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1. Introduction

The classical symmetric Wiener-Hopf factorization of a probability measure
was given by Spitzer [20] and Feller [6], and has a strong connection to
random walks. Namely, given the characteristic function y(6) of a distribution
on (— o0, o), there is a unique factorization

1=y(O)=[1-¥ (OI1—¢_(0)],

where Y, is the characteristic function of a distribution concentrated on
[0, 007 and ¥ _ is the characteristic function of a distribution concentrated on
{~ 00,0]. This result was generalized later by Fristedt [ 7], Greenwood and Pit-
man [8], Silverstein [19], and Prabhu [16] to generators of Lévy processes.
Namely, if ¢(60) is the Lévy exponent of a Lévy process X, and if 1>0, then

At ¢0)=9, (4 0) o _(40)

where 0—¢_ (4,0) is the Lévy exponent of an increasing Lévy process and
0—¢ _(4,0) is that of a decreasing Lévy process. It was further shown in [7,
19], that ¢ (4,6) and ¢_(A 0) are the Lévy exponents of the increasing and
decreasing ladder processes, respectively, associated with (X,). Equivalently, if
A is the generator of a Lévy process, then for any fe C?

OI-A) f=(0,1-4)0,1-4)f

where 6=0,0,, A_ is the generator of an increasing Lévy process, and A_ is
that of a decreasing Lévy process (Prabhu [16]). Later, Presman [18] and Ar-
jas and Speed [1] generalized this property to Markov additive processes in
discrete time.
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0080
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It is the purpose of this paper to carry the result one step further, namely
to the case of continuous time parameter Markov additive processes, where the
Markovian component has a finite state space and is ergodic.

Two main tools are used for proving the factorization. One is the existence
of a Lévy system for the excursion process, from a general Borel set, of a
Markov process'. The other is the use of a dual Markov additive process, and
duality relation between the potentials of the process and its dual. The use of
the dual process and the Wiener-Hopf factorization enables us to obtain a
duality relation between the minimum of the additive part, Y, of a Markov
additive process (X, Y), and the “content” (namely, ¥— inf Y) of the dual

process (X, Y). Osss2
In some dam and queueing models, ¥,— inf Y, is the content of the dam
0<s=t
and the virtual waiting time respectively. Thus, if inf Y, decreases to a finite
0=s=t

limit, we can use the duality relation mentioned above to obtain a limiting
distribution for the content functional.

This paper is organized as follows. Section 2 is devoted to the ladder set,
the set where the additive part achieves its maximum. In Sect. 3 we construct
the ladder process — a Markov additive process, whose range is the ladder set,
and prove the Wiener Hopf factorization. We close in Sect. 4, with some appli-
cations. We treat the maximum and content functionals and find conditions
under which they have a limiting distribution.

2. The Ladder Set

We use notations of Cinlar [3-5], and Blumenthal and Getoor [2].
Let (Q, .4, 4,,X,.Y, 0, P¥) be a perfect MAP with (F #)=(R, %). Define

2.1) M,=sup Y,
0<s=r
(2.2) M={t:Y,—M,=0}.

Note that M is closed from the right. M is called the ladder set of the additive
part of the MAP. Let M be the closure of M, and define

(2.3) D,=inf{s>t:seM},
2.4) R,=D,—t,

(2.5) G,=sup {s<t:seM},
(2.6 R=inf{t>0:teM}.

(277) Lemma. The random variables D, are Z, stopping times.

1 The theory of excursions from a point, of a Markov process, was used in [19] to prove the

Wiener Hopf factorization for a Lévy process
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Proof. Y, is right continuous as. and hence separable. Hence M,e%,, and
sup Y e%,. Therefore

t=us=s
{w:D(w)>s}={w: M,(w)> sup Y e,
t<u=s
Let
(2.8) Lp.={Ae¥: An{Dst}eZ ).

We shall now prove the regeneration property at the ladder set.

(29) Theorem. Let S be an &, stopping time, then for all Ac¥), , BeZ, u
finite measure on &.

(2.10) P*(An05 B)= | PX0s(B) dP".
A

Proof. Using the right continuity of ¥, it can be easily verified that D, is right
continuous. %, is right continuous by the definition of MAP. Therefore, it
follows from Maisonneuve [12] that D_ is an %, stopping time and both sides
of (2.10) are defined. Since Dy is an &, stopping time, (2.10) follows from the
strong Markov property proved in [4].

