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Summary. In this paper we study the asymptotic behaviour of the solution 
of the stochastic differential equation d X , = g ( X t ) d t + a ( X t ) d W t ,  where o- 
and g are positive functions and W~ is a Wiener process. We clarify, under 
which conditions Xt may be approximated on {Xt--+ov } by means of a 
deterministic function. Further the question is treated, whether X t con- 
verges in distribution on {Xt--+ ov }. We deal with the Ito-solution as well as 
the Stratonovitch-solution and compare both. 

1. Introduction 

In this paper we study the asymptotic behaviour of the solution X t of the 
stochastic differential equation 

dXt=g(Xt)dt+al(Xt)dWtt, X0---1, (1) 

t >  0, where Wtt is a standard Brownian motion. We shall analyse the behaviour 
of X t conditioned on the event {Xt~oo  , as t ~ m } .  The basic assumption in the 
paper is that not only al(t) but also g(t) is a strictly positive function. Further- 
more we are only interested in situations, in which the event {Xt--+m } takes 
place with positive probability and infinity will not be reached in finite time. 
The left boundary 0 of the state space will be assumed to be absorbing, if it is 
at all attainable. This last assumption, however, is insignificant for the results 
and the reader will have no difficulties to treat other cases. 

One may view X t as modelling a randomly disturbed growth process. In 
fact our starting point were certain Markovian growth models with discrete time, 
as Gal ton-Watson processes with state-dependent offspring distributions and 
other models, where the rate of divergence in general is no longer exponential. 
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These processes often behave similar to the solution of (1), if g and o- 1 are 
properly chosen. Thus the results of this study should give some indication, 
which behaviour has to be expected in the discrete time situation. This case is 
much more complicated technically and our results on this will be published in 
a forthcoming paper. 

Denote by #( t )=#t  the solution of the deterministic differential equation, 
given by ~r 1 -0 .  An interesting question to ask is, under which conditions Xt/#t 
converges to 1 on { X t ~ o o  }. It turns out that in this problem not only the 
order of magnitude of al(t ), but also that of g(t) plays a significant role. If one 
writes for a moment Xt=#( t+~t ) ,  then one might expect that it converges 
almost surely on {Xt--~oo}, if the random irritation al(t) is small enough, and 
the limit ~ will be non-degenerate for strictly positive 0-1. This behaviour 
would entail Xt/#t---,1 only, if log#t=o( t )  or equivalently g(e)=o(t). In sit- 
uations similar to the Galton-Watson process #t grows at an exponential rate, 
and in fact X ] #  t converges to a non-degenerate limit. It is this influence of #t, 
which led us to postpone the treatment of the problem above. We first study a 
transformed process Y, whose behaviour does no longer depend on #t in the 
described manner. 

Let 
t 

G(t) = i 
ds 

g(s) ' (2) 

Y~ = G(Xt) , (3) 

t>0 .  Note that G(t) is the inverse function of #(t), thus in the deterministic 
situation (r; 1 - 0 )  Yt=t. It turns out that (contrarily to the validity of Xt,,~#t ) 
Yt~t on {Xt-~oo} is true in practically all cases in which P(Xt-*oD)>0 and 
explosions are excluded. (The slightly stronger assumptions that we need are 
given in Sect. 2.) Furthermore we show that Yt has a representation Y~=a(t) 
+ Z  t, where ~(t) is the solution of a deterministic differential equation and Z t 
either converges a.s. on {Xt-*oo } or else behaves asymptotically like a stand- 
ard Brownian motion after a certain deterministic transformation of the time 
scale. 

These results, which are developed in Sect. 3, clarify quite well the stochas- 
tic behaviour of X t on { X t ~ o o  }. Still it seems to be desirable to derive 
asymptotic properties of X t itself. From the results for Yt it is difficult to see, 
what happens with the stochastic behaviour of Xt, if g varies, since then the 
transforming function G also varies. Especially in a statistical context, where g 
is unknown, it will be necessary to get results on the process X t itself. Section 4 
is devoted to this question. In Theorem 2 we give a necessary and sufficient 
condition, under which X t ~ # t  in probability on { X t ~ o o  }. It turns out that 
this property is also equivalent to the existence of real numbers fit such that in 
probability Xt~13 t on {Xt--,oQ }. Theorem3 settles the question, under which 
conditions the law of Xt, properly normalized and restricted to { X t ~ m  }, 
converges in distribution to a non-degenerate probability measure. Here three 
cases may arise: X t may converge a.s., or X t has asymptotically a normal or 
log-normal distribution. There is another interesting aspect of these results. All 
the described alternatives of behaviour can only occur, if cry(t) does not grow 
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too fast, as t--+oo. If the rate of divergence of a 1 exceeds a certain limit, then 
the stochastic behaviour of X, changes drastically. In this case there is no 
longer any limiting distribution of X,. Furthermore Xt=o(p,) in probability 
(Theorem 4). The growth condition, essential in this context, is a little bit 
involved. In Sect. 5 we shall explain it further and give examples. - Almost sure 
approximations to Xt can also be derived, but there are no longer neat 
conditions, which are as well necessary as sufficient. We discuss this question 
in Sect. 6. Here we content ourselves with a rather general result on the 
possibility of a.s. approximations to log X,. 

Up to now we have not stressed that we always have been talking about 
the Ito-solution of the stochastic differential equation. As is well-known, there 
are situations, where it seems to be more appropriate to consider the so-called 
Stratonovitch-solution of (1) (compare [7], p. 348ff., or [1], Chap. 10). In Sect. 7 
we show that it is possible to develop a similar theory for this type of solution. 
An interesting feature is that both types of solution show a different behaviour, 
if and only if %(t) exceeds the critical rate of growth, which we already were 
talking about. 

The question, if there exists a deterministic function fit such that Xt~fit a.s., 
has been treated before. Our results contain practically all results on this 
question, which Gihman and Skorohod have included in their book [5]. The 
reader will notice that our assumptions may be weakened in several respects. 
Let us point to one of them: Much of the theory remains valid, if a 1 ad- 
ditionally depends on the time t, i.e. if one considers the equation 

dXt= g(Xt) dt + al ( t, Xt) dWt. 

2. Notations and Assumptions 

In order to increase readability we list all the notations used in some place in 
the paper. We agree upon denoting the value of any function f at the point t 
by as well f(t) as ft- - Since g(t) is positive, it is possible to rewrite (1) in the 
form 

dXt=g(Xt)dt+g(Xt)a(Xt)dWt, X o ~ l  (4) 

with a suitable positive function a( t )= a t. X t denotes the Ito-solution of (4) and 
p( t )=pt  the solution of the deterministic equation ( a -  = 0), G(t) is its inverse. If f 
is any function on the positive numbers, f denotes the function given by 

Further, let for t > 0 

f(t) =f(#,) .  

h(t) =�89 a2(t), 

~, (t) = i '~ (s) 1 ~ d s ,  or ~( t )= igr2(s)ds, 
0 

t 

h(s) �9 1 ! g'(s) ~p'(s) ds 

(5) 

(6) 

(7) 
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o r  
t 

S ds. 
0 

The function a,, t = 0, denotes the solution of the differential equation 

= 1 - ( 8 )  

The initial value c% is chosen so large that c~ t becomes an increasing function 
tending to infinity. This is possible in view of assumption (A2) below. (A2) 
implies that cq ~ t, as t ~ oo. Finally let 

v, = #(at) (9) 
and 

t 

Zt= S a(Xs)dWs= ~ 8(Ys)dWs (10) 
0 0 

with Yt as in (3). The stochastic integral is taken in Ito's sense. 
We now come to the main assumptions of the paper: 

(A1) g: 1R+---,IR + is strictly positive and twice continuously differentiable, and 

ds G(oo)= ! 

(A2) h(t)-~0, as t-~oo. 

(A3) a: IR+-*N + is strictly positive and continuously differentiable, and 

S t - 2  6 2 ( 0  d r <  0 0 .  

