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§1. Introduction

Let a(x)={a;(x);1,j=1,...,d} and a(x)={a;(x); i,j=2,...,d} be two systems of
CZ(R% functlons where C¥(R?) is the class of all functions which has bounded
continuous derivatives up to the k-th order. We assume that a(x) and a(x) are
non-negative definite matrices for each x and a,,(x}=c¢ for some positive
constant ¢. Suppose that a bounded measure u is given which is singular with
respect to Lebesgue measure and set x(dx)=p(dx,)dx,...dx,. Consider the
following symmetric form & defined by

d
&(f,8)= Z I %) 0,.f(x) 0, g(x) dx

=P

l

%;(x) 0, f (x) 2, g(x) n(dx) (1.1)

2 R4

TM‘" z

for f,ge C¥(RY), where CT(RY) is the class of all C*(RY) functions with compact
support.

By a result of Fukushima [1], if (&, CF¥(RY) is closable on I*(dx), then
there exists a dx-symmetric diffusion process X°(f), outside some set of ca-
pacity zero, associated with the smallest closed extension (&° 2(6°) of
(&, CT(RY) on I*dx).

The purpose of this paper is to characterize X°(t) as a unique solution of a
stochastic differential equation (SDE) (2.1). As a consequence of this result,
X°(r) can be supposed to be a diffusion process without exceptional set. The
idea of the proof is as follows. In §3, we shall prove that the SDE (2.1) has a
unique (in the sense of distribution) solution X(¢) and that the Dirichlet form
of X(t) on I*dx) coincides with & on C®(RY. Hence, for the proofs of
existence of X°(f) and equivalence of X°(¢) and X(¢), it is enough to show that
X(t) is dx-symmetric and that C¥(R? is a core of the Dirichlet space as-
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sociated with X(z). But the direct proof of these facts seems to be difficult’.
Hence we shall show that X°(t) exists and satisfies (2.1) for quasi-everywhere
(g.e.) starting points, where quasi-everywhere means except on a set of capacity
zero. If these results have been proved, the equivalence of X°(r) and X(t)
follows from the uniqueness of the solution of (2.1).

The SDE (2.1) contains the continuous additive functional (CAF) 7,(1)
which is the CAF associated with the smooth measure a,,(x)#(dx). Generally,
for a given smooth measure, to describe the concrete form of the associated
CAF is not easy but it is easy if the smooth measure is absolutely continuous
relative to the basic measure. Moreover, it is easy to show that (&, CF(RY) is
closable on I?(dv), where v(dx)=dx+n(dx). By these reasons, we shall first take
dv as the basic measure, that is, we shall consider (&, CX(R%) on I*(dv).

In §4 we shall show the existence of the diffusion process X°(t) associated
with the smallest closed extension (8*, 2(&")) of (&, CF(R?) on [*(dv). Also, by
using the stochastic calculus due to Fukushima [1], we shall show that the
support of the CAF ¢ ,(t) of X*(t) associated with the smooth measure dx is
equal to R? g.e. In §5 we shall show that X°()=X"(¢; (1)) is the diffusion
process associated with (£°, 2(£°)). This follows from the general result con-
cerning to the time change of Markov processes associated with Dirichlet
forms. Such a problem is discussed by Silverstein [9]. In §6 we shall also start
with X’(t). By an argument similar to Stroock and Varadhan [10;
Theorem 4.5.27, we can represent X'(¢) by using Brownian motions, ¢ ,(t}) and
the CAF associated with dn. Changing the time by ¢ ,(¢), we can show that
XO(r) satisfies (2.1). Similar equations are treated by S. Watanabe [12].

Analytically, Tomisaki [11] constructed the diffusion process without ex-
ceptional set in the case a;;=a; for i,j22, a;eCl"P2"1(R%Y and a(x) is
strictly positive definite. As for the probabilistic constructions of diffusion
processes such as X°(t), there is a work of Tkeda and Watanabe [2].

§ 2. Main Results

Let o(x)={0;;(x);i,j=1,...,d} and t(x)={r;;(x);i,j=2,...,d} be two matrices
satisfying ¢-'o=a, t-'t=0/a;,, [o(x)—o(y)| =K|x—y| and [7(x)—(y)| =K|x
—y| for some constant K, where

[a(x)— o} = 2—21 lo;(x)—0;(»)l
and o7

7)== ZZ I7:() =7, (V)l-

i j=
d

In our case, such matrices exist [10; Theorem 5.2.3]. Set b,=% > d;a;, B
j=1

1 Z .
Y 0;a;; and 1, =1, ;= f, =0. Consider the following SDE

2ay, =

! Concerning to the symmetry of the solution of martingale problems, there is a recent work of

Fukushima and Stroock [13]. Some parts of our arguments may be simplified by using their result
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dX ()= i 0, X(1)) dB(t) + b(X () dt

j=1

+ Z T AX(D) dM (1) + B(X () £ (1), 21

where B(t)={B(t);i=1,...,d}, M(t)={M(1);i=2,...,d} and 7 (t) are stochastic
processes satisfying the following conditions.

(i) B(?) is a d-dimensional Brownian motion.

(ii) £,(t)=[7(t,x,) u(dx,), where L(t)={/(t,x,); x,€R'} is a family of (z,x,)-
continuous non-negative increasing processes satisfying

t

“{Xx(s)le}/(dsax1)=/(t,x1)
0]

for all x,eR" and t=0, and

t

[/ an (XD ds= | £t,x,)f(x)dx,

0
for all t=0 and feCy(R").

(iif) M(7) is a family of continuous local martingales satisfying <M, M ;> (t)
=0,;¢,(t) and (B;, M ;> (£)=0.

The solution of (2.1) is defined as a system {X(t), B(t), M(t), L(t)} satisfying
the conditions (i)-(iii) and Eq. (2.1). If the distribution of X(¢) is uniquely
determined by that of X(0), then we shall say that the solution of (2.1) is unique
(in the sense of distribution). Then we have the following

Theorem 1. The SDE (2.1) has a unique solution X(t).. Moreover, the Dirichlet
form of X(t) on I2(dx) is an extension of (&, CF(RY).

Let dv, (€°,2(8”)) and X be those introduced in §1. Let 4 be a Borel set in
R* with full Lebesgue measure satisfying u(A)=0 and let ¢ ,(t) be the CAF of
X*(t) defined by

P40)= g LX) ds, (2.2)

where X'(s) is the first coordinate of X'(s). Since I,(x;) is a density of dx
relative to dv, ¢ ,(t) is the CAF associated with the smooth measure dx. It is
shown that ¢ ,(¢) is strictly increasing. Let X°(f) be the time changed process of
X"(1) by ¢ 4(2), that is, X°(t)=X"((¢ )~ *(¢)). Then we have the following.

Theorem 2. X°(t) is the diffusion process associated with the Dirichlet form
(&°,2(8°)).

Let (2, P,) be the probability space on which X°(r) is defined. A probability
space (Q, P,) is called an enlargement of (@, P,) if there exists a mapping i of Q

onto Q such that P.=Poi~'. In this case we shall write X°(z,®) in place of
XOt,io®).
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Theorem 3. There exists an enlargement (Q,P) of (2,P) such that, for g.ex,
(X°(t), Q, P) satisfies the SDE (2.1) with initial condition X(0)=x.