In Maisonneuve’s [12] treatment of regenerative systems, the systems in-
volved were time homogeneous. In this context, time homogeneity means that,
for ae. w, M(0,w)=(M(w)—t)nR, for all =0, or equivalently, that R is a
perfect terminal time [2]. In our case time homogeneity will hold for all teM.
Suppose te M (w), then

M(@B,0)={s: Y(0,w)=Y,(,w) for all 0<u<s}
— (51 Y,, (@)~ %(@)2 Y,, ()~ X(w) for all 0=u<s)

={s: Y, [(w)>Y,, (o)forall 0Su<s}.

But since te M (), Y(w)2 Y,(w) for all 0£s=t, and hence, the last set is equal
to

{s>t:Y(w)2Y,(w) for all 0gu<s}=(M(w)—1)nR .

If, on the other hand, ¢ is not in M(w), the last equality does not hold, because

then the fact that Y (w)=Y, () for all 0<u<s does not imply that
Y, [(w)zY,(w) for all 0Su=st+s.

From now on we shall restrict our attention to MAP’s in which the X

component is a regular step process. For each xeE.
(2.11) P*{X,=x for all 0=t < s} ==X

where c(x) is some finite positive number. Let ¥ be the amount of time X has
spent at x during [0, £], and 7 be its inverse. We define now a new process as
follows:

5

(2.12) V=Yoo 3 L (Ve Yo ) =[ LX) Y.

s=t 0]
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Since X,=x as., this process is a Lévy process. We call it the Levy process
associated with x.
(2.13) Definition. A point xeE is regular for M if

P*{R=0}=1.
Note. We assume here Y, =0 as.

(2.14) Lemma. Let X, be a regular step process. A point x is regular for M if
and only if

R*=inf{t>0:V,=2V,}=0 P —as.

Proof.
P*{R=0}=lim P*{Y,> Y, for some 0 <t<e¢}
el0
=lim P*{Y,2 Y, for some 0<t<g¢, T}=¢}
el0

+1im P*{Y,2 Y, for some 0<t<g, T3> ¢}.
el0

The second summand is smaller than

lim P*{t*>¢} =0  because c(x)<co.
)0

Thus
Px{R>0}=li£Px{Kg V, for some 0<t<e, T¥=2s}
gligl[P"{Vtg V, for some 0<t<e} —P*{1¥>¢}]
=1ilrf)1Px{V,gV0 for some 0<t<¢}=P*{R*=0}
and
P*{R=0} §liir{)1Px{V,gV0 for some 0 <t<e} =P*{R*=0}.
Hence

P*{R=0}=P*(R*=0)=0 or 1

or equivalently, the property of a point being regular for the ladder set is a
property of the Lévy process associated with that point.

In order to construct the ladder process, one needs to construct an additive
functional that increases on M. This will be done in the next section using
excursion theory. We shall work with the canonical realization of the process
{X,, Y, U:t=0} where U,=Y,—M,, and its excursions from the set E x R x {0}.

3. Ladder Process and the Wiener-Hopf Factorization

Let (X, Y) be a MAP for which the Markov part X, is ergodic, has finite state
space, and Y takes values in R. Define
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(3.1) U=Y,~M,.

The process {X,, Y, U,:t=0} is a Hunt process on the space (EXR xR, & x%
x &), whose transition semi-group is given by

(32) Ptf(x’yvu):Px[f(Xw Yt+ya X—(Mt——u)+—u)]

We shall work with its canonical realization. Measurability, predictability, etc.
will be with respect to the canonical g-algebras. The regeneration set defined
above is

(3.3) M={t:U,=0}
Denote by
(3.4 F={(x,y,u): P***{R=0}=1}.

We note that (x, y, u)eF if, and only if, u=0 and x is regular for M. Therefore
(3.5) F=FxRx{0}

where

(3.6) F={xeE: x regular for M} (regularity defined in (2.13)).

Define

(3.7) G={t:R,_=0,R,>0} where R,_=0.

G 1s the set of left endpoints of intervals that are contiguous to M. Let

(3.8) G,={teG:x,_€eF},

(3.9 G,={teG:teM, X,¢F}.

