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1. Introduection

The concentration function @(X; A1) of a random variable X is a function of
the positive variable A defined by

QX;)= sup PesX<z+41), i1>0.

— oo <X <o
The following fundamental properties of the concentration function are easy

to prove. It is a bounded non-decreasing function of A. If « is a real positive number,
then

QX;0l) = (] + D QX5 )

where [«] is the integer part of . Further, if X and Y are independent random
variables

QX + Y;2) = Min(Q(X; 2); Q(Y;2).

In the following — with the exception of the last section where random vectors
are considered — let X;, X3, ... be a sequence of independent random variables

n
and S, = z X By C1, Cq, ... we denote positive absolute constants but for the
k=1

sake of brevity we also let the same C without index denote generally different
positive absolute constants.

The uniform distance between the distribution function F, of S, and the family
of infinitely divisible distribution functions was studied by KoLmocorov [7], [9]
and between F, and suitably chosen Poisson exponentials by Lr Cam [10], [11].
In Kormocorov’s as well as in Le Cam’s investigations a certain inequality for
Q(Sx; ) plays an important part. The original KorLmocorov version of this in-
equality, stated in [7] and proved in [8], was later improved and generalized by
Rogozix [12], [13] who, combining KorLmocorov’s methods with a combinatorial
lemma of SPERNER, was able to prove the following inequality.

( Kolmogorov-Rogozin ). For any positive A1, Aa, ..., An < A, one has
n —-1/2
(4) Q(Sn;z)goz(zzi(l—ce(xk;ak») .
k=1

A somewhat more general Kolmogorov type inequality is the inequality (B)
below, from which (A) easily follows.
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Let A1, A2, ..., An be positive numbers less than or equal to A. Asswme that there
are numbers by and oy such that
P(Xkébk—%)g“k: (X]c>b]{;+ )>ock, k=12 ...,n.
Then
n -1/2
(®) Q(Sn;z)§_01<zzl‘iak>
k=1
A proof of this inequality in the case A4y = A3 = -+ = A, can be found in

Lz Cam [10] where KoLMocorov’s method of proof is used.

In an earlier paper [5] the present author, using characteristic functions, was
able to give a new proof of the inequality (A); at the same time some multi-
dimensional generalizations were obtained. With respect to one of the results of
the present paper it should be noticed that the inequality (C) stated below was
implicitly proved in [5]. Throughout this paper the following notations will be used.
If X is a random variable with the distribution function F (x) we denote by X'
a random variable independent of X and with the same distribution and by Xs the
symmetrically distributed random variable X$= X — X’. The distribution
function of X* is denoted by F's(x).

For any positive A1, As, ..., An = A, one has

(© Qi 1) = 01(%%%1’(121;[[ g%}))_l’z
k=1

Incidentally, let us show that the inequalities (A) and (B) are consequences
of (C). From
P(|x;| =4

31— QX — Xis ) 21— Q(Xas )

it is seen that (C) implies (A). To show that (B) follows from (C) we apply the
following simple lemma:

Lemma 1.1. If X is a random variable such that

A A
P(X<bt—3)za, P(XZb+y)2a, 120,
then
A
P(|xs|z5) 25
Proof. Evidently we can assumme that b = 0. Let x4 be the median of X and
suppose first that g < 0. Then

PlX-X|z4)=P(Xz5; X' <0)=P(X=

=5 P =0 =

o
_2— .
The case y = 0 is treated similarly.

In this paper we shall obtain some further estimations of @(S,;4). Our
starting point is the Main Lemma stated and proved in the next section by means
of which we get lower and upper bounds of the concentration function @ (X; A)
of a random variable X; these bounds depend explicitly on the characteristic
function of X. To prove the lemma we use a certain convolution method which was
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applied in [5] and earlier by Rosfx [14] to obtain the upper bound. In the same
section we also prove a rather general inequality by means of which the upper
bound in the Main Lemma can be estimated. In this way we get an inequality for
@ (Sa; A) which containg (C) and new proofs of two inequalities for the con-
centration function of an infinitely divisible distribution earlier obtained by
LuCawm [10]. These results are contained in section 3. In the following two sections
we restrict ourselves to identically distributed non-degenerated random variables.
It is shown that @(Sx; A) is exactly of order #~1/2 if and only if the second order
moments of the summands are finite. Further, estimations of @ (S»; 1) are obtained
in the case where the common distribution function of the summands belongs to
the domain of attraction of a stable law. Finally, in section 6, we consider some
multi-dimensional generalizations.

2. Two Basic Lemmas

We shall prove two lemmas the first of which, the Main Lemma, gives us a
lower and an upper bound for the concentration function ; the second lemma will
be applied to the upper bound in the Main Lemma.