§3. The SDE (2.1)

In this section, we shall prove Theorem 1. But we shall discuss under slightly
more general setting. Let o(x)={o;;(x); 1<i,j<d} and T(x)={7;;(x); 2<i,j <d}
be the matrices in §2 and let b(x)= {b,(x); 1 <i<d} and B(x)={f,(x); 2<i<d}
be arbitrary systems of functions on R? satisfying

d d

-21 bi(x)—b(»I=K|x—y| and .ZZ |B:() = B =K]x — |
for some constant K. Note that the functions b,(x) and f,(x) in §2 satisfy these
conditions. Transforming by an orthogonal matrix, we may assume that g, (%)
=0d,;Va;;(x) for 1<j<d. In this section, unless otherwise stated, we shall
consider the SDE (2.1) having these coefficients. For the definition of the
solution and its uniqueness, see §2. Then we have the following theorem.

Theorem 3.1. For any probability measure £ on R there exists a solution of the
Eq. (2.1) which has ¢ as the initial distribution. Moreover, the uniqueness of the
solution of (2.1) holds.

Proof. The proof is similar to the proof of [3; Theorem IV-7.2], so that we

shall only sketch it. If (X,B, M, L) is a solution of (2.1) corresponding to the

coefficients (0,b,7,f) then the time changed process (X¢ B%M%I% of
t

(X,B,M,L) by ¢,(t)=[a,(X(s))ds, that is, X°(t) = X(¢;*(2)),
0

B (0)=[Va,,(X*(s)) dB(¢, '(s), M()=M(p; (1))
0

and I(t)={/%t,x,); x,€R'}, where £%(t,x,)=7£(¢; (t),x,), is a solution corre-

sponding to the coefficients (4,b,7, f), where 6=0/)/a,, and h=b/a,,. Con-
versely, (X, B, M, L) is obtained from (X“ B% M%I?) by a time change by ¥ (¢)
t

={(1/a,)(X*s))ds. Hence it is enough to, and will, assume that a; =1
[¢]

First, we shall consider the case b, =0. On a suitable probability space
(2, P), take mutually independent random variables X(0), B(t) and B(f) satis-
fying the following conditions; X(0)=(X,(0),..., X,(0)) is a d-dimensional ran-
dom variable with ¢ as the distribution, B(t)=(B,(t),...,B,(t)) is a d-dimen-
sional Brownian motion such that B(0)=0 and E(t)=(]§2(t),...,]§d(t)) is a (d
—1)-dimensional Brownian motion such that E(O)zO. Set X ((t)=X,(0)+B,(t)
and let (s, x,) be the local time of B,(¢) at x,. Set £(t,x,)=21(t,x, — X ,(0)).
Using these processes, define 7,(t) and M(z) by £,(0)=1{¢(t,x,) w(dx,) and M,(t)
=B,(£,(1)). Then they satisfy (i)-(iii) of the definition of the solution. Hence it is
enough to construct (X,(z),..., X,(t)) satisfying (2.1). It is constructed by the
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usual successive approximation method. For 2<i<d and n=0, define X®(;)
=(XP(), ..., X{(t)) inductively by

X{)=X,0),
XO0=X,0+ Y | 0,i(X 1(), X~ (s)) dB(s)
j=10

+jb(X ), X Y(s)) ds + Z fr s), X~ D(s)) dM {s)
+ f BAX 1 (s), X"~ V(s5)) £, (ds).

Then, by an obvious modification of the proof of [3; Theorem IV-7.2], for
almost all w, X™(t) converges uniformly on every finite t-interval to X (t) (i
., d) satisfying (2.1).

For given X(0), it is easy to see that the distribution of X(f) is uniquely
determined.
If b, =0, then the theorem follows from the transformation of the drift. That is,
for a solution (X,B,M,L) on (Q,P) of (2.1) corresponding to the coefficients
(6,b—0..b;,7,[), define the measure P and a system of processes B(t)
= (B, (1), .-, B,(1) by

P(D)=E [exp {j b,(X(s))dB (s)— } b2(X(s)) ds}: D] (3.1

Dea(X(); 1), By()=B, (0~ [B(X() ds

and B,(t)=B,(t) for i=2. Then the process (X, B, M, L) on (Q, P) is a solution of
(2.1) corresponding to the coefficients (o, b, 7, f). The proof of the uniqueness is
similar to [3; Theorem IV-7.2].

In this section (X,B,M,L) on (Q,P,) denotes the solution of (2.1) corre-
sponding to the coefficients (o, b, 7, f) and initial condition X(0)=x. Also de-
note by E_[ -] the expectation relative to P.. As in the proof of Theorem 3.1,
denote by (X9 B M%I% the solution corresponding to the coefficients
(6,b,7, B) obtained by a time change of (X, B, M, L) by ¢,(t). Then X%()=X4%(0)
+ B4(¢) is a Brownian motion and $£%(z, x,) is its local time at x,. Thus, for all
X=(Xy,...,X%,), since

P_[£%(t,x,)eds] =L e=s1% gs (3.2)
V27t

(see Ito and McKean [4; p. 45]), we have

E[£°(t x )] =1/% and E_[/%(tx,)?]=t. (3.3)
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Moreover, since

E [,y )= J‘

2(t—5) |y, — x4l exp(—'yl_x1|2)ds

T 21Yns? 2s
l/ S |x; =yl ( |x1_J’1|2)
exp | — ds 3.4
2n ]/; P 2ts G4
(see [4; p. 25]), it follows that
a t a 2
[ E [ y0)] dx1:§ and | E [, y,)*]dx,=C, t]/f, (3.5)
R Rt
4
where C, =— %
3V =
Lemma 3.1. For any positive constant C and t=0,
E [exp{CZiD)}1=2exp(C,1), (3.6)

where C,=u(R")? C?/2 and £4(1)=¢"(t,x ) w(dx,).

Proof. Since E_ [exp{CZi(t)}]1=E, [exp{Cu(R")¢*t,x,)}], (3.6) follows easily
from (3.2).

To calculate the Dirichlet form of X(z), we shall provide a lemma similar to
Stroock and Varadhan [10; Theorem 4.2.17.

Lemma 3.2. For all T>0, there exist positive constants C, and C, such that

P[ max |X(s)— X(0)| 2 A] < Cyexp(— C, A¥3 ¢~ 1/3), 3.7
0<s=t

forall A>0and t<T.

Proof. Suppose that a; ;=1 and b, =0. For p>0 and 6=(9,,...,0,) such that |0
=1, set

Ye(t)= Z p f 0;0,4(X(s)) dB(s)

i,j=1

+ Y p

2

0,7, (X(s) dM (5).

i

TM&
Oty ™

i,

Then

Fop()=p §<9 a(X(s)) 0> ds+p* §<9 (X (s)) 05 7,(ds).

Hence, for an upper bound C; of a,b, o and f, we have
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Pl max {p 8, X(s) - X(0)> 2 p 1]

0=<s=<t

=P[max exp{Y,(s) =3 Y, 0> (5)

O0<s<t

+ jz (p <6, b(X(w))> +7 p* <0, a(X(w) 6)) du
+ E (p<0, BX W)y +3 p* <0, X () 0)) £, (du)} = e"‘]

ge—“E[max exp{ng(S) —3<{Y,6>(s)

0=<s=t

1 (0 €0, BX (W) +4 p* <0, a(X () 6)) du

+§(p<9, BX()+1 p* <0, u(X()) 0) /,xdu)}]

0<s=<

<o E| max exp{¥,,(5)—3<T,000) exp{cs (o+2) (t%(t))}]

<e " E[ max exp{27,(s)~<Y,o>(s)}]"?

