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Summary. By direct probabilistic argument one term of an Edgeworth type 
asymptotic expansion is obtained for certain first passage distributions for 
random walks. These results provide partial justification for and extensions 
of approximations suggested earlier as a heuristic consequence of Laplace 
transform calculations. 

1. Introduction and Summary 

Let x 1, x 2 . . . .  be independent and identically distributed with mean E ( x 0 =  #. 
Let s , = x  1 + ... +x, ,  and for a<O<b define the stopping times 

and 

The probabilities 

and 

r=z(b)=inf{n :  s.>b} (% =r(O)) 

T= T(a, b)=inf{n: s.(~[a, b]}. 

P {z < m} (1) 

P{T<m,  sr>b } (2) 

with m< oo are of interest in a variety of probability models. For example, 
with the proper identifications (1) is the probability that the waiting time for 
the (m-1)-th customer in a single server queue exceeds b; with m= oo it is the 
stationary waiting time probability or alternatively the ruin probability of an 
insurance risk process. The two-sided probabilities (2) arise in sequential stat- 
istical analysis and in dam theory. (See Feller, 1966, for a more complete 
discussion.) A commonly used approximation to (1) and (2) is the Brownian 
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motion approximation (heavy traffic approximation in queueing theory). Sieg- 
mund (1979) gave a heuristic argument based on Laplace transforms and 
numerical examples to show that this approximation can be considerably 
improved by obtaining the next term of an Edgeworth type expansion of (1) 
and (2), with the Brownian motion approximation as the leading term. This 
method has been extended by Yuh (1981) for studying joint probabilities of the 
form 

P{ r<m,  s , , < b - x }  (3) 

and 
P{T<m,  ST>b , s m < b - x  }. (4) 

In addition to being closely related to (1) and (2) the probabilities (3) and (4) 
are the essential ingredients in the conditional probabilities P{r<mlsm=b-x}  
and P { T < m ,  ST>blsm=b-x},  which arise in the study of the Kolmogorov- 
Smirnov statistics. 

The purpose of this paper is to give a direct probabilistic calculation of a 
one-term Edgeworth expansion to probabilities like (3). The method is in 
principle applicable to (4) although the computations are much more involved, 
and no details are given in this case. An example of our results is as follows. 

Theorem 1. Suppose #=0 ,  Ex2=l ,  and 7=Ex~ is finite. Let b=~m 1/2. I f  the 
distribution of x 1 is strongly non-lattice in the sense that 
lira sup ]E exp (itxl)[ < 1, then for each x > 0 as m ~  oo 

It l~  oo 

P { r < m ,  Sm <(~-x)m 1/2} 
=l_cb(~+x)_m_i/24(~+x)[2fi+(7/6)(x2_~2_l)]+o(m_l/2)" (5) 

Here fi=E(s~./2Es~§ if ~>0 and fl=Es~+ if ~=0; q5 and q) denote the 
standard normal density and distribution functions. 

Remarks. (a)Since P{z<=m}=P{s,,>b}+P{r<m, sm<b }, if P{z<m, sm<b 
- x }  were known exactly for all x > 0 ,  then (at least for continuous distri- 
butions) one would obtain P{z=<m} by letting x ~ 0 .  Although it seems plau- 
sible that (5) should hold uniformly in x for x near 0, and in fact the right 
hand side of (5) with x = 0  agrees with the result obtained heuristically by 
Siegmund (1979), we have been unable to prove this uniformity. 

(b) In the case ~=0, Theorem 1 is equivalent to a result of lglehart (1974). 
In this case the asymptotic behavior of P{% >m} is known from fluctuation 
theory, e.g., Feller (1966), p. 399, which shows that (5) is true with x = 0 ,  
although a completely different proof is involved. 

(c) Siegmund (1979) has given a method for calculating fl numerically. 
(d) Under the stronger assumptions that the x's have a finite moment 

generating function, Borovkov (1962) gave a complete asymptotic expansion of 
(3). His methods use complex analysis, and the results are not given in a form 
which permits simple comparisons with (5). Also Borovkov's methods appear 
to handle the case x = 0 without difficulty, although they do not seem to adapt 
readily to two-sided stopping rules. 
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(e) Analogous results may be obtained for arithmetic distributions. 
(f) If for some n the characteristic function of s n is integrable, one can 

obtain a similar expansion for the density -d /dxP{r<m,  sm<(~-x)mX/2}, 
which can be formally calculated by differentiating (5). As an application, one 
can improve the limiting distribution of the one sample Kolmogorov-Smirnov 
statistic (see Yuh, 1982, for details). 

