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1. Introduction 

The concentration function Q (X; A) of a random variable X is a function of 
the positive variable A defined by  

Q(X;A)---- sup P ( x ~ X < x ~ - 2 ) ,  2 > 0 .  
- -  c 0  < X < :  c r  

The following fundamental properties of the concentration function are easy 
to prove. I t  is a bounded non-decreasing function of A. I f  ~ is a real positive number, 
then 

Q(X; o:A) < ([~] ~- 1) Q(X; A) 

where [~] is the integer part  of ~. ~urther,  ff X and Y are independent random 
variables 

Q(X ~- Y; A) < Min(Q(X; A); Q(Y; 2)). 

In  the following --  with the exception of the last section where random vectors 
are considered --  let X1, X2 . . . .  be a sequence of independent random variables 

and Sn =- ~. X~. By C1, C2, ... we denote positive absolute constants but  for the 
k = l  

sake of brevity we also let the same C without index denote generally different 
positive absolute constants. 

The uniform distance between the distribution function/~n of Sn and the family 
of infinitely divisible distribution functions was studied by  KoLMoGol~ov [7], [9] 
and between ~ n and suitably chosen Poisson exponentials by Lw CAM [10], [11]. 
In  KOLMOGO~OV'S as well as in Lv. CA~'s investigations a certain inequality for 
Q (S~; A) plays an important  part. The original KOLMOGOgOV version of this in- 
equality, stated in [7] and proved in [8], was later improved and generalized by 
RoGoz ~  [12], [13] who, combining KOL~OGO~OV'S methods with a combinatorial 
lemma of SPEg~]~g, was able to prove the following inequality. 

(Kolmogorov-Rogozin). _For any positive A1, 2~ . . . . .  A, ~ A, one has 

(A) Q(S~; A) g CA (1 -- Q(Xk; A~)) 

A somewhat more general Kolmogorov type inequality is the inequality (g) 
below, from which (A) easily follows. 
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Let A1, A2 . . . . .  An be positive numbers less than or equal to A. Assume that there 
are numbers b~ and o:~ such that 

P(X~<~b~--22~)>=o:~, P ( X ~ > = b ~ + ~ ) > _ ~ ,  / c =  1,2 . . . . .  n .  

Then 
/ n \ - 1 / 2  

A proof of this inequality in the case A1 = A2 . . . . .  An can be found in 
LE CAM [10] where KOLMOGOI~OV'S method of proof is used. 

In  an earlier paper  [5] the present author, using characteristic functions, was 
able to give a new proof of the inequality (A); at  the same time some multi- 
dimensional generalizations were obtained. With respect to one of the results of 
the present paper  it should be noticed tha t  the inequality (C) stated be]ow was 
implicitly proved in [5]. Throughout this paper the following notations will be used. 
I f  X is a random variable with the distribution function F (x) we denote by  X '  
a random variable independent of X and with the same distribution and by  Xs the 
symmetrically distributed random variable Xs = X -  X' .  The distribution 
function of X s is denoted by  F s (x). 

For any positive A1, A2 . . . .  , An <= A, one has 

(C) Q(Sn; A) <~ CA P X•[ l >= . 

Incidentally, let us show tha t  the inequalities (A) and (B) are consequences 
of (C). From 

(i P x ~  I > - -  >- 1 - Q ( x ~  - x k ;  A~) > 1 - Q ( x ~ ;  Ak) 

i t  is seen tha t  (C) implies (A). To show tha t  (B) follows from (C) we apply the 
following simple lemma: 

Lemma 1.1. I / X  is a random variable such that 

then 

p Xs > > ~ .  

Proo[. Evidently we can assumme tha t  b = 0. Let/~ be the median of X and 
suppose first tha t  # =< 0. Then 

P X - - X ' [  >__ >=P X>=- 2 . . . . .  ~- .  

The case/2 ~ 0 is t reated similarly. 
In  this paper  we shall obtain some further estimations of Q(Sn; ~). Our 

starting point is the Main Lemma stated and proved in the next  section by  means 
of which we get lower and upper  bounds of the concentration function Q (X; 2) 
of a random variable X;  these bounds depend explicitly on the characteristic 
function of X. To prove the lemma we use a certain convolution method which was 
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applied in [5] and earlier by  Ros~N [14] to obtain the upper bound. In  the same 
section we also prove a rather  general inequality by  means of which the upper 
bound in the Main Lcmma can be estimated. In  this way we get an inequality for 
Q (S~; 4) which contains (C) and new proofs of two inequalities for the con- 
centration function of an infinitely divisible distribution earlier obtained by  
LECAM [10]. These results are contained in section 3. In  the following two sections 
we restrict ourselves to identically distributed non-degenerated random variables. 
I t  is shown tha t  Q (S~ ; 4) is exactly of order n -1/2 ff and only ff the second order 
moments  of the summands are finite. Further,  estimations of Q (S~; 4) are obtained 
in the case where the common distribution function of the summands belongs to 
the domain of at tract ion of a stable law. Finally, in section 6, we consider some 
multi-dimensional generalizations. 

2. Two Basic Lemmas 

We shall prove two lemmas the first of which, the Main Lemma,  gives us a 
lower and an upper bound for the concentration function; the second lemma will 
be applied to the upper bound in the Main Lemma.  

Main Lemma.  Let X be a random variable with the concentration/unction Q (X ; 2) 
and the characteristic /unction /(t). There are two absolute constants C1 and C2 
such that 

bl2 a 

(2.1) cI  1 + b ~ S [ / (t) 12 dt _< Q (x;  4) < O2 a-1 S I / (t) I dt 
--b/2 - -a  

where b is an arbitrary positive parameter and a is a parameter satis/ying 0 < a ~ ~ 7~ 
but otherwise arbitrary. 