0=s=t

x E[exp{C52p+p?) (t+£,(6)}1%

By Lemma 3.1 and Novikov’s result [3], for any constant C, the process
2

exp { CY4(t)— % Y (t)} (t=0) is a martingale and

CZ
E [exp{cm(t)—7<m> (r)}] -1,
Hence, by the martingale inequality

E[ max exp{2Y,(s) = {Y,o>(5)}]

<4E[exp (2V,q(0) — V03 (0]

=4E[exp{27,,(1) —4<{Y,>(0)} exp{3{Y,>(t)}]

<4E[exp{4Y,y(t) —8{Y,> ()} 12 E[exp {6<¥,,>(1)}1"*

=4E[exp{6<Y,>(1)}]"2 <4E[exp{6 C5 p*(t+7,(0))} 1>
Therefore, by Lemma 3.1,

P[ max {6, X(s) - X(0)> 2 4]

0=s=7
<2e **E[exp{6C;s p*(t+¢,(1)}]*
x E[exp{C;5(2p+p?) (e +£,(0)}1"*

C
<dexp (—p/H— Cﬁpt+C6p2t+C6p3H—76p4t)
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for some constant C,. Set p=(4/Cy)*/*. Then we have

P[ max <6, X(s)— X(0)> 2 4]
0=s=t

Sdexp{—1A*3(Cet) T B H(Cx )P AP +(C )3 223+ 2}
S Coexp(—CgA*3t=13)

for suitable constants C, and Cg depending on T. Substituting —6 for 8 we
have

P[ max [0, X(s)— X(0))| 2 A]2C,exp(— Cg A*3¢=173),

0=<s=t
Therefore
P[ max |X(s) — X(0)|= 1] £2d C, exp(— Cg A*? = U3,

0=s=t

Secqndly we shall suppose that a,,(x)=1 and b,(x)+0. Let (X, B,M,L) on
(€, P) be the solution of (2.1) corresponding to the coefficients (o,b—0. b, 7, f)
and P be the measure defined by (3.1). Then

PL max [ X(s)—X(0)|= 4]

O0=s=

0=s=t

[exp{jb (X(s)) dB,(s)— %jt"bl(X(s))ds} max |X(s)— X(0)|>/1]

<P [exp{2j"b1(X(s))dBl(s —[B2X(s) ds}]llz
x P[ max |X(s)— X(0)|= A]Y%

O0=<s=t
Since
13[ max |X(s)— X(0)|ZA] £2d C, exp(— Cg A*3¢71/3),

0=sst

by the previous result and
£ [exp{zi by (X9 4By(9) - [ BHXC) ds}]

<E [exp{2jb(X () dB(s)— 2jb Hexp(ublnzzf)
<exp(||by > ©) Sexp(|by > T),

we have the result.
In the general case, since
P[ max |X(s)—X(0)| =2 1]
0=s=t
SP[ max |Xs)—X*(0) =],

0sss |la |t

the result follows from the above case.
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Denote by P the transition function of (X(¢), P,). Then the following corol-
lary holds.

Corollary. If [ is a bounded measurable function which vanishes outside a
compact set, then P f is dv-integrable.

Proof. Denote by B, the sphere with center 0 and radius »n. Then it is enough
to show that th(x, B,)v(dx)< oo for all n=1. Fix n=1. Then, by Lemma 3.2,

F(x,B)=E[IX (1) - X (0)|zk—n]
s Cyexp{—C (k—n*3t~ 1%

for all xeB,, ; — B, (k=n). Since v(B, . ,)—v(B,) <constant x (k+1)7,
[P(x,B,)v(dx)Sv(B)+ Cy ¥ exp{—C, (k—n)*3t~13}
k=n

X (V(By.. 1) —Vv(By) < 0.

Now we shall show the fundamental lemma in this section. Roughly speak-
ing, the lemma shows that the measure a,,(x)#n(dx) is the smooth measure
associated with the CAF Z,(¢) of X (¢).

Lemma 3.3. For all f, ge C¥(RY),

t
hn; f fix [j 2(X(s)) /ﬂ(ds)] dx
- 0
= | a;1(x) £ (x) g(x) n(dx). (3.8)
R4
Proof. Firstly, we shall suppose that b, =0. By the definition of ¢,, X* and ¢,

0| [ X6, (d9)| dx

Palt)
=IFE] ] 20re) fp(as) | dx

Palt)
— /() {u(dy,) E, [ [ 8. X2, . X;(s»/ﬂ(ds,yl)] dx

Palt)
=69 [uldy) E [I 801 X30) ... XO) £°ds )| dx
+§f(X)§u(dy1)Ex[ T {801, X509 ., X56)

_g(yla X%(O)’ seey Xs(o))} /a(dss yl)] dx
=I+1IL
t
Note that ¢,(t) is the inverse function of the CAF y,(t)={(1/a,,) (X°(s))ds,

0
and hence a stopping time, of X° Set Y(t)=(X5(?),..., X5(#)). Then by Ito’s
formula,
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[ {80, Y(5) — gy, Y(O)} £°(ds, y,)

0;8(yy, Y(w)d X (u)

fl
Ot—m B

—

i
u M~ Al
O ey )

I\JI*—*

Ot'ah

0;0;8(y1, Y(w) d<{X3, X‘?>(M)}/“(ds,y1)

=09, (1), yl){z g 0,8(y;, Y(w)dX%u)

=2
$alt)

| 0:0,8(v,, YW)d<{X?, X§>(u)}

0

+1
2,
1

s =

«:l\)
=

-2 £ gy, Y(8)2%(s, y,) dX{(s)

2

da(t)

3 Z [ 0:0;8(ry, Y(s) (5, y,) d<XE, XD ().

d ¢
,j=2 0

Since ¢,(t)<|a,,| t, we have

¢alt)
E| T 1800 Y6) =801, YOO 4(ds. )|

@alt)

SE|#0,000)| 3 gag(yl )ax:

Palt)

5.3 g V() dCXE XD
[ ¢

|

_Z 9;8(y1> Y(s)) 2%, yil(bi/a,,) (X (s)) ds

+B(X4(9) fﬁ(ds)}H

1 4 %0
[ Z j ala]g(yl ())/a(sayl)

i,j=2

< {(ay/ay ) (X°(s)) ds + o (X(s) f::(ds)}],
SV6E [¢(¢,(0), y,)* 1

d balt) 2
{Z J o, ())@,-(X“(s»dB;’-(s)}

i,j=2

F‘_|

d  ¢at) 2
+{ z g 6ig(y1,Y(s))rij(X“(s))de(s)}
d  ¢alt) 2
{_Z [ 0ig(ye, Y(s) (byjay ) (X“(s))d }
d ¢alt) 2
{_Z [ Giglys, Y )ﬁ(X“(s))f“(ds)}

Y. Oshima
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s
z

+
o=
- '

[y —

0;0;8(y1, Y(s) (a;;/a,1)(X(s)) ds}

=

i A=
(8]
o

+
-
o~

271/2
8,0, 8(y1, Y(5) o, (X°(5) /Z(dS)} ]

O B

Palt)

£t yl){f 10: 81, YO (I(bi/ay,) (x*(s))] ds

o+
M =~
Iy
—

x

I
N}

+lﬂi(X“(S))le(dS))}]
1 d $alt)
3,2 x| 60 yl){j 12:0,80, YO

X (ay;/ay ) (X ()l ds+ o (X (s))] /Z(dS))}]

S Co{E [ (lay, [, y)* 12 E [t + 62 +£5(llay, | 1)
+2(lag T2 +E [°(lay 1 &, y ) ¢ +£5(lay | 03,

for some constant C, depending on g. Since fe CF(RY, there exist two func-
tions f;(x,;)e Co(RY) and fy(x,, ..., x)e Co(R*~1) such that

LSON=S10c0) folxas--ns Xg)-
Hence, by (3.5),

lim1|jf(x) 1 dx|
t—0 t
é}ig)l Cgfﬂ(dh)jfo(xp s Xg)dx, . dx,
1 1/2
X{;jfl(xl)Ex[/Z(]|a11’| ty)?] dxl}
1 /
LR BL 4 3(a01 042 0 i,
+}£rr()1 Cofuldy )| folxs, s x)dx,...dx,
1
X{?jﬂ(xﬂEx[/a(“au“ [aJ’1)(t+/Z(Ha11H t))]dx,}=0.

