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w 1. Introduction 

Let a(x)= {aij(x); i,j= 1,...,  d} and c~(x)= {eij(x); i,j= 2 .. . .  , d} be two systems of 
C2(R d) functions, where C~(R d) is the class of all functions which has bounded 
continuous derivatives up to the k-th order. We assume that a(x) and c~(x) are 
non-negative definite matrices for each x and aal(x)>c for some positive 
constant c. Suppose that a bounded measure # is given which is singular with 
respect to Lebesgue measure and set 17(dx)=p(dxl)dx2...dx d. Consider the 
following symmetric form E defined by 

d 
f(f, g) =�89 ~ ~ a,j(x) 8,f(x) 8j g(x) dx 

i , j =  1 R  d 

d 

+�89 ~ Y a~j(x)O,f(x)Sjg(x)tl(dx) 
i , j = 2  R d 

(1.1) 

for f, g~C~(Ra), where C~(R d) is the class of all C~(R d) functions with compact 
support. 

By a result of Fukushima [1], if (#, C~(Rd)) is closable on L2(dx), then 
there exists a dx-symmetric diffusion process X~ outside some set of ca- 
pacity zero, associated with the smallest closed extension (g0,~(g0)) of 
(~, C~(Rd)) on La(dx). 

The purpose of this paper is to characterize X~ as a unique solution of a 
stochastic differential equation (SDE) (2.1). As a consequence of this result, 
X~ can be supposed to he a diffusion process without exceptional set. The 
idea of the proof  is as follows. In w 3, we shall prove that the SDE (2.1) has a 
unique (in the sense of distribution) solution X(t) and that the Dirichlet form 
of X(t) on L2(dx) coincides with # on C~(Re). Hence, for the proofs of 
existence of X~ and equivalence of X~ and X(t), it is enough to show that 
X(t) is dx-symmetric and that C~(R d) is a core of the Dirichlet space as- 
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sociated with X(t). But the direct proof of these facts seems to be difficult ~. 
Hence we shall show that X~ exists and satisfies (2.1) for quasi-everywhere 
(q.e.) starting points, where quasi-everywhere means except on a set of capacity 
zero. If these results have been proved, the equivalence of X~ and X(t) 
follows from the uniqueness of the solution of (2.1). 

The SDE (2.1) contains the continuous additive functional (CAF) ~,(t) 
which is the CAF associated with the smooth measure a~l(x)rl(dx ). Generally, 
for a given smooth measure, to describe the concrete form of the associated 
CAF is not easy but it is easy if the smooth measure is absolutely continuous 
relative to the basic measure. Moreover, it is easy to show that (g, C~(Rd)) is 
closable on L2(dv), where v(dx)= dx + rl(dx). By these reasons, we shall first take 
dv as the basic measure, that is, we shall consider (g, C~(Ra)) on L2(dv). 

In w we shall show the existence of the diffusion process X~(t) associated 
with the smallest closed extension (#v,~(#~)) of (g, C~(Rd)) on LE(dv). Also, by 
using the stochastic calculus due to Fukushima [1], we shall show that the 
support of the CAF ~bA(t ) of X~(t) associated with the smooth measure dx is 
equal to R e q.e. In w we shall show that X~ is the diffusion 
process associated with (go,~(go)). This follows from the general result con- 
cerning to the time change of Markov processes associated with Dirichlet 
forms. Such a problem is discussed by Silverstein [9-1. In w we shall also start 
with X~(t). By an argument similar to Stroock and Varadhan [10; 
Theorem 4.5.2], we can represent X'(t) by using Brownian motions, qSn(t ) and 
the CAF associated with dr/. Changing the time by ~bA(t ), we can show that 
X~ satisfies (2.1). Similar equations are treated by S. Watanabe [12]. 

Analytically, Tomisaki [11] constructed the diffusion process without ex- 
ceptional set in the case a~2=c~2 for i,j>2, a~jeCE(d-1)/21+~(R d) and a(x) is 
strictly positive definite. As for the probabilistic constructions of diffusion 
processes such as X~ there is a work of Ikeda and Watanabe [2]. 

w 2. Main Results 

Let a(x)={aij(x);i,j=l,.. . ,d } and z(x)={'cij(x);i,j=2,...,d } be two matrices 
satisfying a.ta=a, z.'z=e/a11, [la(x)-cr(y)[l < K l x -  yl and [[v(x)- ~(Y)ll < Klx 
- y l  for some constant K, where 

d 

I]o-(x)-~(y)ll-- ~ [%(x)-~rlj(y)l 
i , j = l  

and 
d 

[l~(x)-v(Y)ll = ~ I'cq(x)-'clj(Y)l. 
i , j = 2  

d 

In our case, such matrices exist [10; Theorem5.2.3J. Set bi= �89 ~, c~2aji , fii 
1 d j=l 

- ~ Oja~i and ~il = z w = f i l  =0.  Consider the following SDE 
2 a l l  j = 2  

1 Concerning to the symmetry of the solution of martingale problems, there is a recent work of 
Fukush ima  and Stroock [13]. Some parts of our arguments  may  be simplified by using their result 
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d 

dXi(t ) = ~ ao(X(t)) dBj(t) + bi(X(t)) dt 
j=l 

d 

+ ~ zu(X(t)) dMj(t) + fii(X(t)) f~(dt), 
j=l 

(2.1) 

where B(t) = {Bi(t); i = 1,..., d}, M(t) = {M~(t); i = 2, ..., d} and #,(t) are stochastic 
processes satisfying the following conditions. 

(i) B(t) is a d-dimensional  Brownian motion.  
(ii) fu(t)--  ~ E(t, xl) i~(dxO, where L(t)-- {f(t, x l ) ;  x 1 ~R 1} is a family of (t, x 1)- 

cont inuous non-negative increasing processes satisfying 

t 

j I{x~(~)~ x~} ~(ds, x i) = f(t,  x t) 
0 

for all Xl~R ~ and t > 0 ,  and 

t 

j f (Xl(s))  a 1 l(X(s)) ds = ~ f(t, x t ) f (x t )  dx~ 
0 R t 

for all t >=O and f ~Co(R1). 

(iii) M(t) is a family of cont inuous local martingales satisfying (Mi,M2)(t)  
= 6 u fu(t) and (Bi,  M~) (t) = 0. 

The  solution of (2.1) is defined as a system {X(t), B(t), m(t), L(t)} satisfying 
the condit ions (i)-(iii) and Eq. (2.1). If the distribution of X(t) is uniquely 
determined by that  of X(0), then we shall say that the solution of (2.1) is unique 
(in the sense of distribution). Then  we have the following 

Theorem 1. The SDE (2.1) has a unique solution X(t)..Moreover, the Dirichlet 
form of X(t) on L2(dx) is an extension of(g, C~(Re)). 

Let dr, ( ~ , ~ ( ~ ) )  and X ~ be those in t roduced in w Let  A be a Borel set in 
R 1 with full Lebesgue measure satisfying /~(A)=0 and let ff)A(t) be the C A F  of 
XV(t) defined by 

t 

4) A(t) = j I A(X] (s)) ds, (2.2) 
0 

where X~(s) is the first coordinate  of X~(s). Since IA(X 0 is a density of dx 
relative to dr, qSa(t ) is the C A F  associated with the smooth measure dx. It is 
shown that C~A(t ) is strictly increasing. Let  X~ be the time changed process of 
X~(t) by ~A(t), that is, X~ - 1(0 ). Then  we have the following. 

Theorem 2. X~ is the diffusion process associated with the Dirichlet form 
(go, ~(~0)). 

Let  (f2, P~) be the probabil i ty space on which X~ is defined. A probabil i ty  
space (~,/Sx) is called an enlargement of (Q, Px) if there exists a mapping i of 
onto  (2 such that P~=P~oi -~. In this case we shall write X~ in place of 
X~ iocS). 
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Theorem 3. There exists an enlargement (~,P~) of ((2,P~) such that, for q.e.x, 
(X~ ~, P~) satisfies the SDE (2.1) with initial condition X(O)=x. 

w 3. The S D E  (2.1) 

In this section, we shall prove Theorem 1. But we shall discuss under slightly 
more general setting. Let a(x)={aij(x); l<-_i,j<d} and z(x)={'cij(x); 2<i,j<d} 
be the matrices in w and let b(x) = {hi(x); 1 < i__< d} and /~(x) = {Pi(x); 2 __< i__< d} 
be arbitrary systems of functions on R e satisfying 

d d 

Ib i (x) -b i (y) l<glx-y l  and ~ Ifli(x)-fl~(y)l<glx-y[ 
i = l  i = 2  

for some constant K. Note that the functions bi(x ) and//~(x) in w satisfy these 
conditions. Transforming by an orthogonal matrix, we may assume that alj(x ) 
=6l j  al~ll(x) for l<j<=d. In this section, unless otherwise stated, we shall 
consider the SDE (2.1) having these coefficients. For the definition of the 
solution and its uniqueness, see w Then we have the following theorem. 