Proo/. We introduce the auxiliary functions 

( sinxl2~2 h(t) = (1 - - I t l )+ .  
H ( x ) = t  x12 7 '  

Then 
O o  

H (x) = S eax h (t) dt. 
- -  o o  

Let  17 (x) be the distribution function of X. I t  is easily seen tha t  
OO O~ 

(2.2) ~ H (a (x -- ~)) dF (x) = a -1 ~ / (t) h (t/a) e-~t~ dt 
- -  r  - -  @ 

where a and ~ are real parameters  and a > 0. 

The right hand side of (2.1) was already proved in [5] where our starting point 
was the relation (2.2). In  tha t  paper  we chose aZ = ~ but  the inequality is still 
true with the same constant C2 ff 0 < a~ ~ 7~. 

The left hand side of the inequality (2.1) may  also be proved by means of the 
relation (2.2) ff we replace E(x) by  ES(x), thus / ( t )  by  ]/(t)12, and set ~ = 0. The 
following method, however, is simpler. 

Let  the random variable U have the characteristic function h(t/b) and be 
independent of X s. Consider the random variable V ~ X s ~- U with the charae- 
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teristic function I [ (t) [ 2 h (t/b). Then 

(2.3) Q (X; 2) ~ Q ( V; 2). 

F rom the inversion formula for characteristic functions we get 

b sin t/b 
P(l VI ~=b-1)----(7~b)-t Yt/(t)12(1 - - I  t /b )~ /b  dr" 

--b 

Applying the inequality 
s i n x / x ~ 2 ~ - z  for Ixl ~=~/2 

we have 
b]2 

(2.4) Q (V; 2 b-l) ~ p (I V l =< b-l)  ~ b-1 ~-2 f I ] (0] 2 tit. 
--b]2 

But  
Q(V;2b-~) ~ (2(b2) -~ + 1)Q(V;4)  ~ 2 ( 1  + b4)(b4) -1 Q(V;4) ,  

and hence from (2.3) and (2.4) 
2 

Q(X; 4) > �89 

which is the desired inequality. 

R e m a r k .  The factor 2(1 + b4) -1 of the left hand side of (2.1) tends to zero 
as cons~. 2 as 4 --> 0. This must  necessarily be the case since, for instance, for the 
normal distribution Q(X; 4) ,.~ const. �9 4 as 2 -+ 0. On the other hand 2(1 -t- b4) -1 
is bounded as 2 --> oo. This is also necessary since Q (X; 4) ~ 1. 

The following lemma is s tated in such a way tha t  i t  can be immediately applied 
to an infinitely divisible distribution. The measures M~ of the lemma have the 
same properties as the measure occurring in L~vY's canonical representation of the 
characteristic function of an infinitely divisible distribution. 

Lemma 2.1. Let Mz, M~ . . . . .  Mn be non-negative measures on the Borel sets el 
the real line deprived o[ the origin with the properties 

(i) M~(( - -  co, - -  e)) + M~((e, + oo)) < co 

1 

]x~ M~(dx) < ~ .  
--1 

2 non-negative constants. Let ~ be a positive constant and a21, a~ . . . . .  an 
For arbitrary positive 41, 42 . . . . .  4n ~ 4 the ]ollowing inequality is valid: 

(2.5) f e x p  - -  �89 2-~ f (1  - -  costx)M~(dx) dt 
- l/~ - r  

" - "  

Proo]. We shall prove the inequality (2.5) by a method which is very similar to 
tha t  used to prove an inequality occurring in [5]. This lat ter  inequality is an 
immediate consequence of (2.5). However, since the paper  [5] was written we have 

bl2 

~l/(t) l~dt 
--b]2 

[or every e ~ O ,  

(fi) 
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realized t h a t  a certain simplification of the  proof  is possible. We  shall use this 
simplified me thod  to  p rove  (2.5). 

Apply ing  the inequal i ty  
11 2 

1 - -  e o s x  ~ ~ x  

we have  for I tl =< x-~ 

(2.6) 

for 

](1 -- cos tx)  M~(dx) = .~ (1 -- cos tx) M~(dx) 

11 
-4- ] (1 - -  cos t x) M~ (dx) > - -  t ~ .~ x ~ M~ (dx) 

+ ] (1 - -  cos t x )M~ (dx). 
Izi ->_4, 

Le t  us denote  b y  I the  left  hand  side of  (2.5) and  let  us introduce the  quant i t ies  

(2.7) y~ -~ ~ x 2 i k  (dx), (~2 = ~ ((~ d- yk), p~ = ~ M~ (dx). 

From (2.6) we obtain 
1/~ { 11 2 ~ n  r } 

(2.8) I ~ e x p  ---~-~ t ~ e x p ~ - - ~ ( 1 - - e o s t x ) M k ( d x )  dt. 
-11~ ,~=~ I. Ixl >~ 

Let 
~ o = ~  2, ~ = ~ , t ~ p ~  for k - : l , 2  . . . .  , n ,  

(2.9) A = Z : r  ~ a . [ x2M~(dx )+)~IM~(dx )  , 

f i k = ~ / A  for k = 0 , 1  . . . . .  n .  

As is easily seen we m a y  suppose wi thout  loss of  general i ty  t h a t  all fi~ are positive. 
F r o m  I tSlder ' s  inequal i ty  appl ied to (2.8) we get 

/ 1/~' " 11 } )t~' 

I e x p  - -  A ; t ;  ~ j '(1 - -  cos tx lN~(dx)  dt , 
k=l  -- --c~ 

where 

forf~ IxllXl 
is a p robabi l i ty  measure.  