The remainder of this paper is arranged as follows. Theorem 1 is proved in 
Sect. 2. Section 3 considers the case Ex~ +0. In Sect. 4 we discuss our original 
method for studying these problems, in which direct approximation of con- 
ditional probabilities such as 

P{T<m, sz>blsm=b-x}  

plays a primary role. Although this method does not seem as general as the 
method of Sects. 2 and 3 for obtaining asymptotic expansions, it has the 
conceptual advantage of yielding the Brownian motion approximation and the 
next Edgeworth term simultaneously. The method is not developed here com- 
pletely, but is used to give a simple derivation of Anderson's (1960) results for 
Brownian motion. More recently Siegmund (1982) has adapted this method to 
deal with large deviations for boundary crossing probabilities, including those 
for non-linear boundaries. 

2. Proof  of  Theorem 1 

Let F. denote the distribution function of s n, n=O, 1 . . . . .  Here s o=O and F o 
denotes the point mass at O. It is easy to see that 

P{z<m, S m < ( ~ - - x ) m l / 2 }  = ~ P{sm<(~-x)mX/Zlz, s~}dP 
{~<m) 

= ~ I~,. ~ ( ( ~ - x ) m X / 2 - s 3 d P  
{~ < m} 

= ~ Fm_~(-xml/2-Rm)dP, (6) 
{~__<m} 

where R,, = s ~ - ~ m 1/2. Similarly, 

P{Sm>(~+x)ml/Z}=P{z<m, s,.>(~+x)m l/z} 

= ~ [1-F, ,_~(xm 1/2-Rm) ] d P ,  
{~<m} 

so 

P { z  < m ,  S r n < ( ~ - - x ) m  1/2} 

=-P{s,.>=(~+x)ml/2} - 
{~__<ra} 

(7) 

The customary Edgeworth expansion applies to the first term on the right 
hand side of (8); hence the remainder of the proof is a detailed expansion of 
the integrand in (8) and an asymptotic evaluation of the resulting integral. 

[1 m 1/2 -- -- - F m _ z ( x  - R m )  Fro_,:( x m l / 2 - R m ) ] d P .  (8) 
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To carry out the following analysis it is technically useful to modify (8) to 
insure that in the integrand m - z  is not too small and R m is not too large. Let 
ml=m(1- ( logm)-2) .  A consequence of Lemmas 2 and 3 below is that for 
some em~O 

P{'c <m, Sm < ( ~ - x ) m  I/2} 
= P { z < m  1, Rm<ml/2e,,, s,,, <(~-x)ml /2}+o(m-i /2) ,  

and hence by an argument similar to that leading to (8) 

P{ r<m,  s ,~<(~-x)m 1/2} 

= P {s,~ > (~ + x) m 1/2} + o(m- 1/2) 

-- ~ I1 - - F m _ z ( x m  1/2 - e r n  ) - F m _ z ( - x m  1/2 - R m )  ] dP. (9) 
{z <ml,Rm<ml/Zem} 

According to Petrov (1972) VI.3 Theorem 3 

F,(x n 1/2) = cb(x)-(7/6nl/2)(x 2 - 1) q~(x)+ (1 + Ixl3) - 10(F/- 1/2), 

where o(.) is uniform in x. This may be used to expand the integrand in (9), 
and a subsequent expansion of the normal distribution function q~ by Taylor's 
theorem shows that uniformly on {z<m 1, Rm<ml/2em} the integrand in (9) 
equals 

m -  1/2(1 --"F/m)- 1/2 (]~ (x/(1 --"C/m) 1/2) {2R,, +(7/3)[X2/(1 - -"c/m)-  13} 

+ O (m- 1/2 e,~ Rm) + o(m- 1/2). 

To complete the proof we shall find the limiting joint distribution of ~/rn 
and R m and show that this integrand is uniformly integrable, so that the 
integral in (9) may be evaluated asymptotically by integrating with respect to 
the limiting distribution. Suppose initially that ~ > 0. The uniform integrability 
follows from Lemma 1 below and the fact that (1-z/m) -3/2 ~b[x/(1-r/m) 1/2] is 
a bounded continuous function of z/m for r<m.  (Here it is important that 
x>0.)  By Lemma 3 of Siegmund (1979), ~/m and R~ are asymptotically inde- 
pendent; so it suffices to consider the two variables separately. By the Erd6s- 
Kac theorem and simple calculus 

lira P { z / m < t } =  lim P{ max s ,>~ml/2}=2[1-~(~/ t l /2)]  
m~co m~co l <n<[mt] 

