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We suggest a formulation of a variational principle for lattice Markov fields in 
one dimension so as to include the case where the specific entropy and the 
specific energy are both infinite. 

1. Basic Definitions and Main Results 

1.1. The general definition of a Gibbs random field can be found in [1]. We 
shall deal only with one-dimensional lattice Gibbs fields with a finite or 
countable number of states and a nearest neighbour interaction. In this case the 
above mentioned definition can be stated in the following equivalent form. Let 
V be a finite or countable set, let X = V ~= {x =( . . . ,  x 1, x o, x 1 . . . .  ): xie V, i eZ}, 
be the sequence space and g the a-algebra generated by the cylinder subsets 
of X. Let U be a function defined on V x V  with values in l R ~ { + o o } .  A 
probability measure ~t defined on ~ is said to be a Gibbs random field with 
potential U if for every k, IEZ, vieV , O<=i<l, such that #(Xk=Vo, Xk+Z=V~)>O 
the following equality holds 

~ ( x k +  1 = v l  . . . .  , xk+~_ 1 = v~_ 1 /xk  = Vo, x k + l  = vl) 

l - 1  

=[i/~,l(1)o, Dl)] exp [--i~=o U(Vi, Vi+ l) ] , (1.1) 

1/ffl(Vo, v~) being the normalizing factor (we set e x p ( - o o ) = 0 ) .  
According to an idea going back to Gibbs one can specify the homo- 

geneous Gibbs fields with a given potential within the family of all homo- 
geneous random fields with states in V by means of a variational principle. In 
case of a finite V it reads as follows. Let us denote by S the shift transfor- 
mation acting on X and by J the set of S-invariant probability measures on 
~-. For # e J  let hu=h~(S) be the specific entropy of #, i.e. the entropy of S with 
respect to #, and let eu(U)=~ U(xo, xt) d/~ (in our case this is the specific energy 
of #, see [2]). Obviously, 0 < h u <  + o% - o o  < e u ( U ) <  + oo and so the quantity 
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~(U, #) = h. - e~,(U), #~J,  (1.2) 

takes values in lRu { -  oo} ( - ~ ( U ,  #) is called the specific free energy of #, see 
[-2]). The variational principle reads: a measure # ~ J  is a Gibbs random field 
with potential U if an only if 

~(U, #) = sup N(U, v). 
v E J  

In such a form the variational principle was proved by Spitzer [13] (a more 
general result dealing with multi-dimensional Gibbs fields can be found in 
[7]). Spitzer also proved the uniqueness of a homogeneous Gibbs field (for a 
finite V such a field always exists) and found its explicit form. More recently 
Kesten [5] stated some necessary and sufficient conditions of the existence and 
proved the uniqueness of a homogeneous Gibbs field when V is countable and 
U <  oo. The purpose of the present paper1 is to extend both the variational 
principle and Kesten's results to the case of a countable V under the weakest 
possible conditions on U. Our method differs from that of the articles men- 
tioned. It is based on certain considerations induced by the theory of count- 
able state Markov chains combined with some entropy ideas in ergodic theory 
(see [11] for all the entropy notions and results used below). 

1.2. Definition. A potential U will be called indecomposable if given v', v"~V 
there exist 1)I,...,I)nEV such that U(vi, vi+l)<o% l <_i<_n-1, where vl=v', v. 

~)111 

Indecomposability is the only condition on U assumed satisfied throughout 
the paper. 

When V is finite the results of [13] can be easily extended to an arbitrary 
indecomposable potential. However, when passing to an infinite V one finds 
that even for U <  oo there can exist measures # ~ J  with hu=e,(U)= + oo. That 
is why (1.2) does not allow a direct generalization, i.e. some regularization is 
required. It can be apparently made in different ways. One of these ways was 
suggested by Ito and Mori [4], another by Walters [15]. In both cases some 
additional restrictions are imposed on the potential. A fruitful approach to the 
variational principle was suggested by F611mer [-2] and further developed by 
Preston [10] (see also Pirlot [-9] and Kiinsh [6]). This approach works when 
there exists a homogeneous Gibbs field with U. We shall compare it with our 
formulation of the variational principle in the end of this section. 

1.3. Our aim is to define a functional ~ ( U , . )  with values in N u { - o o } u  
{ + oo} such that: (a) when V is finite, ~(U, .) is defined by (1.2); (b) the above 
stated variational principle is true. 

To simplify some arguments below we shall define ~(U, #) only on the set, 
call it g, of those # ~ J  under which S is ergodic (if #eg  it is called an ergodic 
measure). This restriction is justified by the fact that when # is non-ergodic, the 

1 Some of the results of this paper are published without proof in [3]. 



Variational Characterization of Gibbs Random Fields 207 

right side of (1.2) admits the integral representation corresponding to the 
ergodic decomposition of # (see also Theorem D(ii) below). 

In order to regularize (1.2) let us try to truncate both terms involved, then 
take their difference and finally remove the truncation. 

For each v~V we set 

g(v) = { ~ e g :  ~(Xo = v) > 0}. 

Obviously, g = U #(v). 
v~V 

Denote by F(v) the set of sequences y=(Vo, vl, ..., v~), 1=/(~), such that v o 
=v~=v and v+vieV for l<_i<l-1. For ?EF(v) and for each kET/ such that 
O <_k <_l(?)- 1 we set 

A(v, 7, k)= {x~X : (X_k, X_k + 1, "", X-k+,r)) = ~}" (1.3) 

It is clear that A(v, 7, k) and A(v, 7', k') intersect only when ?=? ' ,  k=k'. More- 
over, the sets A(v, 7, k), ?~F(v), l < k - < l ( ? ) - l ,  form a countable partition, 
~(v), of the set 

l(~)- 1 
A(v)= U ~j A(v, 7, k) (1.4) 

~eF(v) k=  1 

into measurable subsets. Introduce an arbitrary numbering on F(v) and denote 
by ~,(v) the partition of A(v) into the subsets A(v, 7i, k), 1 <i<=n, O<=k<=I(?i)- 1, 
and A (v) \ A (v, n), where 

A(V, n)= Q) 1('0~-1 A(v, 7i, k). 
i = l  k = O  

When #~#(v) we have p(A(v))= 1 and so c~(v), en(V) can be viewed as partitions 
of the whole space (X, Y, p). 

For  every v~V and eve ry /~# (v )  we set 

~(U,p,v)=limsup[h~,(S,a,(v))- ~ U(xo, xl)dl~] (1.5) 
n ~  co A(v ,  n) 

and we now define our functional ~ (U, - )  by 

P(U, p)= inf ~(U,  p, v). (1.6) 
v: ~ e g ( v )  

Remark. One can in fact prove that ~(U,  p, v) does not depend on v on the set 
of those v~V for which #~g(v). But we will not dwell upon this in the present 
paper. 

1.4. Proposition. I f  V is finite and laEE, then P(U, #) defined as above satisfies 
(1.2). 

Proof From the definition of ~(v) it follows that if #~g(v), then ~(v) is a 
generator for S, so that ([11], Theorem 7.3) 

h,(S) = lim hu(S, ~n(V)). 



208 B.M. Gurevich 

Moreover, hu (S) __< log card V< oo. The function U(xo, Xl) is bounded below so 
that 

lim y U(xo, xOd#= ~ U(xo,xOd#=eu(U), 
n~oo A(v,n) X 

where the limit equals + oe when #(U(xo, Xl)= + oo)>0. The above implies 
that if V is finite then for every veV such that #eg(v) the content of the square 
brackets in (1.5) tends to ~(U, #). This finishes the proof. 

1.5. For precise formulation of the main results of this paper some notions and 
results related to non-negative matrices are required. 

Definitions. Let Q be a non-negative function on V x V. It can be clearly 
regarded as a matrix. We call it indecomposable if given v,v'EV there exist 
vi~V, l< i<n ,  such that v1=v, vn=v' , and Q(Vi, V i + I ) > 0  for i=1,  . . . , n - 1 .  We 
set 

,~(Q) = sup ~(Q'), (1.7) 
(2' 

where the supremum is taken over all Q'=QIv,• the restrictions of Q to 
finite subsets V'= V; 2((2') being the maximal eigenvalue of Q'. 

We shall call Q admissible if Q", the n-th iterate of Q, is finite for all n > 1. 
The entries of Q" will be denoted by Q(")(', "). 

By a non-negative matrix Q one can construct a directed graph G(Q) whose 
vertices are all v~V and whose edges are those ordered pairs v, v'~V for which 
Q(v,v')>O. It is clear that Q is indecomposable if and only if G(Q) is con- 
nected. 

Let ~=(VO, Vl,.. . ,v,) be a path of length n in G(Q), i.e., a sequence of 
vertices such that v~, v~+ 1 is an edge of G(Q) for i=0,  ..., n - 1 .  Let 

n--1 
Q(~) = 1~ Q(Vi, Vi+ 1)' (1.8) 

i=0 

A path (v o . . . .  , v,) in G(Q) will be called a v-cycle, vr if Vo=V,=V and 
v~# v when 1 < i < n - 1 .  Let F(Q, v) denote the set of all v-cycles. Consider the 
series 

~oo, v(t)= ~ Q(7)t l(~), (1.9) 
?,eF(Q, v) 

I(7 ) being the length of 7. If Q is admissible, (1.9) can be regarded as a power 
series because the sum of coefficients of t" is finite for each n_> 1. We shall deal 
with (1.9) only for t>0.  

Proposition. Let Q be a non-negative matrix. Suppose Q is admissible and 
indecomposable. Then 

(i) The radius of convergence of the power series ~Q(")(v,v')t" does not 
n 

depend on v, v'~V (we denote it by R(Q)). 
(ii) I f  lim [R(Q)]"Q(")(v, v')=0 for some pair v, v'~V then this is true for all 

n ~  o~ 

such pairs (otherwise Q is called R(Q)-positive). 
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(iii) The R(Q)-positivity of Q is equivalent to each of the following proper- 
d 

ties." a) q0Q, v(R(Q))= 1 and ~q)Q,v(t)lt=R(Q) < O0 for some (and then for any) veV; 

b) there exist vectors ~=~o:  V---,R and r/=t/~2: V ~ R  with positive components 
such that 

r V,~ r~ ~V ~ 2 Q(v,v')~(v'l=~(vl/R(Q), ~ tl{ )~g(,vl=tl(v)/R(Q),  veV, (1.10) 
v~EV v '~V 

~(v)~(v)= 1; (1.11) 
v~V 

~, t l being uniquely defined to within a factor. 

(iv) R(Q)= 1/2(Q). 

Assertions (i)-(iii) can be found in [14], (iv) will be proved below (see 
Remark 3.3). 

Let U be a potential and Q v = e x p ( - u ) .  The indecomposability of U is 
clearly the same as that of Qv. 

1.7. The main results of the paper are as follows. 

Theorem A. Let U be an indecomposable potential with Z(Qv)< 0o and let v~V, 
#~g(v). Then ~(U,  #, v) does not dedend on the numbering on F(v). Moreover, 
lira sup can be replaced by lira in (1.5). 

Theorem B. Let U be an indecomposable potential. Then 

(i) sup ~(U,  #, v) =In 2(Qv) for every v~V; 
trig(v) 

(ii) sup N(U, #) =ln  2(Qv). 

We shall call a measure # ~g  maximal if .~(U, # )= ln  2(Qv). 

Theorem C. Let U be an indecomposabIe potential with Z(Qv) < ~ .  Then 

(i) Qv is an admissible matrix; 

(ii) I f  there exists a maximal measure #6g,  then it is unique, belongs to g(v) 
for each w V ,  and is a Markov measure with stationary probabilities ~(v), v~V, 
and transition probabilities p(v, v'), v, v' e V, defined by 

~(v)= ~(v)~(v), p{v, v')= Q(v, ~')~(v')/~(Q)~(v), 

where Q =Qv and ~, t 1 are the vectors indicated in (l.10), (1.11). 

(iii) One can find a maximal measure # e g  if and only if Qv is 1/2(Qv)- 
positive. 

Theorem D. (i) I f  for an indecomposable potential U with Z(Qv) < oo there exists 
a maximal measure #~g,  then # is a homogeneous Gibbs field with potential U. 

(ii) I f  there exists a homogeneous Gibbs field # ~ J  with an indecomposable 
potential U, then 2(Qv)< oo, # ~g  and # is a maximal measure for U. 

