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1. Introduction 

The not ion of stochastic parallel  d isp lacement  was in t roduced by K. It6 [-4, 6]. 
He  t reated a stochast ic  parallel  d isp lacement  of a tensor  along a r a n d o m  
curve. A stochast ic  parallel  d isp lacement  of  a f rame was also defined [-3, 11]. 
Let  M be a R i e m a n n i a n  manifold  and  O(M) be an o r t h o n o r m a l  f rame bundle.  
The  stochast ic  parallel  d i sp lacement  of  a frame along a r a n d o m  curve on M is 
defined by using the covar iant  derivative (determined by the R i e m a n n i a n  
metric) on M. Then  it defines a curve on O(M). This is a na tura l  extension of  a 
hor izonta l  lift for a smoo th  curve in differential geometry.  But O(M) has a 
s tructure of a pr incipal  fibre bundle.  So we extend above  result to principal  
fibre bundles. 

Let  {P, M, G, ~z} be a principal  fibre bundle  where P is a bundle  space, M is 
a base  space, G is a s t ructure g roup  and ~z is a projection.  On the principal  
fibre bundle  a not ion equivalent  to the covar iant  derivative exists, i.e., a not ion 
of a connect ion  form. Let  a connect ion  form co be given. Let  c= (x t ;  0__<t<l) 
be a smoo th  curve in M. Then  a hor izonta l  lift of c is a smoo th  curve c* =(ut;  
0 _ < t < l )  in P such that  rc(uO=x t and c o ( @ = 0  for 0 < t < l  where fit is a vector  
tangent  to the curve c* at u,. If  (u,) is a r a n d o m  curve, e.g., a pa th  of  a 
diffusion process on P, fit may  have no meaning.  Hence  we rewrite it in the 
integral  form, i.e., if we define c* =(us~; 0 < t < 1) for s~ [0, 1], then S co = 0 for all 

c* 
se[-0, 1]. N o w  we can generalize it to r a n d o m  curves because the integral of  1- 
form along the pa th  of  the diffusion process was defined by N. Ikeda  and  S. 
M a n a b e  [2]. So if we replace the line integral  by the integral  of 1-form along 
the pa th  of  the diffusion process, we can define the stochast ic  hor izonta l  lift. 
Precisely speaking, let (X~)t=> 0 be an M-va lued  cont inuous  semimar t ingale  
(definition is given in Sect. 2). Then  the stochast ic  hor izonta l  lift of (Xt) is an 
O(M)-valued cont inuous  semimar t ingale  (2t)~>__ 0 such that  

(i) ~(2~)=X~ for all t > 0  a.e., 

(ii) S co=0  for all t_>_0 a.e., 
2[0, t] 
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where ~ co is a stochastic line integral along a path (2t) (see [-2, 3]). We will 
2[o,t] 

give a proof  of the existence and the uniqueness of the stochastic horizontal lift 
under given initial condition. A stochastic parallel displacement on an as- 
sociated vector bundle is easily obtained from the stochastic horizontal lift on 
the principal fibre bundle in the same way as in differential geometry. It6's 
formula for the stochastic parallel displacement is also discussed in Sect. 5. 

2. Stochastic Horizontal Lifts 

Let {P, M, G, ~} be a principal fibre bundle. We assume that all the manifolds 
discussed in this paper  are smooth, connected and paracompact .  We denote 
the Lie algebra of G by g. G acts freely on P on the right. Hence for any A~g 
one parameter  subgroup {exptA;  t~R} defines a one parameter  transformation 
group on P and induces a vector field on P. We denote it by A*. Then the 
mapping A~-*A* is a Lie algebra homomorphism from g into F~ where 
F~(T(P)) is a set of all C ~ vector fields on P. Since G acts freely on P, this 
mapping is injective. A connection form is a g-valued 1-form on P satisfying the 
following conditions; 

(i) co(A*)=A for A~g, 

(ii) R* co = Ad(g - l )  co for g~G, 

where Rg is defined by R~(u)=ug. Suppose that a connection form co is given. 
The canonical 1-form on G is the g-valued 1-form 0 defined by Og(Ag)=A for 
geG and Aeg.  If we define the mapping ~bu: G ~ P  by Ou(g)=ug for fixed ueP, 
then q5 co-0 .  We use this fact later. 