Let ¢, {(?) be the inverse function of the CAF ¥, , (1) of X{(t) defined by

a (0= (j) 1/a, ) (X5(s), Y(0) ds

Write the term I as

ba,1(t) alt)
I=[f(x) E[ I 8(X1(6). ¥0) /g(ds)] dx+ [ f(x)E, L [ g(x2(9), Y(0) /;(ds)] dx
a,1(t)
=III+1V.
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The term III is written as

III=jdx2...dxdjg(y1,x2,...,xd),u(dyl)
dex1f(x1: "'axd)E(xl xd)[/a(¢a,1(t), vyl
For fixed (x,,...,x,), since 7%, (t),x,) is the local time at x, of the 1-

dimensional  diffusion  process  X{(¢,,(t) with speed measure
(I/a; ) (x4, ..., x)dx, (see [4; §5.4]), we have

,,,,,

1 1
lim ~ HI=lim? fdxy...dx;[g(yi, x5, .y xz) u(dy,)
-0

t—0 t t
X[ f ey e Xg) g1 (X gy eeey Xp)
XEq o xa [ (@g 10, x )] (Lay ) (xq, .00, X)) dxy

1
=lim ~ [dx;...dx, [g(yy, %, ..., X,) u(dy,)

tooo b

$Einn cono | [0 00 (K10 19D, ) 5

=811y X0y -, X) (A1 ) V10 X 05 +.or XD p(dy ) dx, ... dx,
=[8(x)f(x) ay, (x) n(dx).

1 .
Finally we shall show that lim— IV=0. Obviously ¢, (0)=|a.,|t and

t—0
¢, ()= ay,| t. Hence, for all £>0,

VI gl JIf ()l dx f u(dyy) ELLIE(a(t), ¥1) = £%(¢a, 1 (0, ¥1)1]
<2igl fIfGldx fuldy,) E [ (lay 8, v1);
max | X*(s)—X“(0) el

s=|lag e

+ gl §1f Gl dx [ u(dy,) E.[I£4(P,(t), y1) —£%(dy, 1 (1), y)ls
max | X%(s)—X4(0)|<¢]

s flag |t
=V+VL
Since
E.[*(lasllt, y); max |X%s)—X*(0)|=e]

s<lagljt

SE[¢(lay [t y)* 12 BL max |X(s)—X*(0)|2¢]'?,
s= |layllt
by (3.5) and (3.6) we have

.1 .2
lim = V=lim = |g| { fo(x, ..., X)) dx,...dx,
t—»0 L t—0 [

X jﬂ(dJH) {If1(x1) E [Z(lay ) t, J’1)2] dx1}1/2
x{{ fi(x) E.[ max |x*(s)—X*(0)|=¢eldx}?

ss et

=Cy lin(')l t= 1% exp {~ Cye*(|lay, )~ Y%} =0
t->

for all ¢>0.
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Set D={w; [Xs)—X%0)<e for all s=|a,|lt}. Then, since
—a; WIS C,|x—y| for some constant C,,,

¢, 1 (1) —a (X*(0)1]

< flay (X5 (8, 1(5), Y(0) —a, (X*(0)] ds

<€y 1 max |X(9)-X“O)}SC,, te

s<[lagg|lt

on D. Hence, if |y, — X{(0)| <5,

@, 1 () —ay, (v, Y(0) =lg, (&) —a,  (X(0) 1]
+t|a“(X“(0))——a11(y1,Y(O))|§2C11t£
on D. Since £%(¢,(1), y) =£"(¢,, (1), y;)=0 on D if |y,
VIZ2|gl | £l jfo(xz, "'5xd)dX2"'dxdj:u(dy1)
X [E [64ay (01, X5, -, X)) +2C, te, yy)

—2May 1V, Xa, 000 X)) —2C ( te, y)]dx,
=4Cy, u(RYte| gl I £ ffo(xza s Xg)dx,

cdx,=C,te,
1
by (3.5). Hence ;Vlg C,, & Thus we have the result.

Let A and L be the differential operators defined by

d
Ag 3 Z a;;(x) 0,0 g(X)+_Z b;(x) 0; g(x)
and 21521 =1

1 d
Lgl)=5 Y %;(x)6;8,8(x)+ay,(x) Z B.0:8(x),
i,j=2
respectively. Then we have
Theorem 3.1. For all f, ge CT(RY),
hm jf x)(I—P)g(x)dx

t—0

= —Rfdf x Ag(X)dx—Rfdf(X) Lg(x)n(dx).
Proof. By Ito’s formula,

g(X (1)) —g(X(0)

- T [0 X0+ 3 [00,8(X0)X, X0
d r
=_Zlgﬁ,g(X(S)) (X (s)dB +j"Ag(X(s))
+ Z_Zfa,g(X(s T (X (s ))de(s)+£Lg(X(s))/au(X(s))/u(ds).

261

lay;(x)

—X{(0)| =z &, we have

(3.9)
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Hence by Lemmy 3.2,

11m jf(x)(I P)g(x)dx

t—0

— lim  LIWE, [jAg(x (s))ds ]dx

t—=0

—lim - [ fWE, [ng(X )/all(X(s))/u(ds)] dx

t—0 Rd

= —Rjdf x) Ag( x)dx—éfdf(x Lg(x) n(dx).

Corollary. Let b; and f; be those defined in §2. Then the Dirichlet form on L?(dx)
of the solution X (t) of (2.1) is an extension of (&, C¥(RY).

§4. The Process X"

Let 4 and I' be two Borel sets in R such that I'=R'— A, u(4)=0 and [dx,

r
=0. Since v(dx)=dx+n(dx), we have dx=1I ,(x,) v(dx) and n{dx)=I,(x,) v(dx).
Hence, for all f, ge CZ (R, the form & can be written as

(8= j.f(x){ a(xy) _ Z 0;(a;;0;8)(x)

Z %;0,¢ X)}V(dX) (4.1)

If £,eCy(RY converges to 0 in L*(dv) then (4.1) implies that &(f,,g) con-
verges to 0 for all ge Cy(RY. This implies that the symmetric form (&, CT(R%)
is closable on L*(dv) (see [1; Problem 1.1.2]). Moreover, by the results of
Fukushima [1; Theorems 2.1.1 and 2.1.2], its smallest closed extension
(6", 9(&") is a regular Dirichlet form on L2*(dv) with local property. By
another result of Fukushima [1; Chap. 6], there exists a dv-symmetric diffusion
process X'(t) on a probability space (@, P) associated with (&*, 2(&)). As
noted in §2, the increasing process ¢ ,(f) defined by (2.2) is the CAF of X*
associated with the smooth measure dx. Set

¢r(0)=[I(X1(s)ds. 4.2)

Then ¢, is the CAF associated with d#. In the rest of this section, we shall
show that the increasing process ¢ ,(¢) is strictly increasing.