Theorem D contains the variational principle as stated in 1.1. Together 
with Theorem C it gives necessary and sufficient conditions for the existence 
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and uniqueness of a homogeneous Gibbs field with a given potential. These 
conditions coincide with those of Kesten [6] stated for a finite potential. 

Theorems A and B are proved in Sect. 2, Theorems C and D in Sects. 3 and 
4 respectively. In Sect. 4 we also give an example of a potential for which 
neither formula (1.2) nor a natural way of its regularization [15] can be 
applied. 

All the results of this paper can be automatically extended to a potential of 
any finite range. 

1.8. We finish this Section with a short comparision between the approach of 
this paper and that of [2, 10]. The latter is based on the notion of specific 
information gain which is well known (in the one-dimensional case) in Infor- 
mation theory under the title of the entropy creation rate of one stationary 
process with respect to another such a process [8]. We recall its definition 
using the above notation. 

Let ~ denote the partition of X into the sets {x~X: Xo=V}, v~V, and let 
#, v e J .  If there exists the limit 

h(#, v) = lim 1 v~ +C' In #(C) 
~ n 2.,#t ~ 

n ~  C 

where the sum is overa l l  the atoms of the partition V S-i~, then h(#,v) is 

called the specific information gain of # with respect to v. Assume v~g is a 
Gibbs field with potential U. The variational principle as stated in [2, 10] 
reads as follows: # ~ g  is also a Gibbs field with potential U if and only if 
h(#, v)--0 (generally, h(#, v)>0). 

The following theorem establishes the relation between ~(U, .) introduced 
above and the specific information gain. 

Theorem E. Let v ~  be a Gibbs field with potential U. Then for every #~g 

h(#, v) = In 2(Qv) - ~(U, #). (1.12) 

Thus the right side of (1.12) can be regarded as a generalization of the 
specific information gain to the case where there are no homogeneous Gibbs 
fields with potential U. If, however, such a field does exist, the variational 
principles stated by means of ~(U,  #) and h(#, v) are equivalent. But even in 
this case one could not immediately use the results of [-2, 6, 9, 10] combined 
with Theorem E in order to prove Theorem D (ii) because these results (in 
spite of that they relate to a more general situation than our one) are 
obtained under some additional assumptions not necessarily satisfied in the 
case under consideration (in particular, U is assumed to be bounded in [-10]). 
So we prefer a unified approach regardless of whether a Gibbs field with 
potential U exists or not. 

One can prove Theorem E using the explicit form of the Gibbs field 
indicated in Theorem C. We shall not give this proof here. 
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2. Some Properties of ~ ( U ,  .) 

2.1. Let U be an indecomposable potential and let Q=Qv. We denote by 
X(Q) the set of all doubly infinite paths in the graph G(Q), i.e., the set of 
sequences x=(xi)i~z~X such that Q(xi, xi+l)>O for all i~g. We fix an arbi- 
trary v~V and denote by Xv the set of those xEX for which x~=v for infinitely 
many i > 0  and for infinitely many i<0.  The sets X(Q), X~ and X~(Q) 
=x~c~X(Q) are measurable and shift invariant. Moreover, X~(Q)cA(v) (see 
(1.4)). Let 

C(Q, v)= {#~d~ #(X~(Q)) = 1}. 

It immediately follows that g(Q, v)~_g(v). 

2.2. Proposition. (i) I f  #~C(v) \ g(Q, v), then ~(U, #, v)= - oe. 
(ii) There exists a #6g(Q, v) such that ~(U, #, v) > - co. 

Proof (i) Let #~g(v)\E(Q, v). Since # is ergodic and X(Q) is S-invariant we 
get that either #(X(Q))=0, or #(X(Q))=I .  In the former case there are ks2~ 
and v',v"eV such that U(v',v")=+oo and #(Xk=V', Xk+I=V")=#(Xo=V', X 1 
=V")>0. Then for n sufficiently large the content of the square brackets in 
(1.5) turns into -oe and hence N(U, #, v ) = -  oe. In the latter case #(X~(Q))= 1 
because due to the fact that #~g(v) we have #(X~)=I.  Thus #~g(Q, v) which 
contradicts the assumption. 

(ii) Since Q is indecomposable, one can find a finite subset V ~  such 
that veV ~ and the restriction of Q to V~  V ~ is again an indecomposable 
matrix, say, Q0. The set X(Q ~ of all doubly infinite paths in G(Q ~ is a subset 
of X(Q). Moreover, every measure #~g(v) concentrated on X(Q ~ belongs to 
g(Q, v) because U(xo, xl) is bounded on X(Q~ It is clear that such a measure 
does exist. 

2.3. From 2.2 it follows that in order to discover both the supremum of 
N(U, . ,  v) on g(v) and the set where this supremum is attained we can restrict 
ourselves to the subset g(Q, v)gg(v). 

We introduce new "coordinates" on X~(Q) and express ~ (U ,# ,  v) by these 
coordinates. For  an arbitrary x=(xl)~zEX,(Q) we represent the set {n~2g: x, 
= v} in the form of an increasing sequence (n~)i~ e, where n o is the largest non- 
positive number in this set. Let t ( x ) = - n  o and y(x)=(y~)i~z, where y~ 
=(x,i ,  x,i+a, ..., x,,+l ) (so y~ is a v-cycle). It follows that letting x~--~(y(x), t(x)) 
we obtain a mapping, ~v: Xv(Q)-~zv, where Z~=Z is the set of pairs (y, t), 
y~(F(Q, v)) z, O<t<__l(yo)-l. Obviously ~b v is one-to-one and it is measurable 
together with ~b~-1 (Z is provided with a measurable structure being a subset of 
the product Y x7Z +, where Y=(F(Q,v)) z and 2g + denotes the non-negative 
integers). 

Let T' denote the shift transformation (by one step to the left) defined on Y 
and let 

t)=f(y,, t +  1), when O<_t<_l(yo)-2, T(y, (y, t) EZ. 
~(T'y,O), when t=l(yo)- l ,  



212 B.M. Gurevich 

So T is the integral (or, special) transformation determined b y  T' and the 
function f :  Y--* 2g +, where f(y)=I(yo), y~Y. 

From the definition of ~v and T it follows that 

~vSx = T~,x, xeX,(Q), (2.1) 

i.e., ~bv transfers S into T. Due to (2.1) ~* transfers each S-invariant measure on 
X~(Q) into a T-invariant measure on Z and transfers g(Q,v) into g(Z), the 
family of all T-invariant ergodic probability measures on Z. 

Let J ( Z )  be the family of all T-invariant probability measures on Z. 
Normalizing the restriction of every veJ(Z) to the set 

z ; = z ' =  {(y, t)Ez: t=0} 

(it follows from the T-invariance of v that v(Z')>O) gives a probability measure 
v' on Z' which in its turn uniquely determines v. We call v the lifting of v'. 

Taking into account that the v-cycles are numbered we introduce the 
following notation. Let 2,=(v~ .... , v~)eF(Q, v). We denote 

l ( n ) - -  1 

l(n)=l(7,) , e(n)= ~ U(v],vT+l), n>l, (2.2) 
j = o  

BZ(n)={(y, t)eZ: yo=7, ,  t=i}, n> 1, O<i<l(n)- 1, (2.3) 

p,(v)=v'(B~ n>  1. (2.4) 

Let ft, denote the partition of Z into the sets Bi(k), l<<_k<n, O<i<l(k)-l,  
and W(n)=Z\~B~(k),  where the union is over i, k indicated just now. 
Finally, let m 

L(v)= Z p,(v)l(n). (2.5) 
n = l  

Obviously, ~, l(n)v(B~ 1 which implies that 
n = l  

v(Z') L(v) = 1. (2.6) 

2.4. Proposition. Let v~V, #eN(Q,v), and v=~ v #. Then 

hu (S, % (v)) = h~ (r,  ft,), n = 1, 2, ..., (2.7) 

U(xo, xOdg=(1/L(v)) ~, pi(v)e(i), n = l ,  2, . . . ,  (2.8) 
A ( v , n )  i =  1 

so that (see (1.5)) 

P(U,#,v)=limsup [hv(T, fl,)-(1/L(v)) ~ Pi(v)e(i)]. 
n ~ o o  i=  1 

Proof Due to the definition of cb v 

q~v(A(v, Ts, i)c~S~(Q))=B~(j), O<i_</(j)-  1, j =  1,2, ... 

(2.9) 
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Hence ~,  transfers G(v) into ft,, n =  1, 2, ..., which gives (2.7). 
From (1.3), (1.6), (2.6), and the fact that #, v are S-invariant and T-invariant 

respectively we get 

/ ( j ) -  1 

A(v,n) j = l  i=O A(v,~j,i) 
l(j)- 1 lU)- 1 

~ ~ E ~ U(xi 'x i+t)d#"~-  i S ~ U(xi ,  X i+ l )d#  
j = l  i = 0  A(v, yj, O) j = l  A(v, yj, O) i=O 

= ~ l~(A(v, ?j, 0))e(j)= ~ v(B~ ~ pj(v)e(j) 
j = l  j = l  j = l  

=(ilL(v)) ~ pj(v)e(j), 
j = l  

i.e., (2.8) holds, Q.E.D. 

2.5 Due to the definition of Z' and Y these two sets can be identified. So we 
can regard T' as acting on Z'. Let fl', denote the partition of Z' into the subsets 

B~ 1 <-k<=n, and B'~(n)=Z'\B'(n), where B'(n)= Q) B~ 
k = l  

Proposition. I f  v~J(Z),  then 

H~ (Tfl,/fl,) = (1/L(v)) H v, (T' fi',/fi',) + e, (v), (2.10) 

where [G(v)] < p,(p(v)), p(v) = (Pi(V))i = 1, 2 ..... and 

lira p,(p(v))=O (2.11) 
n~co 

(Hv('/ ')  being the conditional entropy). 

Proof. For short we denote: 

L=L(v), p,=pn(v), q,k=v(T'B~176 

/2")= ~ p,(v)l(n), p(")= ~ p,(v), (2.12) 
i>n+ l i>=n+ l 

We first evaluate Hv(Tfi,/fi,). By definition 

H,(Vfi,jBJ(k))=O, j > 0 ,  (2.13) 

v(rBi(k)/B~ = 6(i + 1, l(k))v(r'B~176 = 5(i + 1, l(k))q,,k , 

OgiNI(k)-- l ,  (2.14) 

v(TBC(n)/B~ = ~ v(T'B~176 = ~ qmk, (2.15) 
k~=n+ 1 k>~n+ 1 

v(Bi(k)/BC(n)) = 5(i + 1, I(k))v(T'B~ 

---b(i+l,l(k)) ~ v(T'B~176176 
m>n+ l 

= 5 0 + 1  ,l(k)) ~ q,,kV(B~ 
m>=n+ l 

=5(i+l,l(k)) ~ q,,kPm/IJ "), O<_i<_I(k)-l, 
m>=n+ l 

(when v(B~ > 0)), 

n ,k>l .  

(2.16) 
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where 5(i,j) is Kronecker's symbol. (We consider only those n, m, k for which 
the corresponding conditional probability makes sense.) From (2.13)-(2.16) we 
obtain 

B ~ ~ ~, v(B~176 H~(Tfi./fl.)=v( (n))H,(Tfi,/B (n))+ 
m ~ l  

=(-I2")/L)v(TBC(n))lnv(TBC(n)/B~(n))-(1/L) ~ ~ Pmqmk 
k= l m > n +  l 

. In  ~, pmqmk+(1/L)(lnlJ")) ~, 2 Pmqmk 
m>=n+ l k= i m > n +  l 

- ( I / L )  Pm ~ qmi In ~ qmi+ qmkln%k , (2.17) 
- -1  i>_n+ l i>=n+ l k = l  

where each term including a conditional probability which makes no sense 
should be replaced by zero. 