Theorem 3.1. For any probability measure ~ on R e, there exists a solution of the 
Eq. (2.1) which has ~ as the initial distribution. Moreover, the uniqueness of the 
solution of(2.1) holds. 

Proof The proof is similar to the proof of [-3; Theorem IV-7.2], so that we 
shall only sketch it. If (X,B,M,L) is a solution of (2.1) corresponding to the 
coefficients (a,b,r,/~) then the time changed process (Xa, Ba, Ma, If) of 

t 

(X, B, M, L) by ~a(t) = ~ al l (X(s))ds, that is, Xa(t) = X(4)21(0), 
0 

t 

B~ = f l/a1 ~(X"(s)) riB(42 ~(s)), M~ = M(02 t(t)) 
0 

and L~(t)={#a(t, xl); xlsR1}, where Ea(t, xl)=E(Oyl(t),xl), is a solution corre- 
sponding to the coefficients (ff,/~,z,/?), where #=a/l/-a~11 and b=b/all. Con- 
versely, (X, B, M, L) is obtained from (X~,B ", M a, If) by a time change by Oa(t) 

t 

=~(1/all)(X~(s))ds. Hence it is enough to, and will, assume that a l l  = 1. 
0 

First, we shall consider the case b l=0 .  On a suitable probability space 
(f2, P), take mutually independent random variables X(0), B(t) and /~(t) satis- 
fying the following conditions; X(0)=(XI(0),...,Xe(0)) is a d-dimensional ran- 
dom variable with ~ as the distribution, B(t)=(Bl(t),...,Ba(t)) is a d-dimen- 
sional Brownian motion such that B(0)=0 and /~t)=(/~2(t ) . . . .  ,/~e(t)) is a (d 
- 1)-dimensional Brownian motion such that N0) = 0. Set X l(t) = XI(0) + Bl(t) 
and let t(t, Xx) be the local time of B~(t) at xl. Set f(t,x~)=2t(t, xl-Xl(O)). 
Using these processes, define ~(t) and M(t) by E,(t)=~(t,x~)#(dXl) and Mi(t) 
=/~i(Eu(t)). Then they satisfy (i)-(iii) of the definition of the solution. Hence it is 
enough to construct (X2(t),...,Xe(t)) satisfying (2.1). It is constructed by the 
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usual successive approximation method. For 2<_i<d and n>0,  define X(")(t) 
= (X(z")(t),..., X(f)(t)) inductively by 

xl~ 
d t 

Xl")(t) = Xi(O ) + ~ j aij(Xt(s), X ~"- 1)(s)) dBj(s) 
j = l o  

+ i bi(X~(s), X("- 1 ) ( S ) ) d s  ~- ~, i T'ij(Xl(S)' X(n- 1)(S)) dMj(s) 
0 j = 2 0  
t 

+ ~ ~,(x~(s), x~"- l~(s)) 6(as). 
0 

Then, by an obvious modification of the proof of [3; Theorem IV-7.2], for 
almost all co, Xl")(t) converges uniformly on every finite t-interval to Xi(t ) (i 
= 2,. . . ,  d) satisfying (2.1). 

For given X(0), it is easy to see that the distribution of X(t) is uniquely 
determined. 
If b 1 4=0, then the theorem follows from the transformation of the drift. That is, 
for a solution (X ,B ,M,L)  on (f2,P) of (2.1) corresponding to the coefficients 
(a ,b -~r . lb l ,Z ,  fl), define the measure P and a system of processes B(t) 
= (B l(t) . . . .  , Ba(t)) by 

I{ i  ' }1 P(D)=/~ exp b~(X(s))dBl(S)-�89 :D (3.1) 
0 

t 
D e a(X(s); s < t), B 1 (t) = B1 (t) - ~ b 2 (X(s)) ds 

0 

and Bi(t)=Bi(t ) for i>2.  Then the process (X,B,M,L)  on (f2,P) is a solution of 
(2.1) corresponding to the coefficients (o-,b,z, fl). The proof of the uniqueness is 
similar to I-3; Theorem IV-7.2]. 

In this section (X ,B ,M,L)  on (f2,Px) denotes the solution of (2.1) corre- 
sponding to the coefficients (a,b,z, fl) and initial condition X(0)=x.  Also de- 
note by E x [ . ]  the expectation relative to Px- As in the proof of Theorem 3.1, 
denote by (Xa, Ba, Ma, I~) the solution corresponding to the coefficients 
(6,/~, z, fl) obtained by a time change of (X,B, M,L) by qSa(t). Then X](t)=X](O) 

~E (t, xl) is its local time at x 1. Thus, for all +B](t)  is a Brownian motion and 1 , 
x -- (xl, ..., Xd), since 

2 Px[fa(t, xl)6ds] = ~  e -s2/2t ds (3.2) 
1/2~t 

(see Ito and McKean [4; p. 45]), we have 

Ex[~(t, x l ) ]=l~tn  and Ex[E~(t, xO2]=t. (3.3) 
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Moreover, since 

Ex[fa(t, y l ) ]= i ]  2~t_:s) lYl - -Xl lexp(  [Yl-Xll2~ds 
o V ~ 2]f~S ~ 2s ] 

- i  1]/i~-So ]/~ rc ]xI-Yl[  exp ( ] f ~  [Xl --YII212~S ]ds  (3.4) 

(see [4; p. 25]), it follows that 

Ex[~"(t, Yl)] dxl t R' = ~  and ~ Ex[vea(t, ya)2]dx l=Cet l / t ,  (3.5) 
R 1 

C 4q/f_ where 1 = 3 ~ - .  

Lemma 3.1. For any positive constant C and t >__O, 

E~ [exp { C #~(t)}] < 2 exp(C z t), (3.6) 

where C a = #(R 1)2 C2/2 and Y~(t) = ~ fa(t, x 1) #(dx 1)" 

Proof Since Ex[exp{CY~(t)}]<Ex[exp{C#(R1)f"(t, Xl)}], (3.6) follows easily 
from (3.2). 

To calculate the Dirichlet form of X(t), we shall provide a lemma similar to 
Stroock and Varadhan [10; Theorem 4.2.1]. 

Lemma 3.2. For all T> O, there exist positive constants C 3 and C 4 such that 

P[  max IX(s) - X(0)l _-> 2] _-< C 3 exp( - C 4 24/3 t -  1/3), 
O<_s<_t 

(3.7) 

for all 2 > 0  and t<T.  

Proof Suppose that a11= 1 and b 1 = 0. For p > 0 and 0 =(01, . . . ,  0d) such that 101 
= 1, set 

t 

Yoo(t) = ~ p ~ 0 i aij(X(s)) dBj(s) 
i,j=l o 

+ p ~ 0 i zij(X(s)) dMj(s). 
i , j = 2  0 

Then 

t 

(ypo)(t) = p2 i (0, a(X(s)) O) ds + p2 ~ (0, c~(X(s)) O) d,(ds). 
0 0 

Hence, for an upper bound C 5 of a, b, c~ and fl, we have 
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P[  max (p O, X(s) - X(O)) >= p 2] 
O<_s<_t 

= P [ max exp {Ypo(S)- �89 (Y;o) (s) 
kO<_s<_t 

s 

-}- ~ (D (0 ,  b ( X  (bl)) > -}-1 io2 (0 ,  a ( X  (u)) 0> ) dlg 
o 

+ S (p (o, #(X(u))> + �89 o 2 < o, ~(X(u)) o)) ~.(du)} >= e ~ 
0 

<=e-P~E[ max exptYoo(S)-�89 ) 
LO<_s<_t ( 

s 
+ ~ (p (0, b(X(u))) + �89 p2 (0, a(X(ul) 0>1 du 

0 

+ ~ (p (0, fl(X(u))> + �89 p2 (0, a(X(u)) 0>) E~,(du) 
0 

<e-PXE[maxtexp{Yoo(S)-�89 }exp C s p + ~ -  (t+#u(t)) 

< e-P~E[ max exp {2 Ypo(S) - (YpO) (s)}] 1/2 
O<s<t 

x E[exp { C5(2 p + p2) (t + Eu(t))}] 1/2. 

By Lemma 3.1 and Novikov's result [3], for any constant C, the process 

exp CYpo(t)-~-<Ypo ) (0  (t>0) is a martingale and 

C 2 

Hence, by the martingale inequality 

e [  max exp (2 Ypo(S) - (Ypo) (s)}] 
O<_s<_t 

=< 4EEex p {2 Ypo(t) - (Ypo) (t)}] 

= 4EFexp {2 Ypo(t) - 4 (Ypo) (t)} exp { 3 (Ypo) (t)}] 

__< 4EFexp {4 Ypo(t) - 8 (Ypo) (t)}] 1/2 E[exp { 6 (Ypo) (t)}] 1/2 

= 4E[exp {6(Ypo)(t)}] 1/2__< 4E[exp {6 C 5 p2(t + ~(t))}] 1/2. 