0 

Additionally to these assumptions we require regular behaviour of several 
functions: 

(A4) The functions g, g', 6 2  and /~ are ultimately concave or convex. If ~ ( ~ )  
= o% we require the same behaviour for the function/~o~-1. 

The rest of the section contains a discussion of these assumptions. The require- 
ment G(oo)= co means that #t does not reach infinity in finite time. The same 
follows in the random situation. This is most easily seen from the stochastic 
differential equation, which Yt obeys. Because of Ito's transformation rule 

dY~ = (1 -fz(Yt))dt+a(Yt)dW t, I1o=0, (11) 
o r  

t 

S f,(Y )ds+ (12) 
0 

The state space of Yt is the interval (G(0), G(oo)), and the right boundary G(oo) 
will be reached in finite time, if and only if G ( o o ) < ~  (compare also [5], 
p. 229ff.). Thus requiring (A1), we exclude the possibility of explosions. 
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The meaning of (A2) becomes clear by an inspection of (12), the assumption 

ensures that i h(s)ds=o(t) a.s. on { X ~ c o } = { Y t ~ o o  }. For readers who may 
0 

wonder, if (A2) is already enough for proving Yt=t+o(t) on {Xt~oo}, we give 
a counter-example. Let Xt=n l (W((t)+ ... +wZ(t)), where Wl(t ) ..... W,(t) are 
standard Wiener processes, independent of each other, and n > 3 is fixed. Then 

dXt=dt +2]~ dWt 
n 

with some other Brownian motion W t (compare [7], p. 175; X t is a so-called 
Bessel process). P(X~  oo)= 1, since the n-dimensional standard Wiener process 
is transient for n>  3. Further h-=0 and X~= Y~. Now the distribution of t-aY~ is 
independent of t, namely up to a scaling factor a z2-distribution. This example 

shows that we can expect Y ~ t  on {X~oo}  only, if 6-(t)=o(l/t). (A3) is just a 
slight strengthening of this requirement. In the next section we show that (A2) 
and (A3) entail Yt--~t a.s. on {Xt~oo }. 

We discuss now the relation between the conditions (A2), (A3) and the 
property that P(Xt~oo)>0 .  Let us assume for reasons of convenience that for 
some real c,d h(t)~c and t-16z(t)~d, as t--*oo. Now Xt~oo  with positive 
probability, iff 

exp - 2  (1-h(s))~(s)-2ds dt<oo 
0 

([5], p. 119). Therefore P ( X t ~ ) > 0  implies c<  1 and d < 2 ( 1 - c ) .  On the other 
hand our assumptions c = d = 0  yield convergence to infinity with positive 
probability. Thus (A2) and (A3) restrict the order of ~-2(t) in a slightly stronger 
way than it would be necessary, if one only wants to guarantee P(Xt~oo)>0 .  
In the limiting domain the behaviour of Yt changes as indicated by the example 
just given. 

(A2) and (A3) are also related to each other. Many smooth functions g(t) 
have the property that the derivative g'(t) is of order t -1 g(t). If G(t) behaves in 
the same way, its derivative 1/g(t) is of order t -1G(t). In this situation (A2) is 
equivalent to a2(t)=o(G(t)) or 6-2(t)=o(t) and thus a consequence of (A3). 
These considerations can be verified for g( t )=r  if 7<1 and 7~0.  (7>1 is 
excluded because of (A1). Compare also Lemma 1 below.) 

We finish with some comments on the regularity assumptions, formulated 
in (A4). They entail the following consequences, which will be used freely in 
the sequel. Either g is ultimately decreasing. Then it will be convex, g ' (0<0 
and g"(t)>O ultimately. Otherwise g eventually increases. If it is additionally 
concave, O<g'(t)<t-Xg(t) for large t. In the convex case g'(t)>t-lg(t)/2 ul- 
timately. A similar distinction is valid for ~-2(t). Because of (A3) 0 2 either is 
ultimately decreasing and convex, or it is increasing and concave. In both cases 

32(0=o(0. (13) 

This and the convexity properties of 6 2 have further consequences, which will 
be useful later. If t is large enough 
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and f rom (15) and (16) 

~t(ct)<=C2t~(t) for all c__>l, (14) 

t gr2(t)< 2~(t), (15) 

~(t)=o(t2), (16) 

~2(t)=o(~U). (17) 

3. The Behaviour of the Transformed Process 

The a im of this section is the p roof  of the following result. 

Theorem 1. Assume (A1)-(A4). Then t 1 Y t ~ l  a.s. on { X ~ } ,  as t ~ .  More- 
over 

i) / f  ~ ( o o ) < o o ,  then Yt-~t  converges a.s. on {Xt~aD }. The distribution of 
the limit, conditioned on {Xt-~oo}, has a unimodal density, which is strictly 
positive everywhere. 

ii) I f  6 ( o o ) =  oo, then a.s. on { X t ~ o o  } 

r~= ~+Z~+o(~;U). 

Furthermore there is a standard Brownian motion B(t), such that a.s. on 
{Xt~oo} 

Zt= B ( ~  + o((h~) ) (18) 

and for any real b, as t ~ 0% 

P(Z, < b ~ /21X ~--, oo) ~ P(B(1) < b). (19) 

Before we come to the proof,  we give some consequences,  being of some 
independent  interest. We use the theorem to analyse the behaviour  of the first 
hitt ing t ime of x > 0, namely  

t x - *  - inf{t __> O IX t = x}. (20) 

Wi thou t  loss of generali ty let us assume Xt~oo  a.s. We concentra te  our  
a t tent ion on the case ~ ( o o ) = o o .  F r o m  Yt~t  we get t*~G(x)  a.s., as x ~ o o .  
F r o m  (14) ~(t~i)~(~(G(x))=O(x). If we denote Z(t*)by  Z*,  f rom (18) 

Z*=B(Ox+o(Ox) ). (21) 

Thus if we replace t by t*, we obtain  a.s. 

G ( x )  , _  , 1/2 -~(t~)-zx +o(~ ). 
Let 

[ ~ dt or f/x = J ~ dt (22) 
~(~ol g(t)(1 -h(t)) '  ~o 1 -h(t)" 

F/~ is the inverse function of at, thus by the mean-va lue  theorem G(x)-c~(t*) 
=(fl(G(x))-t*)~'(X) for a suitable X between G(x) and t*. Since c ( ( t ) ~ l ,  as 
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r--,oo, we get a.s. 

tx*-- r l~- Zx* +o(Z*)+o(Olx/2). (23) 

Thus, from (21) and (23), Ox 1/2(t*-t/x) is asymptotically standard normal, as 
x ~  ~ .  There are other results in the literature on the asymptotic normality of 
the hitting times of diffusions (compare [8]). The interesting feature of (23) is 
that the normalization of t* explicitly is given, whereas in the known results t* 
is normalized by its mean and variance. There seems to be no easy way to 
deduce our result from these. - In the same way one proves that t x*-r/x 
converges a.s. on { X ~ o o } ,  if O(ov)< 0% the limit being the same as that of cfi 

From the theorem we may also deduce a criterion on the triviality of the 
tail a-field ~ of X t reply, g~, which does not follow in a simple manner from 
known results. If O(ov)< o% ~ is non-trivial because of part i) of Theorem 1. 
The same is true, if 0 < P ( X < - , o v ) < l ,  {Xt~oo } being a tail event. Thus let us 
assume ~(c~)= oo and P(Xt~oo)= 1. We apply a criterion, which is developed 
in [4] and [9]. Instead of Y~ we have to consider the diffusion ~ on the 
restricted state-space [G(&), G(oo)), 0 < & <  1, having the same local characteris- 
tics and driving Wiener process as Y~ and a reflecting left boundary G(&). If now 
Y~ is non-trivial, it follows from [4] or [9] that l imsupVar(~*)< o% where [* 

is the first hitting time of y for the ~ process. Thus -* -* ty - E  ty is stochastically 
bounded. Now Yt = ~ as long as Yt does not pass through G(6). Since Yt--+ov 
a.s., Y~= ~ for all t > 0  holds with positive probability. On this event ty*- E-*ty 
thus is also stochastically bounded, which is not compatible with (21) and (23). 
Therefore the tail a-field of X~ is trivial, iff P(X<-+ov)=l and tp(oo)=ov. 
~(ov)<oo may be viewed as the situation, where asymptotically the random 
effects vanish on { X ~ } .  