To evaluate H~,(T'fl'./fl'.) let us remark that 

v'(T'B~ ~, v'(T'B~176176 
m>=n+ 1 

= ~ Pmqmk/P ("). 
m >n+ 1 

From this we obtain 

H~, (T' fi'./fi'.) = - p(") [v'(T'B '~ (n)/B'C(n)) In v'(T'B '~ (n)/B'C(n)) 

- ~ v'(T'B~ v'(T'B~ 
k = l  

+ ~ v'(B~ [ -  v'(T'B'C(n)/B~ v'(T'B'C(n)/B~ 
m = l  

- ~ v'(T'B~176 v'(T'B~176 
k = l  

= -p(')v'(T'B'~(n)/B'~(n))In v'(T'B'~(n)/B'~(n)) 

- i  2 P,,qmk In 2 p.,q.,k+lnp"' ~ ~, P,,qmk 
k= 1 re>n+ 1 m>=n+ l k=  1 re>n+ 1 

--m~=lPm qmk In Z qmk + q.,klnq.,k " (2.18) 
= k =  1 k>=n+ 1 k= 1 

Due to (2.17), (2.18) 

Hv(fl./~.) =(1/L)H~I(T' y./y.) + ~.(v), 
where 

e. (v) = (p(")/L) v'(T'B 'c (n)) In v'(T'B 'c (n)/B '~ (n)) 
- (I3")/L) v (TB c (n)/B c (n)) in v (TBC(n)/B ~ (n)) 

+(1/L)(lnp (")+ln12")) ~, • Pmqmk" 
k= l m > n +  l 
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Since 

~ Pmqmk = 2 Pm ~ qmk < ~ Pm=P (n), 
k =  l m>=n+ l m ~ n +  l k =  l m>=n+ l 

p(")<L(")<L(n> 1), and ]u lnul < 1/2 ( 0 < u <  1) it follows that 

[e,(v)[ < (1/2L)(p (") + L (")) + (1/L)p(")(lln P(")] + [ln/J")[) 

< (l/L) [L(") + p(")(2 [ln P(")I +[ ln  L[)]. 

The last expression can be taken for p,,(p(v)), because it depends only on p(v) 
and tends to zero as n--* ~ .  This finishes the proof. 

2.6. Let /~' denote the parti t ion of Z'  into the sets B~ n =  1, 2, .... A proba- 
bility measure v' on Z'  is called a Bernoulli measure (B-measure) if the 
partitions (T')i/? ', i sg ,  are independent  with respect to v'. Clearly, every B- 
measure v' is uniquely determined by the probability vector p(v), where v is the 
lifting of v', and given a probabili ty vector P=(PI ,  P2, ...) there is a B-measure 
v' with p(v)=p. 

Proposition. Let v, ~ J ( Z )  be such that V is a B-measure and p(v) =p(~). Then 

H~(Tfl,/fl,)>H~(Tfl,/fl,)-2p,(p(v)), n>= 1, 

where p~ is indicated in Proposition 2.5. 

Proof. By assumption the partitions (T ' )~ ', i~7Z, are independent  with respect 
to V. The same holds for ' i  ' (T)/~, ,  i~N, because/~,, is obtained from/~' by joining 
the elements. F rom this fact and Proposit ion 2.5 it follows that 

H~( T fl,/fi,) = (1/L(~))H~, ( T' fi',/fi',) + e, (~) = (1/L(V))H~, ( T' fi'~) + e, (~). 

As p(v)=p(~), we have 

L(v)=L(~:), H~,(T't3',) = H~,(fl',)= H~,(/~',)=H~,(T'fl',). 

Again using Proposit ion 2.5 we get 

' '  ~ >  L ' ' ' '  H~(T~,/~,) = (1/L(v))H,, (T ft,) + e, ( ) = (1/ (v))He (T fi,/~.) + ~.(~) 

= H v (Tfl,jfl,) - e,(v) + ~, (7:) >= H~(Tfi,/fi,) - 2p,(p(v)), Q.E.D. 

2.7. Proposition. Let v~J(Z)  be such that v' is a B-measure. Then 

Hv(Tf l j f l , )=-(1/L(v))  ~ pi(v)lnpi(v)+p~)(p(v)), n> l, 
i ~ l  

where lira p(~l)(p(v)) = O. 
n ~  oo 

Proof From (2.10) and the B-property of v' it follows that 
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H~ ( T [J,/fi,) = (1/L(v))H,, (T' fl',/[3',) + ~, (v) = (1/L(v))H~, (T' [3',) + e,(v) 

=(1/L)[-P(")lnp (")- i pilnp~]+e,(v)=(l/L) ~ pilnpi+P: 1), 
i=i i=I 

where Pl, L, p(") are defined by (2.12), p =(Pl,  P2,-..), and 

p~l) = G(v) _ (1/L)p(,) in p("). 

Obviously, p(1) depends only on p(v) and goes to zero as n--*o% Q.E.D. 

2.8. Proposition. If  v eJ (Z ) ,  then 

h~(T, fi,)<H~(Tfifffi,)<-(1/L(v)) ~ pi(v)lnpi(v)+p(,Z)(p(v)), n<l,  
i = 1  

where p~Z)(p(v)) goes to zero as n--+oo. 

Proof Let ~ denote the measure in J ( Z )  for which ~' is a B-measure and p(~) 
=p(v). Propositions 2.6 and 2.7 imply that 

h~ ( T, ft.) < H~ (T fi./fi.) <__ H~(T fi./fi.) + 2p. (p (v)) 

- (1/C(~)) ~ p~(~) In p~(~) + p~l)(p(~)) + 2p,(p(v)) 
i = 1  

= - (1/L(v)) ~ Pi(V) In p,(v) + p~t)(p(v)) + 2p,(p(v)). 
i = l  

It remains to set p~Z)(p(v))=p(,a)(p(v))+ 2p,(p(v)) which finishes the proof. 

2.9. For each veJ(Z~) we denote: 

P~ v ,v)=l imsup [h~(T, fi,)-(1/L(v)) ~ pi(v)e(i)], (2.19) 
n ~ o e  i =  1 

pi(v) in pi(v) - pi(v) e(i) . (2.20) pI (u, v, v)=lim,40osup (1/L(v)) - i _  i= 1 

Proposition. For every v~J  (Zv) 

P~ v, v)<p1 (U, v, v). 

Proof The inequality claimed follows immediately from the definition of pO, p~ 
and Propositions 2.4, 2.8. 

2.10. Proposition. For every vEJ(Z~) 

PI(U, v, v)<ln 2(Q). 

Proof We develop the proof by contradiction. Suppose there are wJ (Z ~) ,  
e>O, and an infinite set Y c ~ +  such that 
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- (1/L(v)) ~ pi(v)(ln pi(v) + e(i)) >= In Z(Q) + e, 
i = 1  

(2.21) 

if n~4/" (clearly, only the case 2(Q) < oe should be treated). For  each n e Y  we 
denote n 

p~=p~(v), i=1 ,2 ,  ..., q =  ~ p~, p'i=pi/q,, l<i<_n. 
i = 1  

Let v, be the measure on Zv for which p(v,)=(p'l,p' 2, ..., p',, O, O, ...) and v', is a 
B-measure. Let #,=(~b~-l)*v,. One can find a finite subset V, = V such that vEV, 
and #, is concentrated on the set of doubly-infinite paths in the graph G(Q,), 
where Q,, the restriction of Q to v, x V,,, is an indecomposable matrix, Since V, 
is finite, the potential U, = - i n  Q, satisfies Theorem B (iii) so that 

P (U,, #,) < in 2 (Q,) < In 2 (Q). (2.22) 

On the other hand, using Proposition 2.4 and the explicit form of the measure 
vn -~v  G we have 

P(Un, #n)= - p'il(i ~ p'~(lnpi+e(i)) 
\ i = 1  i = 1  

= -  p~l(i) ~ pi(lnpi+e(i))+ p~l(i) G l n G .  (2.23) 
i =  i = 1  i =  

As n ~ oo, the last term in (2.23) goes to zero. In combination with (2.21), (2.22) 

this implies that for nE~A# the sum ~, pi(v)(lnpi(v)+e(i)) is bounded. From this 
i = 1  

fact and the equality L(v)-- ~ p~l(i) it follows that (2.22) together with (2.23) 
contradict (2.2l), Q.E.D. i= 1 

2.11. Proposition. I f  2(Q)<o% then for each v~J(Zv)  there are only two possi- 
bilities: either the series 

pi(v)( - I n  pi(v) - e( i)) (2.24) 

converges absolutely, or its partial sum goes to - ~  and the same holds for 
every series obtained from (2.24) by permutation. 

Proof. The sum of the positive terms in (2.24) is finite, for otherwise there 
would be a permutation of terms making the sum of (2.24) equal to + ~ which 
contradicts Proposition 2.10 (note that Proposition 2.10 does not depend on 
ordering). 

Now move on to the series consisting of the negative terms in (2.24). If it 
converges, we have the former of the possibilities indicated above. If it di- 
verges, we have the latter one. This finishes the proof. 

2.12. Proof  of Theorem A. Due to (2.20) and Proposition 2.4 it suffices to show 
that no change of the ordering on F(Q, v) effects P~ v, v) and that the upper 
limit in (2.9) can be replaced by the limit. 
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If for veg(Zv) the series (2.24) diverges, then by (2.19), (2.20) Pl(U,v,v)= 
- ~  and the assertion claimed follows from Propositions 2.9 and 2.11. It 
remains to consider the case where (2.24) converges absolutely. In that case for 
an arbitrary permutation n(1), n(2),.., of the positive integers we have 

lim (1/L(v)) ~ p.(i)(v) [ - In p.(i)(v) - e(n(i))] 
m~oo i= 1 

= l i m  (1/L(v)) ~ Pi(V)[-lnpi(v ) -e( i ) ]  =pI(u,  V, V). 
m~oo i= I 

(2.25) 

Arrange the v-cycles in the following order: 7.o), ]1.(2) . . . . .  Let i .  and i'. denote 
the partitions defined with respect to the new ordering in the same way as /3. 
and fl'. were defined with respect to the initial one, n=  1, 2 . . . . .  For every n>  1 
one can find a k. such that each i<n coincides with n(j) for some j<k..  For 
every k>  k. let ~k (respectively, ~k) denote the partition of Z v (respectively, Z'v) 
whose elements are BJ(n(i)), i < k, n(i) > n, 0 <j < l(n(i))- 1 (respectively, B~ 
i<k, n(i)>n) and the complement C(k) (respectively, C'C(k)) of the union of 
these sets. By definition 

Let 

~t t / 
f l k =  fln V (k,  i k =  flk V (k ,  n > l ,  k > k.. 

P~ v, v)=lira ~ p  [h~(T, il~)- i~1P"(~ 

so that f3~ v, v) is defined with respect to the new ordering just similarly as 
P~ v, v) was defined with respect to the initial one. 

Due to (2.26) for every n>  1 and every k > k ,  we have the following: 

- hv(r, ilk)--(1/g(v)) ~ p,(O(V) e(n(i)) 
i = 1  

= hv(T, ft,) - (1/L(v)) He(ft,) + (1/L(v)) H~,(fi~) 

- (l/L(v)) ~ pi(v) e(i) - h~(T, ilk) + (1/L(v)) H~,(fi~) 
i = 1  

k 

- (1/L(v)) H~,(fl~) + (1/L(v)) ~, p.to(v) e(n(il) 
i = 1  

= [ h v ( T , / 7 . ) -  h~(T, ft. v ~k)] +(i/L(v))[H~,(ff. v (~) - H~,( f l ' . ) ]  

+(1/L(v)) [Hr ~ pi(v)e(i)] 
i= l  

-(1/L(v)) [H~,(fi~)- ~ p,(i)(v)e(n(i))]. 
/ = 1  
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The content of the first brackets in the resulting expression can be transformed 
by the formula 

h~(T, ( v O)-h.(T, ~)=H~(O/T- ~O r v ~r), 

where ~, 0 are finite measurable partitions and ,gT= V T-/O, ~T = Q 
i = 0  i = - - c o  

(see [7], 7.7). The content of the second brackets is H~,(('k/fi'n). Finally, 

TiC 

H~,(fl'n)=- p/(v)lnpi(v ) -  1 -  pi(v) in 1 - ~  pi(v) , 
/ = 1  i = l  \ i = l  

Hv'(fi~)=-i=1 ~ P"(~176 (1-i~,= p.(i ,(v)in 1- i=1  ~' Pn(i)(v) " 

Summarizing we get 

[h~(T, fin) - ( l /L( v) ) /i= l p/( v) e( i) ] - [h~(T, flk) -- (1/L( v) ) / ~  p.(o( v) e(n( i)) ] 