Therefore, by Lemma 3.1, 

P[ max (0, X(s) - X(0)) __> 23 
O<~s~_t 
< 2e-PZE[exp {6 C 5 pZ(t + du(t))}] 1/4 

x E[exp { Cs(2 p + p2) (t + #.(t))}] 1/2 

3 C6 4 t \ =<4exp ( - p J . + C 6 P t q - C 6 p 2 t q - C 6 p  t+ 2- p J 
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for some constant  C 6, Set p =(2 /C  6 t)  1/3. Then we have 

P [  max (0, X(s) - X(O)) > 2] 
O<_s<_t 

< 4  exp{ --�89 t)-  1/3 _~_ (C6 t)2/3 21/3 @(C6 t)l/3 22/3.4_ 2} 

< C 7 e x p ( -  C s 2 4/3 t -  1/3) 

for suitable constants  C 7 and C s depending on T. Substi tuting - 0  for 0 we 
have 

P [  max I(0, X(s) - X(0))I > 2] _-< 2 C 7 exp( - C a 2 4/3 t -  1/3). 
O<_s<_t 

Therefore  

P [  max IX(s) - X(0)] > 23 =< 2d C 7 e x p ( -  C 8 24/3 t -  1/3). 
O<_s<_t 

Secondly we shall suppose that  a t l ( x ) = l  and bl(x)#O. Let  (X,B,M,L) on 
(O,/s) be the solut ion of (2.1) corresponding to the coefficients (a, b - ~ r .  lbl ,  z, fl) 
and P be the measure defined by (3.1). Then  

Since 

P [  max IX(s ) -  X(0)I > 2] 
O<_s<_t 

[{i } ] =/~ exp bl(X(s))dB~(s)-�89 ; max IX(s)-X(O)l>2 
0 0 <-s<-t 

____</~ exp 2 !  bl(X(s))dBl(s)-io b2(X(s"ds}] 1/2 

x t6[ max IX(s) - X(0)[ > 2] 1/2. 
O<~s<_t 

/~[ max IX(s) - X(0)I > 2] < 2d C 7 exp ( - C s 2 4/3 t -  1/3), 
O<--s<t  

by the previous result and 

/~ exp 2 bl(X(s)) dBl(S ) - ~  b2(X(s)) ds 
0 

[ { i  }] -_<s exp 2 bl(X(s))d~l(s)-2~b~(X(s))ds exp([lbll[2t) 
0 

< exp(ll bi FI 2 t) ~ exp(l[bi II 2 T), 

we have the result. 
In the general case, since 

P [  max [X(s)-X(0)I  > 2 ]  
O < s < t  

< P [  max [Xa(s) --xa(o)t ~ .~], 
O_<s_< Ila11111 

the result follows from the above case. 



Singular Diffusion Processes 257 

Denote  by Pt the transit ion function of (X(t), Px). Then  the following corol- 
lary holds. 

Corollary. I f  f is a bounded measurable function which vanishes outside a 
compact set, then Ptf is dv-integrable. 

Proof Denote  by B, the sphere with center 0 and radius n. Then  it is enough 
to show that SPt(x, B,)v(dx)< oo for all n > 1. Fix n__> 1. Then, by L e m m a  3.2, 

Pt(x, B,) =< Px [IX(t) - X(0)I _-> k -- n3 

< C 3 exp { - C4(k--n) 4/3 t -  1 / 3 }  

for all x~Bk+ 1 -- Bk (k > n). Since v(Bk+ 1) -- v(Bk) < constant  x (k + 1) a, 

SPt(x, B,) v(dx) < v(B,) + C 3 ~ exp { - C4(k - n) 4/3 t -  1/3} 
k=n 

x (v(Sk+ l) -- v(Bk)) < o0. 

Now we shall show the fundamental  lemma in this section. Roughly speak- 
ing, the lemma shows that the measure all(X)tl(dx ) is the smooth measure 
associated with the CAF f~(t) of X(t). 

L e m m a  3.3. For all f, geC~(Re), 

[i ] lim -1 ~ f ( x ) E  x g(X(s))Eu(ds ) dx 
t ~O  t Ra 

= ~ all (x) f (x)  g(x) tl(dx ). (3.8) 
Rd 

Proof Firstly, we shall suppose that  b I =0.  By the definition of  ~ba, X a and fa, 

~ f (x) E~ [i g(X (s)) ( ~(ds) l dx 

g 4~(t) ] 
! W,"(s)).':(ds)] d,, 

rqSa(t) a . 

r~.(t) 

= L ! , ( , , , ,  . . . ,  

-~- I f ( ' x ) S # ( d Y l ) E x  [ r  (t> {R(Yx , 2 ~  (s), . . . ,  "~(S))  

- g (Y l ,  X~(O), ..., X~(O))} f'(ds, Yl)] dx 

= I + I I .  
t 

Note  that  Ca(t) is the inverse function of the CAF ~a(t)=5(1/a11 ) (Xa(s))ds, 
0 

and hence a stopping time, of X ~. Set Y(t)=(X~(t), ...,X~(t)). Then  by Ito's 
formula, 
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r 
{g(y~, Y(s))-g(yl, Y(O))} ~(ds, y~) 

o 

=r i c~ig(yl, Y(u))dXa(u) 
s } 

+~ ~ ! c~ic~ig(Yl, Y(u))d(X~,X~.)(u) #~(ds, y 0 
i,j=2 

{ ~= 2 4a(t) =fa(qba(t),yl) ~ Oig(y 1, Y(u))dX~(u) 
i o 

1 } 
i,./=2 ! Oic~2g(Yl' Y(u))d(X'~,X~)(u) 

d r 
-- 2 ~ ~i g(Yl' Y(S)) ~a(s, Yl) dXa(S) 

i=2 0 
1 a 4)~ 

2 i,j~=2 ! Oig3Jg(Yl' Y(s))ea(s'yOd<X~' X~.)(s). 

Since qS~(t)__< ][all ][ t, we have 

rr 
Ex[ ! {g(Yl'Y(s))-g(Yl'Y(O))}~a(ds'Yl)] 

__<~x [~ (Ca(t), yl) i~2 ~~ ! 69~ g(y~, g(s))  dX']  

' ] ~,J=2 ! ~1 ~jg(yx, Y(s))d(x; x~)(s) 

[--~2 4)~ + E~ ~ O,g(yl, Y(s))ea(s, yO{(b~/al,)(X~(s))ds 
i o 

~- fie ( xa (s)) ~a.u (Ms)} ] 

rl a r 
+ Ex]~ ~, S Oic~jg(Yl, Y(s))~(s, Yl) 

L i,j=2 0 

x {(aij/a 11)(X~(s)) ds + cqj(X~(s)) d~(ds)} 1 

<= ~6 E x Efa(~) a(t), yl) 2] 1/2 

XEx ~ Oig(Yl, Y(s))Sij(X~(s))dB~(s) 
i, =2 0 

+ J Oig(Yl, Y(s))*ij(X"(s))dM~(s) 
i, 2 0 

( a eke(t) "}2 
+~i~2 ! ~ig(Yl, Y(s))(bi/all)(X~(s)) ds 

( d r 2 
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i, = 2  

i, = 2  

4~a(t) t2 ~3i (?j g(Yl, Y(s)) (ai/a 11) (Xa(s)) ds 
0 

4, ~(t) 
~ 63i~Jg(Yl'Y(s))cqJ(Xa(s))Eau(ds)}2] 

+ Ex ~a(~)a(t), Y l )  10, g(y~, Y ( s ) ) l  (l(bi/al 1)(x~ cls 
i = 2  

1 a [ r (4,(t), cr 
..= YI) t !lc~ic~jg(Yl, Y(s))l 

x ([(ai/a 11)(Xa(s))l ds + Icqj(X"(s))] #: (ds))l] 

< C9{E~E~([la11 II t, yj2]l /2Ex[t+ t 2 +~(lla1111 t) 

+~(l la~l  II 02] ~/2 +gx[f~ II t, yl)(t+~'~,(lla~l II t)]}, 
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Hence, by (3.5), 

lim ~ IS f (x)  II dxl 
t ~ 0  

_-<lim C 9 [, #(dyl) ~. fo(X2, ..., xe) dx2.., dx a 
t~O 

• ~Sfl(Xl)Ex[fa~(llall [I t, y02] dXl} 1/2 

• t~fl(xl)Ex[t+tz+#~(llaxll] t)+f~(lla1111 t)2]dx1} 1/2 

+ lim C 9 5#(dyl) ~fo(X2,..., xe) dx2.., dx e 
t~O 

• T Sfl(x~)gx[Ea(llal~ [1 t, Yl)(t +~'~(11all II t))] dXl} =0. 