We  shall es t imate  each of the  integrals  of  the  r ight  hand  side of  (2.10). We 
easily find t h a t  

11;~ { 11 } 
(2.11) I0 = S exp - -  ~ -  A t  2 dt ~ CA -1/2. 

To estimate 

I k  ~- S exp - -  A ~t~- 1 - -  cos t x) Nk (dx) dt 
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we apply Jensen's inequality for continuous convex functions. Let  g be a con- 
tinuous convex function and ~0 a real function of a random variable X. Then 

g(Eq~(X)) < Eg(q~(X)), 

provided the two sides of the inequality have a meaning. Since e -x is convex we 
obtain from Jensen's inequality with ~ (x) ~ A212[(1 --  cos tx) that  

exp - _4 2/- 2 j- (1 - cos t x / N ~  (dx) < J" exp { - -  _4 2/- 2 (1 - -  cos t x/} ~r~ (~x/.  

(The simplification of the proof mentioned above consists of the use of ,lensen's 
inequality. In  [5] a Riemann-Stieltjes integral was approximated by a Riemann- 
Stieltjes sum.) Thus, changing the order of integration we obtain 

\ 11~ I 1/~ ) 

For I x l ~ 2e it is easily shown as in [5] tha t  
]/a 

~ e x p { - - A  2;2(1 --  costx)} dt < CA -1/2 

and hence 

(2.12) I~ < CA -1/2. 

From (2.10), (2.11) and (2.12) we finally get 

I ~ CA -1/2 , 

A being defined by (2.9), and the 1emma is proved. 

3. Bounds for the Concentration Funct ion  

In  this section we shall combine the Main Lemma and Lemma 2.1 in order to 
obtain further estimations of the concentration function. We begin by proving 
an inequality for Q (Sn ; 2) ; i t  will turn out that  the inequality (C) and hence the 
inequalities (A) and (B) in the introduction are consequences of this inequality. 

]3y the censored variance (at2) of a random variable X with the distribution 
function F (x) we understand the quanti ty D 2 (X; 2) defined by 

D2 (X; 2) ----- 2-2 f x~ dF(x)  + j 'dF(x) ,  2 > 0 .  

(For 2 = 0 we set D~(X; O) = P ( X  ~= 0).) I t  is not difficult to show that  

(i) D 2 (X; 2) is a non-increasing function of 2, 2 > 0, 

(ii) D 2 (X; 2) ---- 0 for some 2 > 0 ff and only ff the distribution of X is degen- 
erated at  zero, 

(ili) D2(X;2)  >=u-2fx2d.F(x) for u~=2 .  
lzl---u 

Theorem 3.1. _For any positive 21, 22 . . . . .  2n <= 2, one has 

(3.1) Q(Sn; 2) ~ C2 2~D2 (X~; 2~) . 
k 
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We observe the following special cases of the inequality (3.1). For 41 : 42 . . . .  
- - - - ~ n = 4 w e g e t  

(3.2) Q (S. ;  4) g C D 2 (X~; 4) 
k 

If, furthermore, the summands are identically distributed, then 

(3.3) Q(Sn; 4) <= C(D(XSl; 4))-Zn -1/2 . 

((From the property (ii) of D 2 (X; 4) we know that  D (X~; 4) = 0 iff Xz has a 
degenerated distribution.) 

Proo/. Let X~ have the distribution function Fk (x) and the characteristic 

funct ion/~ (t). Then Sn has the characteristic function 1-[ 1~ (t). From the right 
/c=1 

hand side of the Main Lemma applied to Sn we get with a = 4 -1 

(3.4) Q (S,  ; 4) g C2 4 ~ -~[ Ilk (t)] dt. 
--1/7~ /c=1 

Using the inequality 

and observing that  
[/~(t) i =< exp{- }(~ - ]/.(t) p)} 

1 -- Ilk(t)12 = f(1 -- costx) dF~(x) 
--oo 

we obtain from (3.4) 

k=l --co 

The integral above is of the type encountered in Lemma 2.1 with the exception 
that  F~ (x) may have a jump at the origin. I t  is, however, easily seen that  the lemma 
is still applicable. Using (2.5) we get 

Q (Sn ; ,t) g C 4 [. x 2 dF~ (x) § 4 2 .[ df~ (x) 

and the theorem is proved. 
With regard to later applications we shall state another inequality for Q (S~; 4). 

In  the same way as (3.5) was obtained we get from the Main Lcmma 

Q(S~; 4) < r  -~ j 'exp - �89 j" (1 - eostx)d~']~(x) dt 
--a ]r -- co 

where 0 < a4 __< I. To the right hand side of the above inequality we apply the 

inequalities 
co l / I t l  Ii 
j" (1 - -  cos t x)  a F t ( x )  > ]" (1 - -  cos t x)  , tF~ (z) > ~ t ~ ~,~ (t) 

-oo -llltl 
w h e r e  

1/Itl 
(3.6) ~ (t) = S z2 dF~ (x).  

- l l l t l  
Thus we have proved the following lemma. 
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L e m m a  3 . 1 .  

a { 11 t 2 &  

where 0 < a,~ • 1 and yJ~(t) is de/ined by (3.6). 
Since ~pk(t) is an even function and non-increasing for t > 0 we get from (3.7) 

Q ( S n ; , ~ ) ~ C a - 1  exp " ~ t 2 ~ y ~ e ( a )  d t~=Ca -1 yJk(a) , 
--a k=l  k 

where 0 < aA < 1. Putt ing a = u -1 we obtain from the last inequality and the 
definition of V~ (t) the following theorem. 