Main Lemma. Let X be a random variable with the concentration function Q(X; 1)
and the characteristic function f(t). There are two absolute constants C1 and Cz
such that

A
2.1) 011—

b[2 o
—57 JIOFd < Q(X;2) < Caat [|f(2)] dt
B2 —y

where b is an arbitrary positive parameter and a is a parameter satisfying 0 < aAZx
but otherwise arbitrary.
Proof. We introduce the auxiliary functions

H@) =), we = -
Then
= festane)ds.

Let F (z) be the distribution function of X. It is easily seen that

(2.2) j H(a £)dF (x) = a1 j fE) h(t/a)etts dt

where @ and & are real parameters and a > 0.

The right hand side of (2.1) was already proved in [5] where our starting point
was the relation (2.2). In that paper we chose a1 = = but the inequality is still
true with the same constant Cs if 0 < al < .

The left hand side of the inequality (2.1) may also be proved by means of the
relation (2.2) if we replace F (x) by Fs(x), thus f(f) by |f(t)|2, and set & = 0. The
following method, however, is simpler.

Let the random variable U have the characteristic function % (/b) and be
independent of X, Consider the random variable ¥V = Xs 4 U with the charac-



On the Concentration Function of a Sum of Independent Random Variables

teristic function |f(#)|2A(£/b). Then
(2.3) RQX; ) =Q(V; 4).
From the inversion formula for characteristic functions we get

sint/b

i di.

b
P(|V| gb—1)=(nb)—1fb|f<t)\2(1 — |t]/p)

Applying the inequality
sinz/r =27t for |z| < m/2

we have
(2.4) QUV;20 ) =PIV ) = b—ln—zlﬁf(mzdt.
But o

QV;20 ) =COATI+H DRV =204+ BA1QV;A),
and hence from (2.3) and (2.4)
QXN = b e (0P
which is the desired inequality. "

293

Remark. The factor A(1 4 &1)~1 of the left hand side of (2.1) tends to zero
as const. A as 4 — 0. This must necessarily be the case since, for instance, for the
normal distribution @(X; ) ~ const. - 1as A — 0. On the other hand A(1 + b1)-1

is bounded as A4 — oo. This is also necessary since @(X; 1) < 1.

The following lemma is stated in such a way that it can be immediately applied
to an infinitely divisible distribution. The measures My of the lemma have the
same properties as the measure occurring in L#ivy’s canonical representation of the

characteristic function of an infinitely divisible distribution.

Lemma 2.1. Let My, My, ..., M, be non-negative measures on the Borel sets of

the real line deprived of the origin with the properties

© My ((— o0, — &) + Mg((e, + o0)) < oo
for every e > 0,
1
-1
Let % be a positive constant and o2, 62, ..., o2 non-negaiive constants.

For arbitrary positive A1, A, ..., An =< A the following inequality is valid:

(2.5) }‘Iéxp {— Py f (% 0212 |- r(l — costx) My (dx))} dt
k=1

~1/4 — 0

< 0%—1/2( i (o‘% -+ f x2 My (dx) + 22 f My (dac)>>—l/2 .

k=1 le| < e lo| = i

Proof. We shall prove the inequality (2.5) by a method which is very similar to
that used to prove an inequality occurring in [5]. This latter inequality is an
immediate consequence of (2.5). However, since the paper [5] was written we have
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realized that a certain simplification of the proof is possible. We shall use this
simplified method to prove (2.5).
Applying the inequality

11
1—cosz= -ﬂxz for |z| =1

we have for [#| < A1

(2.6) _r(l — costx) My (dx) = f(l ~— costz) My (dz)
—00 2] <
+ J‘(l — costx) Mg (dx) >—4 tzj'szk(dw)
|2] =% 2] <2e
—i—f (I — costa) My(dx).
EJE2

Let us denote by I the left hand side of (2.5) and let us introduce the quantities

n

(2.7) vi = [ 22 My(dx), => 0+ ), pe= | Mp(da).

lo] < A k=1 l&) = A
From (2.6) we obtain

n
(2.8) I fexp {__ll_%cztz} [Texp {— % | (1 — costa) Mk(dx)}dt
—1/a k=1 A=A
Let

o =202, ar=xiip; for k=1,2,...,n

(2.9) A= fak =x) (a,% + [ My (da) + 2% ij(dx)>,

k=0 k=1 2] < |zl =4
pr=oar/d for k=0,1,.