Let qS, ~(t) be the inverse function of the CAF 0,, t(t) of X~(t) defined by 

t 

0~. t (t) = ~ (1/a 11) (X~ (s), r(o)) ds. 
0 

Write the term I as 

I7" ] [~ ] I=~f(x)E~ g(X~(s), Y(O))~u(ds) d x + S f ( x ) E  x ~(g(X~(s), Y(O))f~(ds) dx 
L 0 ~)a, 1 (t) 

= III  + IV.  

I f ( x ) l  ~ f  l(yl) fo(X2, ..., Xd). 

for some constant C 9 depending on g. Since feC~(Re), there exist two func- 
tions f l(xl)~ Co(R 1) and fo(X2,..., xa)~ Co(R a- 1) such that 
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The term III is written as 

I I I =  S dx2.. ,  dx a ~ g(Yl, x2, ---, xa) #(dY O 

• ~ dXl  f ( x l , ' " ,  xa) E(xl ...... a) [~a (Oa, 1 (t), y 1) ] '  

For fixed (x 2 . . . .  xa), since 1 , y#  (qS~,l(t),Xl) is the local time at x 1 
dimensional diffusion process X~ (~ba, 1 (t)) with speed 
(1/al 1) (xl . . . .  , xe) dx I (see [4; w 5.4]), we have 

lim 1 III =l i ra  _1 Sdx2.." dxd ~g(Yl, x2, . . . ,  xe)#(dYO 
t ~ 0  t t ~ 0  t 

• ~ . f ( x1 , . . . , ) ca )a l l (X l , . . . ,Xd )  

x E(,~.x2 ...... ~) [f"(~bo, l(t), xl) ] (1/a 11)(Xl, ..., xa)) dxl  

= l i m  -1 ~dx~...dxa[. g(yl ,x2 ' ..., xa)#(dYO 

[i ] xE(,  . . . . . . . . . . .  ) ( f .  all)(X~(O~,l(s)),x2,. . . ,xa)ds 

= S g(Yl, x2, ..., xa)(f" al 1)(Yl, x2 , . . . ,  xa) #(dYl) dx2..,  dxa 

= ~ g(x)f(x)  all  (x) rl(dx). 

Y. O s h i m a  

1 
Finally we shall show that  lim-- 

t ~ o t  
qS~,l(t)< 11a111] t. Hence, for all e>0 ,  

Since 

of the 1- 
measure 

gx[Wa(lla~lllt, yl); max IXa(s) -X"(O)l~d 
s<-Ila11]lt 

<Ex[ff(llalll[t, yl)Z]l/zP~[_ max [Xa(s)--Xa(O)l>=e] 1/2, 
s__< Ilax~llt 

by (3.5) and (3.6) we have 

l i m - V = l i m  [[gtl ~/o(X2, . . . ,xa)dx2. . .dxa 
t ~ O  t t ~ O  /- 

x S#(dyl) {S f l  (xl)ExE~~ II t, y023 d x J  1/2 

x {~fl(xl)Ex[_ max Ix~ dxl}  1/2 
s__< [laaallt 

<= C lo l im t  -1/4 exp { - C~ ~4/3(llall/I t) -1/3} = 0  
t ~ O  

for all e > 0. 

[IVt _-< 1[ g II S [f(x)l dx ~ ~(dy ~) E~ gl~(qS~(t), y,) - ~ ( ~ , ,  (0, Y 013 

< 2 Ilgll j" If(x)l dx [.#(dy 0 E x [[a(l[a,1 II t, Yl); 
max IXa(s)-- xa(o)l > e] 

s_-< l lal l l l t  

+ Ilgl] j [/(x)l dxJ#(dyl)  E~ [l#~ y~) - ~"(~b~, l(t), Yl)I; 

max IX~(s)-X~(O)] <~] 
s <  liar1 lit 

= V + V I .  

IV=0 .  Obviously gp,(t)<=[[allllt and 
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Set D={co;  [X"(s)-Xa(O)I<e for all s<=llalll[t}. Then, since [al l (x  ) 
- al 1 (Y)I < Ci 1 Ix - y[ for some constant  C 11, 

I~a, ~ ( t ) - -  a~ a (xa(o)) tl 
t 

--< S laa 1 (X~ (~ba, 1 (s), Y(0)) - a l l  (Xa (0))[ ds 
0 

<= Cll  t { max [Xa(s)--Xa(O)I} < Cll  te 
s__< [lal~ lit 

on D. Hence,  if [Yl -X ' i (0 ) l<e ,  

[qSa, 1 (t) -- aaa (Ya, Y(0)) t[ < ]qS,, 1 (t) - ala (X" (0)) t[ 

+ t la~l ( S " ( 0 ) ) -  a a I(Y~, Y(0))] < 2 Ca i tE 

on D. Since ~a(ff)a(t), yl)=~a(~)a, a(t), yl)----0 on D if [Ya-S~'(0)[>e,  we have 

VI<21lgll Ilf~ll Sfo(Xe, ... ,xd)dx2...dXd~p(dYi) 

x ~Ex[d"(all(yl ,x2, . . . ,Xd)+ 2C~l tG y a) 

--da(alt(ya, x2, ... , X d) --2 C a l  t~, Yl)] dXl 

= 4 C l l  ~t(R 1) tE Ilgl[ IIA II ~fo(X2, ... , xd)dx2.., dXd = C12 t S ,  

by (3.5). Hence 1 VI__< C12 ~. Thus we have the result. 
t 

Let A and L be the differential operators  defined by 

l d d 
A g ( x ) = ~  ~' a~j(x)~Ojg(x)+ ~ b~(x)3~g(x) 

i , j = l  i = 1  
and 

L g ( x ) = 5  ~ ~ij(x)3ic?jg(x)+all(x) fli3ig(x), 
z ' i , j = 2  i = 2  

respectively. Then  we have 

Theorem 3.1. For all f, ge C~ (Rd), 

lira -1 ~ f (x ) ( i_Pt)g(x)d  x 
t ~ O  t R a 

= - ~ f (x)  Ag(x) d x -  I f (x)  Lg(x) ~l(dx). (3.9) 
R a R a 

Proof. By Ito's formula, 

g(x(o)-g(x(o)) 
d t d t 

= F, ~ 6 g(x(~)) dX~(~) +~ y S 6 6 g(x(~)) d<X~, Xj)(~) 
i = 1 0  i , j = l  0 

d t t 

= ~ ~ ~ g(X(s)) cqj(X(s)) dBj(s)+ ~ Ag(X(s)) ds 
i , j = l  0 0 

+ Z 6 g(x(~)) ~j(X(s)) dMj(s) + ~ Lg(X(~))/a~(X(s)) G(&). 
i , j = 2  0 0 
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Hence by Lemmy 3.2, 

lim-1 ~ f ( x ) ( I -P , )g (x )dx  
t ~  0 t ROt 

[i ] = - l i m !  S f(x)e~ Ag(x(s))ds dx 
t ~ O  t R a 

[i ] - l i m  -1 ~ f (x)E~ Lg(X(s))/a~l(X(s))Eu(ds ) dx 
t ~ O  t R a 

= - ~ f(x)  ag(x) d x -  ~ f(x)  Cg(x) r/(dx). 
R a R a 

Corollary. Let b i and fli be those defined in w Then the Dirichlet form on L2(dx) 
of the solution X(t) of (2.1) is an extension of(N, C~(Rd)). 

w 4. T h e  Process  X ~ 

Let A and F be two Borel sets in R 1 such that F = R 1 - A ,  #(A)=0 and ~dx 1 
F 

=0. Since v(dx)=dx+r/(dx), we have dX=IA(Xl)v(dx ) and r/(dx)=Ir(xl)v(dx). 
Hence, for all f, geC~(Re), the form N can be written as 

( d 

N ( f ' g )  = - 1  5 f ( x ) ~ I A ( X l )  E 8,(a,bS;g)(x) 
R a {. i , j =  1 

+ It(x1) i,,= ~ 2 8i(c%SJg)(x)} v(dx). (4.1) 

oo d I f f ,  eC 0 (R) converges to 0 in LZ(dv) then (4.1) implies that N(fn, g ) con- 
verges to 0 for all geC~(Re). This implies that the symmetric form (g, C~(Re)) 
is closable on L2(dv) (see [1; Problem 1.1.2]). Moreover, by the results of 
Fukushima [1; Theorems 2.1.1 and 2.1.2], its smallest closed extension 
(N~,~(g~)) is a regular Dirichlet form on L2(dv) with local property. By 
another result of Fukushima [1 ; Chap. 6], there exists a dr-symmetric diffusion 
process XV(t) on a probability space (O,P~) associated with (Sv,~(C~)). As 
noted in w the increasing process dPA(t ) defined by (2.2) is the CAF of X ~ 
associated with the smooth measure dx. Set 

~br(t ) = j Ir (X ~ (s)) ds. (4.2) 
o 

Then q5 r is the CAF associated with dr/. In the rest of this section, we shall 
show that the increasing process ~bA(t ) is strictly increasing. 