The rest of the section is concerned with the 

Proof of Theorem 1. i) We start with showing Yt~t on {Xt~oo } under the 
additional assumptions that Yt has finite second moments and/~ is bounded. In 
view of (12) Z, has finite second moment, too. Being a stochastic integral, Z t is 
a zero mean martingale. Since/~ is bounded, there is a c, > 0 such that for large 
r 

EYt<cl t. 

Suppose now that 62 is ultimately concave and increasing. Then there is a 
c 2 > 0 such that EYe> c 2 implies because of Jensen's inequality 

From (13) we see that EYt~c 2 implies Eo-2(Yt)~c3 for some suitable c3>0. 
From these estimates and the properties of stochastic integration 

e((Zn-Zn-1)2) = i E~ d t~n2  i t 2(~2(r 
n - 1  n - 1  
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If 6 2 is ultimately decreasing and thus bounded, the same estimate remains 
trivially true. Thus in any case, using (A3) 

oo 

21"1 2 E ( (Zn- -  Zn_ l )2)< o0. ( 2 4 )  
1 

From the martingale convergence theorem the a.s. convergence of ~ n - l ( z ,  
- Z , _  1) follows, and by means of Kronecker's lemma we get a.s. 1 

Z.=o(n). (25) 

Furthermore from Doob's inequality for any e > 0  

P( sup ]Zt-Z,_l]>=en)<=(~n)-ZE((Zn-Zn_l)2) .  
n- l <t<n 

This estimate, (24), (25) and the Borel-Cantelli lemma imply a.s. 

Z~ = o (t). 

Because of (A2) i h(s)ds=o(t)  a.s. on {Xt--+co }. Thus the desired result follows 
from (12). o 

Next we remove the extra assumption on k7 and the moments of Y,. Since 
the left boundary is absorbing, {Xt~co  } is the union of the events A n 
= {Xt~o% in fXt>n-1} .  The paths belonging to A, remain unaffected, if we 

t 

modify g and a in the interval (0, n a). We do this in such a way that G(0)> 
- co and G(0) is unattainable for Yr. Because of (A2) we may also achieve that 
/~ is bounded. Our assumptions on /~ and 8 -2 entail that all moments of the 
modified process Yt will be finite (compare [5], p. 48). From the result above 
Yt~t on A, for the modified and thus also for the original process Yr. The 
proof of the first statement thus is finished. 

ii) We come to the proof, of assertion i) of the theorem. Without loss let 
X t ~ o o  a.s. From (8) and (12) 

Y t -  c~t = - i (h(Ys) - h(~s)) ds + Z t -  c%. (26) 
0 

We shall estimate the integral. Let 

f ( t )  = [Yt-- ~ 2(t) = dt \2] " 

Because of (A2) and (A4) f ]  has to be ultimately convex and decreasing. Thus 2 3 
d/}. 

is ultimately decreasing. Further d t  is ultimately positive or negative, which 
implies 

~ 2(t) dt < co. (27) 
o 

Now, since Yt~ t and ~ t, from the mean-value theorem a.s. 

I h(Ys) -/~(c~)l =< 2~s L, (28) 



Asymptotic Behaviour of Solutions of Stochastic Differential Equations 171 

if s is large enough. F r o m  (26) a.s. 

t 

f(t)< S L L d s +  lz, I +c 
0 

for all t = 0  with some r a n d o m  c. The  Be l lman-Gronwal l  l e m m a  ([3], p. 198) 
implies 

f ( t ) <  2~exp ~2.du  (c+lZsl)ds+tZ, l+c, 
0 ~S 

and because of (27) 
t 

f (t) < C ~ ,~slZ sl ds + IZ, I + c (29) 
0 

with suitable C and c. Let  us now assume that  Z t is a.s. convergent .  F r o m  (29) 
and (27) we see that  f ( t )  is uniformly bounded  with probabi l i ty  one. F r o m  (28) 
and (27) we deduce a.s. 

0 

Therefore  we get the a.s. convergence of Yt-c~ f rom (26) and Lebesgues 
convergence theorem.  

We proceed with showing that  Z, is a.s. convergent.  We use the fact that  
(after enlarging the probabi l i ty  space, if necessary) a s tandard  Wiener  process 
B(t) exists such that  ([5], p. 31) 

l 

0 \0 / 

N o w  Y ~ s  a.s. Thus,  if @(oo)< co, ~ 2 ( y s ) d s < ~  with probabi l i ty  one. F r o m  
0 

(30) the a.s. convergence of Z t follows. 
We show now the propert ies  of the a.s. l imit Y of s t -  Y~. As shown above f" 

is also the limit of  * * t x - r / x ,  with tx, r/x as in (20), (22). N o w  the distr ibution 
* <  function of  t* is unimodal ,  i.e. there is a t o such that  P(t~ = t )  is concave for 

t < t  o and convex t > t  o (compare  [10]). Fur ther  P ( t * = t o ) < P ( X t o = X ) = O .  
�9 - * is independent  Therefore  t* has an un imoda l  density. For  l_<x_< y ty r / y - t  x 

of t*. Let t ing y ~ o o  we see that  Y ' - t *  and t* are independent .  Therefore  
possesses also a density. I t  is unimodal ,  since the weak limit of  un imoda l  
dis t r ibut ion functions is again  un imoda l  ([6]). It  remains  to show that  the 
density is everywhere positive. Since t~*-1?x is a.s. convergent ,  P ( l t * - r / y - t *  
+r/x] < 1)> 1/2 for 1 _<x_<_ v and x large enough. 

Fu r the rmore  P(t* < 1)>0.  F r o m  the independence of t* and t~* - t~* 

P(t* - r/y < 2 - r/x) > P([t* - r/y - t* + r/xl < 1) P(t* < 1) 

> * < 1)/2. = P(tx 

Lett ing y ~ oc 
f(~2-<_ 2 -  r/x) > 0. 
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Now from (22) t/x+co, as x--,oo. Thus Y is not bounded from below. A similar 
argument shows that Y is not bounded from above. This finishes the proof of 
assertion i). 

iii) Let now ~(oo)= oo. Since Yt~t a.s., from the convexity assumptions on 
a2(t) a.s. 

0 0 

Now (18) follows, if we use the Wiener process, given in (30). We like to show 
that a.s. 

t 
S ~lZ~l ds=o(~/2). (31) 
0 

It is sufficient to prove 

"~s Zs = ~  1/2 ~2). (32) 

Let A be the inverse function of ~. From (14) A(t/4)<A(t)/2<A(t), thus 
because of our assumptions on 2 and ~_2 

for large t. The right hand expression is the derivative of - 5  foAl,  evaluated 
at t/4. Because of (A2) and (A4) it is finitely integrable and ultimately decreas- 
ing, just as 2. Because of (18), inserting A(t) for s in (32), it is enough to prove 

2 t B(t q- o(t))= o(t- 1/2). 

This will follow, if we show that for any d > 0  with probability 1 only finitely 
many of the events 

Br={2(2~)2r/21B(t+o(t))l>=d for some U < t < 2  r+l} 

will occur. In fact it is sufficient that the same is true for the events 

Since 

C~= { sup IB(t)l >d2(U)-* 2-r/2}. 
t=<2 r+2 

P(Cr) < 1 2(2r) 2~/2 E IB(2 r+ 2)1 
=d  

1 < 4  2r 
~ 2  r+l 2(U)= d J_2(s)  ds 

for large r, the desired result follows from (27) and the Borel-Cantelli lemma 
and (31) is established. 