= -H~( (g /T -  l ( (k )  T V (fin)T) -~ (1/L(v)) H~,(('k/fi'.) + (1/L(v)) 
k 

�9 ~ Pi(V)(- lnpi(v)-e( i ) ) - (1/r(v))  E P,(i)(v)(-lnp,(i)(v) 
i = 1  i = 1  

n 

-(1/L(v)) ( 1 -  p.(i)(v) In 1 -  ~ p,,(o(v) 
i = 1  "= t 1 

= (1/L(v)) Hv,(~'k/fi'.) --H~((k/T- l(~k) r V (fi.)r) + e(V, n, k), (2.27) 

where e(v, n, k) goes to zero uniformly in k >k ,  as n--* ~ (see (2.25)). 
Introduce an auxiliary partition O k with elements BJ(n(i)), i<k,  n(i)>n, 

O<j<l(n( i ) ) - l ,  and Z v \ D k ,  where D k is the union of BJ(n(i)) over all i,j 
indicated above. Every BJ(n(i)) just mentioned is an element of T - l (k .  So Zv 
\ D k consists of entire elements of T -  1 (k" Hence T - '  (k > Ok, i.e. T -  1 (k refines 
O k. With this in mind and using well known properties of conditional entropy 
we have 

H~(~k/T- l((k) r V (fi,)r) < H,(~k/T- 1 ~k V fin) • H*(~k/Ok V fi,). (2.28) 

To evaluate H~((k/O k v fi,) we note that ~k decomposes in a non-trivial way 
only one element of OkVfi,, namely the element DkUEk, where E k 

l(n(i))- 1 
= U ~) BJ(n(i)). By the definition of conditional entropy 

i>k j = O  

v(Ek) in v(Ek) 
H~((k/O k v fi,) = -- v(D k u Ek) V(Dk W Ek) v(D k w Ek) 

v(B l("(O)- ~(n(/)) in v(Bl("(i))- l(n(i)) 
--  v(D k w Ek) 

i:i<=k.n(i}>n V(DkWEk) V(DkWEk) 
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= - v(Ek) in v(Ek) + v(Ek) in v(D k w Ek) -- ~ v(B~ in v(B ~ (n(i)) 
i:i<k,n(i)>n 

+ V(Dk) in v(D k w Ek) = -- V(Ek) In v(Ek) + v(D k w Ek) In v(D k u Ek) 

-- (1/L(v)) ~ p,(i)(v) In pn(0(v) + v(Dk) in L(v) 
i:i <k,n(i)>n 

= - ( 1 / L ( v ) )  ~ Pn(i)(V) In Pn(i)(V) -1- el(V , n, k), 
i:i<k,n(i)>n 

where el(v,n,k)~0 uniformly in k > k .  as n~o~ (here we as usually set 01n0 
=0). 

Similarly, letting D~= U B~ gives 
i:i<k,n(i)>n 

v'(E~) , v ' (~)  
, I n  HAr = - v'(D~ u E;) ~'(D~ u E~) ~'(D~ u E~) 

- v'(D' k w E'k) ~ v'(B~ In v'(B~ 
i:i<=k,n(i)>n v'(D'k W E'k) v'(D'k w E'k) 

= - v'(E'k)In v'(E'k) + v'(E'k)In v'(D~, u E~) - 

whence 

p.(~)(v) in p.(,l(v) 
i:i<k,n(i)>n 

+ v'(D'k) In v'(D'k W E'k) --- v'(D'k U Ek) In v'(D k w Ek) -- v'(Ek) In v'(E'k) 

-- ~, p,(i)(V) in pn(i)(V), (2.29) 
i:i<=k,n(i)>n 

(1/L(v)) Hv,(~k/fl',) = --(1/L(v)) ~ pn(i)(v) in Pn(i)(V) "~ ~2(V, t/, k), 
i:i<=k,n(i)>n 

where e2(v,/~/,k)---~O uniformly in k > k .  as n~oo.  Joining (2.27)-(2.29) we con- 
clude that for k > k, 

[hv(T, fin)-(1/L(v)) i~_ l pi(v) e(i)] 

-[hv(T, fl.)-(1/L(v)) ~ p.(i,(v)e(n(i))] >e3(v, n,k), 
i=1 

where 83(v, rt, k)-+0 uniformly in k > k ,  as n--,oo. This yields both assertions 
required. 

2.13. Proof of Theorem B. (i) We shall first show that for any v~V  

sup P(U,/~, v) > ln  2(Q). (2.30) 
~eg(v) 

Due to the indecomposability of Q there exists an increasing sequence of 
finite subsets V. c V such that their union is V and the restriction of Q to V. x V. 
is an indecomposable matrix, say Q.. Clearly veV. for n large enough. Let 
X(Q,,) be the set of all doubly-infinite paths in the graph G(Qn). For every n 
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there is an ergodic shift-invariant probability measure #" on X(Q,) such that 

hu~,(S)- ~ U(xo,xl)d#'=ln)~(Q,). 
X(Q.) 

The above measure is unique and has the property: #"(Xo=D ) >0  for each DeV, 
(see [4]). Since X(Q,)cX(Q),  ,u" can be regarded as a measure on X(Q). With 
this in mind and arguing as in the proof of Proposition 1.4 we get 

P(U, #", v)=in )v(Q,), 

which in view of the definition of 2(Q) yields (2.30). Now (i) follows from (2.30) 
and Propositions 2.4, 2.9, 2.10. 

(ii) For  every #~d ~ there is a v~V such that #~#(v). The definition of P(U,#) 
and assertion (i) imply that 

P(U, #) < P(U, #, v) <ln  2(Q). 
Hence 

sup P(U, #) < In ,~ (Q). 
ttcg 

In order to prove the converse inequality we find for an arbitrary e > 0  a finite 
subset V~ c V such that Q~, the restriction of Q to v~ • v~, is an indecomposable 
matrix and ln2(Q~)>ln2(Q)-e. As in (i) there is a probability measure #~ 
concentrated on X(Q~) and such that P(U, #~, 5)=ln2(Q~) for every 5~V~. More- 
over, /~ is a Markov measure and #~ (x0=O>0  for every g~V~. Therefore, 
{~eV: #~#(~)} = V~ and hence 

.~(U, #~) --In 2(Q~) > In )~(Q) - e. 

Since this is true for any e > 0, we have 

sup ~(U,  #) > in 2(Q). 
#cg 

This finishes the proof. 

3. The Structure of a Maximal  Measure 

3.1. We shall first establish some properties of the series in (1.9). 

Proposition. Assume V is finite and Q is indecomposable. Then for any v~V 

(po, v(1/)~(Q)) = 1. 

This is actually well known 1-14] and can be, for example, derived from the 
fact that any indecomposable finite state Markov chain is recurrent. We now 
turn to an infinite V. 

3.2. Proposition. Let Q be an indecomposable admissible matrix and let r(Q,v), 
v~V, denote the radius of convergence of the series in (1.9). Then 1/2(Q) is a 
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unique positive solution of the equation qoQ, o(t)= 1, provided that q)Q,~(r(Q, v)) > 1, 
and 1/2(Q) = r(Q, v) otherwise. 

Proof. Take a sequence of finite subsets V c V  such that: a) U Vn=V, b) V,+ 1 
n 

Vn, and c) Qn, the restriction of Q to Vn x V,, is an indecomposable matrix, n 
= 1, 2 , . . . .  Clearly, )~(Q~)T2(Q) as n--* oo. Let for short 

= 1/.~(Q), ~ . =  1/~(O.), ~0 =~%,~,  r =  r(Q,v),  ~0.=~0e~,~ 

(in the last equality we assume that veV~ which is the case when n is large 
enough). 

We first assume that q0(r)> 1. In this case r >  0 and since p strictly increases 
within the set IR + c~D, where D is the domain of definition of ~0, it suffices to 
show that q0(z)=l. If (p(z)>l (e.g., q)(z)= + Go), there is a finite number of 
terms in (1.9) whose sum is greater than 1. By the definition of qo~ these terms 
are also terms of (p,(z) for n large enough. Since ~0,(z) is a series with no 
negative terms we conclude that q),(z)> 1 when n is large enough. By Proposi- 
tion 3.1 (p(%)=l and hence z > %  for n large enough. But this contradicts the 
inequality 2(Q,) <)~(Q,+ ~), n > 1. 

If (p(z) < 1 we have z < r because (p(r) > 1. Using the continuity of the sum of 
a power series we can find e > 0  such that z + e < r ,  (p(v+e)<l .  On the other 
hand, z , < ' c + e  for n large enough and (p(z+e)>~o,('c+e) for every n. From the 
fact that q0, is monotonic within the positive semi-axis combined with Proposi- 
tion 3.1 we conclude that when n is large enough, (p(z+e)>cp.(z+e)>q~,(z,)= 1, 
so that cp(z + e)> 1 which leads to a contradiction. Thus (p(z)= 1 when ~0(r)> 1. 

Now consider the case where (p(r)<l. Since cp,(r)<~o(r) and q), is mono- 
tonic, Proposition 3.1 implies that z, > r for n > 1 and hence z > r. Suppose z > r 
and pick an arbitrary e > 0 such that r + ~ < z. Clearly, ~0,(r + e) < q~,(z) < q),(%) 
= 1 for every n. On the other hand, cp(r + e)= + oo because r is the radius of 
convergence of (1.9). But each term in the series for ~0(r + e) is also a term in 
the series for (p,(r+e) when n is large enough which contradicts the above 
mentioned inequality q~,(r + e)< 1. It remains to accept that ~ = r when ~0(r)< 1. 

3.3. Remark. From Proposition 3.2 and some results by Vere-Jones [14, 
Theorem C, Lemma 2.1] one can easily derive that if Q is an indecomposable 
admissible matrix, 2(Q)=I/R(Q.) as stated in Proposition 1.6(iv). But if Q is 
inadmissible, R(Q)=0 and )~(Q)= + oo. 

3.4. Definition. A measure #~6~(v) will be referred to as v-maximal if it maxim- 
izes ~(U, - ,  v) on N(v). 

Theorem. Let 2(Qv)< oo and assume that for some v~V there exists a v-maximal 
- -  * ! /  measure #cg(v).  Then the measure v -q~ l~  is such that (see 2.3) is a B-measure 

with 
Pn(1j) = (•(QU)) -l(n) e x p ( -  e(n)), n = 1, 2,... (3.1) 

(the notation used here is introduced in Sects. 1, 2). 
For the proof of this theorem we need some more auxiliary facts. 
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3.5. Proposition. Under the conditions of Theorem 3.4 the following equalities 
hold: 

lim [Hv(Tfi,/fl,) - hv(T, fl,)] = 0, (3.2) 
n ~ o o  

lira [H~,(fi',) - Hv,(fi',/(T' )-1 fi,)] = 0. (3.3) 
t l ~ o o  

Proof Propositions 2.9 and 2.10 imply that 

~I(U,  v, v) = ~~ v, v)=lnZ(Qv). (3.4) 

By Proposit ion 2.8 

h~(T, ft.) -(1/L(v)) ~ pi(v) e(i) < Hv( Tfi./fi.) -(1/L(v)) ~ pi(v) e(i) 
i = l  i = l  

-- (1/L(v)) ~ pi(v) [In pi(v) + e(i)] + p(~2)(p(v)), (3.5) 
i = 1  

where p~2)(p(v)) goes to zero when n--. oo. Using Proposit ion 2.11 we can direct 
n to infinity in (3.5). Due to (3.4) the limits of both sides are the same and 
finite. Hence 

lim [H~(Tfl./fi.) - h~(T, fi.)] = O, 
n ~ o o  

lim [ - (1/L(v)) ~, pi(v) In p,(v) - H~(Tfl,/fi,)] = O. 
n ~ o o  i = 1  

The first of these equalities is just (3.2). The second one combined with 
Proposit ion 2.5 yield 

v H ' ' ' ~lim(1/L(v)) - 2 p ~ ( v ) I n  p~( ) -  ~,(T/U/~,) = o. (3.6) 

Since 

lim [H~,(fi',)+ ~ p&)lnp~(v)]=O, 
n ~  co i =  J. 

(3.6) implies (3.3). This finishes the proof. 