Let (~2,~,P) be a standard probability space and (~)t~>o be a family of 
nondecreasing sub a-fields. We assume that (~),>=o is right continuous and 
contains all P-null sets for t>0 .  Let X=(X~;  0 < t < o e )  be an M-valued 
semimart ingalel  (we assume that semimartingales are always continuous). As- 
sume that Xo=x a.e. for some xeM. Take any point ueP such that ~ (u )=x  
and fix it. Now we define the stochastic horizontal lift as the following. 

Definition 2.1. The stochastic horizontal lift of X starting at u is the P-valued 
semimartingale 2 =(23;  0__< t <  m) such that 

( i ) ) ? o = U  a.e., 

(ii) ~()?~)=X, for all t>O a.e., 

(iii) ~ co=O for all t>O a.e., 
2[0, t] 

where ~ co is the integral of 1-form co along the path )?t (c.f .N. Ikeda, S. 
2[0,t] 

Manabe [-2]). 

1 For any C ~ function f on M, f(X~) is a continuous semimartingale i.e., a sum of a continuous 
local martingale and a continuous bounded variation process. This definition is applicable to 
general manifolds 
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In this paper we shall prove the existence and the uniqueness of the 
stochastic horizontal lift. So we state a result as a theorem. 

Theorem 2.1. For any M-valued semimartingale X=(Xt )  such that X o = x  a.e. 
for some x s M ,  there exists a unique stochastic horizontal lift 2 = ( X t )  of X 
starting at u such that 7~(u)=x. 

We prepare some results in Sect. 3 and give a proof of above theorem in 
Sect. 4. 

3. The Integrals of 1-forms 

The integrals of 1-forms along the path of diffusion process were defined by 
N. Ikeda and S. Manabe. Here we extend them slightly. Let M be a d- 
dimensional C ~ manifold and X = ( X , ;  0__<t<oe) be an M-valued semimar- 
tingale such that X o = x  a.e. for some x~M.  We denote the cotangent bundle 
of M by T*(M). 

Definition 3.1. Let A(X) be a set of all c~: [0, oe)x M x f ~  7*(M) such that 
(i) c~ is measurable, 

(ii) for any fixed (t, w)e[0, oe)x f2, e(t, . ,  w) is a cross section of T*(M), i.e., 
a 1-form (we do not assume the smoothness), 

(iii) t~--~(t, X~, w) is a 7*(M)-valued semimartingale. 

In the sequel we sometimes omit the variables w and x and c~(t) is denoted 
by a t. Now we shall define the integral of c~A(X) along the path X t. We only 
define it locally: the global definition is easily obtained by using the partition 
of unity. Let (x 1, ..., x e) be a local coordinate and set Xi=xi(Xt).  From De- 

d 

finition 3.1, ~ can be represented as ~(t, Xt, w)= ~ o'i(t)(dxi)x~ where O:i(t ) (i 
i = 1  

= 1 . . . .  ,d) is a semimartingale. Then the integral of ~ along the path X, is 
d t t 

defined by ~ ~i(s)odX~ which we denote by i c~.~odX~, where the symbol o 
i = 1  0 0 

means Fisk-Stratnovich's symmetric integral. It is easy to check that this 
definition does not depend on a particular choice of the local coordinate. We 
summarize some properties of the integrals of 1-forms. To do so, we need to 
introduce another class S(X). 

Definition 3.2. Let S(X) be a set of all f :  [0, oe)x M x f2-*R such that 
(i) f is measurable, 

(ii) r~--~f(t, Xt, w) is a semimartingale. 

Then we have the following lemma. 

Lemma 3.1. Let f be in S(X) and ~ be in A(X). 7hen ( f .  cO(t,x,w ) 
t 

=f(t ,  x, w) c~(t, x, w) is in A(X). Moreover if  we define M~= ~ ~ o d X ,  , then 
0 

S f (s, X,.)odM~= i ( f  " cO~~ (3.1) 
0 0 
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d 

Proof Let cfft, Xt, w)= ~ ~(t)(dxi)x, in a local coordinate (X 1 . . . .  , xd). It is easy 
i = l  

to see that ( f .  a)t belongs to A(X). Furthermore,  

f f(s, X~)o dM~ = f f(s, Xs) o (c~, (s) o dX~) 
0 i = 1 0  

i = 1 0  

-i - (f.~)sodX~. 
o 

This completes the proof. 
Next we assume that X is a solution of the following stochastic differential 

equation 

dX t = ~ A~(Xt)~ 
i= 1 (3.2) 

S 0 = x  

where M i is a semimartingale and A~ is a C a vector field on M. 