From (31) and (29) 

f (t) <= lZ, l + o(@J/2). (33) 
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t oo 

For any a > 0  52s~ /2ds<c+~} /2  ~ 2~ds, if c is large enough. Therefore 
0 a 

t 
"~s ~ 1 / 2  - 1 / 2  ~'s d s =  o(,/, t ) 

0 

and from (28), (29) and (31) 

o (i , t 
=o(~/2). 

From (26) the desired representation of assertion (ii) of the theorem follows. It 
remains to prove (19), which follows at once from (18), if X ~ c o  a.s. If 
0 < P ( X t - * c o ) <  1, we have to investigate some extra work. Let us denote by Px 
the probability measure, belonging to the diffusion Xt, starting at time 0 in 
x > 0. For  any e > 0, because of (18) 

lim inf Px(Z t < b ~/~/2) 
1 4 0 0  

>liminfPx(X<-+oo, B ( ~  + o(~t)) < b ~/2) 
t + O 0  

_> P(B(1) <__ b) - Px(X, ++co ) 

>=P(B(1)<=b)-e 

if x is large enough, since Px(Xt+..~co)--+O as x--+cc. We also need the following 
fact: Since co is attracting, with probability i either Xtoco or Xt--~0 ([5], 
p. i19). Thus it is possible to find a function 5t going to co, as t~co, such that 
the probability of the symmetric difference of {X,o__>5to } and {Xt-+~ } goes to 
zero, if t o--+ co. From the Markov property, with t > t o and suitable C > 0 

P(Xto > cSt o, Z t ~ b ~ / 2 )  

>=P(Xto>_=6t o, Z t -  Z t o < b ~ / 2 -  C ) - ~  

= ~ Px,o(Z~_~o<b~12-C)dP-~.  
{Xto > ~to} 

Using Fatou's lemma and the estimate from above we get, if t o is large enough 

lim inf P(Xto >= ,Sto, Z t <= b ~/2)  
t ~ O 0  

> P(X,o  > a,o) P(B(1) < b) -  2e. 

Letting t o--+ co and then ~--+ 0 

lim inf P(Xt---* co, Z, < b ~/~) > P(G---+ oo ) P(B(1) < b). 
t + o o  

The lim sup is estimated similarly. Thus (19) is proved, q.e.d. 
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4. The Asymptotic Behaviour of X t 

In this section we treat the question, under which conditions representations, 
similar to those given in the last section for Y, are valid for X r Smooth results 
only hold, if one contents oneself with approximations in probability. We start 
with characterizing the case, where a certain weak law of large numbers holds. 

Theorem 2. Assume (A1)-(A4). Then the following statements are equivalent 

i) t -  ~ g(t)= o(~-  1/2). 

ii) Xj#~  ~ I in probability on {Xt--+oo}, as t ~oo .  

iii) There are positive numbers fit, t>=O, such that X t / f i , ~ l  in probability on 
{X,--,oo}. 

We shall see in Sect. 6 that the a.s. versions of the latter statements are not 
equivalent to the given ones. From the definition of r we see that 
condition i) is a restriction on the rate of growth of az(t) depending on g(t) in a 
slightly vague fashion. We shall discuss this further in Sect. 5. Note that i) 
implies g(t)= o(t), thus log #t = o(t). Therefore we may expect X t ~ #t only in the 
case of subexponential growth. We continue with characterizing the cases, 
where Xt, properly normalized, converges in distribution. 

Theorem 3. Assume (A1)-(A4). Then the following is equivalent 

i) There is a 0__<c<oo such that Ol /2 ( t ) t - l  g ( t )~c ,  as t-~oo. 

ii) There are numbers 7t, 6t, t>O, such that the distribution of  7 tX t+6 t ,  
conditioned on {Xt-~oo}, converses weakly to a nondegenerate probability mea- 
sure. 

Furthermore, if these conditions are satisfied, then 

a) I f  ~(oo)<oo, (Xt-#t) /~,( t)  converses a.s. on {Xt-~oo } to a nondegenerate 
limit. 

b) I f  ~(oo)= oo and c=0 ,  then on {Xt-~oo } 

(X  t -  #~)/~,(t) = B(r + o v(r ) 

in probability, where B(t) is the standard Brownian motion, given in (30). 

c) I f  t9(oo)= oo and c>0 ,  then on {Xt--*oo } 

log X,/#,  = c r 1/2 B ( t f / , )  - -  c 2 @ 0,(1) 
in probability. 

The statements of this theorem again only are valid in the domain of 
subexponential growth with one exception. If t -1 g ( t ) ~ c ' > 0  and ~ ( ~ ) <  oo, we 
get from a) the a.s. convergence of X ] #  t to a non-degenerate limit on 
{X<-,oo}. This behaviour is well-known from many stochastic growth models 
as the Galton-Watson process, but rather atypical in our approach. 

Let us compare Theorems 1 and 3. If ~(oo)< oo (small random effects), the 
corresponding statements coincide up to the scaling. If r  o% Yz i s  as- 
ymptotically normal. The same is true for Xt only, if the magnitude of a2(t) is 



A s y m p t o t i c  B e h a v i o u r  of  So lu t ions  of  S tochas t i c  Dif ferent ia l  E q u a t i o n s  175 

limited by the condition t- lg(t)=o(Oi-1/2),  which already occurred in Theo- 
rem 2. Additionally X t may be log-normal, but this possibility is an exceptional 
one, since here the asymptotic magnitude of a2(0 is practically determined by 
g(t). Notice the occurrence of the term - e  2 in the representation in this case. 
This implies that for large t the event {X t># t  } takes places with probability 
smaller than 1/2. Thus, if the order of ere(t) exceeds a certain boundary, X t is 
becoming a tendency to be smaller than #t. This, in a more drastical form, 
follows from the next theorem. 

Theorem 4. Assume (A1)-(A4). Furthermore let t#~/2 t -1 g(t )+ 0% as t--+oo, and 
ultimately increase. I f  t=o(g(t)), assume additionally cp(oo)= oo. Then in proba- 
bility X t = ov(#t ). 

An inspection of the proof shows that the conditions of this theorem 
cannot be weakened substantially. The rest of this section contains the proof of 
these results. We start with three analytical statements: 

Lemma 1. If(A1) and (A4) hold and g(t) is ultimately decreasing, then g'(t) 
=O(G(t) -1) and t - l  g(t)=O(G(t) 1). 

Proof In this case g is ultimately convex, thus g'(t)<0, g"(t)>0 for large t. 
Because of (A4) -g ' ( t )  is ultimately convex, too, thus for large t 

u oo 

l(s) ds=<- j g'(s) ds, 
t t 

where l(s) is the tangent of g'(s) at point t, and t > t  is determined by l(t)=0. 
Calculating both integrals and taking reciprocal values we get 

g"(t)_  1 > 1 
2 gT~---  g ( t ) -  g(oo) = g(t)' 

A further integration yields, with a suitable C, 

2 
- - - > G ( t ) +  c, 

g'(t) 

which is the first statement. Further for decreasing g, from the definition of 
~(t), 

G(t) < t/g(t), 

which entails the second statement, q.e.d. 

Lemma2.  I f  cp(oo)= ~1 ~ d s  is finite, then t -o:  t converges to a finite limit. 

Otherwise t - cq~gp  t, as t ~ o o .  

Proof c~(oo) is finite, if and only if ~ f(s)l ds< o% since h(t) ultimately keeps its 
0 

sign. Since ~t~t,  the first statement follows from (8). If c}(oo)= _+ oo, 

t t 

0 0 
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from the convexity assumption on /~. Again from (8) the second assertion 
follows, q.e.d. 

Lemma 3. I f  for some c > 0 ~ /2  t - l g ( t ) ~  c, as t ~  0% then ~/2 g'(t)~ c. I f  t)(oo) 
0% also -1/2 = ~t ~0 t ~ c. 