As is easily seen we may suppose without loss of generality that all 85 are positive.
From Holder’s inequality applied to (2.8) we get

1/ Bo
@210) I< ( fexp {_ A dt)
~1/4
n 1/ oo B
n( j'exp{——AZ,;‘zj‘(l-costx)Nk(dm)} dt) )
k=1\—-1/4 — oo
where

Mk dm)/pk for |z| = Ak
roe| <
is a probability measure.
We shall estimate each of the integrals of the right hand side of (2.10). We
easily find that
12

@2.11) Ip= | exp {— - Atz} & <0412,
-1/
To estimate

1f1 oo
I, = _fexp{— A2l — costx)Nk(dx)} dt
~1a

— o0
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we apply Jensen’s inequality for continuous convex functions. Let ¢ be a con-
tinuous convex function and ¢ a real function of a random variable X. Then

9B (X)) = Bg(p(X)),

provided the two sides of the inequality have a meaning. Since e~% is convex we
obtain from Jensen’s inequality with ¢ (z) = A2 *[(1 — costz) that

exp{ Alszl—costx)dex)} J'exp{ A2%(1 — costz)} Ny(dx).

—c0 — oo

(The simplification of the proof mentioned above consists of the use of Jensen’s
inequality. In [5] a Riemann-Stieltjes integral was approximated by a Riemann-
Stieltjes sum.) Thus, changing the order of integration we obtain

14
L ( fexp{—AZ,f(l——costx)}dt)Nk(dx).
2] 24, \—1/2

For | x| = A it is easily shown as in [5] that
14

Jexp{— A 4731 — costx)}di < CA-V2
and hence —
(2.12) I, < 0A-12,
From (2.10), (2.11) and (2.12) we finally get

I<0A4-12,
A being defined by (2.9), and the lemma is proved.

3. Bounds for the Concentration Funection

In this section we shall combine the Main Lemma and Lemma 2.1 in order to
obtain further estimations of the concentration function. We begin by proving
an inequality for @(Sx»; 4); it will turn out that the inequality (C) and hence the
inequalities (A) and (B) in the introduction are consequences of this inequality.

By the censored variance (at 1) of a random variable X with the distribution
function F'(x) we understand the quantity D2(X; 1) defined by

D2(X; ) = 2~2fx2dF —|—de A>0.
|z]<4 [FTIES
(For 4 = 0 we set D2(X; 0) = P(X = 0).) It is not difficult to show that
(i) D2?(X; A) is a non-increasing function of 4, 1 = 0,
(i) D2(X; A) = 0 for some A = 0 if and only if the distribution of X is degen-
erated at zero,
(i) D2(X;2) = w2 [a2dF(x) for uw=2.

|z] zu

Theorem 3.1. For any positive A1, Az, ..., An = A, one has

(3.1) Qs 1) = oa( S oy m)‘m
r=1



296 C. G. EsSEEN:

‘We observe the following special cases of the inequality (3.1). For 11 = 4 =
= An = 1 we get

(32) Q(Sa; ) §O(§D2( 2;2))*”2.

=1
If, furthermore, the summands are identically distributed, then
(3.3) Q(Sa; A) = C(D(X3; M) 1n 12,

((From the property (ii) of D2(X; 1) we know that D(X$; 1) = 0 iff X; has a
degenerated distribution.)

Proof. Let X; have the distribution function Fjy(x) and the characteristic
”
function fi (). Then S, has the characteristic function ka (t). From the right

k=1
hand side of the Main Lemma applied to 8, we get with @ = A1

1/4 =n
(3.4) Q(Sa; 2) =C2 | []lfx®)|dst.

—1/A k=1

|7 ®)] < exp{— 11— |fx(t)|?)}

Using the inequality

and observing that

1—|fet)|2= T(l — costx) dF} (x)

we obtain from (3.4)

1/ oo

(3.5) Q(Sn;l)gCglfeXp{—%z f (1 — costwx)dF; (@ )}dt.
—1/4 k=1 —oo

The integral above is of the type encountered in Lemma 2.1 with the exception

that Ff (z) may have a jump at the origin. It is, however, easily seen that the lemma

is still applicable. Using (2.5) we get

Q(SnsA) = C’Z< i ( { 22dF} (x) + llchdF,i(x)))_llz

=1 \|z| </ e
and the theorem is proved.
With regard to later applications we shall state another inequality for @ (Sx; 4).
In the same way as (3.5) was obtained we get from the Main Lemma

Q(Sn; 1) £ Coat fexp {—— 3 i jfo(l — costm)dF,sc(x)} dt

—a k=1 —oo

where 0 << ¢4 =< 1. To the right hand side of the above inequality we apply the
inequalities

o )¢
J (L — costa)dF(x) = fi([ — costx) dFS (x) = o1 24 L 2 (0)

—_— o0

where
Yl
(3.6) pe(t) = | 22dF} ().
—1/]#|
Thus we have proved the following lemma.
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Lemma 3.1.

(3.7) Q(Sn; 1) < Cal faexp {——- %tzizpk(t)} dt,
—a k=1

where 0 << al < 1 and yy(t) is defined by (3.6).
Since g (£) is an even function and non-increasing for £ > 0 we get from (3.7)

a 11 7 7 -1/2
Q(Sn; 1) =< Oa—lfexp{—— =7 z«,uk(a)}dt < Oa—l( > 1/119(6!)) ,
“a B=1 k=1
where 0 < ai = 1. Putting ¢ = u~1 we obtain from the last inequality and the
definition of yy (f) the following theorem.