Lemma  3,2. Let ~ be in A(X). Then 

i GodXs :  ~ ia(s,X~)(Ai(Xs))odM~. (3.3) 
0 i = i 0  

d 

Proof. Let (x' .... , x d) be a local coordinate, ~(t, X.  w) = ~ c~j(t) (dxJ)x~ and Ai(x ) 
d j = l  

= ~ Ai(x ) ~ where ~j=~/~x j. Since X is a solution of (3.2), we have 
d=l 

Hence 

Thus we have (3.3). 

t 

X{= ~ SA{(X~)odM~. 
i = 1 0  

i o: s o dX~ = 
0 j = l  

i = 1  

i = 1  0 

i c~j(s) o (A{(X~)o dM~) 
i = 1 0  

o ~=1 

offs, Xs) (Ai(Xs)) o dM~. 

Let G be a p-dimensional Lie group and g be its Lie algebra. We consider 
the semimartingales on G. Let 0 be the canonical 1-form on G and X =(Xt) be 
a solution of the following stochastic differential equation 

dXt = ~ Bi(X~)odM I 
i = 1  

Xo = g  

(3.4) 



On Stochastic Horizontal Lifts 215 

where M ~ is a semimar t ingale  such that  M ~ - - 0  and  B~ is in g. Then  L e m m a  3.2 

yields O odX s= ~ MtB ~. We shall prove  the converse. Let  (X,) be a G-valued 
0 i = l  

semimar t ingale  such that  X o = g  a.e. and {A 1 . . . . .  Ap} be a basis of  g. Since 

i OodX s is a g-valued semimart ingale ,  there exist semimar t ingales  M ~, ... ,  M e 
0 [ P i 
such that  M ~ = 0  a.e. ( i=  l, . . . ,  p) and  ~ OodX~= ~ M t A  i. Then  we have the 
following lemma,  o i= 1 

L e m m a  3.3. (Xt) is a solution of the following stochastic differential equation 

P 
dXt = Z A~(Xt)~ 

i=1 (3.5) 

X o = g .  
t 

In particular, if ~ 0 o dX~ = 0 for all t >= 0 a.e. then X t = g for all t >= 0 a.e. 
0 

Proof Take  any Coo function f on G. For  each g6G we define F(g)~g* by 
F(g)X=(df)g(Xg) where g* is a dual space of g. Then  F is a Coo mapp ing  f rom 
G into g*. Hence  the mapp ing  g~--,F(g)o0g is a 1-form on G. F r o m  L e m m a  3.1, 
we have  

On the other  hand  

Hence  we have 

i p t (F~176 E ~ F(X~)A~odM~ 
0 i = 1 0  

p t 

= }'1 ~ (df)x~(Ai(Xs))~ 
i = l O  

p t 

= E ~ (A~f)(X~)odM~. 
i = 1 0  

f ( X t ) - f ( X o )  = ~ dfo dX~ = (Fo O) o dX~. 
0 0 

p t 

f ( X t ) - f ( X o )  = E ~ (A,f)(Xs)odM ~. 
i = 1 0  

This implies that  X is a solut ion of (3.5). 
Let  M, N, L be C ~ manifolds  and X=(Xt)  and Y=(Y~) be semimar t ingales  

on M and N respectively such that  X o = x  o and  Yo=Yo a.e. Let  q~: M x N ~ L  
be a Coo mapp ing  and ~ be a Coo 1-form on L. Fo r  each x~M, we define q~x: 
N ~ L  by (~x(y)=c~(x,y). Similarly y~b: M--*L by y(o(x)=O(x,y) for each yeN. 
Put  Zt=O(Xt, YO. Then  Z = ( Z t )  is an L-valued semimart ingale .  Let  ~b x e be a 
pull back  of e by qSx. Since a mapp ing  (x, y)~--~(~b* ~)y is a Coo mapp ing  f rom M 
x N into T*(N), 4~te is in A(Y). Similarly rfiS*e is in A(X). 
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L e m m a  3.4. 7he following equality holds. 