Theorem 3.2. 
n )-1/2 

(3.8) Q(Sn;A)  g C  s u p u - 2 ~  ~ x 2 d F i ( x  ) 
\u>2 k = l  [xl<u 

R e m a r k .  Theorem 3.2 is a consequence of Theorem 3.1 and relation (3.2) in 
particular, if  we observe the property (iii) of the censored variance stated in the 
beginning of the section. We have, however, preferred to prove the inequality 
(3.8) directly since the multi-dimensional generalization of the proof is almost 
immediate. 

By  means of the Main Lemma and Lemma 2.1 we shall give a new proof of two 
inequalities for the concentration function of an infinitely divisible distribution 
obtained by  L~ CAm [10]. 

Theorem 3.3. (L~ CAm). Let the random variable Y have the in/initely divisible 
characteristic/unction g (t) with the Ldvy canonical representation 

(3.9) g (t) = exp i a t - -  �89 (~2 t 2 -F e ~tx --  1 1 + z 2 ] 
-oo 

where a and a are real constants and the non-negative measure M satis/ie8 the same 
conditions as the measures M~ in Lemma 2.1. 

There are two absolute constants C3 and C4 such that 

(3.10) C 3 M i n ( 1 ; ~ ( a u - b  ~x2i(dx)l-1/2)ex~{-- f M(dx)~ 
Ixl <x / l Ix] ___x j 

__< Q (r ;  4) < G x ( ~  + y x~ M (~=) + ~ f M (d~)/- l~.  
Ixl<~ izl>~ / 

Proo/. We begin by prov/ng ~he right hand side inequality. Since 

Ig(t)] = exp - �89 a2t2 _ ] ( 1  - costx) M(dx) , 
--r 

it follows from the Main Lemma with a ~ ~-1 tha t  

Q (r ;  ,~ /<  G,~ f exp - �89 ~2t~ - S (1 - cos t x) M(dx/ dt 

and the proposed inequality immediately results from Lemma 2.1 with ~ = 1. 

21 Z. Wahrscheinlichkeitstheorie verve. Geb., Bd. 9 
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To prove the left hand side inequality we write g (t) as 

g(t)=exp ~ a ' t - - � 8 9  (e"~--I ~ + ~ ) M ( d x /  

exp / l ~ ( e t~  - 1) M (dx) } = gl (t) g~ (t) 

where a '  is a new constant. Thus Y = U + V where U and V are independent 
random variables with the characteristic function gl(t) and g2 (t) respectively. 
From the expression of g2 (t) i t  is easily seen tha t  

(3.11) P ( v  = 0) = exp {--  f M ( d x ) } .  
Ixl~x 

But  

(3.12) Q(Y;2)  ~ Q(u + V; 2) ~ Q(u; 2) P(V-~  o). 

A lower bound for Q(U; 2) is now obtained from the Main Lemma.  We find with 
b = 2 -1 tha t  

1 / 2 ~  

(3.13) Q(U;2)~ �89  I - -a2 t2 - -2~ (1 - - cos t x )M(dx ) l  dt 
-112~ Ixl <~ [ ! 

>= �89 c~ ~ ~ exp { - o2 t~ - t~ S x~ i r 

From (3.11), (3.12) and (3.13) the left hand side of the inequality is easily obtained. 

R e m a r k  1. I f  we apply the Main Lemma directly to g(t) in order to find a 
lower bound we get the factor exp { -- 4 ~ M (dx) of exp . 

l ~ e m a r k  2. By  means of the inequalities (3.10) the following theorem of 
Do~BLn~ [3] is easily proved: In  order tha t  the infinitely divisible distribution 
function with the characteristic function (3.9) have at  least one point of discon- 

co 

t inuity it  is necessary and sufficient tha t  a ~-- 0 and ~ M (dx) < r 

4. The Concentration Function of a Sum 
of Identically Distributed Independent Random Variables 

In  this and the following section we assume tha t  the random variables XI,  X2 . . . .  
have the same non-degenerated distribution /unction F(x). The corresponding 
characteristic function is denoted by  ] (t). The function ~o (t) is defined by  

l i l t [  
(4.1) ~ (0 = ~ x2 dFs (x); 

-1/itl 

evidently ~v (t) is an even for t > 0 non-increasing function. I t  is easily seen tha t  

lim~p(t) < co 
t---*O 

ff and only ff E (X1 ~) < c~. 
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From Lemma 3.1 we find that  

~  } (4.2) Q(Sn, ~) < Ca -1 f e x p  11 = - - ~ n t 2 v ~ ( t )  dr, 

where a is fixed but  so small that  0 ~ a~ ~ 1 and ~p(a) > 0. This is always 
possible since the distribution function F(x) is non-degenerated. 

Let  us now suppose that  E ( X ~ ) =  ~-oo, i.e. l imy~(t)= ~-oo. Then for 
0 ~ s < a we get from (4.2) t-*0 

Q(S,~; ~) < Ca-1 j 'exp 11 

-k Ca -1 ] e x p  11 - -  ~ -  n t 2 y~ (a) d t  

=< 01 (n ~0 (e)) -1/2 + 02 n -1/2 f exp _ ~8~ u211 du,  
e (n~o ( a ) )  1 ~ 

where 01 and 02 are constants not depending on n or e. Choosing e =- n -1/4 we have 
lim ~p (n -1/4) = -~- c ~  and thus 

n---> oo 
Q ( S n  ; ~)  = o ( n - 1 / 2 )  , n ---> c o .  

