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1. Introduct ion 

The classical symmetric Wiener-Hopf factorization of a probability measure 
was given by Spitzer [201 and Feller [6], and has a strong connection to 
random walks. Namely, given the characteristic function 0(0) of a distribution 
on ( -  oo, oo), there is a unique factorization 

1-0(0)=[ -1-0+(0)1  [ 1 -  ~9_ (0)1, 

where 0+ is the characteristic function of a distribution concentrated on 
[0, 001 and 0_ is the characteristic function of a distribution concentrated on 
( -  0% 01. This result was generalized later by Fristedt [7], Greenwood and Pit- 
man [8], Silverstein [191, and Prabhu [161 to generators of L6vy processes. 
Namely, if qS(0) is the L6vy exponent of a L6vy process X~ and if 2>0, then 

,~ + qs(0) = 0+  (,~. 0) 0 _  (;.  0) 

where 0--*q5+(2,0) is the L6vy exponent of an increasing L6vy process and 
0~q5 (2,0) is that of a decreasing L6vy process. It was further shown in [7, 
191, that q5+(2,0) and ~b (2,0) are the L6vy exponents of the increasing and 
decreasing ladder processes, respectively, associated with (X~). Equivalently, if 
A is the generator of a L6vy process, then for any f e  C z 

(0I - A ) f  = (01 1 - A +) (021 - A _ ) f  

where 0=01 02, A+ is the generator of an increasing L6vy process, and A is 
that of a decreasing L6vy process (Prabhu [16]). Later, Presman [181 and Ar- 
jas and Speed [1] generalized this property to Markov additive processes in 
discrete time. 
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It is the purpose of this paper  to carry the result one step further, namely 
to the case of continuous time parameter  Markov additive processes, where the 
Markovian component  has a finite state space and is ergodic. 

Two main tools are used for proving the factorization. One is the existence 
of a L6vy system for the excursion process, from a general Borel set, of a 
Markov process 1. The other is the use of a dual Markov additive process, and 
duality relation between the potentials of the process and its dual. The use of 
the dual process and the Wiener-Hopf  factorization enables us to obtain a 
duality relation between the minimum of the additive part, Y, of a Markov  
additive process (X, g), and the "content"  (namely, ~ -  inf Ys) of the dual 
process (X, Y). 0_<s_<t 

In some dam and queueing models, Y~- inf Y~ is the content of the dam 
O<_s<_t 

and the virtual waiting time respectively. Thus, if inf Y~ decreases to a finite 
O<_sNt 

limit, we can use the duality relation mentioned above to obtain a limiting 
distribution for the content functional. 

This paper  is organized as follows. Section 2 is devoted to the ladder set, 
the set where the additive part  achieves its maximum. In Sect. 3 we construct 
the ladder process - a Markov  additive process, whose range is the ladder set, 
and prove the Wiener Hopf  factorization. We close in Sect. 4, with some appli- 
cations. We treat the max imum and content functionals and find conditions 
under which they have a limiting distribution. 

2. The Ladder Set 

We use notations of ~inlar  [-3-5], and Blumenthal and Getoor  [2]. 
Let ((2, Jg, dgt, X t, Y~, 0~, px) be a perfect M A P  with (E Y )  = (R, N). Define 

(2.1) M t = sup Ys, 
O<_s<=t 

(2.2) M =  {t: Yt-  Mt =0}.  

Note  that M is closed from the right. M is called the ladder set of the additive 
part  of the MAP. Let M be the closure of M, and define 

(2.3) D t = i n f  {s > t: s E M } ,  

(2.4) R t = D, - t, 

(2.5) G t=su  p {s<=t: s e M } ,  

(2.6) R = i n f { t > 0 :  t ~ M } .  

(2.7) Lemma,  The random variables D t are 5~ t s topping times. 

1 The theory of excursions from a point, of a Markov process, was used in [19] to prove the 
Wiener Hopf factorization for a L6vy process 
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Proof Yt is right continuous a.s. and hence separable. Hence M t ~ Y  t, and 
sup u s. Therefore 

{co: D~(co)>s} ={co: Mr(co)> sup L}~5~s. 
t < u ~ s  

Let 

(2.8) ~qD = { A ~ a :  A~{Ds<=t}s~t} .  

We shall now prove the regeneration property at the ladder set. 

(2.9) Theorem. Let S be an ~v t  stopping time, then for all A~SC~vs, B ~ 2  ), j~ 
finite measure on ~. 