The following theorem follows from Maissoneuve [13] (Theorems 4.1 and
9.2)

(3.10) Theorem. There exists a continuous additive functional K, with 1-poten-
tial smaller than 1, carried by F x R x {0}, and a kernel P from (ExR xR, & xR
xR) into (Q,.HM*) satisfying P*V*{R=0}=0 and P*»“(1—e ®)<1 for all
(x, y, u) such that

(3.11) ELY eZ,f(0)]= E'[Ofe—szsﬁxs' YaUs( f) sz]

seGy
for all positive predictable processes Z_ and all positive measurable functions f.

We note that since {X,,U,:¢tz0} is also a Hunt process, one can show,
repeating the proof of [13], that K, is an additive functional of (X, U),and if f
is measurable with respect to %, the usual completion of ¢ {X , U: s=0}, then

(3.12) Px»0f=Pp*Kq.e
where P** are transition kernels defined for (X, U). Let

(3.13) M,={t:teM, X ,cF},
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(3.14) R=inf{t>0,teM,}.

Using the quasi left continuity of the MAP (X, Y), one can show that all stop-
ping times T such that [T]eM, —M, are totally inaccessible. Further, M; de-
fined above has no isolated points. Applying (3.11) to f(w)=1—e~ " we get

(3.15) E(eR=EY e*(1—eR)+ E'Te—s 1y () ds

selry 0

=E [ e PX (1 —e R) dK,+E [e "1, (s)ds.
0

s=0

It was shown in [12] that P>~ (1 —e~R)=1 except on a set of K potential 0.
Define
t

(3.16) L={1,(s)ds+K,
0

L is the local time of equilibrium of order 1 at M, and increases on M,. Let
(3.17) M,={t:teM, X ¢F}.
It was shown in [13] that the set

{(t, 0): teG(w), X (w)¢ F}

is well measurable. Therefore there exist stopping times T, such that this set is
equal to | J[T,] (where [T,] are the graphs of T,). Define now

T U, =0
(3.18) S,,z{ » on U, =0}
oo otherwise

then {(t, »): teM (@), X (@)¢F} = | ) [S,].

Therefore one can define

(3.19) L= Y MXg)J,

n:Sn <t
where J,, J, ... are i.i.d. exponential (1) random variables and
(3.20) Ax)=E*(1—e™%).

To make this functional additive and measurable, one has to enlarge the
probability space to include the exponential random variables. This was done
in [11] in some detail, and for the sake of conciseness will be omitted in this
paper. Let

(3.21) L=L+I

L, is an additive functional that increases on M. Let 7, be its inverse,
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'/Itoza{er’ YTS,‘ESI st}

(3.22) o '
MO =0{X,,Y, 1,520}

and ', .4, the usual completions of those g-algebras. One can easily verify
that (Q, . #', M, X .Y, ,7,0,,P")is a MAP. We call it the ladder process as-
sociated with the MAP (X, Y).

Since X is ergodic, there exists a unique invariant measure 7 for the pro-
cess X. Consider the MAP (X, ¥) whose transition function is given by

(3.23) P(X,=j,Y,eB)= %PJ{X~1 Y,e —B}.

Following Arjas and Speed [1], we call this process the dual MAP. In the
same manner we have constructed the ladder process for (X, Y) we construct a
ladder process X, , ¥, ,, for (X, Y). We call it the ladder process of the dual
process.

Having constructed the ladder process we define the following operators

FO)—E/("f (X))

(3.24) Aof ()=lim : :

(3.25) Upof (V=E' =™ f(X,)dt

(326) Hl, gf(]) — hmf(]) —Ej(e—}.rs eiGYrs f(er)) ,
sl0 N

(3.27) I_’Il! of(]) —1im f(]) - El(e—is etﬂstf(st)) ‘
sl0

We assume here that f(4)=0, and hence we do not need the condition
L 2 in (3.26) and (3.27). Note that since € f(j) is in the domain of the
infinitesimal generator of the original process (3.24) is well defined. Similarly
f()er—# is in the domain of the infinitesimal generators of both (X, Y., 1,)
and (X, ¢ Y, T,), and therefore (3.26), (3.27) are well defined. We now state the
main result of this paper.

(3.28) Theorem. (The  symmetric = Wiener-Hopf  factorization).  Let
(Q, M M, X, Y, 0, P) be a perfect MAP, where X, is defined on a finite state
space and is ergodic. Let (Q, M, .#,,X,, Y,,0,, P*) be lts dual process. Then for all
A>0, 6eR

A= A@0)=H%,A() " H,

where A is an invertible operator that does not depend on 0, and H* is the
adjoint of the operator H with respect to the invariant measure m.