For the purpose we shall use the stochastic calculus related to X. Necessary 
facts are presented in [1;w 5.4]. By noting (4.1), for f, g E C~ (Re), we have 

N( f  g) + p(f, g)~ = ~f(x) (p - g') g(x) v(dx), (4.3) 
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where 
1 a 

g g(x)=~ ~ IA(Xl)ai(aijOjg)(x) 
i , j = l  

1 
+~ ~. Ir(x,)ai(cqjc~ag)(x). 

i , j = 2  

Denote by V p the resolvent of X ~. Then (4.3) implies g=VP(p-gV)g q.e. Hence, 
by [-1; Theorem 5.2.2], the process M~'rg~(t) defined by 

t 

M ~' tgl(t) = g(X~(t)) - g(X~(0)) - 5 gV g(X~(s)) ds (4.4) 
o 

is a martingale CAF such that 

t d 

<M~'tgJ>(t)=~ ~ aijOigOjg(X*(s))$a(ds) 
0 i , j = l  

d 

+i  ~ c%~ig~ag(X~(s))Or(ds) " 
0 i , j = 2  

In particular, by taking gEC~(R a) such that g(x)=x~ locally, there exists a 
system {M~(t); i=  1, ..., d} of local martingale CAFs satisfying 

t 

X[ (t) - X[ (0) = M; (t) + ~ b i (x  ~ (s)) 4A (as) 
0 t 

"Jr- ~ ~ i ( X V ( s ) )  (PF(ds)  ( 4 . 5 )  
o 

and 

M v v 1 v M j ) ( t ) = ~ { ( M  i + - (M~>( t ) - (M]>( t ) }  

= %(XV(s)) 4)A(dS) + S %(XV(s)) 4r(ds), (4.6) 
0 0 

1 d ~ 1 a 
where b&) = ~ j~=l ~j a~i(x)' ill(x) = ~ ~ ~?j c~ji(x) and ~ lj = cql =/~1 = 0. 

"= ~ j = 2  

We shall next apply the above discussion to a function which is not 
smooth. Set m(dxl)=dx~+#(dxt)  and let k(xt) be a bounded continuous 
function on R ~ satisfying the following conditions (a), (b) and (c); (a) 

2 aid+kl  k(xl)zL2(dm), (b) k(xl) is absolutely continuous and d~xZL (dxl) , (c) 
\ d x  1 ! 

d d+k  
is absolutely continuous relative to dm and there exists a version of 
which belongs to LE(dm)c~ Cb(R* ). dm dx 1 

Let ko(x2, ...,xa) be a C~(R d-l) function and set h(x)=k(xi)ko(x e, ...,xa). { 1} 
Denote by Pn the 1-dimensional mollifier supported by x~; Ixll =<~ . Set k~(xl) 
= p~ �9 k(x 1) and h~(x) = k~ (x 1) ko (x2, ..., Xa) (n = 1 .. . .  , d). 

Lemma 4.1. The function h belongs to ~(g~). 
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Proof Obviously h, is approx imated  by C~(R d) functions in the norm g~(. ,  .) 
+ ( . , . ) ~ .  Hence  it is enough to remark  that  # * ( h n - h , h , - h ) + ( h - h , h - h ) ~  
tends to 0 as n tends to oo. 

d+k 
Lemma4 .2 .  I f  we understand ~lh(x) as ~.. (xOko(x2,...,xe) then, for all 
f ~  C~ (Ra), ux t 

# ~ ( f h ) = ~  S aij(x)~Vif(x)Sjh(x)dx+~ ~. ~ cqj(x)~J(x)~jh(x)rl(dx). (4.7) 
R d i , j =  1 i , j =  2 R d 

Proof It is easy to see that  g~(f, h , ) = # ( f ,  h,). In this equality, since 0 i h, tends 
to c?ih in L2(dv) as n tends to infinity, the lemma follows. 

For  any compact  set K of R d, choose koE C~(R e-  1) so that  ko(x2,... , Xd)= 1 
for every x=(x~ .... ,xd)~K. Since h(x)=k(xOko(X2, ...,xa)=k(x 0 for x~K we 
can see that  k(xl) belongs to @loc(#~), that  is, k equals locally to a function 
which belongs to ~(gv).  Thus we can decompose  k(X~(t))-k(X~ (0)) as 

k(X~ (t)) - k(X~ (0)) = M'" tkl(t) + N ~' tkJ(t), (4.8) 

where M~'tkl(t) is a CAF  which equals locally to a mart ingale additive func- 
t ional and N~'tkl(t) is a C A F  which is locally of zero energy ([1; (5.4.41)]). As 
in (4.5), we have an explicit representa t ion of N~'tkl(t). 

Lemma 4.3. N~'tkl(t) is given by 

t d d + k 
N ~, [k] (t) = ! a l l  (X ~ (s)) 2din dx i- (X~ (s)) ds 

+ f b~ (X ~(s)) (X~ (s)) 4a(ds). (4.9) 
0 

Proof Let  p > 0 .  By (4.7) we have 

g~(f, h)+p(f, h)~ 
1 - ~ ~ a l l  (x) ~l f (x )  Q1 h (x) dx 

R a 

- �89 ~ y f(x)O~(aij~jh)(x)dx 
i o r j : #  1 R è  

d 

- �89 ~ ~ f(x)~i(~j~jh)(x)~(dx)+p ~ f(x)h(x)v(dx) 
i , j =  2 R d R a 

d d + k 
f(x) al l(x) 2 d i n  d x l  ( x l )  k ~  " " '  Xa)  v ( d x )  

R d 

- �89 ~ f(x) O 1 all(x )~l h(x)dx 
R a 

- �89 ~ ~ f(x){a~2(x)~i82h(x)+~iai2(x)32h(x)}dx 
ior j4= 1 R a 

d 

--�89 ~ ~ f(x)  {aij(x) c3 i ~3j h(x) + c~ i aij(x ) ~2 h(x)} tl(dx ) 
i , j=  2 R a 

+p ~ f(x)h(x)v(dx) 
R a 

= ~ f ( x ) ( p -  g*) h(x) v(dx), 
R a 
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where 
d d+k 

gVh (x) = a l l  (x) 2din 7~x a (x 1) k0 (x2, ... , Xd) 

+ � 8 9  2 aij(x)aic~jh(x) 
ior j#-  1 

d d 

+�89 E c%(x)e, ajh(x)+IA(xO E b,(x)a,h(x) 
i , j = 2  i = i  

d 

+ I r ( x 0  y'  fli(x) 0 i h(x). 
i = 2  

This implies that h(x)=VP(p-g~)h(x) q.e. and hence N~'thl(t)=ig~h(X~(s))ds, 
0 

where N*'thl(t) is a CAF of zero energy appearing in the decomposition of 
h(X~(t))-h(X~(O)). Setting k o = 1 we have the result. 

As for the martingale part M~'rk~(t), by (4.7), it satisfies 

, ( d + k  ) 2 
(Mv'[kl)(t)=!all(XV(s))l~xl(XVl(s)) ~ dpa(ds ). (4.10) 

Lemma 4.4. The local martingale CAFs Mv'[k](t) and M~I (t) are related by 

t d + k  ~ 
M v, tkl (t) = ! ~ (X 1 (s)) dM 1 (s). (4.11) 

Proof. If k(xl) belongs to CI(R1), this result is contained in the result of 
Fukushima [1 ; Theorem 5.4.3]. In the present case, although k does not belong 
to CI(Rt), this can be proved similarly. In fact, it is enough to show that, for 
any compact set K, if f, g and v are C~(R e) functions supported by K and, for 
all i ( i=l , . . . ,d) ,  u i is a C~(R e) function which is equal to the coordinate 
function x i on K then 

d 

I f (x )  g(x) #<h,~>(dx) = ~ I f (x )  g(x) 0~ h(x) #< .... >(dx), 

where #<h ~" and #<, ~> are the signed measures associated with ( M  ~'thl, M ~,Lvj) 
and (M ~'f"d, M~'rvl),"respectively. This equality follows easily from 

d 

#<h,~>(dx) = ~ aij(x ) 0 i h(x) c~j v(x) dx 
i , j= 1 

d 

+ ~, o:ij(x)~ih(x)~jv(x)rl(dx) 
i , j = 2  

and 

d d 

#< .... >(dx)= ~ aij(x)c~jv(x)dx + ~ ctijc3jv(x)rl(dx ) 
j = l  j = 2  

on K. 
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Let qS~(t) be the CAF of X~(t) defined by 

t 

c~; (t) = ~ a ll (X ~ (s)) ds (4.12) 
0 

and let X"(t), M~(t), M~'Ekl(t) and N"'Lkl(t) be the time changed processes of 
X~(t), M~(t), M',[kl(t) and N~'tk~(t) by ~b~(t), that is, X~(t)=X~((4)~)-l(t)) , etc. 
Then, by (4.6) and (4.11), M~(t) and Ma'Ekl(t) are martingale CAFs on ((2, P~) 
such that  

( M';) (t) = i a ll ( Xa (s)) 4)~ (ds) (4.13) 
t 

0 

and 

Also, by (4.9), we have 

M~,tkl(t)= } d+ k ~ o 7~xl (x l  (s)) dMl(s ). (4.14) 

- i  d d + N o, r< (t) - k (X"~ (s)) ds  
o 2din dx 1 

+ ~ bl(X~ (X~(slt G(&), (4.15) 
0 

where qb~ (t) = qb A ((4;)-1 (t)). 