Theorem 3.2.
n -1/2
(3.8) QS ) =0 <sup w2y [a2dF (w)) .

uzi k=1 |z]|=u

Remark. Theorem 3.2 is a consequence of Theorem 3.1 and relation (3.2) in
particular, if we observe the property (iii) of the censored variance stated in the
beginning of the section. We have, however, preferred to prove the inequality
(3.8) directly since the multi-dimensional generalization of the proof is almost
immediate.

By means of the Main Lemma and Lemma 2.1 we shall give a new proof of two
inequalities for the concentration function of an infinitely divisible distribution
obtained by L Cam [10].

Theorem 3.3. (Lt Cam). Let the random variable Y have the infinitely divisible
characteristic function g(t) with the Lévy canonical representation
itx

(3.9) g(t) =exp {iat — 102124 T (em —1— mg) M(d:c)} ,

where a and o are real constants and the non-negative measure M sabisfies the same
conditions as the measures My in Lemma 2.1.

There are two absolute constants Cs and Cy such that

(3.10)  CsMin (1402 4 [ 2 M (da)) %) exp [ [ M (d)]
le| <4 le|’z2
=Q(Y; )= 043-(02 + [ 22 M (dx) + 22 J‘M(dm))—l/z.

z] <4 jz]=2

Proof. We begin by proving the right hand side inequality. Since

lg@)| = exp{— 10212 — j.‘o(l — costx)M(dx)} )

- 00

it follows from the Main Lemma with ¢ = A-1 that

1/ oo
QY; 1) =02 fexp {— 30282 — f(l — costx)M(dx)}dt
—1/a

—_— 00

and the proposed inequality immediately results from Lemma 2.1 with » = 1.

21 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 9
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To prove the left hand side inequality we write g () as

g (f) = exp {ia’t — %0212 —l]—lf (em —1 ——l—ixx—z) M(dx)}
z|<2

exp { | (eite — I)M(dW)] =g1(8)g2(%),

|zl =4

where a’ is a new constant. Thus ¥ = U 4 V where U and V are independent
random variables with the characteristic function gi(t) and gz (f) respectively.
From the expression of gz (¢) it is easily seen that

(3.11) P(V = 0) = exp {—jM(dx)} .
But ol =2
(3.12) QY;)=QU+V;)=ZQU; )P(V=0).

A lower bound for @ (U; A) is now obtained from the Main Lemma. We find with
b = A-1 that

1/24
(B.13) Q(U;l)=1Cilfexp [ —o22—2f(1— costw)M(dm)} dt
~1/24 |zl <4

1/224
2}0uhoxp [ — o — 2 {23 da)) dr.
—1/24 jwl <4

From (3.11), (3.12) and (3.13) the left hand side of the inequality is easily obtained.

Remark 1. If we apply the Main Lemma directly to ¢ () in order to find a
lower bound we get the factor exp [ —4fM (dx)l instead of exp l —fM (dw)} .

|z} =2 |zl =2

Remark 2. By means of the inequalities (3.10) the following theorem of
Dozxprixn [3] is easily proved: In order that the infinitely divisible distribution
function with the characteristic function (3.9) have at least one point of discon-

tinuity it is necessary and sufficient that ¢ = 0 and J'M (dx) < oo.

— 0

4. The Concentration Funetion of a Sum
of Identically Distributed Independent Random Variables

In this and the following section we assume that the random variables X1, X, ...
have the same non-degenerated distribution function F(z). The corresponding
characteristic function is denoted by f(¢). The function y () is defined by

1/]¢]
(1) () = [22dFs (2);
~1/}¢]
evidently y(f) is an even for ¢ > 0 non-increasing function. It is easily seen that
limyp(t) < oo

t—>0

if and only if & (X}) < oco.
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From Lemma 3.1 we find that
% 11
4.2) Q(Sn; 1) < Ca-1 [exp {—-zs—ntzzp(t)}clt,
—a

where @ is fixed but so small that 0 < a1l <1 and y(e) > 0. This is always
possible since the distribution function F(z) is non-degenerated.

Let us now suppose that E(X%) = + oo, ie. limy(f) = - co. Then for
0 < ¢ < a we get from (4.2) -0

Q(Sx; ) éC’a‘lfexp ’——%ntzw(e)} dt

4 Qa1 fexp { —i n 12 (a)} dt
y 11
= 01(ny(e)) V2 4- Gan~1/2 fexp { — 5 uz} du ,
s(nyp(a))ti?

where §; and 03 are constants not depending on # or &. Choosing ¢ = #n~/4 we have
lim g (n=1/4) = 4 co and thus

n—o0o
Q(Sn; Ay =o0(mn12), n-—>oo.