3.6. Lemma (Smorodinsky [121). Given e > 0  there is &(e)>0 such that if ( 
= (A t , . . . ,  A,) and O = (B1,... , Bin) are finite measurable partitions of a probabili- 
ty space (f2, A, #) for which Hu(()-H~((/O)< 5(~), then the total measure of those 
Bj for which 

n 

~, [#(Ai/Bj) - #(Ai)l => e (3.7) 
i = 1  

does not exceed e (in such a case ( is called e-independent of ,9). 
Those B~ which satisfy (3.7) will be referred to as irregular. 

3.7. Proposition. I f  a measure v' on Z' satisfies (3.3), then the partitions fl' and 
T' fl' are independent relative to v'. 
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Proof We take Z', v', fl',, and (T')-lfi'n as (2, #, ~, and ,9, respectively, in Lemma 
3.6. Let B be an arbitrary element of (T ')-z f l  ' with v'(B)>0 and let an 
arbitrary positive e < v'(B) be fixed. We can find an n(B) such that if n > n(B), 
then B is also an element of (T')-afi',. Using (3.3) we can find an n~ such that if 
n>__G, then 

H ~,(fi'n) - H~,(fl'n/( T') - ~ fi" ) <= 6( e) . 

Suppose that n>max(n(B), G). By Lemma 3.6 fin is e-independent of (T')-afl'n, 
i.e., the total measure of the irregular elements of ' -~ ' (T)  fin does not exceed e. 
Since v'(B)> e, the element B must be regular. It follows that 

[v'(AJB) - v'(An)] ~ e (3.8) 

for any element A, of fl',. But every element A of fi' is also an element of fl'n for 
n~n(A).  Thus, for arbitrary elements A and B of fi' and (T') aft,, respectively, 
we have (3.8) as n is large enough. Since e is arbitrary, it follows that v'(A/B) 
= v'(A), as required. 

3.8. Proposition. I f  a measure v~J(Zv)  satisfies (3.2), then i (T fl)i~z is a Markov 

sequence of partitions, that is, given an integer m >  1, an element C of ~/ T - i f l  
i=1  

with v(C)>0, and elements A and B of Tfl and fl respectively (with v(B)>0) the 
following equality holds 

v(A/B • C) = v(A/B) 

Proof For each element B of ft, with v(B) > 0 we define a measure v B on Zv via 
vB(')= v('/B). Due to the properties of conditional entropy 

H~(Tfi , / f l , ) -H~ (Tfln/fin vi~= T - i  fi, ) 

= • v(B) H,B(Tfin)-H~B Tfin/i~=lT- fin , n > l ,  (3.9) 

where B~fi,, means that B is an element of ft, and the sum is over all such B 
with v(B) > O. 

Let A1, Ba, C 1 be arbitrary elements of Tfl, ,8, and ~ T-if l ,  respectively, 
i=1  

where v ~ ( C j > 0 .  Let ~ be a positive number such that 

e < vB'(CO, (3.10) 

cS(e) < v(B a), (3.11) 

where 6(e) is the constant from Lemma 3.6. There are n(A x, B~, C 0 and G 
such that if n>=n(Aa,B~, Ca) , then Aa,B~, C a are also elements of Tfin, fi,, 

~/T-i f l , , ,  respectively, and if n>=G, then (see (3.2)) 
i= 1  

H~(Tfi,,/fi,,) - h~(T, ft,) N (6(e)) 2 . (3.12) 
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Since h~(T, ft,) < H~(Tfiff ~/ -~ T ft,) for every m>0,  we see from (3.12) that 
i = 0  

H~(Tfi,/fin)-H ~ T ft, <(cS(e)) 2. (3.13) 

We now suppose that n>max(n(A1,B1, C1) , n~). Due to (3.9), (3.13), and the 
Chebyshev inequality the total measure v of those Befi for which 

r - i  (~(8) H ~( T fi~) -- H ~R > 

does not exceed 3(e). Due to (3.11) they don't include B 1 and hence 
i 

- i  HvB~(Tfln)--HvB1 Tflff T ft, 3(e). 
i 

By Lemma 3.6 it follows that Tfi, is e-independent of ~/T-~fl ,  relative to v B', 
i = 1  

i.e., the total measure v B1 of those Ce ~/T- i f i ,  for which 
i = 1  

Iv'~(A/ C ) -  vm(A)l > e 
A~Tfln 

does not exceed e. Due to (3.10) they don't include C1 and hence 

Iv"~(A ~) - v BI(A ~/ C ~)I _<_e. 

This inequality holds for all AleTfi ,  B~efi, C1~ ~/T-~fi such that vm(C0>0.  

It clearly implies the assertion claimed. 

3.9. Proof of Theorem 3.4. We first prove that v' is a B-measure. By a standard 
argument one can deduce from Proposition 3.8 that for any positive integers 
m, kl, k2,...,km+ 1 such that ki+~>kl, i= l ,2 , . . . ,m ,  and for any elements A, B, 

C of Tkm+~fl, Tkmfi, and ~ Tk~fi, respectively, such that v(Bc~ C)>0 the follow- 
ing holds : i= 1 

v(A/B ~ C) = v(A/B). (3.14) 

Recall that to each element B~ of fl' there corresponds a v-cycle 
71~F(Q, v) of length l(i). By definition 

T' B~ = T'(')B ~ (3.15) 

which implies that for any n >= 1 and any ii,--., i, 

BO(i,)~ , o .  T B ( / n _ l )  O . . .  ~(T')"-lB~ 
= B~ TI(i"-~)B~ 1)~." c~ rm"-~)+'"+l(i~)B~ (3.16) 
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Indeed, for n = 2  (3.16) is a direct consequence of (3.15). With this in mind (3.16) 
can be easily checked by induction for any n. 

In order to prove that v' is a B-measure it suffices to check that 

v,((T,)mBO(io) / (T,) , , -1BO(i l )~ , o .  . . . c~T  B (tm_Oc~B~176 (3.17) 

for any i0, . . . , i  m provided that the condition on the left side of (3.17) has 
positive measure. Using successively (3.16), (3.14), and (3.15) we have 

t 0 ' v ' ( ( r ' ) " B ~  " -  1 B ~  n . . .  c~ T B (z m_ 1 )n  B~ 

v(BO(im) , o .  T B 0, ,_ 1) c~ ... ~ (T ' )mB~ 
v(BO(im) , o .  c~ T B (l,,_ l)c~.. .  ~ ( T ' ) m -  l B~  

_ v(B~ ~ Tl(i~-1)B~ 1) ~ " "  ~ Tl(im-1)+...+z(io)BO(io) ) 

v(B~ i,,) c~ T ~(i'~- 1) B~ i m_ i) ~ " -  c~ T ~(im- 1)+ ... + l(il) BO( il  ) ) 

= v(Tt(i,,-1)+ ...+l(io)BO(io)/BO(i,, ) n . . .  ~ T t(i~- 1)+...+l(il)BO(il) ) 

= v(Tmm-,)+.. .  +mo)BO(il)/TtCim-1)+...+l(il)BO(iO) 

= v(Tt(i~176176 = v (T 'B~176  = v ' (T 'B~176 �9 

Due to Proposition 3.7 the last expression equals v ' (T 'B~176 Thus 
(3.17) is true. 

We now wish to prove (3.1). Let 

0 V p O =  0 0 Pi =Pi() ,  i=1 ,2 , . . . ,  (Pl,P2,...), (3.18) 

and let P denote the set of probability vectors P = ( P I , P 2 , . . . )  such that 
pi l ( i )<oo.  Every p e P  determines (in a natural fashion) a T'-invariant B- 

i = 1  

measure on Z' v which, in its turn, determines a measure v(p)~g(Zv). Clearly, 
pO~p, v(pO)=v. By our assumption v(p ~ maximizes ~~ ",v) on 8(Zv). Due to 
Propositions 2.9, 2.10 and Theorem B(i) it also maximizes ~I(U, . ,  v) on g(Z~). 
Moreover, Nl (U ,v (p~  In view of (2.20) and Proposition 2.11 it 
follows that 

- (1 /~  pO l(i)) ~ p~176 + e(i)) 
i = l  i = 1  

= max[( - 1 / ~  p~ I(i)) ~ p~(ln Pi + e(i))] 
pEP i= 1 i= 1 

= in )L(Qv), (3.19) 

where, as usual, 0 in 0 = 0. 
It follows that pO >0  for all i. Indeed, it can be immediately checked that if 

pO = 0, pO > 0 for some i, j, one can increase the left side of (3.19) by substituting 
and pO_ e for pO and pO respectively and by choosing e > 0 sufficiently small. 

Setting p , - - 1 -  ~ p~ we can regard the content of the square brackets in 
i = 2  

(3.19) as a function, call it F, of P2,Ps , . . . ,  where pi>O for i>1,  p i < l  and 
i ~ 2  

p~l(i) < oo. As we have seen above, all of these inequalities are strict when Pi 
i = 2  
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m o - P l ,  i>  1. Hence F is differentiable with respect to each Pi at this point and 
moreover, OF/@i=O, i>  1. It follows that 

(l(i) - / (1) )  ~ p~ pO + e(j)) 
j = l  

-(e(i)-e(1)+lnp~ ~ ~" p~ i>1, (3.2o) 
j = l  

which yields 

where u is a constant and 

It remains to show that 

pO = c u l(i) exp( - e(i)), i > 1, 

i=1  

We set 

u = 1/A(Qt: ), c = 1. 

(p(t)= ~ tm)exp(-e( i ) ) ,  O<_t<r, 
i=1  

pi(Q=(1/cp(t))t~(~ i > l ,  0 < t < r ,  

f ( t )  = - Pi(O l(i) pi(t) [-ln pi(t) + e(i)] 
.= 1 i= 

= -- lnt+[tcp ' ( t )]- l (p( t ) lncp( t ) ,  O < t < r ,  

(3.21) 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

where r is the radius of convergence of the series in (3.24) (it is worth observing 
that this is the same series as in (1.9)). By (3.26) 

f '(t)=[cp(t)/tqg'(t)]'ln~p(t), O < t < r .  (3.27) 

From the fact that ~0 is the sum of a power series with non-negative coef- 
ficients of which at least two are positive, it follows that ~o(t)/t~o'(t)> cp(t+ g))/(t 
+5)cp'(t+5) when O < t < t + 5 < r .  Therefore, when (p(r)<l, f monotonically 
increases on (0, r), and when q)(r)> 1, it has a unique absolute maximum at the 
point rlE(0 , r) for which q)(r0=l.  

From (3.21), (3.22) we see that u<r.  If u<r ,  then by (3.19), (3.21), (3.22), 
(3.24)-(3.26) f ( u ) = m a x f ( t ) ,  0 < t < r .  Taking into account the above men- 
tioned properties of f we conclude that cp(r)> 1, (p(u)= 1. Proposition 3.2 now 
implies that u =  1/2(Qv). So we obtain (3.23). If u=r ,  the fact that pOep implies 
that the series for (p(t) and (p'(t) both converge when t = u = r  and moreover, 
that f can be defined by (3.26) to be a continuous function on (0, r]. Moreover, 

f ( r )  = max f ( t ) = 2 ( Q v ) .  (3.28) 
O<=t~=r 
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From (3.26) and from the properties of f it follows that (p(r)<l. Hence (see 
Proposition 3.2) r =  1/2(Qv). By substituting this into (3.26) we see that (3.28) 
can be satisfied only when ~0(r)= 1. So we arrive at (3.23) again. 

3.10. Proof  of Theorem C. (i) Suppose Qv is indecomposable. There are v, weV 
and a positive integer k such that Q(~)(v,w)= +oo. Due to the 
indecomposability of Qv there is a path leading from w to v in G(Qv). Let 1 
denote the length of this path. It follows that t~(k+ ~)(,, V) = + oO. By definition 

Q(U k+ X)(V, V ) = E  QU(~) '  
Y 

where the sum is over the set F(Qv, v, k + l) of all the paths 7 in G(Qv) of length 
k + l leading from v to v. Let c be an arbitrary positive number. There exists a 

finite subset FccF(Qv, v,k+l ) such that ~Qv(y)>ck+Z. Since Qv is inde- 
y~Fe 

composable, there exists a finite subset V~c V such that the restriction QV,c of 
Qv to V~ x V~ is an indecomposable matrix and V~ contains every weV visited 
by a path 7eF c. Obviously, t~(k+Z)(,, ,,~>ck+Z which implies that 
Qgk.+~l)")(v,v)>c (k+l)" for any positive integer n. Hence the radius of conver- 

gence of the series ~ ~v,~t)(") ~v, v)t" does not exceed c. Due to Proposition 1.6(i) 
n = l  

R(Qv,~) < l/c, whence 2(Qv, ) >c. If c > 2(Qv) we come to a contradiction. 