= i ~u- 3/2 43(~/ul/2) clu. 
0 

Since R m = s - ~ m  1/2 is the residual waiting time for the renewal process 
determined by the process of ladder heights of the random walks s,, n 
= 1, 2 . . . . .  the renewal theorem yields 

lim P{R, ,<w} P{s~+>y}dy/Es~+ 
1"1"L ~ o0 0 
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(cf. Feller, 1966, XI and XII). Using these results shows that the integral in (9) 
is asymptotically equal to 

1 

m- 1/2 ~ [2 fi + (7/3) {x2/(1 - t) - 1 }] (1 - t)- 1/2 
0 

�9 q~ Ex/(1 - t)1/23 ( t -  3/2 q~ [~/tl/2] dr, 

which after some calculus yields (5). 
In the case ~=0 the argument is similar but much simpler. It is obvious 

that z/m~O in probability and Rm=Sr 

Lemma 1. Es~+ < oo and {sr b>0} is uniformly integrable. 

Proof�9 That EsZ~+ <oo is known from random walk theory, e.g., problem 6, 
p. 232 of Spitzer (1976). As above, the renewal theorem implies that P{s~ 

x 

-b<x}--+(Es~+) l~p{s,+>y}dy; and since Es~+<oo, renewal theory also 
0 

yields E(s-b)--+Es~+/2Es~+ (Feller, 1966, p. 353ff.), which proves uniform in- 
tegrability. (The uniform integrability may alternatively be proved from first 
principles by an elaboration of the indicated idea for proving Es2+ < oo. This 
may be the best approach to use in Lemma 4 below.) 

Lemma 2. For each e>0, P{Rm>em I/2} =o(m-1/2). 

Proof�9 By the Markov inequality 

p{Rm>eml/2}=e-lm 1/2 ~ RmdP ' 
{ R m  > em I/2} 

which is o(m-1/a) by Lemma 1. 

Lemma3.  Let ml=m(1-(logm) -2) as in the proof of Theoreml. Then as 
m----~ o o  , 

p{ml <z<m ' Sm<(~_x)ml/a}=o(m 1/2) 

and 
p{ml <r<m ' sm>(~+x)ml/2}=o(m 1/2). 

Proof. By Lemma 2 

V{ml <z<m, sm>=(~+x)m 1/2} 

=P{ml <z<m, Rm<�89 1/2, Sm>=(~+x)m 1/2} 

+o(m-1/2) < sup P{Sm_n>�89 
m l  < n < r n  

which is easily seen to be o(m -1/2) by Nagaev's (1965) improvement of the 
Berry-Esseen theorem or by the related result of Petrov quoted earlier. A 
similar but easier argument shows that the first prpbability in Lemma 3 is also 
o(m 1/2). 
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3. The Case E x l + O  

When ExI=]=O , results analogous to Theorem 1 are more complicated techni- 
cally. Although it is probably possible to formulate a comprehensive theorem, 
it would be extremely cumbersome. Therefore, in this section we briefly discuss 
two important special cases: (i) when the distribution of x 1 can be imbedded in 
an exponential family, and (ii) when Ex I is a location parameter. Although the 
treatment of these two cases is slightly different, it should be apparent that 
modulo certain technicalities the methods can be applied to other similar 
problems. 

To consider briefly the simpler case of an exponential family, suppose that 
the distribution of x 1 is given by Fo(dx)=ex p [0x-0(0)]  Fo(dx), where F o is a 
strongly non-lattice distribution having mean 0 and variance 1. It is easily seen 
that 0 (0)=0 ,  O'(O)=Eox 1, and O"(O)=varo(Xl). By taking F o to have mean 0, 
0 has been standardized so that 0 ' (0)=0,  and thus sgnEoxl=sgnO. For 
0o<0(01 >0) it will be assumed that there exists a 01>0(00 <0), necessarily 
unique for which 0(00) = 0(01). 