Proof. If g is decreasing, the assumption of the lemma holds with c=  0 because 
of Lemma 1 and (16). Similarly from Lemma 1 O~/2g'(t)--,O. Thus let g be 
ultimately increasing. If the assumption of the lemma holds with c=0 ,  g(t) 
=o(t). In this case our regularity assumptions imply O<g'(t)<=g(t)t -1 for large 
t, and the assertion on g'(t) follows again. Thus let us suppose that c>0 .  We 
start with showing that then G(t) is a slowly varying function. Rewrite the 

assumpt ion  as 
S-  1 ~ C g ( s ) - i  I~(G(S))- I /2 .  

Integrating both sides from t to bt for some b > l ,  we get 

c-1 log b ~ A( G(b t))- A( G(t)) 
t 

with A(t)= ~(s)-X/2ds. The mean-value theorem, applied on the function 
0 

A(et), yields 

A(G(b t))- A(G(t))= ~(~)1/2 (log G(b t ) - l o g  G(t)) 

with G(t) < ~ < G(b t). Taking (16) into account, as t ~ 0% 

G(b t) 
~ ~ t ~ u -  

Thus G(t) is slowly varying. From (14) 

O(b t)/O(t)= ~(G(b t))/~(G(t))~ 1, 

thus @t is slowly varying, too. From the assumption of the lemma we see that 
g(t) itself varies regularly with exponent 1. Since g'(t) is ultimately monotone, 
g'(t)~t-lg(t) ([2], p. 446, lemma), and the assertion of g'(t) is fully proved. It is 
now easy to prove the second statement. Let ~ ( ~ ) =  oo and c>0 .  Then 

' i ~o(t)=�89 g'(s) 0'(s) ds ~�89 O(s) -1/: O'(s) ds= c ,1,1/: " f i t  " 

1 1 

The case c = 0  is treated similarly, q.e.d. 

Proof of Theorem 3. Without loss of generality let us assume Xt~oo a.s. 

i) Let us first suppose that t-1g(t)=o(021/2). Therefore g(t)=o(t) and in 
view of (A4) g'(t)= o(1). We prove that 

g'(#(t/2)) (Y~ - t) = op(1) (34) 
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in probabil i ty.  This is easy, if O(co)<  co. Since g'(t) is bounded,  because of (7) 
~0(co) is finite, and Y~-t  is a.s. convergent  because of T h e o r e m  1 and L e m m a  2. 
In  this case (34) holds a.s. N o w  let O(co)=  oo. F r o m  L e m m a  2 and 3 and f rom 
(14) 

g' (bt (t/2)) = o (~ (t/2)-1/2) = o (q7 t 1/2) 

and 
t - ~ , = o ( ~ ; t / 2 ) .  

These two s ta tements  and T h e o r e m  1 again imply (34). N o w  f rom the mean  
value theorem 

X t -  fit = g(G)  (Y , -  t) (35) 

with U~ between X t and ~,, and similarily 

g(G) - g(#,) = g (G(G)) - ~(t) 
= g'(Vt) g(Vt) (G (Ut ) -  t) 

with V t between U t and #t- Since g and g' ul t imately are monotone ,  we have a.s. 
for large t 

Ig (G) -g0z , ) l  < Ig 'G)  (G(U, ) -  t)l 
m a x  (g (G), g (#t)) = 

< Ig '(#(t /2))(Y,-t) l .  

The  last inequali ty follows, since a.s. G(V~) > min(t ,  Y0 ~ t. 
F r o m  (34) we get 

g(U,) ~ g(~,) = ~(t) 

in probabil i ty ,  thus f rom (35) 

( X , -  #,)/~,(t) ~ Yt- t. (36) 

Let  now 0 ( c o ) <  co. Then,  as noted  above,  (34) and therefore (36) hold a.s. and 
Y t - t  converges a.s. Thus  s ta tement  a) of the theorem is true. Next  consider the 
case 0 ( c o ) =  co. Here  we k n o w  f rom above  that  t -at=o(~/2) .  Thus  assert ion 
b) of tM, theorem follows f rom (36) and Theo rem 1. 

ii) Let  now t-lg(t)~ct)~l/2 with c > 0 .  F r o m  the mean  value theorem,  
appl ied on log #,, 

g ( ~ )  , _  , 

log X t -  log & = ~ - t  ( l't - t) (37) 

with V t between X t and ~t. In view of T h e o r e m  1 G(Vt)~t a.s., and by means  of 
(14) 

g (Vt)/V t ~ c ~ (G (Vt))- 1/2 ~ c ~ -  1/2. (38) 

Let  0 ( c o ) =  co. F r o m  L e m m a  3 qo(co)= +_ co and taking into account  L e m m a  2, 
t - e t~c t~ /2 .  F r o m  (37) and (38) 

log(X j # , ) ~  c ~-1 /2( I7 , -  a t -  c ~ /2 ) .  

F r o m  T h e o r e m  I assert ion c) of the theorem follows. 
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with q. = G(r,), 
function H 

Let now 0(oo)<oo.  In this case g( t )~ t cO(m)  1/2=ctt and thus 
g'(t)+c'>O. From (7) we see that ~0(m) is finite, too. From Theorem l and 
L e m m a 2  we get the a.s. convergence of Yt- t .  The same is true for XJ#~ 
because of (37). Since g(t)~c't ,  that is equivalent to the a.s. convergence of (X t 
-#t)/~(t). Thus again statement a) of the theorem holds. 

It remains to prove that condition i) of the theorem follows from condition 
ii). This is a consequence of the next result. 

Proposition 1. Assume (A1), (A4) and that g is ultimately increasing. Let X ,  be a 
sequence of non-negative random variables and p,, % be non-negative numbers 
such that ( X , - p , ) / z  n converges in distribution to a non-degenerate distribution 
function F. Suppose further that there are non-negative numbers r,, s, such that 
s,/s,+ 1~1, s, is increasing and s,=o(G(r,)) and (G(X,)-G(r,))/s,  converges to a 
distribution function H. Suppose finally that H is continuous and strictly increas- 
ing on the whole real line. Then there is a c > 0 such that 

g(ro) s~ 
- -  - - ->  C 

r, 
a s  n - +  o o .  

To apply this result on the proof  of Theorem 3, let t,--+oo and choose G(r,) 
= ~(t,) and s, = ~ 1/2 (tn) ~ ~ 1/2 (0{ (tn)). The diverse assumptions of the proposition 
follow from Theorem 1, (14) and (16). If g is decreasing, nothing has to be 
shown in view of Lemma 1 and (16). 

Proof. Let us assume that d = lira p,/% exists. For any e > 0 
n ~ o o  

with some large n. Since X~ is non-negative, F (z )=0  for z < - d .  Therefore, 
letting z o = inf{z] F(z) > 0} 

z0> - d .  

This implies d > -  c~. Without loss o f  generality we may assume d = 0  or d 
= O Q ) .  

If z is a point of continuity of F, 

F(z)= l i m p  ( X . - p .  < z ) =  l i m p  ( u  + z % ) - q . t  
n +  oo \ "C n n +  oo \ S n = S n 1 

Y,=G(X,).  Because of our assumptions on the distribution 

lim G(p, + z %) - q, _ (H- 1 o F) (z). (39) 
n ~  ~ S n 

Let z 1 < z  2 be both points of continuity of F with F ( z 0 < l  and F(z2)>0 (the 
set of pairs (zl, z2) with these properties will be denoted by M). Then 
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lira G(P" + Z2 z,)-  G(p, + z 1%) 
n ~  cc  S n 

=H-I(F(zz))-H-I(F(zl)), (40) 

the right hand expression being possibly infinite. From the mean-value theo- 
rem, with a suitable t, between z~ and z 2 

lira r ,  - (H-I~  l~ (41) 
n~s,g(pn + tn %) Z2-- Zl 

Notice that Q(zl, 2'2)= 00, if either F ( z l )=0  or F(z2)= 1. Let now 

and 

s .g(p .  + z z.) p.  
L ( z ) -  , z >  - - -  

"C n "C n 

f_(z)=liminf f,(z), f+(z)=limsup f,(z), z> -d.  
n ~ cx3 n ~ oo 

f_  and f+ are increasing functions, since the same is true for g ultimately. 
From (41), with (Zl, Zz)EM , 

- d < z < z l  <z 2 implies f+(z)<Q(zl,z2) -1, (42) 

-d<Zl  <Z2 <Z implies f_(z)>=Q(Zl,Z2) -1 (43) 

Let us assume that zoo=sup{zlf+(z)<oo}<oo. If F ( z ~ ) < l ,  we may find 
(zl,z2)eM with Zoo<Zl<Z2 and arbitrary large z 2. From (42) Q(zl,z2)=O. 
Since H- 1  is strictly increasing, F(zl)=F(z2). Thus, letting z2- ,  m, F(z)= 1 for 
z>z~. Since F is non-degenerate, we may find - d < z l < z 2 < z  3 with 
0 <F(zl)_--<F(z2)< 1, F(z3)=  1. From (42) and (43) we deduce the contradiction 

0<Q(z l  ' z2 ) a <f_(z2)<f+(z2)<Q(z2, zs)-a : 0 .  