(ii) Let # e g  be a maximal measure, i.e., P (U, # )=  in 2 (Q v)- There is a v ~ V such 
- -  * that #eg(v). Moreover, # is a v-maximal measure. By Theorem 3.4 v-~b~ # is 

determined by (3.1). Taking into account that v and v' are probability measures 
we have 

p~(v) = 1, ~ p~(v) l(i) = L(v) < oo. (3.29) 
i=1 i=1 

Let w be an arbitrary vertex of G(Qv) and let F-(v,w) (respectively, 
F + (w, v)) denote the family of paths in G(Qv) leading from v to w (respectively, 
from w to v) and containing v only as the initial (respectively, terminal) vertex. 
We let 

~(w)= ~ 21-"~) e x p ( -  e(7)), (3.30) 
~ r  + (w, v) 

r/(w) = ~ 2 -~ (~) exp( - e(y)), (3.31) 
~ F -  (v, w) 

n - 1  

where 2=2(Qv) and e(7)= ~ U(vi, vi+ ~) as 7=(vl ,  ..., v,). Due to (3.1), (3.29) 
i=1 

(v) =,~, n (v) = 1. (3.32) 

By the same reason and since F + (v, v)=F-(v, v) we have 
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~(W)rl(W)=~(v)tl(v)+ ~ ~(w)q(w)=2[ ~ 2-l( ')exp(--e(y))] 2 
w w~-v y~F + (v,v) 

+2 Z Z Z 2 -a ' ) - ' ( ' ~  e x p ( -  e(7) - e(7l)) 
w r y  ~;eF (v,w) ~leF+(w,v) 

= 2  2-m)exp(-e(i)) + 2  ~ 2(z(~)-~)2 -l(~)exp(-e(y))  
i_  "y~F + (v, v) 

= 2+2 (L(v) - 1) = 2L(v) < oo. (3.33) 

It follows in particular that ~(w)t/(w)< oo for each w~V. Furthermore, 

2 QU ( W ' W 1 ) ~ ( W 1 ) ' ~ - ' ~ ( W ) '  E q(wl) Qv(wl, w)=2~l(w), w~V. ( 3 . 3 4 )  
wl~V wl~V 

Indeed, due to (3.1), (3.29) 

Qv(w, wl)~(Wa)=Qc(w,v)~(v)+ ~ Qv(w, wO~(wl) 
w I ~ V ar l :Jfz V 

= 2 e x p ( -  U(w, v)) ~ 2 l(~)exp(_ e(7)) 
~,~F + (v, v) 

+2 ~ exp(-U(w, wO) 2 2-1( ')exp(-e(v)) 
"vVl :t-1) Veff + (W1, U) " 

=2exp(-g(w,v))+2 a ~ 2-1(~) e x p ( -  e(y)) 
?,sF + (w, v), 

l(y)> 1 

= 2  ~ 21-l(~) e x p ( -  e(7)) = 2 ~(w). 
~,eF + (w, v) 

So the former of the two equalities in (3.34) is true. The latter one can be 
checked in the same way. 

For  any w, wl~V we let 

7z(w) = ~(w) tl(w)/2 L(v), p(w, w 0 = Qv(w, w1) ~ (w1)/)~ ~(w1) (3.35) 

It follows from (3.34) that re(-) and p( ' ,  ") being regarded as a vector and a 
matrix turn out to be stochastic. 

In order to clarify the structure of kt it suffices to find kt(C) for any cylinder 
set C of the form 

C={x~X(Qv): Xo=Vo,...,x,=v,}, vi~E O<i<n. 

There are 4 cases: 1) Vo=V , vn=v; 2) Vo+V , G=l=v; 3) Vo=V, vn+v; 4) Vo+V , G 
= v. We start with the first case. The definition of 4)~, the explicit form of v, 
and (3.33) together imply that 

n--=~ I n--1 

U(vi, vi+ 1)/2" L(v) = 2-"(IlL(v)) I~ Qv(vi, vi+ 1). #(c )  = exp - i_ i= 0 

On the other hand due to (3.35), (3.32) 
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n--i n--I 

~(Vo) [ I  p(v,, v,+ O=~(Vo)(;~L(v))-I ,~-, ~(v,) 1-[ Qv(vl, vi+ 1) 
•=0 i = 0  

n - 1  

=2-~(Z(v)) - I  I~ Qv(vi, vi+ 1). 
i = 0  

Thus in the case under consideration 

n-- l -  

~(c)=~(~o) p[ p(~,, ~,+1). 
i = 0  

We now suppose that v o4 =v,v.4 =v. For  each pair of paths ?-  
=(v i - , . . . ,v~)eF- (v ,  Vo), ?+=(v~[,...,v+~)aF+(vn, v) (obviously, vi---v,, + =v, v~- 
=vo, v[ =v,) we let 

C(7-, 7 +) = {xeX(Qv) :  x_k+ 1 = v f  , ..., x_ l  =vC1, x0 =Vo,-.., Xn = V,, 
_ _  + 

X n +  1 = V ~ ,  . . . ,  X n +  m - l ~  m } .  

Due to (3.30), (3.31) 

, ( c ) =  E Y ~(c(~-,~+)) 
7 - E F -  (V, Vo) ~ + ~F+ (vn, v) 

= 2 ~ exp - e ( 7 - ) - e ( 7 + )  - 2 U(vi, vi+l) /2n+Z('-)+z('+)L(v) 
7 - e Y -(v, vo) ? + el" + (vn, v) i= 0 

n - 1  n - 1  

=~(~o) ~(~.) E Qd~,, ~,+ 0/,~n+l L(~)=~(~o) I-[ P(~,. ~,+ 1), 
i = 0  i = O  

i.e., (3.36) is true again. The remaining two cases are treated similarly. We see 
from (3.36) that /~ is a Markov measure with initial distribution ~(.) and 
transition probability p(.,  .). Hence there can be only one ergodic maximal 
measure as claimed before. 

(iii) Necessity. As proved before, if there exists a maximal measure, then 
one can find non-negative vectors ~ and t/ with finite inner product satisfying 
(3.34). By Proposition 1.6(iii) and Remark 3.3 this yields the 1/2-positivity of 

Qv. 
Sufficiency. Assume that Qv is 1/2(Qv)-positive and fix both an arbitrary 

veV and an arbitrary enumeration on F(Qv, v). Let 

Pn = 2-Z(,) exp( -- e(n)), n = 1, 2 . . . . .  (3.37) 

where 2=2 (Qv) and l(n), e(n) are given by (2.2). Due to Proposition 1.6(iii) 

~ Pn=l, ~ l(n) pn<o~. 
n=l n - 1  

So there exists a measure % on Z~ for which v'~ is a B-measure on Z'~ and pn(v,) 
=Pn" Let # ~ - - ( ~ )  v~. In the proof of assertion (ii) we could see that #, was 
an ergodic Markov measure (note that (3.37) is just the same as (3.1)) specified 
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by (3.35), (3.30), (3.31). From this it is easy to deduce that for any wEV the 
- -  * - - V  measure Vw-@ wp,~- on Z w is the lifting of the B-measure Vw=V' on Z w 

specified by (3.1), where now I(n) and e(n) correspond to the n-th w-cycle (this 
is true for an arbitrary enumeration on F(Qv, w)). 

We shall show that 

P~ v, w)> In )ffQv), weV. 

For this let us bound below the quantity 

h~(T, fl,) = lin~ H~ (Tfl,/~=o Q T-~ fl")' n>  1. 

(3.38) 

Let m be a positive integer and C an arbitrary element of ~ T -i fi, with 
i = 0  

v(C)>0. By definition, C = ( ~  T-iCi, where Ci is an element of ft,, i 
i = 0  

=0,1 ... .  ,m. If Co=BJ(k ), l<_k<_n, O<j<l(k)-l ,  then H~(TfljC)=O. If C o 
=B~ 1 <k<=n, then since v' is a B-measure, we have 

v(B/C) = v(B/Co) = v(B/B~ 
l ( i ) -  1 

for any element B of Tfl,. If, finally, Co=Be(n)= U U BJ(i), then for the 
same reason i_>,+ 1 j= o 

l(1)- 1 

v(B/C)= ~ ~, v(B/BJ(i)c~ C) v(BJ(i)/C) 
i>_n+ l j = O  

= ~, v(B/B~ C) v(B~ ~ v(B/B~ v(B~ 
i > n +  l i > n +  l 

As a result we have 

= - ~ E v(C) [v(TB'(n)/B~176 
k= 1 CcB~  

+ ~ v(TB ~(j)- l(j)/B~ v(TB lq)- l(j)/B~ 
j = l  

- ~ v(C)[ ~, v(TS~(n)/B~176 
CcBC(n) k > n +  1 

�9 ln ~, v(TB~(n)/B~176 ~, v(B"J)-l(j)/B~ 
k~n+l j=l k>=n+l 

�9 v(B~ ~ v(B l(j)-l(])/B~176 
k >n + 1 
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k= 1 CcBO(k) i= 1 

- ~ v(C)[P(")~ v(B~ ~ v(B~ 
CcBC(n) k >n+ 1 k >n+ 1 

+ ~  Z Piv(B~ +ln 2 v(B~ 
i = l  k > n + l  k > n + l  

=-(1/L(v))(l-p (")) (p(n) ln p(n) + ~ Pi ln Pi) 
i = l  

-(1/L(v))P(")(P(")lnp("))-P (") Z v(C) ~ v(B~ 
C=BC(n) k>=n+ 1 

�9 In ~ v(B~ (") ~ pilnpi 
k > n +  i i= i 

- v ( C ) Z  pi v(B~ Z 
CcBC(n) i = 1  k>_n+ l k>>_n+ l 

>= -(1/L(v)) (p(")lnp(n)+ ~ pi ln pl). 
i = 1  

It follows that 

h,(T, ft,)>-(1/L(v)) ).j p~ln pl 
i = 1  

and due to (3.37) 

h~(T, fi,)-(1/L(v)) ~ pie(i)>-(IlL(v)) ~ Pi(ln pi + e(i)) 
i = 1  i = 1  

=(1/L(v)) ~ p~ l(i)ln2. 
i = 1  

As n ~ o ~  we obtain (3.38). In view of Proposition 2.4, Theorem A(ii), and the 
ergodicity of # we conclude that /~ is a maximal measure. This finishes the 
proof of Theorem C. 

4. Proof of the Variational Principle 

In this section we shall prove Theorem D. Assertion (i) of this theorem is an 
immediate consequence of Theorem C(ii). So we restrict attention on the proof 
of assertion (ii). It will consist of several steps. 

4.1 Proposition. If for an indecomposable potential U there exists a Gibbs 
measure #~J, then )o(Qv) < oo. 

Proof. The existence of a Gibbs measure implies that Y,~(v, w) is finite for any l 
and any v, w~V. Hence Qv is an admissible matrix and due to Remark 3.3 it 
suffices to make sure that R(Qv)>O. This can be done by a small modification 
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of the Kesten argument ([6], Lemma 6) giving the same inequality when 
U < oo. We shall not repeate here this argument. 

4.2. Notation. Let D denote an arbitrary directed graph with a countable set of 
vertices W and let K be a real function defined on the edges of D. For every 
path ~=(wl ,  ...,w~) in D we set 

n - - 1  

K(t~)= ~ g(wi, Wi+ l). 
i=1  

Let An(w , w'), w, w'~W, denote the set of paths in D of length n leading from w 
to w' and A~ (w, w') denote the set of those 6eA,(w, w') which does not contain 
w' as an intermediate vertex. Let 

K2(w,w')= E K(~). 

4.3. Lemma. I f  the graph D is connected, then 

(i) for any n> 1 and any w~W 

K ~  (w, w) ~ ;~" (4.1) 

(ii) for any n> l and any w,w' ~W, w'4=w, 

K~ + (w', w) G2 n +m(w''~')/K(3(w, w')), (4.2) 

where cS(w, w') is any path of minimal length from w to w', re(w, w')= l((5(w, w')) 
the length of cS(w, w'), and 2=)~(K) (K can be thought of as a matrix). 