For the purpose we shall use the stochastic calculus related to X. Necessary
facts are presented in [1; §5.4]. By noting (4.1), for f, ge C¥(R?, we have

E(f,8)+p(f8),=[/(x)(p—a") g(x) v(dx), BN CX)
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where

l\)\*—‘
1=

il

T T

g'g(x)= 1 4(x,) 0;(a;;0;8)(x)

i

= I

+ Ip(x) 0i(0;0;8) (x).

i,j=2

Denote by V? the resolvent of X Then (4.3) implies g=V?(p—g”)g q.c. Hence,
by [1; Theorem 5.2.2], the process M"-8(t) defined by

t .
M) =g (X" (1) —g(X"(0) - [ ¢* g(X"(s)) ds (4.4)
0
is a martingale CAF such that

t d
(MM (1) i Y. a;0,80,8(X"(s) ¢ 4(ds)

i,j=1

g Z 1] lga g(XV(S))¢T(dS)

i,j=2

In particular, by taking geC§(R?) such that g(x)=x; locally, there exists a
system {M](t); i=1,...,d} of local martingale CAFs satisfying

X!(H—-X!(0)= M“(t)+§b (X7(s)) @ 4(ds)

+Iﬁ (X"(s) ¢r(ds) (4.5)
and
(M3, M (6)=F{<KM + M5 (0) = <MY (1) — (M (1)}
=(§)%(XV(S)) ¢A(d5)+j°‘ij(Xv(S)) ¢r(ds), (4.6)
where b,(x) % i d;a4(x), B Z ;0;(x) and o ;=o;; =, =0.

We shall ngxt apply the above discussion to a function which is not
smooth. Set m(dx,)=dx,;+u(dx,) and let k(x,) be a bounded continuous
function on R' satisfying the following conditions (a), (b)) and (¢); (a)

* d+k
k(e L2(dm), (b) kix (@x,), @ d (%)
1

d d+k
is absolutely continuous relative to dm and there exists a version of —

which belongs to L*(dm)~ C,(R"). dm dx,
Let ky(x,,...,x,) be a C3°(Rd‘1) function and set h(x)=k(x,) ky(x,, ..., X).

d*k
dx,

1
Denote by p, the 1-dimensional mollifier supported by {x ey §—}. Set k,(x,)
=p,xk(x,) and h (x)=k,(x,) ko(x,, ..., x,) (1=1, ..., d). "

Lemma 4.1. The function h belongs to 9 (&").
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Proof. Obviously h, is approximated by C¥(R?) functions in the norm &*(-,+)
+(+,),. Hence it is enough to remark that &"(h,~h, h,—h)+(h,—h,h,—h),

tends to 0 as n tends to oo.
.

d*k
Lemma 4.2. If we understand 0, h(x) as d—(xl)ko(xz,...,xd) then, for all
feC (R, i

é"v(f,h)—- Z_ Rja”(x)afx)a h(x)dx—ir; Y 5aci,-(x)aif(x)ﬁ,-h(xm(dx)- (4.7)

i,j=2 R4

Proof. 1t is easy to see that &”(f, h,)=&(f, h,). In this equality, since o, h, tends
to 0;h in I?(dv) as n tends to infinity, the lemma follows.

For any compact set K of R? choose k,e CZ (R so that ky(x,, ..., x,)=1
for every x=(x,,...,x,)eK. Since h(x)=k(x,)ko(X,,...,x,)=k(x,) for xeK we
can see that k(x,) belongs to 2,,.(8”), that is, k equals locally to a function
which belongs to Z(¢£"). Thus we can decompose k(X7 (2)) — k(X7 (0)) as

k(X3 (5) — k(X7 (0) =M™ 1(5) + N™ (), (4.8)

where M¥™() is a CAF which equals locally to a martingale additive func-
tional and N™™(z) is a CAF which is locally of zero energy ([1; (5.4.41)]). As
in (4.5), we have an explicit representation of N»™(y),

Lemma 4.3. N"™() is given by

d d'k

N”’[k](t)zga“(Xv( ) 2dm dx,

——(X7(s)ds

+

t d*k
b G
Proof. Let p>0. By (4.7) we have
E(f, ) +p(f h),
=3 f ay1(x) 9, f(x) 0, h(x)dx

3 2 Jf)éa;0; (x)dx

lor}#l R4

~3% Z_ ﬁff(x 8,0t 0, 1) () n( dx)+pj”f(x)h (x) v(dx)

(X1 (5)) ¢ 4(ds). (4.9)

= [ 1090140 3 G Xl 3 V(0
=3 ] 100101199 h(x) dx
—1 Y [ f0){a;(x)8,0;h(x)+8; a,(x) 0; h(x)} dx
iorj+1 R4

‘% Z § 10 {a;(x) 0, 0; h(x) + 0, 01,5(x) 8, 1 (x)} m (dx)
i R4
+p If(X)h(X)V(dX)

:,Lf x)(p—g") h(x) v(dx),



Singular Diffusion Processes 265

where
dtk
2d dx, ——((x ) kolxs, .00y xy)

xl)_ Z a;;(x) 0; 0 h(x)
'|’2 Ip(xy) i (x) aiajh(x)+IA(x1) i b;(x) 0; h(x)
i,j=2 i=1

+1.(x,) Z (%) 8, h(x).

g'h(x)=a;(x) 55—

t
This implies that h(x)=V?(p—g")h(x) q.e. and hence N*M(0)={g"h(X"(s))ds,

0
where N™U(t) is a CAF of zero energy appearing in the decomposition of
(X () — h(X>(0)). Setting k, =1 we have the result.

As for the martingale part M*¥(2), by (4.7), it satisfies

t d+ k 2
My ()= [ 4y, (X(5) { : 1(5))} §.4(ds) (4.10)
0 Xy

Lemma 4.4. The local martingale CAFs M™™(r) and M3 (t) are related by

t Atk

e mi— [ EE e ) anry s, (4.11)

o dx,

Proof. 1f k(x,) belongs to C!(R"), this result is contained in the result of
Fukushima [1; Theorem 5.4.3]. In the present case, although k does not belong
to C!(R%Y), this can be proved similarly. In fact, it is enough to show that, for
any compact set K, if f, g and v are C¥(R") functions supported by K and, for
all i(i=1,...,d), u, is a CJ(RY function which is equal to the coordinate
function x; on K then

§1 )80ty vy (d) = Z [ £(0)8(x) 0, () ey, vy (d),

where ,u<h,v% and pu,, ,, are the signed measures associated with (M™™, M1y

and (MM APy respectively. This equality follows easily from
d
Pnoy(dX)= Y a (x) 0, v(x)dx
i,j=1
d
+ D o;(x) 0, h(x) 8, v(x) n(dx)
i,j=2
and

d

Hus,oy(@X) = Y, ;) 0;0(x) dx + Z o;;0;v(x) n(dx)

j=1

on K.
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Let ¢(t) be the CAF of X" (¢) defined by