Theorem 4.1. Let X;, X3,... be independent, non-degenerated, identically
distributed random variables and E(X?%) = -+ oco. Then for every fixed 1
QSn;A)=o0mV2) as n-—>oo.
It is seen from the proof of Theorem 4.1 that the faster the integral J' 22dFs (x)

diverges the faster will @ (Sa»; 1) tend to zero as # — oo. This observation is con-
firmed by the next theorem.

Theorem 4.2. Let X3, Xo, ... be independent, identically distributed random
variables such that
ﬂrzE(lelr) << o0,

where r is a constant and 0 < r < 2. Then
(4.3) Q(Sn; Ay = K(r) A(A + (n B {(a))r)1,

where fr(a) = E(| X1 — a|") and a is arbitrary.
The constant K (r) depends only on r and may be given the value

Ky AT DTEEI S 0 <r <2
)= 1/3)/3 if r=2.

Remark. For moderately large A it may be preferrable to write (4.3) in the
form

(4.4) Q(Sn; A) Z K(r) A(A + (Br(a)V/r)y-1nVr,

valid for all 4 but less suitable if 1 is large.
If, in particular, var X; = 02 << co we have

4.5) Q823 2) = 1/3)/34(2 + o)/ n)™ Z 1/3)/34(A + o) 1n-V2.

21*
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Proof. It is possible to prove Theorem 4.2 by means of the Main Lemma and
the inequality |f(1)|2 = 1 — Ki(r)Br(a)|t]", 0 < r < 2, where K;(r) is a positive
constant only depending on 7. The following direct method is, however, simpler.
We restrict ourselves to the case 0 << r << 2.

Let us write

85 =8n—8,=>X}
k=1

and f; = E(|X}|"). From a moment inequality proved in [1] and valid for
symmetrically distributed independent random variables we get

(S| =np;
and hence from the Markov inequality
P8 = knptm) 21—k,

where k£ > 1. Thus
Q(Sn; 2(kn ) =1 — kL.

Since
Q(Sh; 2(kn V) < (2472 (kn BV + 1) Q(S55 4)
we get
Q(Sn; ) 2 QS A) Z A(A + 2(kn fr)1)~21 (1 — k7).
But
Bi=E(X1— X{|n) <27 B (| X1 — a|")
whence

Q(Sa5 1) Z 120+ (0 fr(@)V)r (L — k).

For k= r 4+ 1 the function £~Vr(l — k1) is as large as possible whence the
constant K (r) of the theorem.

If r = 2 we proceed similarly but apply Chebyshev’s inequality.

The next theorem is an immediate consequence of Theorems 4.1, 4.2 and 3.1.

Theorem 4.3. Let X1, Xa,... be a sequence of independent, non-degenerated
random variables with the same distribution function F (x). If and only if B (X3) < co
there exist positive constants K1(4, F) and Kg (A, F) only depending on A and the
distribution function F such that

K1(A, F)n 12 < Q(Sn; ) = K2 (4, F)n12, n=1.

5. Stable Limit Laws

In this section we shall suppose that the common distribution function F (x)
of the independent, non-degenerated random variables X7, X3, ... belongs to the
domain of attraction of a stable law with exponent «, 0 < « < 2. A positive
function L(x) defined on (0, 4 oo) is called slowly varying at infinity if for

every a >0
L@z) 1
L@ — 77

lim
2>+ oo

For a thorough discussion of the properties of slowly varying functions, see
Ferrer [6, Ch. 8].
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To begin with, let us consider the case 0 << a <C 2. As is well known (see for
instance FELLER [6, p. 544]), in order that F (x) belong to the domain of attraction
of a stable law with exponent «, 0 < o < 2, it is necessary and sufficient that
6.1) 1—Fl)+ F(—x) ~z*Lx), z->- oo,
where L(x) is slowly varying at infinity, and

1— Flx) F(—x)

62 T-rmrrce TP Torm a1 % e

where p =0, ¢ =0, p+g=1.

From known properties of such a distribution function ¥ (z) and its correspon-
ding characteristic function f(t) it is not difficult to prove the following lemma.

Lemma 5.1. Let the distribution funciion F(x) satisfy the conditions (5.1) and
(6.2). Then
[f®)]2 ~1—Ka()|t[*L(|t[Y) as t—0,
where
T
Ko (o) = 2I'(1 — &) cos B
7 if a=1.

if 0<a<<2, =+l

For a corresponding result, see FELLER [6, p. 562, problem 12].
From Lemma 5.1 we easily get:

Lemma 5.2, Let the distribution function F(x) satisfy the conditions (5.1) and
(6.2). There are positive constants a and b (depending on I') such that

[1()|2 < exp{— $ Ko ()|t|*L(|t|" )} for [t|=a
[0 = exp{— 2Kz (o) [t L(|t[ )} for [t]=b.
We now choose the parameters ¢ and b in the Main Lemama so small that the

inequalities of Lemma 5.2 are valid and obtain

b2
(63)  Cipor | ep{—20Ka@)|[t|*L(tD}dt < Q(Sn; 1)
—b/2

= C’ga—lfexp [——%KZ(M)M“L(M—I)} dt,

where, furthermore, ¢ is so small that 0 < al < 1.