Proof. (i) It suffices to restrict ourselves to the case where L< oo. By Theorem 
C(i) the matrix is admissible and for any wEW we have 

K~+ (w, w) Rn < l, 
n = l  

where R =R(K).  By Remark 3.3 1/R =2 which yields (i). 

(ii) Let cS(w,w')=(w, w' 1 . . . .  ,w'). Obviously, ~(w,w') does not contain w as 
+ i an intermediate vertex. Therefore, if (5=(w',w 1 . . . .  ,Wk, W)~A n (w,w), then 

~(w, w') ~ § ' ' An+m(~,w,)(w,w), where (~(w,w')~=(w,w 1 ... .  , w , w  1 ... .  ,wk, w). It fol- 
lows from Lemma 4.3(i) that 

K ( ~(w, w')) K,  + (w', w) =< Kn++ m(w, ~') (w, w) ~ ~n + m(w, w') 

which yields (4.2), Q.E.D. 

4.4. Definition. Let D be a directed graph, W the set of its vertices (W is finite 
or infinite countable), and K a real function on the set of edges of D. A shift- 
invariant probability measure /~ defined on the space of all doubly-infinite 
paths in D will be called K-Gibbsian if for any nc7/, kE~ +, and any path 
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(Wo, w l , . . . ,  Wk+ 1) in D the following equality holds 
k 

# ( X  n = W o ,  X.+ 1 = W l '  " ' , X n + k +  1 = W k +  1 ) = O k ( W 0 ,  Wk+ 1) I - [  K(wi, wi+ 1), 
i = o  

G(Wo, Wk+ l) being the normalizing factor. 
Obviously, every Gibbs field corresponding to the potential U is a Qv- 

Gibbsian measure. Moreover, Ck(W , W')= 1/Q~ ) (w, w'). 

4.5. Suppose that # is a shift-invariant probability measure on X(Q.v), #eE(v) 
for some veV, and let v = # * #  as in 2.3. What conditions on v follow if (in 
addition) we suppose that # is a Gibbs measure corresponding to U? 

To answer this question we first note that Zv (see 2.3) can be regarded as 
the space of all doubly-infinite paths in the directed graph Gv whose vertices 
have the form (7, i), where 7 is an arbitrary v-cycle in G(Qv) (i.e. 7eF(Q.v, v)), 
ie2~, 0<i__< 1(7)-1,  and whose edges are defined as follows: there is an edge 
from (7, i) to (7', i') iff either 7' = 7, i' = i + 1, or i = l(7 ) - 1, i' = 0. Denote by W the 
set of vertices of G~. Thus Z~ is the set of all sequences (zi)i~ z such that zg~W 
and (z~,z~+l) defines an edge of G~, ie~7. The vertices of the form (7,0) and 
(7, I(7) - 1) will be called lower and upper respectively. 

We now define a function Q) on the edges of G~ as follows. Let 
7 =(Vo, vl, ..., vl_ l, v3eF(Qv,  v), 7' =(v; ,  v'l . . . .  , v'r- l, v'l,)eF(Q-v, v), where 
Vo=V'o=V'r=vz=v. We set 

.... x (Qv(vi,  vi+O, when 7'=7, O < = i < i + l < l - 1 ,  (4.3) 
Q~v((7'i)'(Y"t)~=~Qv(vl_l,v), when i = l - 1 ,  i '=0.  

We can extend Q~v=Q ~ to the set of all vertex pairs setting QV=0 for those 
pairs which define no edge. After that Q~ can be regarded as a matrix. From 
(4.1) combined with Proposition 3.2 and the definition of 2(Qv) it follows that 
2 (Q~) = 2(Qo). 

4.6. Proposition. The measure v = ~* # is QV-Gibbsian. 

Proof. We first consider a path 6=(Wo, . . . ,wk) ,wieW,  where Wo=(7,0), w k 
=(7',1(7')-1), 7,?'~F(Qv, v). Using the structure of G v we can divide 3 into 
blocks corresponding to v-cycles, that is represent it in the form 

((70, 0), . . . ,  (70, l(O) - 1, . . . ,  (7~, 0), . . . ,  (Y~, l(m) - 1)), 

where 7o=7,7m=7 ', l(i) being the length of 7i. Let us set B ( 3 ) = { z e Z v : z  o 
_ i i i _  i _ O _ < i _ < m .  =Wo, . . . . .  .,Zk=Wk} and find #~-lB(fi). Let 7i-(vo,  ,vm)),v o - v l ( i ) - v ,  

By the definition of ~b v 

.. - -V  0 
~ -  1 B(3) = {xeX(Qv):  x o = v, ., Xl(o)- 1 - z(o)- 1 . . . . .  

i 
Xl(o)+ . . .+l(i-  1) = V, . . . ,  XI(O) + . . .+l(i-  1)+1(i)-  1 = Vl(i)- 1~ 

�9 "" ,  X l ( O ) +  . . .  + l ( m -  1 )  ~ V~ . . .  ~ X I ( O )  + . . .  + l ( m -  1 ) + l ( m ) -  1 

--VI(m)_DXz(o)+...+I(,~)=V}, l ( i )=k + l .  
i = 0  
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Due to (4.3) and the fact that # is a Gibbs measure corresponding to U we 
have m I(i)-- i 

v(B(g))) = , u ( ~  -~ B(6))= [1/Q(~)(v, v)] 1-[ I-I Qv(v}, v}+ 1) 
i = 0  j ~ O  

k 

=Ck(Wo,  Wk)1--[ Q~V(Wi, Wi+ 1), 
i = 1  

where Ck(Wo, Wk)=Ck((7 , 0), (7', l '--l))=l/Q~)( v, V). Thus in our  case v(B(6)) has 
the desired form. 

Let, further, c5 =(Wo, .. . ,  Wk) , where Wo=(7 , i), % = ( 7 ' ,  i'), 0 < i < l - 1 ,  O<i'<I' 
- 1 = / ( 7 ' ) - 1 .  We cont inue 6 so as to obtain the path 61=((7 ,0) , . . . ,  
(7, i) . . . .  , (7', i'), ..., (7', l ' -  1)). Obviously, v(B(g)O)=v(B(g))). Due to the above 

i - 1  

v(B(~ O) = c~ . ~ +~,_~,_  ~ ((~/, o), (V, r - 1)) [ I  Q~((~, J), (~/, J + 1)) 
j = 0  

l ' - -2  k 

�9 I-I Q~((y',J'), (~ ' , j '+  1)) I ]  Q~(wn, w,+l), 
j'~i" n=O 

and we set 
i--1 

Ck((7 , i), (y', i'))=Ck+i+r_i,~((7 , 0), (7', l ' --  1)) l--[ Qo((7, J), (7, J +  i)) 
j = 0  

1 ' - 2  

�9 l-[ QV((7',J'), (Y',J'+ 1)). 
j '=i' 

Then (B(c5)) again has the desired form. The cases where Wo=(7, 0), w ,=(7 '  , i'), 
0 < i' < l(7') - 1 and where w o = (7, i), 0 < i < 1(7 ) - 1, w~ = (7', l(7') - 1) are treated 
similarly. 

4.7. An arbi t rary Gibbs measure from ._r can be decomposed  into ergodic 
components  and it is easy to see that  each of these is a Gibbs measure with 
the same potential.  So to complete the proof  it suffices to check that  if/~ is an 
ergodic Gibbs measure such that peC(v)  for some v~V, then # is v-maximal. 
Lett ing v - ~ ,  # we see that  veE(Z~). By Proposi t ion 4.4 v is a Q~-Gibbsian 
measure and it remains to show that  

P~ v, v)>ln2(Qv). 

4.8. We now turn to the part i t ion fin, n > l ,  of the space Zv=X(Q ~) in t roduced 
in 2.3. Its element Bi(k) can be represented in the form 

Bi(k)={z6X(Qf): z0 =(yk, i)}, l<_k<_n, O<_i<l(oA)-i 

(the v-cycles ,/~F(Qv, v) are assumed to be ordered in an arbi t rary way). Thus 
the vertex (Tk, i) of the graph G v is associated with B~(k). We now introduce a 
new symbol  ~ and associate it with the set Be(n) being also an element of fin. 

k - 1  
4t: will be referred to as the generalized vertex. Let  fl~= ~/ T-ifln. An arbi- 

i = 0  
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k - 1  

trary element C of fi~ has the form C =  0 -i T A~, where A~, O<_i<_k-1, is an 
i ~ 0  

element of ft,. With C we associate the sequence 6(C)=wo(C), ..., wk_l(C), 
where w~(C) is the vertex (possibly generalized) associated with A~, 0 < i_< k - 1 .  

For i ~-0, ..., k - 2  we set 

q(wi(C), Wi+l(C))=JQ (wi(C), Wi+l(C)), 
tQ'(w~(c), (~, 0)), 

if wi(C)= ~, 
if w~(C)+ #F, w~+~(C)+ =~, (4.4) 

if w~+l(C)= ~,  

where 7eF(Qv, v) is arbitrary chosen. We note that in the last case w~(C) 
=(Tj, l ( j ) -  1) for some j<<_n, and the definition of Q~ shows that Q~(wi(C), (7, 0)) 
does not depend on 7. Let further 

k - 2  

q(C)= 1-I q(w,(O, w~+,(c)), 
i ~ 0  

k-(C)=min {i: O<_i<_k-1, w~(C)~ #e }, 
k+(C)=max {i: O<_i<_k- 1, w~(C)+ ~ }. 

(4.5) 

We shall refer to C as regular if k-(C), k+(C) exist and they are different. Let 
W(n) denote the set of vertices (Tk, i) of G~ with 1 ___ k-< n, 0 N i < l(Tk)-- 1. For 
every w-, w+~W(n) and every positive integers k-,  k + denote by 
Mk(k- ,w- , k+ ,w  +) the union of those C~fik, for which k - ( C ) = k - ,  wk_(C ) 
=w-, k+(C)=k +, w~(C)=w +. 

Fixing an arbitrary 7sF(Qv, v) such that (~, O)EW(n) we set 

(7) = 2WQ ~(~(~)), 

where 2=2(Qv) and a(7)=((y, 0), ..., (y, /0/)-1)) is the shortest cycle in G v 
going through (7, 0). 

4.9. Proposition. Let v be a shifl-invariant ergodic Q~-Gibbsian measure on Z,. 
Then for every k-,  k+>=O such that k-  <k +, every w-, w+~W(n) such that 
V(Mk(k-, w- , k +, w+))>O, and every CcM~(k- ,  w-,  k +, w +) the following in- 
equality holds 

(1/q( C)) v( C/Mk(k-,  w- ,  k +, w + )) 
< A s(c) m a x  {1, (a(7))~cc)}/(Q') (k+ -k- -1)(w- ' w+), 

s(C) being the number of symbols @ in 6(C). 

Proof For every path 8 in G, we denote by 6 e the sequence obtained from 6 
by replacing all the vertices outside of W(n) by @. By the definition of Gibbs 
measure for each CcMk(k -  , w-, k +, w +) we have 

v(C/M~(k-, w-, k +, w+)) 

= Z v {(Zo,  . . . ,  z ~ _  1) = ~/z~- 
6 = ( w o  . . . .  , wk 1): 6 ~ =,5(C) 

=w-,  zk+ =w +, zi(~W(n ) for O<-i<k- and for k + <i__<k-1} 
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E V(Z k- ~Wk , Zk + 1  ~ W k -  + 1 ,  " ' ' ,  Zk+ ~Wk*/Zk 
a =  (wo, ..., w k -  D: a ~ = 6(C) 

= w - ,  z~+ = w + ) =  X Q~(a(k-, k+))/(Q~ ~)(w-, w+), 
a = ( w o  . . . . .  w k - D :  a # = a ( C )  

(4.6) 
where 6(k-,  k +) =(wk_ , %_ +1 .. . .  , Wk+)" 

For every path 5 such that 6~=6(C)  we single out all the segments in 
6(k-, k +) consisting of vertices from W \  W(n) (if they exist) and number them 
from left to right as follows: a(1), ..., a(m). Obviously, both m and the location 
of each a(i) within 6(k-, k +) depend only on C (in particular m=m(C)). The 
vertices immediately followed and immediately preceded by each a(i) belong to 
W(n). We denote them by w i- and w + respectively. Let ]a(i)[ denote the 
number of vertices in a(i), l <_i<_m. 