Set bl (x)= b 1 ( x ) / a l l ( X ) .  Let p a be the measure defined by 

[{i }1 Pxa(D)=E x exp - bt(X~(s))dM~(s)-�89 2 d(M~)(s) ; D 
0 

for D~a(X~(s); s<t). Then, by Girsanov's theorem, for any local martingale 
t 

C A F  M(t) on (f2, P~), the stochastic process M(t)+~ bl(X~(s))d(M,M~)(s) is a 
local mart ingale C A F  on (f2, P~). o 

Lemma 4.5. The process 

k ( X ~ ( t ) ) - k ( X ~ ( O ) ) - i d  +~x 1 2din (X{(s))ds (4.16) 

is a martingale C A F  on (g2, P~). 

Proof Applying the above remark to M(t)= M ~'Ekl(t) and using (4.13) and (4.14) 
we can show that  

M a, v,l (t) + i/)1 ( xa  (s)) d ( M  a' tkl, M~ > (s) 
0 

=Ma,[kl(t)+ i a d+k ~ b 1 (X (s)) ~Tx(X~ (s)) Oa (ds) 

is a martingale C A F  on ((2, P~a). Hence, by (4.8) and (4.15), the result follows. 
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Lemma4.6. Denote by {WP;p>0} and {V~;p>0} the resolvents of 1-dimen- 
sional diffusion process with speed measure 2din and X"(t), respectively. Then 
there exists a properly exceptional set N of XV(t) such that V~(x,D x R e-l)  
= W'(xl ,  D)for all Borel set D c R 1 and x(sN, where x 1 is thefirst coordinate ofx. 

Proof. Since Co(R 1) is separable, it is enough to show that, for all fleCo(R1), 
there exists a properly exceptional set N such that V~fl(x)=WPfl(x 0 for 
x r N, where V~fl (x) = V~ (fl x IRd_ 1) (X). Set k(x 1) = W ' f l  (x 1). Then it satisfies 
the conditions (a), (b) and (c) preceding Lemma 4.1. Hence, by (4.16), we can 
show that there exists a properly exceptional set N such that 

E,x[W,L(x~( t ) ) ]_w,L(xO=i  a d d + Ex[2d~m dx 1 WP fl(X~(s))] ds 

for xCN. Multiplying e -p' and integrating by t we have 

VJ p- WVfl (x) = WPfl (x 1). 
2din dx 1 

Since p 2din dx 1 WPf l=f l ,  the result follows. 

Theorem 4.1. For all x l~R 1 there exists at least one point y e n  such that Yl 
=x t. Moreover, for xCN, the distribution of X~(t) under P~ is independent of 
(x2, ...,xe). I f  we denote by P~ instead of P~ for xCN whenever we consider 
X~(t), then (Xf(t),P~) is a 1-dimensional diffussion process with speed measure 
2din. 

Proof. Let z be an arbitrary point of R e - N  and let (cl,c2) be an arbitrary 
open interval of R 1. Let f l  be a non-negative function supported by [cl, c2] 
such that (m, f l)>O. Then WPfl(zl)>O. Hence, by Lemma4.6, V~fl(z)>O. 
This implies that the process X"(t) started from z hits the set {y~Re; 
c1<y1<c2} and hence it hits the hyperplane {yERe; y l=x l }  if z l < x  1<c 1 or 
c2<xl<z l .  Therefore the hyperplane is not contained in N, that is, there 
exists at least one point y e n  such that Yl =Xl. Since (cl, c2) is arbitrary, the 
first part of the theorem holds. The other parts are obvious by Lemma 4.6. 

By the theorem, the support of the CAF ~b~(t) coincides with R e - N ,  that 
is, inf{t; 4~( t )>0}=0  a.s. P~ for all x e R e - N .  Turning back to the process 
X~(t), we have the following theorem. 

Theorem 4.2. The support of the CAF (aA(t) defined by (2.2) coincides with R e 
- N  for a suitable properly exceptional set N. 

w 5. Proof of Theorem 2 

As was proved in Theorem 4.2, the CAF Oa(t) is strictly increasing a.s. Px for 
x~Rd-N .  Hence the time changed process xO(t)=X~((OAI(t)) is a diffusion 
process on the probability space (f2, Px; x~Re-N) .  To prove that X~ is the 
dx-symmetric diffusion process associated with (go,~(go)), it is enough to 
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prove the following result: If q~(t) is a CAF associated with a measure ~(dx) 
=a(x)v(dx) for some bounded measurable function a(x) and if Px[q~(t)>0 for 
all t > 0 1 = l  q.e., then the time changed process X~(t)=XV((o-~(t)) is a d~- 
symmetric diffusion process such that the Dirichlet form of X ~ on L2(d~) is the 
smallest closed extension of (g, C~(Rd)) on L2(d~), Except for Theorem 5.1, we 
shall suppose that ~ is a general Radon measure associated with a strictly 
increasing CAF ~b(t). 

Some parts of the following results will follow from the results of Silver- 
stein [-9; 1.8], but we shall present it since, in our case, it follows from 
elementary calculations. 

Denote by Vt~q and V~t p the kernels defined by 

[i ] Vt~q f ( x )=Ex  exp(-pt-qc~(O)f(X~(t))dc~(t) , 

[i ] V qv =Ex - p t - q  +t f(x)  exp( O(t))f(X~(t)) d~ 

If Vt~~ is bounded for some r > 0  and a bounded measurable function f then 

vf~q f - Vt~S f + (p - r) Ve][ Vt~ f + ( q - s) Vt~q Vt~Sf= 0 (5.1) 

for all p, q, r, s > 0  such that p + q > 0  and r + s > 0  (see [5, 6]). Similarly, if 
r~~ is bounded for some s >0  and a bounded measurable function f then 

V~]~P f - V~,~f +(p - r )  V~y V~T f + ( q - s  ) V~P~ q l /~ t f= 0 (5.2) 

for all p, q, r, s > 0  such that p + q > 0  and r + s > 0 .  Note that (5.1) [resp. (5.2)1 
holds for all bounded measurable function f if q, s > 0 [-resp. p, r >01. If p >0  
and f >  0, then by (5.2), 

p Vt~ ~ V f [ f =  VPf  - V~Pf<= VPf<= [I f H/P. 

Moreover, since Vf~Pf is finely continuous, the set F(~l)={x;V~Pf(x)>!} is a 

finely closed set satisfying (1)_~ a F2 R - N  and V~p,~ 2 for x s R  d 
- N .  By a similar argument, there exists a sequence ~F (2)~ of finely closed I n - I n > l  

sets such that F(,2)~Ra-N and Vft~ ~2~) is bounded on R a - N .  Further- 
more, by [-1; Theorem 3.2.31, there exists a sequence {F~ 3)} of closed sets such 
that the measure ~(dxc~F(, a)) is a measure with finite energy integral. Set F, 

(1 )  (2 )  (3 )  a =F.  q c~F.' nFA c~(R -N) .  Then {F.}~>I is an increasing sequence of finely 
closed subsets of R d - N  satisfying F.7-*Ra-N, Vt~~ and V~~ are 
bounded on R e - N  for all p > 0 and 4. = IF.  ~ is a measure with finite energy 

t 

integral. Set O.(t)=~Ip.(X~(s))(~(ds). Then it is the CAF associated with the 
0 

measure ~,. Hence, by [1; Lemma 5.1.4(ii)1, ( f  VtP. ~ g)~=(VPf g)e., where 

[i ] V~qf(x) =E~ exp( -  p t--q (o,(t))f(X~(t)) dd?,(t) . 
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Letting n ~  oo we have 

(f, V,~ ~ g), = (VPf, g)r (5.3) 

for all p > 0 and bounded non-negative measurable functions f and g. Denote 
by Ue(f{n) the potential of the measure f{~, that is, ue( f~ , )e~(g  ~) such that 

g~v(UP(f ~.), g) = 5 g(x) f (x) {.(dx) 

for all geC~(Ra), where d~ , - )=g~(-  ")+p(" -)~. 
Since Vf,~ is a quasi continuous modification of UP(f{,) (see [1; 

Lemma 5.1.3]), for all f, geC~(R e) 

by [1; Theorem 3.2.2]. Letting n-+ 0% we have 

(f, Vt~ ~ g)r = (V~~ f g)r (5.4) 

for all p > 0 and non-negative measurable functions f and g. 