Theorem4.1. Let Xz ,  X2 . . . .  be independent, non-degenerated, identically 
distributed random variables and E (X 2) -~ ~ oo. Then/or every ]ixed ,~ 

Q ( S , ; ~ ) = o ( n  -1/2) as n - + o o .  

I t  is seen from the proof of Theorem 4.1 that  the faster the integral f x2dF s (x) 
diverges the faster will Q (Sn; ~) tend to zero as n --> r This observation is con- 
firmed by the next  theorem. 

Theorem 4.2..Let Xz ,  X2 . . . .  be independent, identically distributed random 
variables such that 

f i r  = .E ([ X l  I r) < ~ , 

where r is a constant and 0 < r ~ 2. Then 

(4.3) Q (S~ ; ~) ~ K (r) ~ (Z ~- (n fir (a))l/r)-i, 

where fir(a) = E([ Xz --  air) and a is arbitrary. 
The constant K (r) depends only on r and may be given the value 

{ 1 / 4 ( r ~ - 1 )  -(1+1/r) if 0 < r  < 2  
K(r)  = 1/3 V 3  if  r = 2 .  

R e m a r k .  For moderately large ~ it  may be preferrable to write (4.3) in the 
form 

(4.4) Q (S~; ~) >= K (r) ~ (~ -F (fir (a)l/r) -1 n -1/r , 

valid for all ~ but  less suitable if ~ is large. 
If, in particular, var X1 = ~2 < o o  we have 

(4.5) Q(S, ;  2) >= 1/3~/32(~ -F a~/n) -1 ~ 1/3~/3~(2 -F a ) - l n  -~/2 �9 

21" 
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Proo/. I t  is possible to prove Theorem 4.2 by means of the Main Lemma and 
the inequality I / (t) 12 ~ 1 --  g l  (r) fir (a) I t/r, 0 < r ~ 2, where g l  (r) is a positive 
constant only depending on r. The following direct method is, however, simpler. 
We restrict ourselves to the case 0 < r < 2. 

Let  us write 

- & =  

and fi~-~ E(]XIIg. From a moment inequality proved in [1] and valid for 
symmetrically distributed independent random variables we get 

and hence from the Marker  inequality 

where /~ > 1. Thus 

Since 
Q (S~; 2 (/c n fl~)l/r) g (2 ~-1 (It n fl~)l/r ~_ 1) Q (S~ ; ~) 

we get 

But  

whence 

Q(Sn; t) >= Q(S~; ~) >: ~(~ -b 2(~nfl~)~/r)-~(1 - /~-~) �9 

:  (IX1 - r) 2 r E < l  X l  - -  

Q(Sn; A) >:_ ~ A(1 -~- (nfir(a))l/r)-l~-l/r(1 -- k- l ) .  

For  ]r : r -~ 1 the function k-1/r(1 -- k-l) is as large as possible whence the 
constant K (r) of the theorem. 

I f  r : 2 we proceed similarly but  apply Chebyshev's inequality. 
The next  theorem is an immediate consequence of Theorems 4.1, 4.2 and 3.1. 

Theorem 4.3. Let X1, X2 . . . .  be a sequence o/ independent, non-degenerated 
random variables with the same distribution/unction F (x). I /and  only i/ E (X~) < oo 
there exist positive constants KI(A, F) and K2 (t, F) only depending on A and the 
distribution/unction F such that 

K1 (A, F) n-1/2 < Q (Sn; A) <: K2 (A, F) n -1/2 , n >: 1. 

5. Stable Limit Laws 

In  this section we shall suppose that  the common distribution function iv (x) 
of the independent, non-degenerated random variables X1, Xz . . . .  belongs to the 
domain of attraction of a stable law with exponent cr 0 < :r ~ 2. A positive 
function L(x) defined on (0, ~- oo) is called slowly varying at infinity ff for 
every a > 0 

L(ax) 
lim - L(x~---- 1. 

x- -~-P  r  

For a thorough discussion of the properties of slowly varying functions, see 
FWLLE~ [6, Ch. 8]. 
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To begin with, let us consider the case 0 < ~ < 2. As is well known (see for 
instance F ~ L L ~  [6, p. 544]), in order that  F (x) belong to the domain of attraction 
of a stable law with exponent ~, 0 < :r < 2, it  is necessary and sufficient tha t  

(5.1) 1 - - F ( x ) - ~  F ( - - x )  ~ x - a L ( x ) ,  x - - ~ - c o ,  

where L (x) is slowly varying at infinity, and 

1 - F ( x )  F ( -  x) 
(5.2) 1 - - F ( x ) + F ( - - x )  ~P'  1 - - F ( x ) + F ( - - x )  -->q as x - > q - c o ,  

where p ~ 0, q ~= 0, p ~- g -= 1. 

From known properties of such a distribution function F (x) and its correspon- 
ding characteristic function ] (t) it  is not difficult to prove the following lemm~. 

Lemma 5.1. Let the distribution/unction .F (x) satis/y the conditions (5.1) and 
(5.2). Then 

l / ( t ) I2~  l - -K2 (~ ) l t [~L( l t [  -1) as t-->0, 
where 

g~O~ 

K 2 ( ~ ) =  {~ f f ( 1 - ~ ) c ~  2-  i/i/ ~=1.0<~<2' ~ # 1  

For a corresponding result, see FELLE~ [6, p. 562, problem 12]. 
From Lemma 5.1 we easily get: 

Lemma 5.2. Let the distribution/unction _F(x) satis/y the conditions (5.1) and 
(5.2). There are positive constants a and b (depending on F)  such that 

[/(t)[ 2 ~ e x p { - � 8 9  ]or Itl ~ a  

]/(t)] 2 >=exp{--2K2(~)i t l~g(l t]-x)}  ]or It{ < b .  