t 

i ~odZ,.= ~ O * ~ o d ~  + i r,r c~odX~. (3.6) 
0 0 0 

Proof Let  (x ~, . . . , x %  (y~, ... ,  y") and (z *, ..., z l) be  local coordinates  of  M, N 
l 

and L respectively. Let  X t~--x~(Xt), yJ-~2ty~t - - . r ,  t,, z k t = z k ( Z , )  and c ~ =  E O~kdZ k. 
Then  k = 

, ,  a ~  k , 

k=l j=l 

k = l  i = 1  

By I t6 's  fo rmula  we have 

z ~  ~ ~ ~ ~ ~ '  Y " ~ - ' ~ x  ~ " rd, g )  - Z o = ~ b ( X ,  . . . . .  X , ,  , , . . . ,  , J ~ t o , . . . ,Xo ,  ..., 

= ( x  ~, ., x L  y1 V )  o dX; 
i = 1  0 oXi  ~ s "" s ~ ""~ 

+ j =  o 8Y j "  .~,...,X~. . . . . . . .  

Hence  we have 

l 

k = l  

- F Ck x, dXl) 
- -  ~ ~ O~k(~)(Xt, Y t ) ) ~  , t Yt) ~ 

k = l  i = 1  

l n 

+ E E O:k(r Yt)) ~ ~,,(a~k(x,, t Yt)odYt j) 
k=l j=l .~ i 

= (,,q6* ~ ) o d X t + ( + ~ ) o d Y  ~. 

This completes  the proof.  

4. Proof of Theorem 2.1 

We will p rove  the existence first. Let  the nota t ions  be as in Sect. 2. Take  an 
open ne ighborhood  U of x such that  there exists a trivializing d i f feomorphism 
q~: ~ - ~ ( U ) ~ U x G .  For  simplicity we assume that  X t e U  for all t > 0  a.e. Let  u 
be in P as in T h e o r e m  2.1. Put  q~(u)--(x,g)~UxG. Define a P-va lued  semi- 
mar t inga le  f ' = ( ~ )  by ~ = ~ - l ( X , , g ) .  Let  {A~ . . . .  ,Ap} be a basis of g. Since 
t 

~ c o o d ~  is a g-valued semimar t inga le  there exist semimar t ingales  M ~ . . . .  , M  p 
0 t p 

such that  S c o o d ~ =  ~, i �9 M~A i. Let gt be a solut ion of the following stochast ic  
0 i = l  
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differential equation 
P 

d~, = ~ A,(~,)odM[ 
i=1 (4.1) 

g o ~ e .  

If g,=~t -1 then (g,) satisfies the following stochastic differential equation (see, 
e.g., [9]) 

P 

dg t = - ~ (Ad(g,-1)Ai ) (g,)o dM I 
i= 1 (4.2) 

go=e .  

Define a P-valued semimartingale ()?,) by X , =  Y , g , = ~ - l ( X ,  gg~). We will 
show that (Jr,) is a stochastic horizontal lift. It is easy to show that ~()?,)=X, 

t 

for all t > 0  a.e. We need to show that icood)?,=0.  Define 0: P• by 
0 

dp(v,h)=vh. For v in P and h in G, we can define ~b,. and hq5 respectively in the 
same way as in Lemma 3.4. Note that q5 c o - 0  and h(o=-Rh. From Lemma 3.4 
we have 

i  odX, = } Oo< + S R; cood   
0 0 0 

From a property of connection form co, R* co=Ad(g~-l)co. On the other hand, 
from Lemma 3.2 and (4.2) we have 

0odg,.= - ~, 5 ad(gs~)A~odM~. 
0 i = 1 0  

Combining these facts and Lemma 3.1 we obtain 

} c o o d J ~ , = -  ~ i Ad(g21)AiodMi.+ i Ad(g71) coodg 
0 i = 1 0  0 

t 

= -  ~ i md(g~-l)Ai~ ~, 5 md(g~-*)Ai~ 
i = 1  0 i = 1  0 

= 0 .  