The proof of this Theorem consists of two main steps. The first one uses
Theorem (3.10) to express the operator U, , as a product of two operators. As
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functions of 6, the first one will be the Fourier transform of a finite measure
concentrated on (—o0,0] and the other the Fourier transform of a finite mea-
sure concentrated on [0, co). Silverstein [19] has used Theorem (3.10) in a simi-
lar fashion to prove the Wiener-Hopf factorization for Lévy processes. The
second step identifies those operators as the resolvent of the ladder processes
and the adjoint of the resolvent of the dual process.

Define

dJ,= 3 MX)1,(dt)

seGy

(3.29) dB? =dJ,+dI,

where A(x) is defined in (3.20).
Note that

(3.30) G,={t:teG,X, eI}
={t:teG,X,_eF,X,eF}u{t:teG,X,_eF,X ¢F}.

The first set in the union was denoted in [13] by G". We call the second G.
Note that G{NG, is not necessarily empty. To avoid counting points that are
in it twice, we shall have to elaborate more on the structure of (X, P) of Theo-
rem (3.10).

The following was shown in [13].

(i) There exists a continuous additive functional (CAF) A and a transition
kernel P, satisfying the same conditions as P of Theorem (3.10), such that

0

(3.31) E'Y e 5(1—e RO)f(H)=E [ e *P{>°(1—e~R)f)dA,.

seGr

(i) There exists a CAF B, and a transition kernel g((x,u), *) from (ExR,&
x &) into itself, such that

(3.32) EY e s(1—e RO f(0,)

seGl

= E'Ie‘s | g[(X,,0),dx",dy ] E*>"((1—e" %) f)dB,.

ExR~Fx{0}

We now let ik, [ be the derivatives of
(i) [P¥°(1—e"R)d4,,
0

G) [ [ q(X..0.dx.dy) E(1—e ®)dB,,

0 Ex RNFx{0}
(iii) C,=m[(0, )nM] where m is the Lebesgue measure on R,
with respect to L, respectively. Let P be the transition kernel of (X, U), then
P defined in (3.12), (3.13) is equal to

(3.33) h(x,0) P,((x,0), )+ k(x,0) q((x, 0), P'(*)).
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To avoid counting points in G, NG, twice we regefine q((x,0),(E~F)x{0}) to
be 0 for all x. We assume from now on that P is defined by (3.33) with ¢
adjusted as above. Let

E® O[g(Xn U,) x 1{R>t}]

(3.34) 0.(x,8)= E*(1—e™%)
ﬁ(x, O)[g(Xt’ Ut) 1{R> I)] xekF.

x¢F

Note that

(3.35) M =Y 1T GEG,
Yo, if G,eG,,.

We now use the last exit decomposition which follows from (3.10) to obtain

E* [V f(X )] =E*[e”" (X)) 1)(8)]
+Ee f(X) 16, o0}
=E*[e®" f(X ) 1,(1)]
+ Ex(ewyGt “f(X) el 1{G,:<t, thﬁGz})
+E* [ei”th(Xz) eV L, 1. 6reo]

_ B[00, (X, h)dBO+ EX(e*" £(X) 1,4(0)

where h(x, u) =f(x) e,
We first note that since the exponential random variables were independent
of the MAP

t

1
Ef e 0. (X, hdl=E f Q. (X, hdL,
: 0 0
hence

t

(336) E.(eiOth(Xt) 1Gt<t) = E.j ewys Qt~s(Xsa h) dLs
0]
We now go back to the resolvent U, , f

(337) U, ,f()=FE' [ e * " f(X,)dt

El

0 t
e~ * o0 lM(t)f(Xt)dt-l— Eii e~ [j‘ PLAR Qt—s(Xs’h) dLs] dt

0

I
&

Ot 8§ Q8 O=—m8

e M (X ,,0)f(X,)dL,

+
&y
Ot 3

ew[ i e"‘”SQI_S(XS,h)dLS] ar.
s=0
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We treat the two summands in the last expression separately. Using the time
change u=L, the first one is equal to

€D

Ei j‘ e—lts eiOYts I(er,O)f(er) ds.