Thus 
f+ (z) < ~ for all z > - d. (44) 

Now p,+z,~o% since otherwise X,  is stochastically bounded, at least along a 
subsequence. But from the assumptions G(r,)--* c~ and G(X,)/G(r,) converges to 
1 in probability. If g is ultimately convex, from (44) 0 <  lira t -1 g(t)< ~ and 

also lira s, < oo. From this the assertion of the proposition follows immediately. 
tl~oo 

We treat now the case that g is ultimately concave. Then the same is true 
for f , ,  and f_  will be concave everywhere. If f_  (z)= 0 for some z > - d ,  f_  has 
to vanish everywhere. From (43) Q(Zl, z2)= c~ for all (Zl, Zz)~m. This is only 
possible, if F is degenerated. Thus 

f (z)>0 for all z > - d .  

Suppose Zo>-d. Then one may choose (zl,zz)eM with -d<Zl<Zo<Z 2. 
Thus Q(Zl, z2)= ov and from (42) we reach the contradiction f_ (zl)= 0. Thus 

Z O ~  r o d .  



180 G. Keller et al. 

If  we do not assume that lim Pn/% exists, one may show that the lim sup as 
n--~ oo  

well as the lim inf of the sequence p,/% is equal to - z  o by means of the same 
argument, applied on suitable sub-sequences. Thus our assumption on the 
existence of lim p,/~, at the beginning of the proof is no restriction. 

Next we draw a conclusion from the fact that f_  is continuous as a 
concave function. For z>z  o and ~>0  choose 6 > 0  such that [f_ (z)-  f_ (z 
+ 6 ) ] < a  From (42) and (43) f+(z)<Q(zl ,z2)-~<f_(z+gO<f_(z)+e with 
z<z1<z2<z+6 .  Letting e ~ 0 ,  f + (z)= f_ (z). In other words, l imf , (z)=f(z)  

. ~ o o  

exists for all z > z  o. Next, for suitable z-6<=za<z2<_z+~), f (z  
-cS)<Q(Za, z2) -1 <f(z+6).  Letting 6 ~ 0 ,  from the definition of Q(zl, z2), 

1 
(H-1 , _ z>z  o. oF) (z)-  f(z) 

Let now d = oo. Then f(z) is defined on the whole real line, and, being strictly 
positive and concave, is constant. Thus (H-ZoF)(z)=Az+B with A>0 .  
Choose z 1 such that H-~(F(z~))<O. From (39) p , + z l z , < r  . ultimately. Since 
g(t) t -  ~ is ultimately decreasing 

0 <  lim g(r,)s, < lim g(P"+Zl%)s" lim % 
n ~ o o  r n - - n ~ o o  "C n n ~ o o  p n - [ -  Z I ' C  n 

1 
= f ( z j . d + z l  =0 ,  

and the desired result follows with c =0.  Let d be finite. Without loss d = z o = 0  
and p , = 0 .  In this case z ~ o o .  Since additionally g(t)t  -~ is ultimately mo- 
notone, s,+ i/s, ~ 1 and 

s, g(z "c,) _ f~(z) f(z) 
, z > 0 ,  

Z T  n Z Z 

from [2], p. 277, Lemma 3 g is regularly varying with exponent r and f(z) = c z r 
with c > 0. Since f is concave, 0 _< r _< 1. 

Let r <  1. Then G is regularly varying with exponent l - r > 0 .  Since from 
our assumptions G(X,)/G(r,)~I in probability, also X, / r ,~]  in probability. 
This is not compatible with the fact that X,/z  n converges to a non-degenerate 
limit. 

Thus r : l .  In this case (H- loF)(z )=Alogz+B with A > 0 .  Thus we may 
choose z 1 > 0  such that H-I(F(zl))=O. From (39) 

such that 

lim P " +  Zl ~ - 1 
. ~ o o  r n 

lim g(r")sn-  lim g ( P " + Z l % ) -  1 lim f,(zl) 
n ~ o o  r n n ~ o e  Z 1 T  n Z 1 n ~ o o  

f (z l)  
Z 1 
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The proof of the proposition is finished, q.e.d. 

Proof of Theorem 2. Without loss of generality X t ~ o o  a.s. Let us assume 
statement i) of Theorem 2. If tp(oo)< or, g(t)=o(t). Thus from statement a) of 
Theorem 3 (Xt - #t)/t4 = op (1). If 0 (oo) = ~ ,  from statement b) of Theorem 3 

X t -  #t _ ~(t) (B (~t) + ~ Op(1). 
#t #t 

Thus we have proved the implication i ) ~  ii). It remains to prove i i i )~i)  of the 
theorem. Let Xt~/~t in probability. We show that we may assume fit=vt with 
vt as in (9). Let 8 < 1. Then 

P(Yt --< G (8 fit)) -- P(Xt <= 8 fit)-~ O. 

In view of Theorem 1 G(cflt)<-_a t or cfit<_vt ultimately. Thus fit~vt. - Now, if g 
is decreasing, nothing has to be shown in view of Lemma 1 and (16). Thus we 
assume that g increases ultimately. Let g(t)t -1 decrease for large t. From the 
mean-value theorem, since ultimately vt--#(at)<#(2t),  

vt/2 #2t 
G(vj2) = G(v , -  (v j2)) > a t g(v]2) > a t -  g(#2,~" 

Therefore 

P(Yt -- at ~ -- #2 tim (# 2 t)) ~ P(Xt ~ v t /2 ) - -00 .  

From Theorem i and (14) 

g (#2 t ) /#2 t = O (tilt-1/2) = OOflZt1/2), 

or g(t)t -1 =o(0t1/2).  If g(t)t -1 is ultimately increasing, use #(t/2) instead of 
#(2t). The proof is finished, q.e.d. 

Proof of Theorem4. Since P ( X t ~ o o ) > 0 ,  on the complement of {Xt~o�9 } 
X t ~ 0  a.s. ([5], p. 119), thus without loss X t + m  a.s. From (16) and the 
assumption of the theorem it is clear that g(t) has to be ultimately increasing. 
Let us first look at the case g(t)=o(t), thus ~(oo)= oo. Let us write 

g ( t )  = t 1//21/2 q (t) (45)  

with a suitable q(t), ultimately increasing and tending to infinity. For large t 

t O-2(t)~ 
g'(t)>q(t) (111t-1/2--~I//Z -3/2 g(t) ]" 

Because of (17) and our assumption 

g (t)  = 0 (l~/t - 1  0 .2 (t)) = O (~'/ t  1/2), 

thus ultimately 
g'(t) > q(t) I//tl/2/2. 
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For large t 

1 1 

Since O(co)=co and q(s)~co, also ~o(co)=co and ,/,1/2 ~-t =o((p(t)). From Lem- 
m a 2  as t ~ c o ,  

If121/2 (t  - -  O:t)---* co .  

