). (Here, in terms of our 

previous considerations, K = R  2 , L = R .  x {0}.) Now we can use (5): 

EQL 17 = (EQL v) EQ flo = (EQL v) E e flo, 

where v= v(TJL) is the number of customers served during the busy cycle, and 17 
L �9 .. +/3~-1 is the length of the busy period. For further results in this 

direction cf. [4]. 

3. The General Problem 

We are interested in results of the form (5). Thus our aim is to clarit~r whether 
there is a Palm distribution corresponding to a given stopped sequence. A 
similar problem occurs in the investigations of Mogulski and Trofimov [9]. 
We will briefly summarize them. 

Let {tci}i~__o be an irreducible and aperiodic homogeneous Markov chain 
with the state space {1, 2 . . . . .  k}, and P its stationary distribution. Furthermore, 
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let [[%]]i.j~l ..... g~ be a matrix of positive real numbers. Consider the sums 

S , =  ~ a~,§ n = l ,  2 . . . . .  

(In the special case of aij = i we get 

S , =  ~ ~q.) 
/=1 

Let ~ be a stopping time of the chain {~ci}~ 0. Consider a new transition matrix 
defined by 

[~j~ = [[P(G =J] Ko = 0~. 

This matrix describes the transition to the time of the next stopping. We 
remark that there are cases in which [[~j~ is not irreducible and aperiodic. 
Mogulski and Trofimov [9] assume that there is exactly one stationary initial 
distribution corresponding to [[~j]]. Then 

EpS~=(Ef~z)  E p S  1 

holds, where /5 is the stationary distribution of the Markov chain with the 
transition matrix [[~j~. The proof is very simple by use of the individual 
ergodic theorem. 

Comparing this result with (5) we see that P plays the role of QL in our 
context, where the existence of the distribution/5 had to be assumed. Now we 
want to formulate the existence problem in our general model. We consider a 
stationary real-valued sequence �9 = { X i } +  ~ - ~ with the distribution P. Let z be 
a stopping time with respect to {Xi}i~ o, This is equivalent to the existence of a 
sequence of measurable functions f,:  R '-~ {0, 1}, n = 1, 2 . . . . .  with 

1~<=,~ = f , ( X  o . . . . .  X , _  1) P-a.s, 
i.e. 

r= inf{n:  n > l . f , ( X  o . . . . .  X ,  1)=1} P-a.s.. 

We will use the following notations: 

go = {x~}+~_ to - a realization of q~. 

---fX ~+'~ Ojgo--( i+jJ i= -oo, 

�9 (go)=inf{n: n > l , f , ( x  0 . . . . .  x,, 1)=1}. 

We want to investigate the existence of a distribution Q of a random sequence 
71 = {[X~, Y//] }+=Zoo, Y/e {0, 1}, with the properties: 

(A) Q is stationary and (2) holds for L={1}. 

(B) For the Palm distribution Q~ of Q with respect to R x {1} (cf. Chap. 2) 

Q 1 ( v ( ~ O  = z ( { X i  1 } +o?_ ~0) = 1 
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holds, where T I - t [ - X  ~ - , ~  ~, Y~3t +~ is a random sequence distributed according 
to Q1, in particular 

EQ1 V ( ~ / 1 ) =  E Q ( T ( ~ ) ]  Yo ~- 1). 

(c) Q({x~}L~ ~ ~(.)) =P(~ ~(.)). 

4. Solution of the Problem 

Let i e F and (p be fixed. Consider the number 

i 

n(i, go)= ~ l{z(Oj<o)>i_j } 
j =  - o o  

of all indices j <  i with z(0jgo) > i - j .  We define 

M'={go' n(i, go)< oo for all ieF} .  

Now we can formulate our main result: 

Theorem. Let 4) be a stationary sequence with the distribution P, and T a 
stopping time defined by a sequence of measurable functions {s a. We assume 
that 

P(~  ~ M') = 1 (8) 

holds. Then there is a distribution Q of a random sequence 7 j with the properties 
(a), (B), and (C). 

The proof  of the theorem is given in appendix. From Campbell's Theorem 
it follows that 

EpT < ov (9) 

is sufficient for (8), cf. [3, 4]. Thus we obtain the following 

Corollary. I f  Epz < co, then there is a distribution Q1 with 

u ('t/] 1 ) -- 1 

EQ1 Y X~=(~,v(~q))EpXo. (10) 
i - O  

Using the notation q) for the first component of T, we can rewrite (20) into 
the form (cf. (B)) 

to_ X i IYo=I )=E~(T(~ ) IYo=I )EpXo  �9 

This is the desired generalization of Wald's identity for dependent variables. 