0
As for the second summand, we use the fact that (t,x})—>Q,(x, -) is jointly uni-

versally measurable, the fact that fe"“‘Q (x, I)du<% and Fubini’s theorem
to obtain:

-

e%Q, (X, h)dL,dt

Ot 8
m
L—§

e 8 I e 8

e—ls 19Ys<

[ e-=90, (X, h)dt) dL

—ls zBY j‘ —}.uQ X ,h)dudLs

]
(=1
&

s

(=]

]

and using the time change u=L, this last expression is equal to

e—).rseiﬂYrs[ j’ e‘AuQu(th,h)du:l ds

u=0

o8

To summarize, we have shown that

(3.38) U, of ()=E' z o~ H5s g5 [l(th, 0)f(X,)
+ o(jj e~ 0, (X, h) du] ds.

To avoid long formulae we define

(3.39) G, ofD=1G0) 1)+ 10 e~ *Q (i, h)ydu.

We recall now the definition of H, ,f(i), the infinitesimal generator of
(Xr .Y, ,t) applied to €% e=* f(j). Th1s operator on R™ is invertible and its
inverse is given by the resolvent

(3.40) E' [ e ?se®s f(X )ds.

o]

This resolvent is finite for A>1, by the choice of the local time, and using the
fact that E is finite we can prove that it is finite for all 1>0.
Combining (3.38), (3.39) and (3.40) we obtain the following

(3.14) Lemma.
Ul,ef(x):H;,é G of (x).
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Note that 6—>H; ; f is the Fourier transform of a finite measure concen-
trated on [0, c0), and 0—G, , f is the Fourier transform of a finite measure
concentrated on (— oo, 0]. We also note that

0— (e *Q, (X, hydu
0

is a Fourier transform of a measure that has no mass at 0.

Remark. Using the identity
1 —Ats+i0Y
S U/ ) =BT U, (X))
1 xts {—At+i0Y,}
ZEE je t](‘()(t)dt
0

for all s=0, and the fact that the limit as s —0 on the left side exists, one can
show that G, , f(x), defined above, is equal to

1= :
(3.42) lim— E* [ ¢!~ 4+ f(X ) dt.

s10S 0

We now turn to the dual process. Let

(3.43) U, of(x)=E* [ e % f(X ) dL.
0
Then
(3.44) U,0=U},
where
.. L ()= ,
Ukl j)= Ufe l{i}(]) =;% Ux,a 1{j)(l)'

(z being to complex conjugate of z). The analogue of (3.14) in this case is
(3.45) U,o=H;1G,,.

where H M,GA 1,0 are defined for the dual process as H, , and G, , were defined

for the original process. Since all operators here are invertible we get from
(3.41), (3.44) and (3.45)

(3.46) G, oH%o=H, ,G%,.

We note that an equation similar to this appears in Arjas and Speed’s [1]
proof. In the discrete time parameter case the corresponding operators were
Fourier transforms of finite measures in 6, i.e. all entries in the corresponding
matrices were Fourier transforms. As we shall see below, this is not so in our
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case, and this causes part of the difficulty in passing from the discrete time
parameter to the continuous time parameter case.

We return now to the operators H; . H, ,f(j) is the value of the infinite-
simal generator of (X_,Y,,t,) applied to f(j)e?®~*%. We now use a result of
Cinlar [5] for this generator to get:

(3.47) H, (. j)=H; ¢ 1;()=k;+Aa(j)—i 0b(j)—vi(o0)

+ [ (== Ao) yide x dy)
t=0y=0

=k;+Aa(j)— i 0b(j) — v/(o0) + Ojo (1—e) vi(dy)

y
©  ®

+ [ [ (A—e?)vi(dtxdy)

y=0t=0

where v/(dt xdy) are Lévy measures on R? and vi(dx) is the Lévy measure
given by

(3.48) vi(dx)= Oj? e~ # yi(dt x dx).
0]
This yields
(3.49) H, o(:))=4,0)— [ e'” vi(dy)—i0[b(j)

+ | Vi, aldy
y=0

where
Zl(j)zkj-i—/la(j)%— j j (1 —e~*)vi(dt x dy)—v/(o0).
t=0y=0
For j=+k
(3.50) H; o, k)=H, ¢ 15,() = —kj § j e{_MJrioy}ij(thdJ’)
. y=0t=0
where
PiX. =k
kjkzlimy, =k,
110 t
ky=—2 ko
k+j

and Fy(t,y) is the distribution of the jump size of (z,, ;) due to a jump of X
from j to k.
For the dual process
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(3.51) (= A0— | & ul@dy)
y=a
—ie[l?u>+ e (s aldy |
y=0
I-AI“, ,k [ e{"“”"”ﬁjk(dtxdy).
y=0t=0

(3.52) Lemma. There exists an invertible operator A, on R™, which does not
depend on 0, such that

(3.53) G,of=H:s" 4, /.