We now choose the parameters a and b in the Main Lemma so small that  the 
inequalities of Lemma 5.2 are valid and obtain 

bl2  

(5.3) C1 l + b 2  yexp{ - -2nK2(~ ) ] t l~n ( ] t1 -1 ) }d t<Q(Sn;~ )  
--b/2 

C2 a - l y e x p  --  ~- K2 (~)ltl aL( l t I - l )  dt, 
- - a  

where, furthermore, a is so small that  0 < a~ ~ 1. 

The distribution function F(x) belongs to the so called normal domain of 
attraction of the stable law ff the conditions (5.1) and (5.2) are satisfied and, 
furthermore, limL(x) ~ c where c > 0 is a constant. The next  theorem follows 

X-+A- ao 

from (5.3) after some easy calculations. 

Theorem 5.1. Let the distribution/unction F (x) belong to the normal domain o] 
attraction of a stable law with exponent ~, 0 < o: < 2. There exist positive constants 
K3 (~, F) and K4 (,~, F) only depending on ,~ and the distribution/unction F such that 

(5.4) K3 (~, F) n -1/~ ~ Q (Sn ; ~) ~ K4 (~, F) n -1/~, n ~ 1. 
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R e m a r k  1. Theorem 5.1 is also true if ~ ---- 2 and F(x) belongs to the normal 
domain of at tract ion of the normal law. Then E (X~) < oo and by  Theorem 4.3 
the inequalities (5.4) are still valid with ~ ---- 2. 

R e m a r k  2. From (5.4) it follows tha t  the jumps, if  any, of the distribution 
function of S~ are 0 (n-1/~). 

R e m a r k  3. Let  F(x) satisfy the conditions of Theorem 5.1. Then there are 
norming constants an such tha t  the distribution function i ~  (x) of 

X1 § X2 + ... + Xz 
~ 1 / ~  - -  a n  

tends to an infinitely divisible distribution function D~ (x) with exponent ~ as 
n --> oo. I f  one could prove tha t  

(5.5) It~n(x)--D~(x)I ~ K(F)  n-1/~, --oo <x<oo, 

where K (F) depends only on F,  the inequalities (5.4) would be immediate con- 
sequences. I t  is possible to show tha t  (5.5) is true ff one assumes tha t  2, (x) satisfies 
certain further conditions. For the best known results in this direction, see 
C~AM~ [2]. 

Let  us now consider the general case where it  is only known tha t  F (x) belongs 
to the domain of at tract ion of a stable law with 0 < ~ < 2. Applying the inequality 
(5.3) and the inequality 

x-~ < L (x) < x~ 

valid for every fixed 8 > 0 if x is sufficiently large one obtains the following result. 

Theorem 5.2. Let the distribution/unction 2, (x) belong to the domain o/attraction 
o/ a stable law with exponent o~, 0 < o: < 2. Then to every s such that 0 < s < 
there correspond positive constants K5 (~, s, 2,) and K6 (2, s, 2,) only depending on 
A, s and the distribution/unction 2' such that 

Ks(A, s, F ) n  -1](~-~) <--_ Q(Sn; ~) <= K6(A, 8, F)n  -1/(~+~), n >= 1. 

Let  now ~ ---- 2 and suppose tha t  2, (x) belongs to the domain of attraction of the 
normal law. This is the case ff and only ff 

(5.6) ] y2 d2, (y) ---- L (x), 
- - :V 

where L (x) is slowly varying at  infinity. The case E (X~) < oo has already been 
treated by  Theorem 4.3 and Remark  1 of Theorem 5.1. In  the sequel we thus 
suppose tha t  E(X~) ---- ~ oo. Then the function L(x) defined by  (5.6) is non- 
decreasing for x > 0 and l imL(x) ---- ~- oo. From (5.6) it is not difficult to show 
tha t  ~-~ + oo 

(5.7) ]y2dFs(y) ,,~ 2L(x)  as x - >  ~- co. 
- - X  

The next  lemma is easily proved by  means of (5.7) and the relation 

o o  

l - I / ( t )  l~ = .[ (1  - c o s  t x) d2,~ (~). 
- - o o  
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Lemma 5.3. I /  F (x) satisfies the condition (5.6) there are constants a and b such 
hat 

I/(t)l __<exp{- t2L(Itl-1)} /or [tl <=a 
]/(t)[2>=exp(--4t2L([t]-~)} /or lt[<=b. 

In  the same way as (5.3) and Theorems 5.1 and 5.2 were obtained we use the 
Main Lemma and Lemma 5.3 to prove the following theorem, observing tha t  L (x) 
is non-decreasing. 

Theorem 5.3. Let the distribution/unction F (x) belong to the domain el attraction 
el a normal law and suppose that the/unction L (x) de/ined by (5.6) tends to in/inity 
as x--> + oo. Then to every e such that 0 < e < 1/2 there correspond positive 
constants K7 (~, s, F) and Ks (~, e, ~)  only depending on ~, e and the distribution 
/unction F such that 

K7 (~, e, F) (n L (nZ/2+s)) -1/2 ~ Q (Sn; ~) ~ Ks (~, e, F) (n L (nl/2-*)) -1/~, n >= 1. 

6. Some Multi-Dimensional Results 

Most of the theorems obtained in the previous sections have more or less 
straight-forward multi-dimensional generalizations. We will confine ourselves to 
multi-dimensional versions of Theorems 3.1 and 3.2. 