Lemma 5.1. For all p, q > 0 and non-negative measurable functions f and g, 

(f, ~ ,a - q/:pqc ,,~ (5.5) tO ~)~--t tO J,,5)r 

Proof Similarly to the above discussion, without loss of generality, we can 
assume that V~ ~ 1 and V4~ ~ 1 are bounded. By (5.1), 

V~~ g = (I + q V~ ~ vt~q g. 

Hence, for p, q >0  such that q ]1Vt~ ~ 1 [] < 1, 

Vt~q g = ~ ( - ,~ Vp%" t /po ,~ 't~ J "tO, 6. (5.6) 
n = O  

Thus (5.5) follows from (5.4) in this case. For fixed p>0,  since t*v-Pq',c,,q>0} 
satisfies the resolvent equation, (5.5) holds for all p, q>0.  

Denote by {V~; p >0} the resolvent of X~(t). Then V~= Vt~P. Hence we have 
the following 

Corollary. Xr is a d{-symmetric diffusion process. 

Lemma 5.2. Let p, q, f and g be as in Lemma 5.1. Then 

(f, v ,~  g)~ =(vg,~f, g)~. (5.7) 

Proof As in the proof of Lemma 5.1, we shall suppose that V,~ ~ 1 and V~ ~ 1 are 
bounded. By (5.3), (5.4) and (5.6) 

( v pq ~,, pO pO a, ,~ g)~= " = ( f , ( -qV~, )  V,, gL ~ ((-qV~{~ g)~ 
n = O  n = O  

for p , q > 0  such that qllVt~ ~ <1. On the other hand, since VPf=(1 
+ q vp% vqpr by (5.1), we have "tO J '~t a 
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vgTf= ~ (-qV,~~ 
n = 0  

for such p,q>O. Hence (5.7) holds in this case. If (5.7) holds for some p, q>0 ,  
then by Lemma 5.1, 

V,~q+~g= ~ ~-rVp~" , t4,, vt~qg and Vg,+~PU= ~ (-rVtP~")"V~qf 
n = 0  n = 0  

for r <  1/1[ Vt~ ~ 1 ][ < 1/ll Vt~ q 1 H. Hence (5.7) holds for q + r  instead of q. Repeating 
this argument,  we have the result. 

Let (gr ~(gr be the Dirichlet form on L2(d~) associated with the diffusion 
process Xr Then we have the following lemma (cf. [9; Lemma 8.4]). 

Lemma 5.3. For all p, q>0 ,  Vt~(Co(Rd)) and V~f(Co(Ra)) are contained in 
~ ( g ~ ) c ~ ( g  r and 

v p q  p q  e (v~4, f, v,4, g)=e~(v,~qf, v,~g), (5.8) 

g~(V~P f V~,, p g) = Nr Vr [ g) (5.9) 

for all f, gE Co(Rd). 

Proof  If f ~ C o ( R  d) then Vt~qlf F < V~lfl  implies v,~q feLZ(d~). Also since 

(vt~ql/I) 2 <(ll f ]l/q) Vt~lf[, 

(5.7) implies Vt~qf~L2(dv). Similarly V~f~L2(dv)c~L2(d~). Hence, for the proof  of 
(5.8), it is enough to show that  

<Pq f , ' ( I - rV; )  V~4, g)~. lim (Vt~ % r(I - r W) Vt~q g)~ = im ~ ,4, J, Pq 
r ~ o o  

By (5.1), 
( I -  r w )  v ~  g = r0 V' V~, g - p  v t ~ q g - q V t 7  Vf fg .  

Therefore, by noting (5.7) we have 

lira (V,P~% r(I - r V 0 V~P4, q g)~ 
r ~ c o  

= aim (VtP~qf r Vt~ ~ g - r p V ~ VtP~" g - r q Vt7 VtP~" g)~ 
r ~ o o  

= lim gtr V~Epq c o~ _ ,r c r W vpq o/ - W ,+o~ t, t4, ,, s,r v ,  ,4, J, "t4, ~,,~ q(r Vt~qf, VtP~ q g)r 

_ _  p q  _ V~ p q  -- (Vtr f g)e - P( t4, f, Vt~ q g)~ - q(Vt~qf Vt~q g)r 

where, in the last equality, We used the fine continuity of V~qf  and Vt~q g. 
Similarly, by (5.2) and (5.7), 

P q  lim (Vt4 , f r ( I - r V ~ )  Vt~qg)r 
r ~ c x 3  

= lim ( V t P J f r V ~ , g - p r V ~  ~ V~P+qg-qrV,; V,~q g)r 
r ~ 3  

r p q  p q  = lim {(rV~ Vt~qf, g)e-p(rV~_ "t4,17Pq.l,'c "tr r V~ Vt4 , f Vtr g)r 
r ~ o o  

- - [ g p q  t" - ,  ,4, ,, g)~ -p(v,~f ,  g~  gL - q(V,~ f, v ~  g)~, 
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since the support of q~ coincides with R a - N .  Thus (5.8) has been proved. The 
proof of (5.9) is similar, in fact it becomes 

- -  v q p  V qp - (  ,~, f ,g )~-q(  ~ f, Vg[ g)~-P(V~,P f Vg[ g)~ �9 

Lemma 5.4. For all q > 0 and f ~  Co(Ra), 

lim r Pq - q g~(Vtr f V ~ ; f , v ~ q f - v ~ f )  =0, 
p ~ O  

(5.10) 

where ~ ( ' ,  ")=C~( ", " ) + ( ' ,  ")~. 

Proof Obviously lim (vt~q f - V~f, V~q f - V~f)~=0. By (5.1)and (5.7), 
p ~ 0  

Pq - -  q l / P q ~ ' - -  v q t 9 ~  g (V~4 ~ f V; f, ",4~ J 4, J '  

= lira (VtP~"f - V~f, r(I - r V~) (Vt~"f-  V~f))r 
r ~ o o  

= lim (V~P~qf - V~L r q V~ v ~ U -  r p V~ ~ vt~qf - r q V~ V~qf)~ 
r ~  ~o 

-iV.P" c _  VqC ,~ Vcqf) - l im  (r V~(VtP4q f -  Vg f ) ,  p Vt~q f)~ - - ~  t r  J , ~ J , u  
r ~ 3  

- ~ v p .  r _  v . c  q v,~. f)~ t r o d  r  
q pq - t v p q  c _  V"C q V g f -  ~' vpqQ _ ( v p q r -  V; f, p V~4, f)~. - - t  t4) d 4~d' u ' t ( o  d r "t4) J 

Since lim Vt~qf= V~f  boundedly and q.e., []p Vt~qf II c~(~) < ]l f [] gl(~) and 
p ~ 0  

[Iq gt~qf IIL~(~) ~ IIq V4~f II~(e) < II f IIg~(~), 

(5.10) follows. 
By a similar argument, we have 

Lemma 5.5. For all p > 0 and f e  Co(Ra), 

lim o~(V4]F f - VP f, V~,V f - VP f ) =  0. (5.11) 
q ~ O  

According to Lemmas 5.3, 5.4 and 5.5, the set N={Vt~qf; p,q>O, 
f~Co(Ra)}w{V~Ff; p,q>O, f~Co(Ra)} is contained in @(gv)c~(gr and the 
forms ~* and ~r coincide on 9 .  Moreover ~ is dense in N(d ~ [resp. @(g~)] 
relative to the norm g~ [resp. g(]. 

Theorem 5.1. Suppose that ~(dx)=a(x)v(dx) for some bounded measurable func- 
t 

tion a(x) and that the associated CAF ~b(t)= S a(X~(s))ds is strictly increasing for 
0 

q.e. starting points. Then the Dirichlet form (g~,~(gr is the smallest closed 
extension of (g, C~(Ra)) on L2(d~). 

Proof Since C~(Ra)cLZ(d~), for the proof of C~ (Ra)c@(d~162 it is enough to 
show that l i m p ( f , ( I - p V f ) f ) r  for all f~C~ Let f~C~(Ra).  Then, 

p~oO 

since fs~(g*) ,  there exists a sequence {f,}~__>lc~ such that lim g ~ ( f , - f , f ,  
n~oo 
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- f )  = 0. Hence, by the triangle inequality (see the proof of [9; Lemma 1.7]), 

lim I{P(f (I - p gf) f)~} 1/2 _ _  {p(f,, (I - p gf)f,)r ~/2[ 

< lim sup {ge(fm --f,,fm --f,)} 1/2 
m ~ c o  

--lira sup {C~(f~ --f,,fm _f,)} 1/2. 
m ~ a o  

Therefore 

lira p ( f  (I - p  V~)f)~ = lim lira p(f.,  (I - p  Vf) f.)~ 
p ~ x 3  n ~ c o  p ~ o o  

= lira gr = lim g~( f , , f , )=E~( f , f )<  oo. 
n ~ c o  n ~ c o  

To prove the denseness of C~(R e) in N(g~), suppose f ~ ( g ~ ) .  Since f is 
approximated by the functions in N relative to El-metric by Lemma 5.4, it is 
enough to suppose that f ~ .  Since f~N(d  ~*) and C~(R e) is dense in ~(C*), 
there exists a sequence {f,},__>l c C~(R ~) such that g ~ ( f , - f f , - f ) - * O  as n~oo.  
Since C e = g  ~ o n  ~uC~(R d) and ~(dx)< Ilallv(dx), we can see that g ( ( f , - f , f ,  
- f ) - - . 0  as n~oo.  This completes the proof of the theorem. 