Proof. Let /(A)=p/(—A), and F,(dt x A)=F, (dt x —A). Substituting (3.49),
(3.50), (3.51) into (3.46), we get for every k and j

(3.54) F(0)—i0K(0)=F(0)+i0K(0)
where
(3.55) F(0)= Y. (H, 0);n(GEo)n (G 0)uA,0)

_(Gik,s)jk j el V{x(d)’)-

y=a

K(O) =630 [50)+ [ ¢ vi(y, a] @]

= ; (Gl,ﬂ)jm(ﬁ:zk, 9)m +(Ga,0)jk /Il(k)
—(G o)k :J" e ik (dy),
RO=Gou[f+ | e it-amay]

Note that §— F(0), - K(6) are the Fourier transforms of finite measures con-
centrated on [0, o), while § — F(f), 0 — K(0) are the Fourier transforms of finite
measures concentrated on (— oo, 0]. (measure in this context may be negative.)

Remark. 6—(G, ,);, is the Fourier transform of a measure that puts mass at 0 if

and only if j=k and {r: te M, X, =k} has positive Lebesgue measure. In this case,

k is regular for the maximum of the dual process if and only if V}* (the Lévy

process associated with k) is compound Poisson (see [16]). Thus §—(G, o), is

the Fourier transform of a measure that puts mass at 0 if and only if

0—->(I:Ij{" o) 18 the Fourier transform of a measure concentrated on (— 0, 0].
Dividing now both sides of (3.54) by 1+i6 we get

[F'(e) i@K(e)]1—i9_ Fe) i0K(©)
1—i6 1—-i0]114i0 14i6 1+i6°

(3.56)
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Since 1/(1+i6) is the characteristic function of the negative exponential dis-
tribution, the right side of (3.56) is the Fourier transform of a finite measure
on (— oo, 0]. This measure puts mass at 0 only if §— K () is the Fourier trans-
form of a measure that puts mass at 0.

Now if 9——>ﬁj‘{,9(k, k) is the Fourier transform of a finite measure, we can
take @ and b(k) in the definition of K(f) to be 0, and hence K(6)=0. If
0— H¥ 4(k, k) is not the Fourier transform of a finite measure then 6 —(G, ,);, is
the Fourier transform of a measure that puts no mass at 0, and hence so is
K(0).

The left side of (3.56) is the Fourier transform of a measure concentrated
on [0, «0) convoluted with the measure

2 f X1, o= 1 oy(A)
A
Let
F(0) _iGK(H)

M(6)=
O=1"6" 120

M(6) is the Fourier transform of a measure M(+) concentrated on [0, co). Since
the right side of (3.56) is the Fourier transform of a measure concentrated on
(— 00,0) we must have
2 [ &% [ MMy dx— [ & dM(y)=0
x=0 =0

y=x x
for all #eR. Using Fubini’s theorem, we get

0 ¥ _
2 [ € dM(y) [ e+ D& dx=M(6)
y=0

= x=0

or equivalently

2 [0" — o _
- ePdM@y)— | e VdM(y)]=M(9)
1+19 y£0 () y£0
and hence
2 j ¢ 7dM() const
M@§)=—2=2 = )
©) 1—-i0 1—i6
Hence

F(0)—i0K(0)=c())=F(6)+i0K(0)

where ¢ is a constant that does not depend on 0. Since the result is true for
every j and k in E, we get

(3.57) G,x,er,e:Hz,aGio:AA

where A, is an invertible operator that does not depend on 6. From (3.57), the
lemma follows.

Proof of Theorem (3.28). By the previous lemma
(3.58) G, o=/, 0551
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and substituting this into (3.14) we get
(3.:59) Uyo=Hys 4855
or equivalently since U, , is the inverse of 11— A4,
M—Ad,=H} A7 'H,

which is the desired factorization.

4. Maximum and Content Functionals

We now treat the maximum and content functionals, defined for MAP’s for
which X is ergodic and has finite state space. Let

(4.1) M,=sup Y, m= inf Y,
O=s=t 0=s<t
VVt=Yt—'mt'

In some dam models, W, is the content of the dam at time ¢, and in queu-
ing models W, is the virtual waiting time at t. We shall derive their distri-
butions in terms of the ladder processes. Using the Wiener-Hopf factorization
proved in the previous section, we shall obtain a duality relation between the
distributions of W, and i, - the minimum of the dual MAP. Conditions for
existence of a limiting distributions for W, will then follow from those for .