By means of Theorem 1 and (14), in probability 

472,1/2 ( ~  - t)--+ - o0 ,  

thus because of (45), in probability 

g(#2t) - - ( y ~ - t ) ~ -  co. 
#2t 

In particular P(t/2 =< Yt < t ) ~  1. If t is large enough, on this event 

log X t -  log gt < g(#2,) (y~ _ t). 
#2 t  

This follows from the mean-value theorem, applied on l o g # ,  and since g(t)t 1 
is ultimately decreasing. Thus in probability 

log(X j#,)-+ - co, 

which is the desired result. 
Next we consider the case that g(t)t -1 converges to a positive number or 

infinity. The same is true for g'(t), which thus is ultimately positive and 
bounded away from zero. Therefore O(t)=O(cp(t)). If ~o(co)=co, we get 0~/2 
=o(~o(t)), and we finish the proof as above by means of Theorem1 and 
Lemma 2. q.e.d. 

5. Examples 

In this section we discuss the conditions, occurring in the theorems of the last 
section. 

A. Let us first consider the question, under which conditions on #r one has 
g(t)t-l=oOp2l/2), irrespectively of the choice of a2(t). Because of (16) this 
reduces to the question, under which circumstances g(pt)/gt=O(t-1). Because 
of (A4) this will be true only if g(t)t  1 ultimately decreases. Now the answer 
comes from the estimate 

t g(P2,) =< 2 jt g(Ps) ds = log #2t <= t g(#'), 
#2 t  t ]AS #t  # t  
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holding for large t. Thus necessary and sufficient for g(#,)/#,=O(t 1) is the 
existence of a C >0  such that for t large enough 

#2,< C#,. 

It is easy to see that this regularity property implies 

(46) 

#~ = o (t ~) 

for a suitable r > 0, on the other hand (46) is fulfilled by any power of t. In this 
situation, where the rate of growth is polynomial, always Xt~#t  on {Xt--+oo } 
in probability and log-normality of X t will not occur. This becomes clear also 
from the following consideration: If g(t)t-* ~ c  ~-1/2 for some c >0, we know 
from the proof of Lemma 3 that g(t) varies regularly with exponent 1. In this 
case #t has to grow quicker than any power of t. On the other hand X t will 
only be asymptotically log-normal, if 0(00)= oo. Thus g(t)=o(t) or equivalently 
log #, = o(t) is necessary for the occurence of log-normality. 

B. Let us study the example 

gx, = g(Xt)  & + d w , ,  

i.e. ~2(t)=g(t)-2. First let g(t) be ultimately decreasing. Then ~=o(ta2(t)), 
and from (15) we see that 0, is of the same order as a2(t)G(t)=g(t)-iG(O. 
Thus the condition g(t)t-* =o(~t -*/2) is equivalent to G(t)=o(t 2) or tl/Z=o(#t). 
Since t 

# t -  #o = i g(&) ds > t g(#,) 
0 

for large t, these conditions are also equivalent to t 1/2=o@,(t))=o(6-*(t)), 
thus in essential to (A3). Furthermore from Lemma 1 

g '  ( t )  ~-2 ( t )  : 0 ( t  --1 ~- 2 i t ) )  : O (1 ) ,  

such that (A2) is also fulfilled. 
oo 

Finally 0( 00 )= 5 g(s)-3ds=oo.  Thus our theory is applicable, iff 
1 

#tt 1/2+o0 as t--,c~. From Theorem2 and 3 X ,~# ,  on {X<-+cra} in this 
situation, and X, is asymptotically normal. 

Let now g(t) be ultimately increasing. Then cr2(t)=O(1), thus (A3) holds. 
(A2) reduces to g'(t)g(t)-2-~0. If g'(t)=O(1), this is trivially true. Let g'(t)--+oo. 
Then it has to be ultimately concave because of (A4), otherwise g(t)t -2 will be 

t 
' < , < bounded away from zero and G(oo)< oo. Therefore tg (0/2= S g (s)ds=g(t) and 

1 

g'(t) g(t)- 2 = O(g(t)_ 1 t -  1) = o(1). 

Thus (A3) is fulfilled and Theorem 1 may be applied, if G(oo)= oo and g is 
smooth enough. We show that g(t)t-l=o(O2l/2), iff g(t)=o(t). In fact, since 
g(t)t 1 will be decreasing for large t, g(t)=o(t) implies 
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g(t) 2 g(t) 2 ds < ~ ds 
t2 Ot :~T--  il g(s) 3 :  ! s ~ - ~  +~ 

for any a>0 ,  thus g(t)t -1 =o(021/2). ip(oo)< o0 may occur now. 
Altogether, Xt~#t  on {Xt--+oo}, if #t grows quicker than t 1/2, but not at an 

exponential rate (compare [-5], p. 132, Theorem 5). 

C. Let us now put 0 -2(t) ~ 1. We may rewrite (2) in the form 

2 ,  = g (x3  (1 + w,,) 

where ~ denotes white noise. Thus Xt may be viewed as the solution of a 
differential equation, possessing a random varying multiplicative factor. In this 
situation (A2) reduces to g'(t)=o(1) and (A3) is always true. Furthermore ~ t=  t 
and ~(oo)= oo. We show that Theorem2 and 3 are applicable, if & is not 
growing too fast. 

Claim. Let 0 < c < oo. Then the following statements are equivalent: 

i) g(t) t 1 ~ / 2 ~ c ,  as t~oo ,  

ii) r 1/2 l o g # ~ 2 c ,  

iii) g(t) t -1 l o g t ~ 2 c  2. 

We only have to consider the case g(t)=o(t). For large t 

l~  i g(#~) ds> t 
g(#t) 

o #~ #t 

Thus ii) is equivalent to g(#t) /#t~ct-1/2=c~; -1/2, which is nothing else but i). 
Further, if i) and ii) hold 

g(#t) t l /2 t - l~2  log #t_~2c 2, 
#t 

thus iii) holds. On the other hand, if iii) is true, 

2c 2 G(t)~ i logs ds=�89 
1 s 

Replacing t by #t and taking the square root, we get ii). 
Thus X t ~ # t  on {Xt~oo} and X t is asymptotic normal, if and only if #3 

=o(exp(c tl/2)) for any c >0. log-normality occurs, if log#t has the critical rate 
of growth t 1/2. If #t grows even faster, Xt=o(#t) in probability. 

6. Approximations to log X t 

In this section we give a a.s. representation of log X v We do not give the most 
general result possible in this direction, nevertheless we have to restrict the rate 
of divergence of #t much less than in Sect. 4. Essentially we assume that #~ 
= O(exp(t~)) for some c~> 0. Further we require some regularity assumptions. 
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(A5) There is a C > 0  such that log#2t< Clog#t  for large t. Furthermore the 
function e-*g(e t) together with its first derivative is ultimately concave or 
convex. 

Theorem 5. Assume (A1)-(A5). Then 

i) logXt~log/~ t a.s. on {X t~oo  }, 

# t  , Xt 
ii) if @(os)< ~ ,  then - - l o g - -  is a.s. convergent on {Xt---*~ }, 

~(t) v, 

iii) if @ ( ~ ) = ~ ,  then a.s. on { X t ~ }  

log X t = ~(t) (Z, + o(Zp + o(~/2)). 
Vt #t 

V t is defined in (9), in general it may not be replaced by #t in the ex- 
pressions of the last theorem. One may show that this is allowed, iff again 
g(t)t -1 =o(~71/2). It is possible to derive similar approximations to log log X t 
and other functions of X t. We do not go into this, but discuss a consequence 
of the theorem. 

Let ~ ( ~ ) = o o  and g( t ) t - l~c{2 t~ t log log~ t}  -1/2 for some c__>0. From 
Theorem2 X t ~ # t  on {Xt-~oo } in probability. From (18) and the law of 

iterated logarithms lira sup log X t =  c, thus a.s. 
t ~  O0 ~ t  

lim sup Xt  = exp (c) 
t ~ o o  V t 

and similarly 

lim inf A t = e x p ( -  c). 
t ~ c o  V t 

Thus the a.s. version of Theorem 2 does not hold. In fact, in view of Theo- 
rem5, X t ~ # ,  a.s. on { X t ~  }, iff Z,=o(#t/~(t)) a.s. on { X t ~  }. Because of 
(18) this is equivalent to B(~bt)=o(t/g(t)) a.s. It is possible to give criteria by 
means of the Kolmogorov-Petrovski-test. - It is well-known that the classical 
strong law of large numbers for i.i.d, random variables is not equivalent to the 
weak law. This has nothing to do with our situation, but with the non- 
existence of moments. Our problems instead arise from the non-linearity of the 
functions involved. 