The basic identity (6) remains true and in the obvious notation becomes 

Po{r<m, S m < ( ~ - - x ) m l / 2 }  = ~ F 0 . . . . .  (-xml/2-Rm)dPo. (10) 
(~<m} 

However. (7) must now be altered. Assume to be specific that 0 > 0  and write 
01 for 0. It is easy to see from the exponential family structure that for every 
function h > 0  such that hI~=,3 is ~ ( x  1 . . . . .  x,) measurable for all n, 

I hdPoo= ~ hexp{-(Ol-Oo)s~}dPo~, 
{z< oo) {~< oo) 

and hence 

e(~176 Poo{S, >=(~ + x)ml/2 } 

- e  (~176176 ~ [1 1/2 - -Foo . . . .  (xm -Rm)]dPoo 
{~__<m} 

= j [1--Foo . . . .  (xml/2-R,,)]exp[-(Ol-Oo)Rm]dPol. (11) 
{~ < m} 

From (10) and (11) one obtains the following analogue of (8): 

Po~{r <m, sm<(~-x)m 1/2} 

=e(~176 Poo{Sm>(~ + x)ml/2 } 

- ~ {e-(~176176 . . . . .  (xml/2--Rm)] 
{~_-<m} 

--  Fo . . . . . . .  ( - X m l / 2  - - J m ) }  dPo," 

A similar identity holds for Poo {v < m, s m < (~-  x) ml/2}. 
The technical modification of (8) leading to (9) can be justified under the 

present assumptions. Subsequent expansion as in the proof of Theorem 1 
shows that if (01 - 0o) = 2 ~ m- 1/2 then 
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Pol{~ <m, slTzl < ( ~ - x ) m  1/2 } 

=exp [2 r + tim- 1/2)] [1 -~b(~ + x +  r 

- e 2r162 m -  1/z ~(~ + x + 4) {2  fi + (7/6)  [~(ff  - x)  + x a - fie _ 1] } 

+ o(m- 1/2). (12) 

For 0 o the result is formally identical provided ~ is defined as - �89 1/2 (01 -0o). 
The details of these calculations have been omitted. (For the ideas justifying a 
version of Lemma 1 in this context, see Siegmund, 1979.) 

Since the right hand side of (12) makes sense provided only that the x's 
have a finite third moment, the exponential family assumption appears to be 
much too strong. However, the likelihood ratio of the exponential family plays 
an important role in the derivation of (12), and avoiding its use raises some 
additional technical problems. 

To minimize the number of unpleasant technicalities it will be assumed 
that 0 is a location parameter (which is further restricted below to be non- 
negative). Hence let F o denote a continuous strongly non-lattice distribution 
function having mean 0, variance 1, and finite third moment y. Let Fo(x)=Fo(x 
- 0 ) ,  and let Fo,,, be the n-fold convolution of F o with itself. Let Po denote the 
probability measure under which Xl,X z . . . .  are independent with common 
probability distribution F o. Except for the indicated convergence in distribu- 
tion, the following generalization of Lemma 1 may be proved by the method 
suggested in the parenthetical remark at the end of the proof of Lemma 1. The 
convergence in distribution can be obtained by straightforward but tedious 
review of the proof of the renewal theorem given by Breiman (1968, p. 220ff.) 
to obtain a version which is uniform in 0 for 0 near 0. The details are omitted. 

Lemma4.  As 0--+0, ~ s~+dPo--+Eos~+ for all 0 < 2 < 2 .  Let ~>0 and 0 
{~ + < co} 

= ~ m-1/2 for some fixed ~ >0. Then the Po distributions of (s t -  ~ m  1/2) converge 
to the distribution with density function (E o s~+)- l Po {st+ >y} and have uniformly 
integrable first moments. 

Assume now that O= ~m-1/2 for some fixed ~ >0. The identity (10) remains 
true in the present context. However, instead of (11) consider 

e x p ( -  2~ y)Po{sm ~(~ + dy)m 1/2} 
(x, ~ )  

= ~ [ ~ exp(=2~y)Fo ...... (ml/2dy-Rm)JdPo, (13) 
{~<m} (x, oo) 

which in the exponential family model is actually equivalent to (11). From (10) 
and (13) one obtains the following analogue of (8): 

Po{~ <m, Sm<(~-x )m 1/2 } 

= ~ e x p ( - 2 ~ y ) P o { s ~ e ( ~ + d y ) m  1/2} 
(x, ~ )  

- ~ [ ~ exp( -Z~Y)Fo  . . . .  (ml /2dy-Rm)  
{~_-<m} (x, oo) 

- F  o . . . .  ( - x m  ~/2 --Rm) ] dP o. (14) 
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With the aid of Lemma 4, this identity may now be expanded along established 
lines. (Expansion of the integral on the left hand side of (13) and the inner 
integral on the right hand side is facilitated by integration by parts, application 
of Petrov's theorem, and integration back by parts, which has the formal effect 
of expanding Fo, ~ as if it had a density which had the appropriate local 
expansion.) In this case the resulting asymptotic expansion is as rn~ ov 

Po{'C <m, sm <(~-x)m 1/2} 

=exp {2~[~+m-a/2(f i+2~/3)]} [ 1 - q s ( ~ + x + ~ ) ]  

--m-1/2e2G q~(~ + x + ~) {2 fl +(7/6)[(x + ~)2--~2--1 +442]} 

+o(m-1/2). 