¢Z(t)=(f) a,1(X"(s))ds (4.12)

and let X°(t), M), M*™(t) and N*"¥(r) be the time changed processes of
X0, M), MH() and N>M() by $2(0), that is, X°(0)=X*(¢)~ (1), etc.
Then, by (4.6) and (4.11), M{(t) and M*%¥(f) are martingale CAFs on (2, P)
such that

<M () fan(X“ s)) ¢ (ds) (4.13)

and

t

MW =

5)) dM(s). (4.14)

0

Also, by (4.9), we have

+

td d k
Na,[k]
f 2dm

(Xi(s)ds

d+k
+£b1(X“(S)) T (X1() 95 (ds), (4.15)

where ¢%(0)=,(¢2) =" ().
Set b, (x)=b, (x)/a,,(x). Let P* be the measure defined by

13:‘(1))=Ex[exp{ By (X°(5) M)~ [ By ( IX“(s))2d<Mf>(s)};D]
0

for Deo(X*(s); s<t). Then, by Girsanov’s theorem for any local martingale

CAF M(t) on (@, B), the stochastic process M (t +j b (X4(s))d{M, M%>(s) is a
local martingale CAF on (2, BY).
Lemma 4.5. The process

d +k
2dm

k(X2() — k(X9(0)) } X"(s)) ds (4.16)
o]

is a martingale CAF on (@, PY).

Proof. Applying the above remark to M (f)=M*™(¢) and using (4.13) and (4.14)

we can show that
t

M [k]([ j‘ X“(S)) d<Ma k] Ma>( )

o]

dtk
=M*¥(1) +(§) by (X)) —XT(5) ¢%(ds)

is a martingale CAF on (Q, B). Hence, by (4.8) and (4.15), the result follows.
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Lemma 4.6. Denote by {W?;p>0} and {V?;p>0} the resolvents of 1-dimen-
sional diffusion process with speed measure 2dm and X°(t), respectively. Then
there exists a properly exceptional set N of X(t) such that VP(x,DxR*~1)

=WP?(x,, D) for all Borel set D<= R and x¢N, where x is the first coordinate of x.

Proof. Since C,(R') is separable, it is enough to show that, for all f;eC,(RY),
there exists a properly exceptional set N such that V2 f (x)=W?f (x,) for
x¢N, where VP f (x)=VP(f; ®xIga-1)(x). Set k(x,)=W?f (x,). Then it satisfies
the conditions (a), (b} and (c) preceding Lemma 4.1. Hence, by (4.16), we can
show that there exists a properly exceptional set N such that

d df

B OWeS, H O - W) = [ B2 5

RUIRCHT )]s

for x¢ N. Multiplying e~ and integrating by ¢ we have

+

2 (0= 5 ) WA= W )

d+
Since ( - ——) WP f, = f,, the result follows.
m axy

Theorem 4.1. For all x,€R" there exists at least one point y¢N such that y,
=x,. Moreover, for x¢N, the distribution of X{(t) under B® is independent of
(x2,-..,xy). If we denote by P’ instead of P! for x¢N whenever we consider
X5(¢), then (X{(0), B%) is a 1d1menszonal dlﬁ‘usswn process with speed measure
2dm.

s Lxq

Proof. Let z be an arbitrary point of R?*—N and let (c,,c,) be an arbitrary
open interval of R'. Let f; be a non-negative function supported by [c,c,]
such that (m,f;>>0. Then W?f (z,)>0. Hence, by Lemma 4.6, V! f,(z)>0
This implies that the process X(f) started from z hits the set {yeR¢;
¢, <y,Sc,} and hence it hits the hyperplane {yeR?; y,=x,} if z, <x,<c, or
¢, <x,=z,. Therefore the hyperplane is not contained in N, that is, there
exists at least one point y¢N such that y,=x,. Since (¢, c,) is arbitrary, the
first part of the theorem holds. The other parts are obvious by Lemma 4.6.

By the theorem, the support of the CAF ¢%(¢) coincides with R?— N, that
is, inf{t; ¢%(t)>0}=0 as. P* for all xeR*—N. Turning back to the process
X"(t), we have the following theorem.

Theorem 4.2. The support of the CAF ¢ ,(t) defined by (2.2) coincides with R?
— N for a suitable properly exceptional set N.’

§5. Proof of Theorem 2

As was proved in Theorem 4.2, the CAF ¢ ,(¢) is strictly increasing a.s. P, for
xeR?—N. Hence the time changed process X°(t)=X"(¢;'(¢) is a diffusion
process on the probability space (@, P.; xeR?~N). To prove that X°(¢) is the

dx-symmetric diffusion process associated with (£°, 2(£°)), it is enough to
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prove the following result: If ¢(f) is a CAF associated with a measure &(dx)
=a(x) v(dx) for some bounded measurable function a(x) and if P.[¢(t)>0 for
all t>0]=1 q.e., then the time changed process X°(1)=X"(¢~ (1)) is a d¢-
symmetric diffusion process such that the Dirichlet form of X* on L*(d¢) is the
smallest closed extension of (&, C¥(R?) on I*(d¢). Except for Theorem 5.1, we
shall suppose that £ is a general Radon measure associated with a strictly
increasing CAF ¢(1).

Some parts of the following results will follow from the results of Silver-
stein [9; L8], but we shall present it since, in our case, it follows from
elementary calculations.

Denote by V5? and V/F the kernels defined by

%zqf(x)=Ex[}: exp(—pt—q $(0)S(X*0) ()]

V;ff(x)=Ex[°§ xp(—pi—a $(0) S (X" @) de |

If thbo| f1 is bounded for some r 20 and a bounded measurable function f, then
Ve =V F+o—n ViV f+(q—s) Vi Vg f=0 (5.1)

for all p, g, r, s=0 such that p+¢g>0 and r+s>0 (sce [5, 6]). Similarly, if
Vsl f1is bounded for some s 20 and a bounded measurable function £, then

Vot [ =Vl F+(p=n) VEP VL [+ (g —s) Vg Vel f=0 (5.2)

for all p, ¢, r, s=0 such that p+g>0 and r+s5>0. Note that (5.1) [resp. (5.2)]
holds for all bounded measurable function f if g, s>0 [resp. p, ¥>0]. If p>0
and f>0, then by (5.2),

pVECVER f=VP f—VEP fSVP L] fli/p.

: e . 1 .
Moreover, since V}? f is finely continuous, the set Fn(l)z{x; vErf (X)’Z‘ﬁ is a

finely closed set satisfying F{"—>R‘—N and VE'(x,F")<n| fl|/p* for xeR’
—N. By a similar argument, there exists a sequence {F*}, ., of finely closed
sets such that F?—R!—N and VZ(x,F?) is bounded on R?—N. Further-
more, by [1; Theorem 3.2.3], there exists a sequence {F} of closed sets such
that the measure ¢(dxnF®) is a measure with finite energy integral. Set F,
=FVN\EPAF®~(R*—N). Then {F,},., is an increasing sequence of finely
closed subsets of R‘—N satisfying F,~>R‘—N, VZ°(x,F,) and V}°(x,F,) are
bounded on R*—N for all p>0 and ¢, =1, ¢ is a measure with finite energy

t

integral. Set ¢,(t)=[1 £ (X"(5)) ¢(ds). Then it is the CAF associated with the
0]

measure &,. Hence, by [1; Lemma 5.1.4(ii)], (£, V2° g),=(V* f, 8);,, Where

tn

Vi f(x)=E, [? exp(—pt=a $,(0) /(X'(0)d, 0]
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Letting n— oo we have
(LV5 8=V [8), (5.3)

for all p>0 and bounded non-negative measurable functions f and g. Denote
by U?(f¢&,) the potential of the measure f¢€,, that is, UP(f&,)eZ(&") such that

&y UP(fE,),0)=[(x)f(x)&,(dx)

for all ge C3(RY), where &(+,-)=&"(-, ) +p(-,*),.
Since VE°f is a quasi continuous modlflcatlon of UP(fE) (see [1;
Lemma 5.1. 3]) for all f, ge C¥(RY)

LV 8)e, =6 (VE L VE )=V’ £, 8):,.s
by [1; Theorem 3.2.2]. Letting n— oo, we have
(LVE 8):=(VE f,8): (5.4
for all p>0 and non-negative measurable functions f and g.