A point or vector (tl, t 2 , . . . ,  tr) in R r will be denoted by  t and we write 
/ r 2 \1 /2  

dt = dtldt2.., dtr. The norm of t  is defined as It/---- [ ~ t k )  and the inner product 
r \ k =1 / 

of two vectors t and x in Rr as (t, x) = ~ t~xk. By the same C(r) we shall under- 
k = l  

stand generally different, positive constants only depending on r. 
A multi-dimensional generalization of the one-dimensional concept of con- 

centration function can be defined in several ways. We shall restrict ourselves to 
the simple case where the concentration function is defined with regard to spheres. 
Let  X be a random vector with values in Rr and Ze (~) a sphere in/~r  with radius 
Q and center $. Then the concentration function of X with regard to spheres in/~r  
of radius ~ is defined by  

Q (X; 2~e) = sup P (X e 27~ (~)). 
~e/tr 

Let  us first state a generalization of the right hand side inequality of the 
Main Lemma.  

Lemma 6.1. Let X be a random vector with values in R r and the characteristic 
/unction /(t). Then 

(6.1) Q ( X ; 2 : e ) ~ C ( r ) a - r f l / ( t ) l d t  /or O < a e ~= l .  
]tl<a 

Proo/. We introduce the auxiliary functions 

H (x) = 2r zcr/2/'(1 + r/2) l x [-r (Jr/2 ([ x 1/2))  2 , 

where Jr/9. is the Bessel function of order r/2, and 

h (t) = (2 x~)-r f e-i(t,x) H (x) dx. 
Rr 
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Then h (t) is a function of I t [, h (0) = 1, 0 < h (t) < 1 for all t and h (t) = 0 for 
] t I > 1. For  a proof of these properties of H (x) and h (t), see for instance E s s r ~  
[4, p. 101]. From 

H (x) --~ j'cos(t, x)h(t)dt ~ j'(1 --   lxl 2 ] t[2)h(t)dt ~= H (O) (1 --  �89 
Rr Rr 

we see that  
~ r  / 2 

(6.2) H ( x ) > � 8 9 1 8 9 2 4 7  for Ixl < 1 .  

Let P ( B ) ~ - P ( X  e B) where B is a Borel set in R r. Consider the easily 
proved relation 

(6.3) ] H (a (x -- $)) P (dx) = a -r ~ / (t) h (t/a) e-i(t,~)dt, 
_nT Itl<a 

where a is an arbitrary positive parameter and ~ e R r. Using (6.3) and (6.2) and 
proceeding as in the one-dimensional case we find that  

Q ( X ; X Q ) < 2 ( H ( 0 ) )  - l a  - r f [ / ( t )  ldt for 0 < a ~ < l  
Itl <a 

and the lemma is proved. 

Let  X1, X2, ... be a sequence of independent random vectors with values in 
R r and denote the corresponding probability distributions and characteristic 

n 

functions by Pk (B) and/~ (t) respectively. Let  Sn = ~ X~. I f  X is a random vector 
k = l  

with probability distribution P(B),  let X '  be a random vector independent of X 
and with the same distribution and let ps (B) denote the probability distribution 
of X --  X'. Further,  the quanti ty X~ (u) is defined by  

(6.4) Zk(u)----- inf ~ (t,x)2P~(dz), 
Itl=l izl<u 

i.e. Z~ (u) is the least eigen value (possibly zero) of the non-negative quadratic form 

Izl<n 

of the variables tl, t2 . . . .  , t r .  Obviously, 

(6.5) f (t, x) 2 P~(dx) > xk(u)It 12, 
[zl<u 

and Z~ (u) is a non-decreasing function for u > 0. I f  the distribution of X~ is non- 
singular it is easily seen that  Z~ (u) > 0 for all sufficiently large u. 

With the above notations we state the following generalization of Theorem 3.1. 

Theorem 6.1. For any positive ~1, ~2 . . . . .  #n < ~, one has 

(6.6) Q(Sn;Ze)<~C(r)~r(~=12r - 2  )-1/2 
k 

Coronary 1. 

(6.7) Q(Sn;,,~,e)<C(r)~r(Z=12r )-1/2 = ~k [1 -- Q (X~ ; ZQ~)] . 
k 
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Corollary 2. I / the random vectors are identically distributed and ~1 = ~2 . . . . .  ~ 
= ~: <= Q, then 

(6.8) Q (S~; Z0) =< C (r) (~/~)~ (1 - Q (X1; Z~))-1/2 n-I/2. 

R e m a r k .  In [5, Th. 2] an inequality similar to (6.7) was stated with Xe 
replaced by a rectangle and with the right hand side depending on the concentra- 
tion functions of the vectors Xx defined with regard to certain unbounded domains. 
The concentration functions occurring in (6.7) are all defined in the same way 
with regard to bounded domains, spheres. In  this respect the new inequality is 
more satisfactory than the older one. From (6.7) a Kolmogorov type inequality 
for concentration functions defined with regard to rectangles can easily be obtained. 