This implies that (2,) is a stochastic horizontal lift of X. 
Next we will show the uniqueness. Suppose that (2,) and (~) are horizontal 

lifts of (X,) such that 2 o =  Yo=u a.e. Since n(2,)=r~(Y,) for all t > 0  a.e. there 
exists gteG such that 2 t =  Y,,g, for all t ~ 0  a.e. We can easily check that (g,) is a 
G-valued semimartingale such that go = e a.e. By a similar argument we have 

t t t 

0 =  5cood2s=  50odg~+ S Ad(g~ -1) co~ 
0 0 0 

t 

Since i c o o d ~ = 0 ,  Lemma 3.1 implies that ~ Ad(g~-l)cood~ =0. Hence we have 
0 0 
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t 

50:odg~=0. F rom Lemma  3.3 we have that g t = e  for all t > 0  a.e. Thus we 
0 
obtain 23 = Yt for all t__> 0 a.e. This completes the proof. 

5. Examples 

Here we give some examples. 

Example 5.1. Let {P,M,G, rc} be a G-principal fibre bundle and co be a 
connection form on P. Let Az . . . .  , A~ be C ~ vector fields on M and M z . . . .  , M r 
be semimartingales. We consider the solution of the following stochastic differ- 
ential equation 

r 

dXt = Z A,(Xt)~ 
i=1 (5.1) 

X o = x ~ M .  

Then the stochastic horizontal lift (Xt) of (X)  is given by the solution of the 
following stochastic differential equation 

r 

df~ t = ~ A,(f(t) ~ dM I 
i= 1 (5.2) 

2 0 =u~P  

where n ( u ) = x  and -41,-.-,-4r are horizontal lifts of A 1 . . . . .  Ar respectively i.e., 
Ai is a vector fields on P such that ~ . f l i = A  i and o)( / ] )=0.  This fact is an easy 
consequence of the definition of the stochastic horizontal lift and Lemma  3.2. 

Example 5.2. Let M be a d-dimensional Riemannian manifold, O(M) be the 
or thonormal  frame bundle of M, r~: O(M)--*M be the natural projection and co 
be the Riemannian connection form. We regard an element u of O(M) as a 
linear isomorphism from R e onto T~(,)(M) which preserves the inner product. 
Since co is an o(d)-valued 1-form (o(d) is a set of all skew symmetric real 
matrices of degree d), we can write o =(coj.) by its components.  Let U be a 
coordinate neighborhood and (x 1, ..., x a) be a local coordinate of U. Let (x i, e~; 
i , j , k = l , . . . , d )  be a local coordinate of rc-l(U) and Fj~, i , j , k = l  . . . .  ,d, be 
components  of the Riemannian connection. Then the connection form co =(co}) 
is given by 

i k l co5 "= E f~ de~ + E dx" V~,e) , (5.3) 
k = l  l , m = l  

where (fj)  is the inverse matrix of (e}). Let X = (Xt) be the Brownian motion on 
M. Malliavin [11] defined the horizontal Brownian motion X t = [ X t ,  Et] by 
the solution of 

d 

dEj(t) = - Z Fl~(Xt) E~(t) o dX I. (5.4) 
k , l = l  
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By noting that  

coj~ lf~(Xt)~ +z,~= lF, knz(X,) E}(t)~ '} 

we can easily see that  oo~odJ?t=O for any i,j= 1, ..., d, if and only if (5.4) holds. 
Thus these definitions are equivalent. 

Example 5.3. Let the notat ions be as above. Let X = ( X , )  be an M-valued 
semimartingale such that Xo=x~M and J f = ( X , )  be a stochastic hor izontal  lift 
of  X such that  Xo=u~O(M) with r t(u)=x.  Let r/ be the canonical  1-form on 
O(M), i.e., Re-valued 1-form defined by t / , ({)=v-l(rc,)v({) for veO(M) and 

t 
.. M 1 . M e = eT~(O(M)). Define semimartingales M1, ., M e by ( ~, .., ~) ~ t/od2~. Let 

o 
L, . . . .  , L e be s tandard  horizontal  vector fields on O(M), i.e., o)(L~)=0 and q(L~) 

=(0, ..., 1 . . . .  ,0) for i =  1 . . . .  , d. Then 2 satisfies the following stochastic differ- 
ential equat ion 

d 

d2, = - i ~,, Li(Xt) o dMt 
i = 1  ( 5 . 5 )  

X o ~ - U .  

Conversely, if 2 is a solution of  (5.5) where M 1 . . . . .  M e are semimartingales 
such that  M~ = 0  for i =  1, ..., d, then ( 2 )  is a stochastic hor izontal  lift of (X, 

t 

=re(2,)) and 5 r /od2~=(M~, . .  M e �9 , t). This fact is essentially due to Y. Yamato  2 
o 

who discussed the case X is the Brownian mot ion  on M. 