The distribution function F(x) belongs to the so called normal domain of
attraction of the stable law if the conditions (5.1) and (5.2) are satisfied and,
furthermore, lim I (z) = ¢ where ¢ > 0 is a constant. The next theorem follows

z— 4 o0

from (5.3) after some easy calculations.

Theorem 5.1. Let the distribution function F () belong to the normal domain of
attraction of a stable law with exponent ., 0 << a0 < 2. There exist positive constants
Ks3(4, F)yand K4(A, F) only depending on A and the distribution function F such that

(5.4) K3(A, F)n-Ve < Q(Sn; 1) < K44, F)n-Ve, n=1.
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Remark 1. Theorem 5.1 is also true if & = 2 and F (2) belongs to the normal
domain of attraction of the normal law. Then E(X?) < oo and by Theorem 4.3
the inequalities (5.4) are still valid with « = 2.

Remark 2. ¥From (5.4) it follows that the jumps, if any, of the distribution
function of S, are 0(n-1/2).

Remark 3. Let F(x) satisfy the conditions of Theorem 5.1. Then there are
norming constants @, such-that the distribution function F, (z) of

X+ Xp At + Xy

nlla — Yn

tends to an infinitely divisible distribution function Dy (z) with exponent « as
# — oo, If one could prove that

(5.5) | Fa(e) — Dy(2)| < K(F)n-a, —oo<z< oo,

where K (F) depends only on F, the inequalities (5.4) would be immediate con-
sequences. It is possible to show that (5.5) is true if one assumes that F (x) satisfies
certain further conditions. For the best known results in this direction, see
CraMER [2].

Let us now consider the general case where it is only known that F (x) belongs
to the domain of attraction of a stable law with 0 << a < 2. Applying the inequality
(5.3) and the inequality

¢ < Lx) < xt

valid for every fixed ¢ > 0 if « is sufficiently large one obtains the following result.

Theorem 5.2. Let the distribution function F (x) belong to the domain of aftraction
of a stable law with exponent o, 0 << o0 << 2. Then fo every ¢ such that 0 < ¢ < o
there correspond positive constants Ks(A, e, F) and K¢(4, ¢, F) only depending on
A, ¢ and the distribution function F such that

K52, &, F)n= =9 < Q(8n; 1) < Ko(d, 8, F)n~ Y+, 5 =21,

Let now o« = 2 and suppose that F (x) belongs to the domain of attraction of the
normal law, This is the case if and only if
&
(5.6) Jy?dF (y) = L(x),
-z
where L () is slowly varying at infinity. The case B (X%) < oo has already been
treated by Theorem 4.3 and Remark 1 of Theorem 5.1. In the sequel we thus
suppose that E(X?) = + oo. Then the function L(z) defined by (5.6) is non-
decreasing for z > 0 and lim L (x) = + oo. From (5.6) it is not difficult to show
that &>t oo

5.7) fyZdFs(y) ~2L(x) as x> co.

-z

The next lemma is easily proved by means of (5.7) and the relation

1—|f@)|2= f’(l — costx)dFs (z).

-0



On the Concentration Function of a Sum of Independent Random Variables 303

Lemma 5.3, If I (x) satisfies the condition (5.6) there are constants & and b such
hat
[f) |2 S exp{—42L(|t| )} for [t|<Za

[f(£)|2 = exp{—42L(|¢|-1)} for |t]| <D.

In the same way as (5.3) and Theorems 5.1 and 5.2 were obtained we use the
Main Lemma and Lemma 5.3 to prove the following theorem, observing that L (z)
is non-decreasing.

Theorem 5.3. Let the distribution function F () belong to the domain of aftraction
of @ normal law and suppose that the function L (z) defined by (5.6) tends to infinity
as x — + oo. Then to every & such that 0 < ¢ < 1/2 there correspond positive
constants Kq(, &, F) and Kg(A, ¢, F) only depending on A, ¢ and the distribution
function F such that

E7(3, & F) (n L(nV/2+e))1/2 < Q(Sn; 1) < Ks(A, &, F) (n L(nl/2-€))-1/2, 5 =1.

6. Some Multi-Dimensional Results

Most of the theorems obtained in the previous sections have more or less
straight-forward multi-dimensional generalizations. We will confine ourselves to
multi-dimensional versions of Theorems 3.1 and 3.2.