(4.2) Theorem. For all 0eR, A>0, febé&, let

[es}

(4.3) @, o f () =E' [ el-+10M0 (X ) d.

0

Then
D, ,=H;;G, .
Proof. Using Theorem (3.11), we let Z =e*"*~, f(w) =1, ,_,. o, f(X,_,(@))
E.[eioMt f(Xt) ]‘{Gt<t}] :E'[e(iGY(;t_}f(Xt) 1(Gt <t, G‘eGlnGg):I

. L . o~
+ETe" % (X ) L6, ., 6o =E |97 0°__ f(X,)dB?.
0

where 0 f(x)=0,(x, g), and g(j, y) =€ £ (j). Hence
ETe®M f(X)]=E (& f(X,) 1,4(1))
+E j e Q% f(X,)dBO.
4}

Going now through the same computations we did when computing U, ,f (i)
we get
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(pl,ef(i)ZEi j el—Ar+i6Yg
0

[0y e P fem et S duar,

where I, L, P were defined in the previous section. This, after the time change
u=L,, is equal to

E j‘ el At +10Y ) [I(er=0)f(er)

s=0

+ PO [ em 1<R>u}f<X,)] ds=H; 3G, o f ().

u=0

(44) Theorem. For all >0, OeR, febé& let

(4.5) 'I’A,ef(i)=Ei j el=4+10We £(X ) dt.
0

Then

(4.6) lPA,o:H;,%)GLe

where H,G are defined for the descending ladder process, in the same manner
that H and G were defined in Sect. 3 for the ascending ladder process.

Proof- Identical to the proof of Theorem (6.2),. with the Markov process
X, Y. Y,—m, Z=1,and f(0)=13.,_ . (X, ) 0%

(4.7) Theorem. Let v, = inf Y, and let

0<s=t
(4.8) 1, o f (i) j {=auriomd £(X ) dt.

Then for all BeR, 1>0, feb&
q’z,of(i):mief(i)-

Proof. We use an analogue of the Wiener-Hopf factorization for the descending

ladder processes. Let A ,é’ be defined for the dual process as H,G were defined
for the original process, then for all 1>0, §eR

4.9) Gl,eﬁie:H&vGio:Aa
where A is an invertible operator that does not depend on 6. Therefore

W, = H; 3G, =Gt oAy 1A, AE!

C\»

:GT,OHT, (H 0)*=mf,e-
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Theorem (6.7) gives us a duality relation between W, and m, as follows

(4.10) Pi{Wed, X,=j} =%Pf{rhte—A,Xt=i}.

T
(4.11) Corollary. If m, |, and m> — oo a.s., then W, has a limiting distribution
ast—oo.

Conditions under which i, goes a.s. to a finite limit were discussed for the
discrete time parameter case by Newbould [15], and his proofs carry without
difficulty to the continuous case [10]. We shall state here the result without
proof.

(4.12) Theorem. Let (X,Y) be a MAP, for which X is defined on a finite state
space and is ergodic. Then one, and only one, of the following holds

(a) Y, degenerates (i.e. there exist constants f,,..., B, such that Y, jumps p,
—f; when X jumps from i to j and remains constant otherwise).
(b} limsup Y,= + co, liminf ¥, = — co. This happens if, and only if

t— t— o0

(4.13) j%Pi{Yt>0}dt=oo, | = P{Y,<0}dt=00 for some icE.
1 1

o~ |

(c) lim Y,= + co. This happens if, and only 1if,

t— oo
°1 21 .
(4.14) j;P{Yl>0}dt:oo, I?P{Yt<0}dt<oo for some i€E.
1 1

(d) lim Y,= —co. This happens if and only if

t—w

w1 = .
(4.15) j"?P{Yt>0}dt<oo, j;P{Yt<0}dt=oo for some i€E.

1 1
(4.16) Corollary. W, has a limiting distribution if and only if

b 1 .
(4.17) j?P‘{YI>0}dt<oo, j?P‘{Yt<O}dt=oo for some i€E.

1 1

Using a Tauberian theorem, one can show that this limit is

lim 2H; 4G, ,1().

A-0

It will further be independent of i.
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