The proof of Theorem 2 is obvious by the corollary of Lemma 5.1 and 
Theorem 5.1, in fact, it is enough to set ~(dx)=IA(Xl)dX and ~b(t)=qSA(t ). 

w 6. Proof of Theorem 3 

In this section, X~ XV(t), M~(t),... denote those given in w and w By (4.6), 
MV(t) = (M](t),..., M~(t)) is a system of martingale CAFs on (f2, Px) satisfying 

t t 

M Y My) ( t )  = S ~A(ds) + ( i, aij(X~(s)) Schj(X~(s))~r(ds) . 
0 0 

Firstly, we shall give a representation of M~(t) by Brownian motions. 

Lemma 6.1. There exists a properly exceptional set N, enlargement ((2,!5x) of 
((2, Px) and mutually independent stochastic processes 

/~( t)=(/~(t)  . . . . .  /~(t)) and B~(t)=(/~(t),...,/3}(t)) 

such that, for xCN, B~(t) is a d-dimensional Brownian motion started from O, B~(t) 
is a (d-1)-dimensional Brownian motion started from O, and 

IA(XI(s)) alj(X (s)) dSj(s) + Ir(Xl(s)) zi2(X (s)) dSj(s) (6.1) 
0 j = l  j = 2  

Px - a.s., where g=]/a l l  z, a and r are the matrices in w and X~(t) and M*(t) 
are considered as the processes on (2 by X~(t,&)=X*(t, io&) and M~(t,&) 
=M~(t, lotS) (see w 

Proof. This can be proved by a repeated argument of Stroock and Varadhan 
[10; Theorem 4:5.2], so that we shall only present the outline. Set 
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II(t) = lim (Ia a)(~ I + I A a)- l(X*(t)), 
e ~ 0  

q(t) = lira (~I + I A a)- ~(X~(t)) H(t) 
~ 0  

and r(t)=t(IAa)(X~(t))q(,t), where we set IA(X~(t))=IA(X~(t)). Then 17(t) 
=(I  a a)(X*(t)) r(t) and H(t)=r(t)(1 a a)(X~(t)) are the or thogonal  projections 
onto  the range of IAa(X~( t ) )and  Ia(ta.a)(X*(t)), respectively. Let  B(a)(t) 
=(B]t)(t),...,B~l)(t)) be a d-dimensional Brownian mot ion  on a probabil i ty  
space (f2(1! p(1)) such that B(t ) (0)=0 and set f2(z)=f2 x~'~ (1) and P~z)=P x x P(I! 
Then (f2{2! p~z)) is an enlargement  of ((2, P~). For  60 (2) = ( O ) ,  O)(1))~:~c2(2~ set io co(z) 
= co, X*(t, co(z)) = X,(t, ioco(2)) and M~(t, co(z)) = M,(t,  ioco(2)). Then the process 

t t 

B~(t) = ~ r(s) dMV(s) + ~ (I - 17(s)) dB(t)(s) 
0 0 

is a d-dimensional  Brownian mot ion  on (f2(2),P~ 2)) for all x outside a proper ly  
exceptional  set. Fur the rmore  the process M(t)(t) defined by 

t 

M(1)(t) = MY(t) - ~ H(s) dM~(s) 
0 

is a system of local mart ingale CAFs  such that 

t 

/M!  ~) M!I)~ ( t )  = f {(I - 11) (s) (I A a + I a ~) (X~(s)) (I - 17) (s)} u ds 
\ ~ ~ J / ~  / J 

0 

= i ~u(X~(s)) ()r(ds) �9 
0 

Hence, in particular,  M]I )=0 .  By a similar argument  for M (1), there exist an 
enlargement  (~,/5) of (~(2),p__~2)) and a (d -1 ) -d imens iona l  Brownian mot ion  
/~(t) =( /~( t ) ,  . . . , /~(t))  on (f2, Px) such that/~*(0) = 0  and 

t t 

11(1)(s) dM(1)(s) = ~ Ir  ~(X~(s)) d;BV(s), 
0 0 

where II~)(t) is the or thogonal  project ion in R d- 1 onto  the range of I r a(X*(t)). 
By using these Brownian motions,  M~(t) is represented as 

M~(t) = i I a a(X~(s)) dJB~(s) + i I r ~(X*(s)) dB~(s)" 
0 0 

/5 x - a.s. for q .e .x .  

Combining the lemma with (4.5), we have 

v v v v x ~ v  x,(t)=xi(o)+ IA(xl(s))%(x (sj) (s) 
j -  

+ Ir(Xl(s)) zq(X (s)) dBj(s) 
j = 2  

t t 

+ S b~(XV(s)) (~A(ds) + S fl,(X*(sl) (ar(ds) 
0 0 

(6.2) 
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As was proved in Theorem 4.1, the process (X](t), F~) is a one dimensional 
~. to, diffusion process with speed measure 2m(dx O. Let ~ (t, xj) be its local time at 

x 2. Then it is characterized by 

and 

for all feCo(Rl). Let 

t 

.[ I{xT~s) = ~ d~(ds, xl) = d~(t, xt) (6.3) 
0 

t 

f (X] (s)) ds =~ f"(t, xl) f (xl) m(dx O (6.4) 
0 

t 

@a(t) = ~ ( I / a 1 1 ) ( X a ( s ) )  ds 
o 

be the inverse function of r defined by (4.12). Then X~(O=X~(O~I(t)). Set 
#~(t, xl)=~"(t)21(t),x~). Then, by (6.3) and (6.4), it satisfies 

and 

i I{X~(s)~ xl} ~v( dS' X 1) ~ ~v( t' X 1) ( 6 . 5 )  
0 

t 
f (X~t (s)) art ( XV(s)) ds =-~ f'v(t, x,) f (x l) m(dxl) (6.6) 

0 

for all feCo(R1). By Theorem4.2, the CAF, Ca(t) is strictly increasing. Set 
~O(t, XO=~(r Then it is a CAF of X~ and, by (6.5), it 
satisfies 

I~xo(s)~ ~,} #~ x 2) = ~~ t, x 1). (6.7) 
0 

Also, since (6.6) holds for any bounded measurable function vanishing outside 
a compact set, by taking IA(xl)f(x 1) instead off(x1), we have 

t 
~ f ( X~ a~ l( X~ ds = y d~ xO f (xO dxt (6.8) 
0 

for all f~  Co(R1). Similarly, by setting f (x l )=lr(xO and changing the time, we 
have 

t 

Y a l 1 (X~ r162 ~(ds)) = ~ go(r, x 1) u(dx 2)" (6.9) 
0 

We shall consider the processes X~ d~ xO, etc. as the processes on the 
enlarged probability space (f2,P~), as before. Define the processes B~ 
= (B~ By(t)) and M~ = (M~ ..., M~ by 

CA ~(t) 

B~ = ~ I~(X~(s))dB~(s) 
0 

and 
4'A ~ (t) 

M~ = ~ ]/-a-~t(X'(s))Ir(X~(s))dBT(s). 
0 
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L e m m a  6.2. Let N be the exceptional set in Lemma 6.1. Then, for all xgfiN, B~ 
and M~ are systems of martingale C A F s  on (f~2,/sx) satisfying (Bi,~ Bj~ bij t, 
( S  ~ M~ (t) = 0 and ( M  ~ M ~ (t) = (Sij ~~ where 

= S l ~  t, x 1) u (dx  1). 

Proof By the  def in i t ion ,  

0 0 __ (B i ,B j ) ( t ) -S i j  ~ IA(XV(s))ds=(~ij t 
0 

a n d  o o ( B i ,  M j  ) ( t ) = 0 .  By n o t i n g  (6.9), we h a v e  

M o ( i ,M~ ~ a11(XV(s))Ir(X~l(S)) dS 
0 

= (~ij i al 1(X~ Or(~)2 l(ds)) 
0 

= ~i; S d~ t, x 1) #(dx 1) = 8i; ~~ . 

Proof of Theorem 2. Set qb A l(t) i n s t ead  o f  t in (6.2). T h e n  it c an  be  wr i t t en  as 

j = l O  

t t 

+ ~ ~ z,5(X~ dm~ + ~ b,(X~ ds 
j = 2 0  0 

t 

+ S 
0 

t5o _ a.s. for  q.e. x, w h e r e  zij='~ij/a11 and  fli=fii/all . T h u s  the  t h e o r e m  has 
b e e n  p roved .  
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