A point or vector (41, %a,...,4) in R" will be denoted by ¢ and we write

= dt1dls. .. dfy. The norm of ¢ is defined as |{| = < Z tk> and the inner product
of two vectors ¢ and x in R” as (¢, z) Zthk By the same C(r) we shall under-

stand generally different, positive constants only depending on 7.

A multi-dimensional generalization of the one-dimensional concept of con-
centration function can be defined in several ways. We shall restrict ourselves to
the simple case where the concentration function is defined with regard to spheres.
Let X be a random vector with values in R and X, (€) a sphere in Rr with radius
o and center £. Then the concentration function of X with regard to spheres in Rr
of radius g is defined by

Q(X;Ze)=EU£P(X62@(E))-

Let us first state a generalization of the right hand side inequality of the
Main Lemma.

Lemma 6.1. Let X be a random vector with values in Rr and the characteristic
function f(£). Then

(6.1) QX;Zp)<C(r) —rj]f(t)[dt for 0<ap=1.

Proof. We introduce the auxiliary functions
H(x)=2ra2I'(1 + r[2)| 2|~ (Jra(|x]/2))2,
where J,,2 is the Bessel function of order r/2, and

h(t) = (2m)~ [e e H () de.
Rr
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Then £ (¢) is a function of |¢[, 2(0) =1, 0 < h(f) <1 for all £ and 2 () = 0 for
|£] = 1. For a proof of these properties of H (x) and k(f), see for instance ESSEEN
[4, p. 101]. From

H (z) = {cos(t, ) h(t) dt>j 1—L|z2|t|)h@)dt = HO)(1 — }|=]?)
Rf
we see that
(6.2) Hx)=3H(0)=1}%

a2

(L +7/2)

Let P(B)= P(X € B) where B is a Borel set in Rr. Consider the easily
proved relation

(6.3) jH (@ — &) P(dx) = a" [ () h(t/a)e""G0dt,

[t =a

|| =1.

where a is an arbitrary positive parameter and & € R7. Using (6.3) and (6.2) and
proceeding as in the one-dimensional case we find that

Q(X; o) <2(H0)ta [|f(t)|dt for 0<ap=1
|¢] e
and the lemma is proved.

Let X1, Xg, ... be a sequence of independent random vectors with values in

Rr and denote the corresponding probability distributions and characteristic
n

functions by Py (B) and fy (f) respectively. Let S, = Z Xy. If X is a random vector
F=1

with probability distribution P (B), let X’ be a random vector independent of X
and with the same distribution and let Ps(B) denote the probability distribution
of X — X'. Further, the quantity yx(u) is defined by

(6.4) xr (u) = inf j' (¢, )2 Pi(dx),

[t]=1 jz|<u
i.e. yx (u)is the least eigen value (possibly zero) of the non-negative quadratic form
{ (¢, )2 P} (da)

2| <u
of the variables #y, t2, ..., ;. Obviously,
(6.5) J @, 2)2 Pi(dw) = g () |2]2,

o] <u

and yz(u) is a non-decreasing function for v > 0. If the distribution of X is non-
singular it is easily seen that yz(u) > 0 for all sufficiently large u.
With the above notations we state the following generalization of Theorem 3.1.

Theorem 6.1. For any positive g1, 03, ..., pn = @, one has

n ~1/2
(6.6) Q(Sn; Xp) = C(r) 9’( 208 [P(| XE| = ox) + Qk_Zch(Qk)]> .
E=1
Corollary 1.
(6.7) Q(Sn; 2e) = C(r ( 20— Xk;ZQk)])

-1/2



On the Concentration Function of a Sum of Independent Random Variables 305

Corollary 2. If the random vectors are identically distributed and 91 = g2 ="++"=0n
=1 = g, then
(6.8) Q(Sn; Zp) = C(r) (of1)r (1 — Q(Xy; 27))V2n12,

Remark. In [5, Th. 2] an inequality similar to (6.7) was stated with 2,
replaced by a rectangle and with the right hand side depending on the concentra-
tion functions of the vectors Xy, defined with regard to certain unbounded domains.
The concentration functions occurring in (6.7) are all defined in the same way
with regard to bounded domains, spheres. In this respect the new inequality is
more satisfactory than the older one. From (6.7) a Kolmogorov type inequality
for concentration functions defined with regard to rectangles can easily be obtained.