For every w', w"~W(n) and every r e g  + let A2(w', w') denote the set of 
paths in G~ of length r leading from w' to w" and going outside of W(n) 
between the initial and the terminal vertices. If 6=(w',w~ . . . .  ,%_a,W") 
eA'~(w', w") we denote by w-(~) and w+(~) the vertices w I and wr_ 1 respectively. 
It follows from (4.6), (4.4), and (4.5) that 

(l/q(C)) v(C/Mk(k-,  w-,  k +, w+))= [1/(Q~) (k+ -k- -1) (w-  ' w+)] 

Q~( b(k-, k + ))/q( C)=[1/(Q~) (a+ -k- -1)(w-, w+)] 
(,: 64* = 6(C) 

�9 f i  Z Qv(6)/Q~(w7, w-  (3)). (4.7) 
i = 1  ~SeA~(i)l+ a(w~-, w +) 

From the structure of Gv and the definition of W(n) we see that w~- and w+(6) 
are upper vertices while w + and w-(6) are lower ones. We replace in each 
5eAl"~ol+l(w7, w +) the vertices w i- and w + by (7,/(7)-1) and (7,0) respec- 
tively, where 7 is an arbitrary v-cycle in G. The sequence obtained, say ~(5), is 
also a path in G~. Moreover, ~ defines a one-to-one mapping from 
Al~(01+l(w~- , w +) onto Al~(01+~((7,/(7)-i), (7, 0)). From (4.3) we see that if w' is 
an upper vertex, then Q"(w', w') does not depend on w" within the set of lower 
vertices w". With this in mind we have 

QV(c~)/QV(wi-, w -  (5)) = QV(gJ(6))/QV ((7, l(?) - 1), w- (6)) 

=QV(7~(6))/Q~((7,/(7)- 1), (7, 0)) 

and hence (see (4.7)) 

(1/q( C)) v( C / m k ( k -  , w - ,  k +, w + ) )= [1/(QV) (k+ -k -  - 1 ) ( w -  ' W + ) ]  

re(C) 

�9 1] ~ Qv(6)/Q~((7, l(?)-  1), (7, 0)) 
i =  1 g~A~(i) [  + 1((~, l(y)-- 1), (7, 0)) 

__< [(Qo)(k + -k- -~)(w-, w+)] -1 [!2~((7, 1(7)- 1), (7, 0))] -re(c) 
re(C) 

" H (Ov)l;(i)t +1 ((7, 1(7) - -  1), (7, 0))  
i = 1  

(4.8) 

(see also 4.2 for notation). 
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We shall apply L e m m a  4.3 to bound  the last expression. Let for definite- 
ness 1(7)> 1, that is (7, l (7)-1) :#(7,  0). Obviously,  the shortest path from (7, 0) 
to (7,/(7) - 1) has the form ((7, 0), (7, 1) . . . .  , (7, 1(7) - 1)). Due  to (4.2) 

]1(y)--2 
(QV)l+(01 +1 ((7, 1(7) - 1), (7, 0)) < 2 I~(i)l +1 +l(y)-1 / [ I  QV((7, J), (y, J + 1)). 

] j = O  

Substituting this bound  into (4.8) gives 

(1/q( C)) v( C /Mk(k-, w-, k +, w+)) 

< [(Q~)(k + -k- - 1)(W- ' W+)] -1 [Q~((7,/(7) - 1), (7, 0)) 

~(f)=o 2 ,,(c)_.la(i)l)\ 2]  l~ Q~((7,J),(Y,J+ 1))]-mfC)exp [(m(C)l(7)+i~ In 

= As(C)[_(Qv)(k + - k -  - 1)(W- W +)] -1 [)j(y)/Q,(a(7))]m(C) 
= 2~(c)[(Q,)(k + -k- - 1)(W-, W+)] - 1 (e(y)WC). (4.9) 

If e(7) < 1, then the right hand side of (4.9) does not  exceed 

;~(c)/((2.)(k+ - k -  - , ( w - ,  w+) .  

If e(7)>1 it does not  exceed (2e(7))~(C)/(Q~)(k+-k--1)(W-,W+), because 
re(C) <s(C). Thus the inequality claimed is proved. 

4.10. For  every n > l  we set 

z -4(lnQV(z~ z0 '  if zoeW(n), u; ( 
) - ( 0 ,  if zoCW(n), z=(zi)i~zeZ ~. 

Thus the function U, ~ is defined on Z~ and it is constant  on each element of ft,. 
Due  to (2.2)-(2.6) and (4.3) 

- ~ U;dv =(1/L(v))~ p,(v)e(i). 
Zv i= 1 

Due to (4.4), (4.5) 

k--2 
( k - 1 ) ~  U,~dv= ~ ~ U,~oTZdv= ~ v(C)lnq(C), k>2, 

Z~ Z,, i= 0 Ce~k n 

where (U, ~ o Ti)(z)= U,~(Tiz), z~Z~. Therefore, 

(I/L(v)) ~ pi(v) e(i)= - ( k -  1)-1 2 v ( C ) I n  q(C) 
i= 1 c~t3~ n 

and by (2.9) 

P~ v, v)= lim lira (1/k)[_H~(flk,)+ ~ v(C)lnq(C)]. (4.10) 

Our goal now is to bound  from below the content  of the square brackets  on 
the right hand side of (4.10). 
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Fixing an arbitrary positive e < 1/4 we pick a number n~ so that 

t ( j ) -  1 

2 v (Bj (i)) = v (z o ~ W(n)) > 1 - e/2 (4.11) 
j = l  i=0  

for every n>=n~. Let n>n,, k>2, and let Nk(e ) denote the union of those Ceflk, 
for which s(C)<ke. If CCNk(O, then C is regular (see 4.8) and 

k-(C)<ke, k+(C)>k(1-e), k-(C)<k+(C). (4.12) 

Consider the partition Zk of Z~ whose elements are all the sets Mk(k , w , 
k +, w +) of positive measure and the complement of their union which is to 
within a set of measure 0 just the element ~ 4+... :~. It follows that (for short 
we denote mk(k- , w-, k +, w +) = m )  ~- 

Hv(flk,) + 2 v(C)lnq(C)>__Hv(fl~/Zk)+ 2 v(C)lnq(C) 
c~#~ c~p~ 

= - 2  v(M) 2 v(C/M)lnv(C/M)+ 2 v(M) ~ v(C/M)lnq(C) 
M C c M  M C ~ M  

= ~ v (M) ~ v (C/M) [ - In v (C/M) + In q (C)],  (4.13) 
M C c M  

where the sum is over all the elements C of fig and those M which have 
positive measure. 

If CCMk(k-, w-, k +, w+)~Nk(e), then by Proposition 4.9 

- l n  v(C/Mk(k- , w -, k +, w+)) q- In q(C) > in (QV) (k+ -k- - 1)(W- ' W +) 

-s(C) In (~:2) > ln  (Q~) (k+ -k- -1)(w- ' w+)_ke Iln (~:2)1, (4.14) 

where K=max  {1, e(7)} (the absolute value is taken to include the case ~c2<1). 
It follows from (4.12) and the assumption e<1 /4  that k + - k - - l > k / 4 ,  when 
k>4.  Hence k + - k - - 1  tends to infinity together with k. So we can find a k(n) 
such that for every k>k(n), every w-, w+eW(n), and every k- ,  k + satisfying 
(4.12) 

in (Q~)(k + -k- -1)(W- ' w+)>(k + - k-)(ln 2 -  e) => k(1 - 2e)(ln 2 -  e). (4.15) 

From (4.13)-(4.15) we have 

(1/k)[H~(flk,) + 2 v(C) lnq(C)] 

> 2 v(M)[(1-20(ln)~-O-~lln(~c2)l] 2 v(C/M) 
M CcMt~Nk(O 

+ ~  ( -  l/k) v(M) ~ lnv(C/M) 
M C=M~N~(e)  

+ 2  ( -  l/k) v(M) 2 v(C/M) In q(C), (4.16) 
M C=Mc~N~(e) 

where N~(e)=Z~\Nk(e), k>k(n). We shall bound each of the three sums on the 
right hand side of (4.16) denoting them by $1, $2, and S 3 respectively. 
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Obviously, 

S 1 = [ln 2 -  e(2 l n 2 +  1 - 2 e +  Iln 0c2)1)] v(Nf,(s)). 

The ergodic theorem combined with (4.11) and the ergodicity of v imply that 
v (Nk ( s ) )o l  as k--*oo. Therefore S 1 can be made arbitrarily close to ln2 
- e ( 2 1 n 2 +  1-2s+l ln(K2)l)  by choosing k sufficiently large. Further, $2>0. 
Finally, by (4.4), (4.5) 

$3=(1 /k  ) ~ v(C) lnq(C)  
CcN~(s) 

>k-Z(k -1 ) [ lnmin{1 ,  min Q~(w', w')}] v(N{(e)). 
w', w"~W(n) 

The last expression tends to zero as k ~  oo. Since s can be chosen arbitrarily 
small we conclude that for any S l>0  there are n(sl) and k(s~) such that for 
n>n(s l ) ,  k > k(sa) we have 

(1/k)[H~(fl~)+ ~ v(C) lnq(C)]  > l n 2 - s a ,  
c ~  

which shows that ~~ v, v)____ln2. Q.E.D. 

4.11. An Example. Let (c~)i~= 1 be a sequence of positive numbers with 

~, c i = 1, - ~ c i In c i = + oo (4.17) 
i = 1  i = 1  

and let (ai)i~176 1, (bi)~ ~- _ 1 be arbitrary sequences of positive numbers such that a~ b~ 
= %  1< i<oo .  We take the natural numbers for V and set U ( i , j ) - - - l n ( a i b j ) ,  
i, jeV.  It can be immediately checked that Qv is an indecomposable admissible 
matrix with 2(Qu)= 1 and that the Bernoully measure #0 with one-dimensional 
distribution ~(i)=c~, i~V, is a Gibbs measure with potential U. By Theorem D, 
#0 maximizes the ~ defined by (1.5), (1.6) and moreover, N(U, #~ We note 
that ~ cannot be defined by (1.2) because huo= + c~ and also S (U(xo,  x ,))  + d#  ~ 

x 
= + 0% where u + - m a x  {0, u}, u~N. To prove the latter we use the following 
assertion which can be easily proved by the reader. 

Lemma. Let (f2~, d~, v~), i = 1, 2, be two copies of  a measure space (f~, sd, v) and f 
a non-negative measurable function on f21 x f22 such that ~ f d v  1 dv2= + oo. 

f~l xf~2 

Then for every measurable function g on f2 

[/(COl, co2) +g(c%)-g(col)] + va (dCOl) vz(dc%)= + oo. 
~ 1  x f22 

There is another way of regularizing the  right hand side of (1.2). One 
replaces it by 

- y [ln ~ Iv#(x 1 = v / ~ - ) +  U(xo, xl) ] d#, (4.18) 
X v~V 

where I v is the indicator function of the set { x e X : x  l=v} and N -  the a- 
algebra generated by the random variables x~ for i<  0 (cf. [-9]). It can be shown 
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that if the content of the square brackets in (4.18) is an integrable function, 
then for every v~Vand every #~g(v) the right hand side of (1.5) coincides with 
(4.18). On the other hand, there are cases where (4.18) makes no sense. To 
show this we specify the sequence (ai)i~176 1 in the example above as follows. Let 

ai+l>ai, l n a i + , >  (1/ci+O+ ~ cjlnaj cj, i>l. (4.19) 
j = l  j 

Such a sequence can be easily produced by induction. Due to (4.19) 

- ~ [ln ~ I v #~ 1 = v / ~ - ) +  U(xo, xl ) ]  + d# ~ 
X v e V  

i - -1  

= ~ cicj(ln a~-  in a )  + = ~ c i ~ c j ( l n  a i - ln  a )  
i , j = i  i=2 j = l  

= ~ c ~  lnal  = + c o  
i = 2  j = l  "= 

and similarly 

- ~ [ln ~ Iv#~ U(xo, Xa) ] -  d# ~ = - oo 
X v e V  

(we set u - = m i n  {0, u}, uEIR) so that one can prescribe no reasonable value to 
(4.18). 

A c k n o w l e d g m e n t .  The author is grateful to the referees for their critical reading of the manuscript 
and useful comments. 
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