Proo/of Theorem 6.1. Since the method of proof is in many respects similar to 
tha t  used in proving Lemma 2,1 and Theorem 3.1 we confine ourselves to the main 
parts of the prooL From Lemma 6.1 we get 

I - l n  } (6.9) Q(S.;G)<C(r)orj'exp ~ ,  f (1-cos(t,x))PV&) dr. 
[t[<q-~ ( k=l ~, 

For [t] ~ 0 -1 

11 f (1 - cos (t, x)) Pi(dx) >__ g Z,~ (e~) [ t [~ + j" (1 --  cos (t, x)) P~(dx), 

where Z/c(~k ) iS defined by (6.4). Introducing the quantities Pk = f P~dx) 
(where without loss of generality g~(O~) > 0 and p/~ ~ 0), Ix]-->Q~ 

(6.10) A ~ 2r 2~-2 �9 g = ( e k P ~ + O k  z ( q ) ) ,  
k=l 

~/~ 2r--2 2r 'A  

and the probability measures 
~P~i(dx)/p~ for Ix[ ~ ~ 

N~(dx) Io for Ix[ < ~ ,  

we get from H61der's inequality 

(6.11) Q ( S , ; G  )=<C(r )o r I -  ~ f exp - - ~  It[ 2 dt 
,r [tl <o -~ 

r I & Tg~ 

Now 

(6.12) 
l/~ { } 

i k  < (2/~))r_lfex p 11 ~_2r  A t ~ dtl 
-1/Q 

<~ C (r) (~k/~) r-1 A -1/~ <~ C (r)A -1/2 . 

We apply Jensen's inequality to Tk and obtain 

< f exp{--  (1 --  cos(t, N~(dx) 
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Denoting the inner integral by  U~ we have because of symmetry  

U~ = S exp {-- { ~ f e ' A  (1 - -  cos ([ x I tl))} dtl . . ,  d6 
It[ <0 -1 

l x l /e  
<__ I J" exp{-- �89 e ; ' A  (1 -- cosu)}du. 

- I ~ l / e  

Since [ x[ > ~ and ~ < Q it is not  difficult to show tha t  

U~ ~ C (r) A -1/2 
and hence 

(6.13) T~ ~ C(r) A -1/2 . 

From (6.11), (6.12), (6.13) and the definition (6.10) of A the proposed inequality 
follows. 

The proof of Corollary 1 is immediate.  
Let  us suppose for a moment  tha t  the random vectors X~ are identically 

distributed and not equal to a constant vector a.s. I t  follow from Theorem 6.1 
tha t  Q (Sn; Zq) = 0 (n-lie). I t  was pointed out in [5] tha t  this order of magnitude 
cannot be improved, a t  least not  in the general case. If, however, the random 
vectors are non-singularly distributed, Q (Sn ; Xq) should be of order n -r/2. We 
have not  been able to prove a simple Kolmogorov type inequality from which 
results tha t  Q (Sn ; Ze) ~ 0 (n -r/2) in the non-singular case, except if  the distribu- 
tions of the random vectors satisfy a certain symmet ry  condition [5, Th. 3]. From 
an inequality which will be stated in the next  theorem and which was hinted a t  in 
[5] it  follows tha t  Q (Sn; Se) is in fact  of order n -r/9". This inequality is the multi- 
dimensional generalization of the inequality (3.8) of Theorem 3.2 and will be proved 
in a similar way. - -  From now on we no longer assume tha t  the random vectors 
X~ are identically distributed. 

Theorem 6.2. Let Zk (u) be de/ined by (6.4) and 0 < v < ~. Then 
n )-- ,12 

(6.14) Q(Sn;Se) < C(r)(~/T) r supu-2~Zk(U ) . 
\u>v 1r 

Corollary. I f  the random vectors are identically and non-singularly distributed 
one has 

Q ( S , ; Z e )  =< C(r)(e/~F(supu-2Z~(U)I-rI2n-rl2 /or 0 < ~: <= e" 
\u~_v l 

(As was earlier remarked, sup u -2 Z1 (u) > 0 ff X1 is non-singularly distributed.) 
u___v 

Proo/ o/ Theorem 6.2. I t  is evidently sufficient to prove (6.14) for v = ft. From 
Lemma 6.1 we get 

Q(Sn;Zo)<=C(r)a-r fexpI--  �89 ~ f (1--cos(t,x))P~(dx)}dt,  
I t[  -<_a t ~=J.  i t ,  

where 0 < a ~ ~ 1. Using 

] (1  - -  cos(t, x))P~(dx) > ~ (1 - -  cos(t, x))Pi(dx)  
_n, I~1 ~- I t l  -~ 

l l  C 11 = s __>  -x, (itl- )ltl2 
I~l ~ I t l  -~ 
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we have 

I 11( n ) } Q(Sn; Ze) <= C(r)a-r  y exp -- ~ _Ez (Itl- ) lt]= tit. 
itj _~a L k =  

Since %,e (u) is a non-decreasing function of u > 0 i t  follows that 

Q (Sn ; •e) <= C (r) a -r Z~ (a-l) �9 
k 

P u t t i n g  a = u -1 and  observing t h a t  u ~ ~ we get the desired inequal i ty .  

Recent ly  SAzo~ov [15] has obta ined interes t ing results concerning est imations 

of concentra t ion  funct ions  of a sum of independent ,  ident ical ly  d is t r ibuted  r andom 

vectors, defined with regard to convex sets. The common probabi l i ty  d is t r ibut ion  

P is supposed to satisfy certain weak addi t ional  conditions. SAZO~OV'S methods  

are different from ours. F r o m  his results i t  follows tha t  Q (Sn; Ze) ~ C (P, Ve) n-r~9., 
where C(P,  Ve) is a cons tan t  only depending on the  non-s ingular  d is t r ibut ion  P 

and  on the volume V e of the sphere. However,  an  explicit  expression of this 

dependence is no t  given. I n  Theorems 6.1 and  6.2 such an  explicit  expression has 

been obtained,  even in  the case of non- ident ica l ly  d is t r ibuted  randomvec tors ,  b u t  

on the other side we have confined ourselves to spherical domains.  
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