Proof of Theorem 6.1. Since the method of proof is in many respects similar to
that used in proving Lemma 2.1 and Theorem 3.1 we confine ourselves to the main
parts of the proof. From Lemma 6.1 we get

n

(6.9) Q(Sn; Zo) =C(r grfexp{— 1> [ (1 —cos(t, ) Pk(dx)}dt

[t} o1 k=1 R’
For |#] = o1

J'(l — cos (t, z)) Pi(dx) = 24 ax(or) |82+ [ (1 — cos(t, x)) Pi(dw),

|#] Zox

where yx(or) is defined by (6.4). Introducing the quantities pr = f Pidzx)

(where without loss of generality yz(oz) > 0 and pz > 0), o] = ex
n
(6.10) A =72 (o v + 08 * xx(or),
E=1

Bo=oi yr(en)/A, yi=oF pi/4,
and the probability measures
Pi(d {i =
Ny (dz) = % (dx)[pe for |z| = o
0 for le << Ok >

we get from Holder’s inequality

(6.11)  Q(Sx; Zp) éO(r)QTI_[( [ exp {* %9’%_2%”'2} dt)

=1 \[{|] Ze?
ﬁ(mi exp{—3o; ¥4 f(l — cos (¢, %)) N (dx) }dt) =C(r)o ﬂIﬂ"H Tyx.
Ee1 o1

Now
1/e

(6.12) I < 2oy | exp{ i; 9,3—27141,%} dty

—1/e

S O@) (grlo)1A-1V2 < C(r) A71/2.
We apply Jensen’s inequality to 7'; and obtain
Ty < _f ( fexp{— Tor2rA(1 — cos(t, x))}dt) Ny (dx).

|2 Zor \[t] o2
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Denoting the inner integral by U we have because of symmetry
Ur= [exp{— 205" A(1 — cos(|z|t1))}dt: ..

ftl=et
=< (2/o)- 1|x]—1 J'exp{— 072 A (1 — cosu)}du.
—|zlle
Since || = g and px < ¢ it is not difficult to show that

Up < C(r) A1
and hence

(6.13) Ty < O(r)A-V2.

From (6.11), (6.12), (6.13) and the definition (6.10) of 4 the proposed inequality
follows.

The proof of Corollary 1 is immediate.

Let us suppose for a moment that the random vectors Xj are identically
distributed and not equal to a constant vector a.s. It follow from Theorem 6.1
that Q(S»; 2,) = 0(n~1/2). It was pointed out in [5] that this order of magnitude
cannot be improved, at least not in the general case. If, however, the random
vectors are non-singularly distributed, Q(Sn»; 2,) should be of order n—1/2. We
have not been able to prove a simple Kolmogorov type inequality from which
results that Q(Sx; 2p) = 0(n~772) in the non-singular case, except if the distribu-
tions of the random vectors satisfy a certain symmetry condition [5, Th. 3]. From
an inequality which will be stated in the next theorem and which was hinted at in
[6] it follows that @ (Sx.; ) is in fact of order »~7/2, This inequality is the multi-
dimensional generalization of the inequality (3.8) of Theorem 3.2 and will be proved
in a similar way. — From now on we no longer assume that the random vectors
X, are identically distributed.

Theorem 6.2. Let yz(u) be defined by (6.4) and 0 < v = o. Then

—r{2
(6.14) QSn; Zo) <00 (o]) f(sup S g ) :
u=T k=1
Corollary. If the random wvectors are identically and non-singularly distributed

one has
Q(Sn; Xy) < C(r) (o]7) (sup w2y (u))—"/2 w2 for 0<v=p.

U=

(As was earlier remarked, supu—2y; (#) > 0if X; is non-singularly distributed.)

U7
Proof of Theorem 6.2. It is evidently sufficient to prove (6.14) for 7 = p. From
Lemma 6.1 we get
n
Q(Sn; Zo) = C(r) a—Tfexp {—- 1 2 (1 — cos(t, x)) Pk(dx)} dt,
1t] Za k=1 R
where 0 << ap < 1. Using
f (@ — cos(t,2)) Py(de) = | (1 — cos(t, z)) P} (da)
Rr le]=iel

11
=5 | 2)2 Py (dz) = o 24 xe (£ |82

lzISItl ot
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we have

|t] =a

11/( 2
Q(Sn; Xy = C(r)a~r f exp {— E(kzlxk(l t|“1)> lt]z} dt.
Since yx(u) is a non-decreasing function of « > 0 it follows that
n —r/2
Q(Sn; 2) = O(r) “_r( Z Xk (a_l)> .
k=1

Putting @ = u~1 and observing that u = p we get the desired inequality.

Recently Sazoxov [15] has obtained interesting results concerning estimations
of concentration functions of a sum of independent, identically distributed random
vectors, defined with regard to convex sets. The common probability distribution
P is supposed to satisfy certain weak additional conditions. SazoNov’s methods
are different from ours. From his results it follows that @ (S»; 2,) =< C(P, Vo)n1/2,
where C (P, V) is a constant only depending on the non-singular distribution P
and on the volume ¥V, of the sphere. However, an explicit expression of this
dependence is not given. In Theorems 6.1 and 6.2 such an explicit expression has
been obtained, even in the case of non-identically distributed random vectors, but
on the other side we have confined ourselves to spherical domains.
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