Z. Wahrscheinlichkeitstheorie 1, 25-27 (1962)

On the Continuity of the *L*-Distribution Functions

By

MAREK FISZ*

1. Introduction and Summary

The distribution function (d.f.) F(x) is called infinitely divisible (i.d.) if its characteristic function (ch.f.) $\varphi(t)$ satisfies for every positive integer *n* the relation $\varphi(t) = [\varphi_n(t)]^n$ with $\varphi_n(t)$ a ch.f. KHINTCHIN [4] has shown that the ch.f. $\varphi(t)$ of an i.d.d.f. is representable in the form

(1)
$$\log \varphi(t) = i \gamma t + \int_{-\infty}^{\infty} A(u, t) \left[(1+u^2)/u^2 \right] dG(u)$$

where

$$A(u, t) = \exp(iut) - 1 - itu/(1 + u^2)$$

and where γ is a constant, G(u) is a non-decreasing function of bounded variation and the integrand at u = 0 equals $-t^2/2$. The representation (1) is unique.

An alternative formula for $\log \varphi(t)$ has been given by LÉVY [6]

(1')
$$\log \varphi(t) = i \gamma t - \frac{1}{2} \delta^2 t^2 + \left[\int_{-\infty}^{0-+} \int_{0+}^{\infty} A(u, t) dH(u) \right]$$

where γ and $\delta \ge 0$ are constants, H(u) is defined and non-decreasing for u < 0and u > 0, $H(-\infty) = H(+\infty) = 0$ and, for any finite $\varepsilon > 0$,

$$\left[\int_{-\varepsilon}^{0-} + \int_{0+}^{\varepsilon} u^2 dH(u)\right] < \infty$$

As has been shown by KHINTCHIN [5], the class of i.d.d.f. is equivalent to the class of all limits in the sense of weak convergences (iwc) of sequences $F_n(x)$ of the form

(2)
$$F_n(x) = P\left(\sum_{k=1}^{k_n} y_{nk} - A_n < x\right),$$

where y_{nk} is a double sequence of independent and infinitesimal random variables (r.v.) and A_n is some sequence of constants.

The i.d.d.f. F(x) is said to belong to the class L ($F \in L$) if it is the limit *iwc* of $F_n(x)$ given by (2) with $k_n = n$ and $y_{nk} = y_k/B_n$ (k = 1, ..., n) where B_n is some sequence of constants.

If $F \in L$, the function H(u) assigned to F by formula (1'), has at any point u < 0 and u > 0 right and left derivatives, and uH'(u) is nonincreasing for

 $[\]star$ Research supported in part by National Science Foundation Grant NSF – G14146 at Columbia University.

MAREK FISZ:

u < 0 and u > 0, where H'(u) denotes either the right or the left derivative. The function H(u) satisfies for arbitrary $u_1 < u_2 < 0$ and for arbitrary $0 < u_1 < u_2$ the inequality

(3)
$$H(u_2) - H(u_1) \ge H\left(\frac{u_2}{\alpha}\right) - H\left(\frac{u_1}{\alpha}\right)$$

for any $0 < \alpha < 1$. (See GNEDENKO and KOLMOGOROV [2], § 30.)

It has been stated that all d.f. $F \in L$ are unimodal. A counter example, due to IBRAGIMOV [3], invalidated this statement. It is the purpose of this note to prove that all non-degenerate L-distribution functions satisfy a weaker property, namely that they are continuous.

2. The Theorem and its Proof

Theorem. Any non-degenerate d.f. $F \in L$ is continuous.

Proof. If δ in formula (1') is positive, F is continuous because it is a convolution of two d.f. one of which is Gaussian. Before considering the case $\delta = 0$, we shall prove the following

Lemma. Let the distribution function $F \in L$ and let H(u) correspond to F by formula (1'). Then for u < 0 (u > 0) the relation

(4)
$$\lim_{u \uparrow 0^-} H(u) = \infty \qquad (\lim_{u \downarrow 0^+} H(u) = -\infty)$$

holds, unless $H(u) \equiv 0$ for u < 0 (u > 0).

Proof of Lemma. Suppose that $H(u) \equiv 0$ for u < 0 and that relation (4) does not hold. Since H(u) is nondecreasing, it would be

(5)
$$\lim_{u \uparrow 0^-} H(u) = a < \infty,$$

and, by the continuity of H(u), it would be possible to find for arbitrary $\varepsilon > 0$ and $\eta > 0$ two numbers $u_1 < u_2 < 0$ such that $|u_1| < \eta$ and $H(u_2) - H(u_1) < \varepsilon$. Since η is arbitrary, it would then follow from formula (3) that the increment of H on an arbitrary large interval $\left[\frac{u_1}{\alpha}, \frac{u_2}{\alpha}\right]$ is less than ε . Taking into account that $\varepsilon > 0$ may be arbitrarily small, we would get $H(u) \equiv 0$ for u < 0, contrary to the assumption; relation (4), therefore, holds.

The case of u > 0 may be proved in the same way. The Lemma has thus been proved.

Let now in formula (1') be $\delta = 0$. By assumption, F is nondegenerate and, therefore, $H(u) \equiv 0$ either for u < 0 or for u > 0. Suppose that $H(u) \equiv 0$ for u < 0. By the Lemma proved, we have

(6)
$$\int_{-\infty}^{0^{-1}} dH(u) = \infty.$$

Since, for u < 0,

$$\int_{-\infty}^{0-} dH(u) = \int_{-\infty}^{-0} \frac{1+u^2}{u^2} \, dG(u) \,,$$

and taking into account that G(u) has bounded variation, relation (6) implies

(7)
$$\int_{-\infty}^{0^-} \frac{1}{u^2} dG(u) = \infty.$$

By a theorem of BLUM and ROSENBLATT [1], relation (7) implies continuity of F.

References

- BLUM, J. R., and M. ROSENBLATT: On the structure of infinitely divisible distributions. Pacific J. Math. 9, 1-7 (1959).
- [2] GNEDENKO, B. V., and A. N. KOLMOGOROV: Limit distributions for sums of independent random variables. Addison Wesley, Cambridge, 1954.
- [3] IBRAGIMOV, I. A.: A remark on the class L of probability distributions. Teor. Verojatn Primen 2, 121-124 (1957).
- [4] KHINTCHIN, A. YA.: Deduction nouvelle d'une formule de M. Paul Lévy. Bull. Univ. État Moscou, Sér. Int. Sect. A. Math. et Mécan 1, Fasc. 1, 1, 1-5 (1937).
- [5] KHINTCHIN, A. YA.: Zur Theorie der unbeschränkt teilbaren Verteilungsgesetze. Rec. math. Moscou, N. s. 2, 79-120 (1937).
- [6] LÉVY, P.: Théorie de l'addition des variables aléatoires. Gauthier-Villars, Paris, 1937.

220 West 104th Str. New York 25, N.Y.

(Received October 10, 1961/January 18, 1962)