Lemma 5.1. For all p,q>0 and non-negative measurable functions f and g,

(Ve 9 =(V5 1, 8)e- (5.5)

Proof. Similarly to the above discussion, without loss of generality, we can
assume that V5°1 and V£’ 1 are bounded. By (5.1),

VE g =(I+qVE) VEig.

Hence, for p, >0 such that ¢ |[V5° 1] <1,
Viig=2 (—qVirvile. (5.6)

Thus (5.5) follows from (5.4) in this case. For fixed p>0, since {Vt{;‘l q >0}
satisfies the resolvent equation, (5.5) holds for all p, g >0.

Denote by {V}; p>0} the resolvent of X*(). Then V= Vio?. Hence we have
the following

Corollary. X(t) is a dé-symmetric diffusion process.
Lemma 5.2. Let p,q, f and g be as in Lemma 5.1. Then
LVE =V 19 (5.7)

Proof. As in the proof of Lemma 5.1, we shall suppose that ¥5°1 and V> 1 are
bounded. By (5.3), (5.4) and (5.6)

V= T (A=aWE V9= 3, (—aVir VP49

for p,¢>0 such that g¢||V°1|<1. On the other hand, since VPf=(I
qVE) Va2 f by (5.1), we have
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Vi f= ) (—qviyvef
n=0

for such p,q>0. Hence (5.7) holds in this case. If (5.7) holds for some p, g>0,
then by Lemma 5.1,

Vgt e= ZO(—rKf;sq)” Vhig and Virrrf= ZO(—rV,zﬁ)" 175

for r<1/HVI§,° H[=1/[IVA* 1]. Hence (5.7) holds for g+r instead of q. Repeating
this argument, we have the result.

Let (6%, 2(&%) be the Dirichlet form on I2(d&) associated with the diffusion
process X°(t). Then we have the following lemma (cf. [9; Lemma 8.4]).

Lemma 5.3. For all p, ¢>0, VEI(Cy(RY) and VIF(Cy(RY) are contained in
D(ENND(E°) and
SV LVE )= (VE Vi ), (5.8)

EVELVE Q=6 VirfViFg) (5.9)
for all f, ge Co(RY).
Proof. If fe C,(R?% then VAN fI= VS| f] implies VtiqfeLZ(dé). Also since

VD2 SAUS 1/a) ViEAL S,

(5.7) implies V22 fe*(dv). Similarly V2 fe?(dv)nI*(d£). Hence, for the proof of
(5.8), it is enough to show that
im (Vg2 f,r(I —r V") Vit g), = lim (VR £, 7T —r Vi) V3 8)e.

r— o r— oo

By (51)) r0 ¥ r0 1/7pa
(I—-rV)Vilg=Vyg—pV'Viig—qVy Vil

Therefore, by noting (5.7) we have
lim (V32 f,r(I —7rV") V5l e),

=lm (VR f,r V2 g—rp V' VEig—rq Vi VEig),

= lim (VY g)e =PV Lr V VA ), —arV VB L V5 9)

r—oo
=g 1. 8)e —p(VG L ViE ), —a(Vig Vi 8)e

where, in the last equality, we used the fine continuity of V41 and Vi%g.
Similarly, by (5.2) and (5.7),

lim (VE f,r(I —r V) Vi 2):
=lim (VB frVig—prVy Vitg—qrVy Vile),
= lim (Vg Vi fg)e =0V VL V9, Vi V£V 9))

¥F— 0

=(VE11,8):—p(VELVE 2, —a(VE L V5 8)e,
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since the support of ¢ coincides with R?—N. Thus (5.8) has been proved. The
proof of (5.9) is similar, in fact it becomes
SV LVIF Q)= (ViF LVl 8)
=(Vr £,9), —aViE L ViF @) —p(ViF LV 8,
Lemma 5.4. For all >0 and feCy(R%,
lim E§ (V5 = Vi L Vg = Vi) =0, (5.10)

p—0
where 5(+, ) =6(-,*)+(", )z
Proof. Obviously lim (V£ — Vg f, V24 f— Vg f),=0. By (5.1) and (5.7),
p—0

SVEf=VILVES=VES)
=lim (VELf = VR Lrd —r V) (VEL = Vi )

F— o0

—tim (V29 = Ve, rqVy Ve f—rpVio VE [ =T a Vi Vs )

= (VS = V1 a Vi lim (VO = VESLpVED),
—~ (VR f=ViLaVig'S)e
=V = Vi faVif—aVie )=V = V3L Vi),
Since lim V5 f=V{ f boundedly and q.e., [|p VA f || 1) S 1S || 11 and

p—0 -
lq V:z&qf”Ll(g)é 1aVEf oS 1S e
(5.10) follows.
By a similar argument, we have

Lemma 5.5. For all p>0 and fe C,(R%,
lim &} (Vr f— V2 f,VaF f— VP f) =0, (5.11)

g—0
According to Lemmas 5.3, 54 and 5.5, the set Z={Vif, p,q>0,
FeCHRNUVE [, p,g>0, feCy(RY)} is contained in P(6")NF(E°) and the
forms & and &° coincide on @. Moreover & is dense in 9(&”) [resp. (€]
relative to the norm &) [resp. 67].

Theorem 5.1. Suppose that &(dx)=a(x)v(dx) for some bounded measurable func-
t

tion a(x) and that the associated CAT (b(t):j a(X"(s))ds is strictly increasing for
0

g.e. starting points. Then the Dirichlet form (6% 2(8°%)) is the smallest closed

extension of (&, C(R%) on I2(d&).

Proof. Since CP(R%)cI2(d¢), for the proof of C§ (R)<=P(£°), it is enough to

show that lim p(f,(I—pV})f).<co for all feCZ(RY. Let feC¥(RY. Then,

— 0

P
since feZ(&"), there exists a sequence {f,},.; <2 such that lim &(f,—//,

n— oo
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—f)=0. Hence, by the triangle inequality (see the proof of [9; Lemma 1.7]),
lim {p(,(I=pV) ) = {p(fs =P VP f) 3
p— o
slimsup {&(f,,— S fu— S

=limsup {&"(f,, — f,s L= L)} /2.
Therefore
lim p(f,(I—pV{)f):= lim lim p(f, =PV 1:
= lim ENf )= lim &*(f,. /) =&"(f.f) < co.