Proof. We shall prove that 

f(X,)-f(Xo)= ~ i(L~f)(Xs)odM~ (5.6) 
i = 1 0  

for any f in C~(O(M)). Since the components  of ~ov, t/u form a basis of 
T~*(O(M)) for any point  v~O(M), there exist C ~ functions E:  O(M)-~o(d)* and 
F: O(M)-+R* such that (df)u =E(v)c% + F(v)rl,, Then from L e m m a  3.1 we have 

t 

S(X,)-f(Xo) = S df ~ 
0 

t 

= S(Eo)+F~)od2 s 
0 

d t 
~ i = ~ F~(X~)o dM,, 

i=i0 

i = l O  

Thus we have (5.6). Converse is easily obtained from L e m m a  3.2. 

2 Private communication 
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Example 5.4. We will discuss here the stochastic parallel displacements of 
tensor fields. Let M be a d-dimensional C ~ manifold, L(M) be its linear frame 
bundle and n: L(M) ~ M be the natural projection. Then 
{L(M), M, GL(d, R), n} is a GL(d, R) principal fibre bundle. We regard an ele- 
ment u of L(M) as a linear isomorphism from R ~ onto T~(,)(M). Assume that a 
connection form co is given. We denote the tensor bundle of type (p,q) by 
Tq;(M) and the set of all C ~ cross sections of TP(M) by FOO(T~(M)). We 
consider the following stochastic differential equation 

i= 1 (5.7) 

N o = x  , 

where A1, . . . ,A r are C ~ vector fields on M and M~,.. . ,M~ are continuous 
semimartingales. We denote the solution of (5.7) by Xt(x ). We assume that (5.7) 
is conservative for all x~M and the mapping x~---,Xt(x) is a diffeomorphism of 
M for all t>0 .  If M is compact, then these conditions are always satisfied. 
Since u in L(M) is a linear isomorphism from R e onto T(M)~(u ), u can be 
extended to a linear isomorphism from Rd|174174174174 onto 

TqP(M),(,), i.e., ,u| | -1) .@. . .  |  1)I. Hence we can regard an element 
. P . . 

u in L(M) as a hnear ~somorphlsm as above. From Example 5.1 the stochastic 
horizontal lift ()?t) of (X~) is the solution of the following stochastic differential 
equation 

dr( t = ~ -d,(2t)odM I 
i=1 (5.8) 

X o = / A  

where n(u)=x and A1, -.-, /],. are horizontal lifts of A 1 . . . .  ,At respectively. We 
denote the solution of (5.8) by Xt(u ). Let p~ be a mapping from TqP(M) into 
7qP(M) defined by &(~)=Xt(u)ou 1(4) for ~ in TqP(M)~ and u in L(M) such that 
n(u)=x. Pt is well-defined, i.e., it does not depend on a choice of u such that 
n(u)=x because 2~(u)g=2t (ug)  for any g~GL(d,R). Then p, is a bundle map 
such that nopt(~)=Xt(n(r for ~ in TqP(M). For any CeTqP(M)~ we call p ~  a 
stochastic parallel displacement of ~ along the path of X~(x), O<_s<_t. It is easy 
to see that this definition is equivalent to that of It6 [7]. 

Next we will show It6's formulae for tensor fields which were discussed by 
Kunita [10]. Let A be a C ~ vector field on M, A be its horizontal lift and ~ be 
in F~ Define the mapping F~: L(M)~Re|174174174174 * 

by Fr for u~L(M). Then it holds that AF~_=Fv~r V A being the 
covariant derivative (see Kobayashi, Nomizu [8] p.p. 115). Using this fact we 
have 

i~1 0 

i=1 0 
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Hence 
r 

)~t(u) -1 ~xax)-u-1 ~x= ~ i 2s(u)- 1([7A~ ~)xs(~)~ �9 
i = I 0  

By operating u both hands we have 

i its: 
i = 1  0 

This implies that if VA,~=O for i=1, ...,r, then ~ is invariant under p~. For 
example if the connection is the Riemannian connection then the Riemannian 
metric is invariant under the stochastic parallel displacement. 

Acknowledgement. The author wishes to express thanks to N. Ikeda for his valuable suggestions. 
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