Proof of Theorem 5. Let Xt ~oo  a.s. Define 

k(t)=e-~g(d),  K(t)= i 
ds 

o k ~  = G (e t). 

Because of (A5) k(t) fulfills the conditions, which we require for g(t) in (A4). 
Since log#t is the inverse of K(t), k(t) belongs to the class of functions, which 
we discussed in part A of Sect. 5. With the notation 

f(t)  = g(/Q = k(log #~) 
#r 
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we get from the discussion in Sect. 5 

Also 

f ( t )  
- O( t -  ~) (47) 

log #t 

i f ( t )  
- k'(log #t) = O( t -  1). (48) 

f ( t )  

If k(t) is ult imately decreasing, this follows from L e m m a  1. If k(t) is increasing, 
we use (47) and k ' ( t ) < k ( t ) t  1 for large t. N o w  we proceed as above: 

log X t - log v t = f (Vt) ( Y t -  :~t) (49) 

with V t between a t and Yr. In view of T h e o r e m l  it remains to show that 
f ( V t ) ~ f ( t  ) a.s. Now f ( t )  is ul t imately monotone ,  since this is true for g(t) t  1. 
Thus eventually, by means of (48) 

[f(Vt)-f(t)l <[f'(Zt)l IV~-tI 
max{f  (V,), f(t)} = f(Zt) 

= O ( Z ~ ( V , -  0)= o(t-~(v, -t)), 

with Z, between V, and t, thus Z,  ~ t a.s. Since IV,- el ~lg~-tl +l~,-tl = o (t) a.s., 
we obtain f ( V t ) ~ f ( t  ) a.s. Assert ion ii) and iii) of Theorem 5 follows from (49) 
and Theorem 1. 

Fur ther  (47) and (49) imply a.s. 

(log X t -  log vt)/log #t = O ( t -  I(Y t -  c~t) ) = o(1). 

It remains to show that  l o g # t ~ l o g v  t. Again from (47) and the mean-value 
theorem 

I l o g & - l o g v , [  g(#(f)) 
< It-c~,l 

max  {log #t, log vt} = #(~) log #(?) 

= o q -  ~ ( t -  ~,)) = o(1) ,  

with ? between t and c~,, thus t ~ t .  q.e.d. 

7. On the Stratonovitch-Solut ion 

Let Xt denote  the Stratonovi tch-(Wong-Zakai-)solut ion of (1). F r o m  a well- 
known formula (compare [77, p. 351) 37 t is the I to-solution of the equat ion 

d2,  = g(2t) (1 + ~ ( 2 , )  (g ~)' (2t)) dt+g(2,) ~(2,) dW,. (50) 

Lett ing ~ =  G(Jr from Ito's formula 

d Yt = (1 + �88 (~)) dt + &(~) d W  t. (51) 
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Now similar considerations are possible as those of Sect. 3, in fact, the situa- 
d ~  2 

tion is much easier. From (13) and (A4) ~ 0 .  (t) is ultimately monotone and 

tending to zero. It is easily checked that Yt~t on {3it--, oo}, the proof being the 
same as for Y~. If ~p(ov)= or, from (17) on {J~t~m} a:s. 

0 0 

0(3 

If 0(oo)< co, 62(t)~0 and from a similar argument S (62)'(Ys) ds is a.s. finite on 
{J~t~oo}. We thus get from (51) o 

Theorem 6. I f  (A1), (A3) and (A4) hold, then ~'~t  a.s. on {J~t~oo}. Further 

i) I f  0 ( m ) <  or, then Y t - t  converges a.s. on {)~t~oo}. 

ii) I f  O(ov)= o% then a.s. on {J~t~m} 

2 t=  i 8(~'~) dW s has the same properties as Z t from Theorem 1. 
0 

The main difference between the representations of Yt and Yt is that at is 
replaced by t. It is no problem to prove now the corresponding version of 
Theorem 2 and 3. The only difference is that the correction term - c  2 in the 
case of log-normality of X~ does no longer occur, if J~t is considered. Theo- 
rem 4 is no longer true, if 0 ( ~ ) =  o% we always have P(2t<#t)=P(~<__t)~l /2  
as t~oo .  

Let ~(oo)= oo. A comparison of Theorem 1 and 6 shows that in our context 
Yt and Yt probabilistically are indistinguishable, iff t - ~ t = o ( ~ / 2 )  or in view of 
Lemma 2 ~p(t)= o(O~/a). It turns out that this condition is well-known to us: 

Claim. Let ~(oo)= ~ .  Then cp(t)=o(O~/2) is equivalent to g(t)t 1=o(0;-1/2 ). 

Proof On part of the statement follows from Lemma 3. Let (p(t)=o(O~/a). Then 
g'(t)-+0, as may be seen from (7). Since g' is ultimately monotone 

t 

and thus, by means of (17) 

t t 

g (t) O~/2 = ~ g'(s) 0~/2 ds Av 12 ~ 0 .2 (S) 0 ;  1/2 ds = 0 (t). q.e.d. 
1 1 

If ~(oo)<o9, Yt and ~ behave different only, if (p(oo)=oo because of 
Lemma 2. In view of (7) this may only happen, if g'(t)~oo, as t+oo ,  which is 
the case of superexponential growth. A direct comparison of X t and )~t is also 
possible. We show this in the case t -~ g ( t )~c~t  -~/2. Let X t and J~t-~m a.s. We 
claim that with probability 1 

Xt /X  t ~ exp ( -  c2). (52) 
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ds 
We sketch the proof. Let L(t)= j j l g(s)a(s)' L-1 its inverse. L ( o o ) =  o 6(s)-lds 
= oo b e c a u s e  o f  (13). Further  let  Ut=L(Xt), Ut=L(Xt). F r o m  Ito's  f o r m u l a  

d Ut = (a ( X t ) -  1 _ �89 g)' (Xt)) d t + d Wt 
d[7 t = a (){t) -1 dt + dWt, 

thus 
t t 

- ~ = S ( ~ ( 2 ) - 1  _ ~(x~)  1) ds + �89 S ('~ g)f (X~) d~. 
0 0 

Now the derivative of a(L- l(t))-- 1 is equal to -- (a' g/a) ( L  1 (t)) and 

[ d ~ \ 
O" ( X s )  - 1  

\ a g  / 

with it between Yt and Yr. Ut-  Ut therefore obeys the differential equation 

f'(t) = C(~t) f(t) + D(Yt) (53) 

(d ) 1 i  1 d 
with C( t )=  log6 (t) and D(t)=g(ag)(&)=~6(t)~(log~,6)( t ) .  Now, if 6 is 

sufficiently smooth, with t/t ~ t, 

exp(iC(~s)ds)=exp(log6(rh))~6(t). 

Thus, if f (t) denotes the general solution of (53), 

f(t)~6(t)ii ~ d s +  C } 

~�89 log(~ 6)(t) 

for some real C. (If log~6(t) converges, it has to be replaced by a random 
constant.) Finally, applying the mean-value theorem on log L -1, with Ct be- 
tween X t and J~t, 

log Xt - l o g  Xt = cr(~t) g(r (~  _ Ut) 

- �89 6(t) 2 c 4,(~)_ 1/2 log(~ 6)(t) 

~�89 2 c ~(t)-1/2 log(~ 6) (t). 

( Now it is possible to show that this quantity tends to c 2 use log~= ~ ~'(s)ds 
t \ 0 

+ const ~ ~ c ~s  1/2 ds). 
0 / 

This follows also from Theorem 3c) and the corresponding result for )~. Thus 
(52) is valid. 
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