To prove the denseness of CP(R?Y in 2(6%), suppose feP(&F). Since f is
approximated by the functions in 2 relative to &-metric by Lemma 5.4, it is
enough to suppose that feZ. Since feZ(6”) and CF(R%) is dense in Z(&),
there exists a sequence {f.},> ;< CZ(R? such that &}(f,~f.f,—f)—0 as n—co.
Since #=¢" on 2UCF(RY) and &(dx)< |al|v(dx), we can see that &(f,—f.f,
—f)—0 as n— 0. This completes the proof of the theorem.

The proof of Theorem 2 is obvious by the corollary of Lemma 5.1 and
Theorem 5.1, in fact, it is enough to set &(dx)=1 ,(x,)dx and ¢(t)=¢ ,(1).

§ 6. Proof of Theorem 3

In this section, X°(z), X*(t), M}(¢), ... denote those given in §4 and §5. By (4.6),
M) =(M(t), ..., M(t)) is a system of martingale CAFs on (Q, P,) satisfying

M, M35 <E5 =£ a(X(5)) ¢ 4(ds) + | o, (X (5)) pr(ds).

Firstly, we shall give a representation of M*(f) by Brownian motions.
Lemma 6.1. There exists a properly exceptional set N, enlargement (Q,P) of
(2, P,) and mutually independent stochastic processes

B'(®)=(Bi(1), ..., By(t) and B (t)=(By(0). ..., By(t)

such that, for x¢ N, B*(t) is a d-dimensional Brownian motion started from 0, B*()
is a (d — 1)-dimensional Brownian motion started from 0, and

Mi(6)= g { Y, LX3(9) 0, (X () dBY(s) + 3, I(X(5) £,(X(5)) dﬁ,”-(S)} (6.1)

j= 1 Jj=
P. - as., where i=Va,, 1, ¢ and 1 are the matrices in §2 and X'(t) and M’(?)
are considered as the processes on by X'(t,@)=X"(t,io®) and M*(t,@®)
=M"(t,io®) (see §2).
Proof. This can be proved by a repeated argument of Stroock and Varadhan
[10; Theorem 4.5.2], so that we shall only present the outline. Set
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H()=lim(I ;a)(el +1,a)~ (X (1)),
e—0
g()=lim (eI +1,a)~ (X (1) I1(z)
e~ 0
and r(0)='(I,0) (X“(t))q(t) where we set I,(X*(t)=1,(X/(t)). Then II(1)
=(I,0)(X*(®)*(t) and () =r(t)(I,0)(X*()) are the orthogonal projections
onto the range of I,a(X*(t) and I,(c-0)(X'(t)), respectively. Let BM(t)
=BY(@),...,B'(1)) be a d-dimensional Brownian motion on a probability
space (Q‘“P(”) such that BV(0)=0 and set Q=0 xQ" and PP =P, x P
Then (@@, P®) is an enlargement of (@, B). For o®=(o, w(”)eQ(z), set io®
=o, X*(t,0?)=X"(t,icw®) and M"(t, 0'®)=M"(t,iow'?). Then the process
t T
BY(ty= [ r(s)dM"(s)+ [ (I — II(s)) dBM(s)
0 0

is a d-dimensional Brownian motion on (Q*, P®) for all x outside a properly
exceptional set. Furthermore the process MV(t) defined by

t
M) =M (t)— | 1I(s) dM"(s)
]
is a system of local martingale CAFs such that

MO, MO =] (=T (6) 0y a+1,3) (X() U ~ D) $)} s

g X"(5)) @ rlds).

Hence, in particular, M{=0. By a similar argument for MY, there exist an
enlargement (2, P,) of (2%, P?) and a (d—1)-dimensional Brownian motion
B'(0)=(B%(1), ..., B}(r)) on (2, P,) such that B*(0)=0 and

-

jt"H(“(s)dM(”(s =[I-%(X"(s))dB"(s),
(o]

0

where I1'V(t) is the orthogonal projection in R?~! onto the range of I a(X (t)).
By using these Brownian motions, M*(t) is represented as

t t
M ®)=[1,0(X*(s)) dB*(s)+ | I T(X"(s)) dB"(s).
0 0
Combining the lemma with (4.5), we have

t d
X/(6)=X0)+] { Y L(X1(5) 0,(X(5)) dB}(s)

j=1

+ Z IHX(5) T X7 (5)) dBV(S)}

+£ bi(X"(s)) P 4(ds) + i PUX(5)) dr(ds) - (62)

P, - as. for ge. x.
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As was proved in Theorem 4.1, the process (X{(2), Pg) is a one dimensional
diffusion process with speed measure 2m(dx,). Let $£°(z, x,) be its local time at
x,. Then it is characterized by

t

_(EI{X?(s)le}/“(ds,xl)zf“(t,xl) (6.3)
and
if(X?(S)) ds=[£(t,x,) f(x;) m(dx,) (6.4)

for all feC,(RY). Let
lpa(t):g(l/al X s)) ds

be the inverse function of ¢ defined by (4.12). Then X¥(1)=X(p; *(2). Set
£, x ) =(Y; 1(0), x,). Then, by (6.3) and (6.4), it satisfies

t

jl{xy(s):xl}fv(dsa X)) =21, %) (6.9)
)

and

_gf(X‘{(S)) ay (X)) ds=[£"(t,x) f(x) m(dxy) (6.6)

for all feCy4(R'). By Theorem 4.2, the CAF, ¢,(1) is strictly increasing. Set
2ot x,)=¢"(¢p 1 (t),x,). Then it is a CAF of X°(t)=X"(¢; *(1)) and, by (6.5), it

satisfies
1

jI{X?(s):xl}f‘)(ds,x1)=/°(t,x]). (6.7)
0

Also, since (6.6) holds for any bounded measurable function vanishing outside
a compact set, by taking I ,(x,) f{x,) instead of f(x,), we have

(/X)) ay (X)) ds=[£°(t, x,) [ (x1) dx, (6.8)

for all feCy(RY). Similarly, by setting f(x,)=1I(x,) and changing the time, we
have

[ @ (X0 Dl (ds)=[£°(t, x,) uldoxy) (6.9)
0

We shall consider the processes X o), £°(¢, x,), ete. as the processes on the
enlarged probability space (2,P,), as before. Define the processes B°(1)
=B, ..., BY®)) and M°(1)=(MS(®), ..., MJ(t)) by

PG N
BY)= | I{X"(5)dBi(s)
o]
and

b
M(1)= (I) Va, (X)) I{(X(s)) dBY(s).
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Lemma 6.2. Let N be the exceptional set in Lemma 6.1. Then, for all x¢N, B°(t)
and M°(t) are systems of martingale CAFs on (Q, P,) satisfying <B{, B> ()=
(B, MO»(t)=0 and (M, M (t)=0,,¢.(t), where

ij%u
=j/0([a Xq) pdxy).
Proof. By the definition,
#a' @)
BLBDO=0; | LX) ds=0;t

and (B?,M?> (r)=0. By noting (6.9), we have

ba'®
(MP,M{(1)=0 f ay (X)) I (X (s)) ds

(X°(s) pr(d1 ' (ds)

ot x,) uldx ) =0,;£,(0).

T
3§ as
0
657
Proof of Theorem 2. Set ¢ *(t) instead of ¢ in (6.2). Then it can be written as

XPO=X70)+ 3. [o,(X°(s)dB](s)

1

Il

1~
.

J

} (XC(s)) dMO(s)+j"b(X° s))ds

\IM::..

.

+[ B(X () 4,)(ds),

oeo,u

P? - as. for qe. x, where t,;=7;/a,, and f;=p,/a,. Thus the theorem has
been proved.
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