5. Some Remarks 

The assumption (9) seems not to be natural, since the expectation Epz does not 
occur in any form in (10). On the other hand, the statement of the theorem 
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does not hold without any assumptions, as the following example shows: Let @ 
be a sequence of i.i.d.r.v.'s with P(Xi=k)=6/(~2k2), k = l ,  2 . . . . .  and z=X o. 
Then 

Evz = oo (11) 

and P(~baM')=0 hold. (The latter may be proved by direct calculating.) Now 
suppose that there were distributions Q and Qt with (A), (B), and (C). Then the 
points i with Y~ = 1 would form a stationary renewal process. In view of (B) this 
contradicts (11). Thus a solution of (A), (B), (C) does not exist for our example. 
Of course Wald's identity (1) holds in the sense that both sides are infinite. 

A last remark concerns the possibility to generalize Wald's equations of 
higher order. It would be very important for statistical applications to have 
equations for higher moments, too. However, there is no direct generalization 
of Wald's fundamental identity 

1 

EP(Epexp(uXo)y-1 for some u4:0 

(which is true for a stopped sequence of i.i.d.r.v.'s) in our model from Chap. 2. 
For example, consider the sequence 7~z = {[X~, Y~a]}J-~_o~ with the Palm distri- 
bution Q~ defined by (c) and Q~(Yo~=l, y~=0 ,  Y2~=l, X ~ = 0 ,  X l = l ) = l .  
Then 

Q1 v ( ~ ) = 2 ,  ~ X/1--1 =1 
i=0 

and Q(Xo=O)=Q(Xo=l)=l/2 hold. (The latter follows from the inversion 
formula (d).) Hence 

(V(~l) 1 1 ) 
exp u i:o~ Xi 4exp(u) 

Ee' (E e exp (uXo)) v(",) - (1 + exp (u)) 2 4= 1 

follows for all u 4= 0. Notice that 

z({Xi}[_~oo)=inf k : k > 0 ,  ~ Xi=l 
i=0 

is a stopping time with respect to {Xi}i ~176 o, and (A), (B) hold. 

Appendix : The Proof of  the Theorem 

A one-one mapping between the stationary sequence ~ = { [ X i ,  El} +~ for 
i ~ i =  oo~ 

which (A), (B), and (C) hold, and a stationary sequence t ?=~rX Zl~+oo 
t k  i~ i A ; i ~ -  co~ 

Zi~ {0, 1, 2 .. . .  }, with the distribution H that fulfills 

H(Zj+ 1 = ( Z j +  1)l~(~x~+j-z~&% j . z ~ .  1~ for all j e F ) =  1 (12) 
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may  be defined by Z i = i n f { i - j :  j<=i, Yj=I}  or, conversely, Y/=l{z,=0}. The 
number  Z i may  be interpreted as the time from the preceding point  with mark  
1 to the point  i. Then  it becomes clear that  (12) is equivalent to 

Q(v (T j  71) = r ( { X i + j } + F  ~,~) for all j with Yj = 1) = 1. (13) 

Under  the condi t ion (A) the s ta tement  (13) is equivalent to (B) by means of  the 
definition of  Q1. Condi t ion  (2) is equivalent to H ( #  {i: Z ~ = 0 } = o o ) = l ,  and 
this equat ion  follows from (8) and (12). Thus it suffices to show the existence of  
a s ta t ionary sequence t2 with (12). To do this, we will apply a general theorem 
by Lisek [7] concerning the existence of  s tat ionary solutions of  recursive 
stochastic equations. 

Let  i e F  and ~0 be fixed. The points  j < i  for which z ( O / p ) > i - j  holds will 
be ordered and denoted by vl ( i ,  q~) . . . . .  v,,.~o)(i, 9) .  The sets 

A (i, cp) = { i - v 1 (i, 9) ,  i - v 2 (i, ~o) . . . . .  i - vna ~o, (i, q))} 

are finite for P-almost-al l  (p (because of  (8)) for all i c F .  All these sets are not  
empty  since 0 ~ A (i, q~). The condi t ion  f(O~ (p, A (i, ~o)) ___ A (i + 1, cp) with f(~o, z) = (z 
+ 1)l~0_~e).~ + ~ is valid for all i and almost  all ~0. That  means, the assump- 
tions of  Corol lary  1 in [7]  are fulfilled. F r o m  there the existence of  a sta- 
t ionary sequence (2 with (12) follows. The p roof  is completed. 
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