4. Brownian Motion 

Our first approach to studying the problems of this paper involved a different 
method, which unfortunately seems to require stronger assumptions than the 
method of Sects. 2 and 3. On the other hand, it seems conceptually simpler, 
and yields the Brownian motion approximation together with the Edgeworth 
correction in one calculation. In contrast the method of Sects. 2 and 3 requires 
that we already understand the Brownian approximation in order to subtract 
(7) from the basic identity (6) (or (11) from (10)). Nothing follows directly from 
(6) - even for Brownian motion itself. 

To illustrate the basic identity from which this method proceeds without 
the details of another expansion, we restrict ourselves here to Brownian mo- 
tion and give a new derivation of the principal probabilistic result of Anderson 
(1960). The argument is constructive in the sense that the process of successive 
reflection, which is usually the difficult part of two-boundary problems, is 
accomplished in a purely mechanical way by means of a simple recursion. 

Let {X(t), 0_<t<l} denote standard Brownian motion and for ~1<0<~2 
and ~+t/~__<~2+t/2 define T=inf{ t :  X(t)=~i+tlit for i=1  or 2}. We shall 
calculate 

P { T < I ,  X(T)=~z +tlz TIX(1)=#} (15) 

(except for the case #=~1-~-?/1=~2-~-t/2). There is no loss of generality in 
assuming # < ~2 + t/2, because in the contrary case one can use the argument to 
calculate the complementary probability, namely 

P { T < I ,  X(T)=~I +rh T[X(1)=#}. 

Let P, denote the conditional distribution of X(t), 0< t_< 1 given that X(1) 
=#.  Then the probability in (15) equals 

P . { T < I .  X(T)=~2 +rl2 T }. 

Let ~(t)=~(X(s),  s<=t). For any t < l  and #1~=# the measures P, and Pu, 
contracted to W(t) are mutually absolutely continuous with an easily corn- 
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puted  l ikelihood ratio:  

dP"'t = e x p  { ( # -  ~a)(X (t)- �89 + pl)J/(1 - t ) }  

= L(X (t), t; #, #1), (16) 

say. Hence  by s tandard  l ikelihood ratio (or mart ingale)  a rguments  

P , { T < I ,  X(T)=(2-}-~12T}= S L(r T, T; #, #l)dP~l .  
{r< 1, X(T)- {2+ r/2 T} 

F r o m  (16) one easily sees that  the choice of #1 for which 

(2 + t/2 T -  (1/2) T(/~ + #1) = (2 (1 - T), 

i.e., g l  = 2 ( ( 2 + ~ 2 ) - / ~  leads to 

e,{r<l, x(r)=r 
= exp [ - 2  ff2(r + ~ 2 - # ) ]  P,, { T <  1, X(T)= ~2+ t l sT  } . (17) 

Since this choice o f / q  exceeds ~2q-t]2 (by virtue of  the assumpt ion  ],{<~2q-l~2), 
P,1 { T <  1} = 1; and hence (17) may  be rewrit ten 

P , { T <  1, X(T)=~a +rl2 T } 
= exp [ - - 2  ~2(~2 + r/2--/~)] [ 1 - P p l {  T <  1, X ( T ) = ( I + t ] I T } ] .  (18) 

The  identity (18) may  now be used recursively to calculate (15), since by the 
same a rgument  

P,, { T <  1, X ( T ) = ( ~ + ~ h T  } 
= e x p  [ - 2 ( a ( (  1 +r/1 + ~ - 2 ( (  2 +t/2)) j [1 -P~,2{T< 1, X ( T ) = ( 2 + t / 2  T}J, (19) 

where #z =2( (1  +q~ - ( 2  - r/2) +/~ <((1  + ~ ) ,  etc. 
In general the result of  carrying out this compu ta t ion  is an infinite series of  

terms which al ternate in sign. For  the very special case (1 +t/a = (2q - t / 2+ f l ,  it 
turns out that  #2=/~;  and it is only necessary to solve the two Eqs. (18) and 
(19) s imul taneously  to obta in  

exp { - 2  (1((  2 +1/2 - # ) }  - 1 
Pu{ T < I, X(TI=~2 +tl2 T } - 

exp {2(~ 2 - (1)((2 + t/2 -/~)} - 1 

(cf. Eq. (4.24) of  Anderson,  1960, for this result as well as the answer  in the 
general  case). 
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