(2.1 O) P" (A c~ O~J B) = y P xDs (B) dP u. 
A 

Proof Using the right continuity of Y, it can be easily verified that D t is right 
continuous. 5r t is right continuous by the definition of MAP. Therefore, it 
follows from Maisonneuve [12] that D s is an S t stopping time and both sides 
of (2.10) are defined. Since D s is an 5r t stopping time, (2.10) follows from the 
strong Markov property proved in [4]. 

In Maisonneuve's [12] treatment of regenerative systems, the systems in- 
volved were time homogeneous. In this context, time homogeneity means that, 
for a.e. co, M(Otco)=(M(co)-t)c~R+ for all t>0 ,  or equivalently, that R is a 
perfect terminal time [2]. In our case time homogeneity will hold for all teM. 
Suppose toM(co), then 

m ( o t c o ) = { s :  Ys(Otco) > - Yu(Otco) for all O<_u<_s} 

= {s: Y~+s(co)- Y~(co) > Y~+,(co)- Y~(co) for all O<_u<s} 

= {s: Yt+,(co) > Yt+, (co) for all 0 _< u _< s}. 

But since teM(co), Y~(co)> Y~(co) for all O<_s<t, and hence, the last set is equal 
to 

{s>t :  Ys(co)>Yu(co) for all O<_u<_s}=(M(co)-t)nR+. 

If, on the other hand, t is not in M(co), the last equality does not hold, because 
then the fact that Y~+s(co)>Y~+u(co) for all O<u<_s does not imply that 
Yt+~(co)> Y,(co) for all O<_u<t+s. 

From now on we shall restrict our attention to MAP's in which the X 
component is a regular step process. For each xeE. 

(2.11) P~{Xt=x  for all O<_t<s} =e -~(:')s 

where c(x) is some finite positive number. Let L~ be the amount of time X has 
spent at x during [0, t], and f f  be its inverse. We define now a new process as 
follows: 

(2.12) V~= ~ - F ~  1 ~ . ~  ~ ( ~ - Y ~  )=~ L(Xs)dV~. 
s <~t 0 
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Since X~r=x a.s., this process is a L6vy process. We call it the L6vy process 
associated with x. 

(2.13) Definition. A point xEE is regular for M if 

P ~ { R = 0 } = I .  

Note. We assume here Yo=0 a.s. 

(2.14) Lemma. Let X, be a regular step process. A point x is regular for M if 
and only if 

R ~ = i n f { t > 0 :  Vt> Vo} = 0  P ~ -  a.s. 

Proof. 

PX{R=0} =limPX{Yt > Yo for some 0 < t < e }  
550 

^x_  5} =limP~{Yt> Yo for some 0 < t < e , z ~ -  
e$0 

+limP~{Yt > Yo for some 0 < t < e ,  s 
~J.0 

The second summand is smaller than 

Thus 

and 

Hence 

limP~{~x>e} = 0  because c(x) < oo. 
~+0 

^x_  ~} P~{R>O}=limPx{V~>Vo for some 0 < t < e , r ~ -  
e.[0 

>lim[P~{Vt> V o for some 0 < t < e } - P ~ { ' ~ >  e}] 
5.[0 

=limpx{vt> Vo for some O<t <~}=P~{Rx=O} 
~ 0  

PX{R=O} __<limpx{vt> Vo for some O<t<8}=PX{Rx=O}. 
e$0 

P~{R=O}=px(R~=O)=O or 1 

or equivalently, the property of a point being regular for the ladder set is a 
property of the L6vy process associated with that point. 

In order to construct the ladder process, one needs to construct an additive 
functional that increases on M. This will be done in the next section using 
excursion theory. We shall work with the canonical realization of the process 
{Xt, Yt, Ut: t>0}  where U~= Yt-Mt,  and its excursions from the set E x R x {0}. 

3. Ladder Process and the Wiener-Hopf Factorization 

Let (X, Y) be a MAP for which the Markov part X, is ergodic, has finite state 
space, and Y takes values in IR. Define 
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(3.1) U ,=~-M, .  

The process {Xt, Yt, U~: t> 0} is a Hunt process on the space (E x R x R, ~ x Y/ 
x ~), whose transition semi-group is given by 

(3.2) P~f (x, y, u) = W [ f  (X t, Yt + Y, Yt - (Mr - u) + - u)]. 

We shall work with its canonical realization. Measurability, predictability, etc. 
will be with respect to the canonical a-algebras. The regeneration set defined 
above is 

(3.3) M = { t :  U t=O} 

Denote by 

(3.4) P = {(x, y, u): W' r,, {R = 0} = 1 }. 

We note that (x, y, u)eF if, and only if, u = 0  and x is regular for M. Therefore 

= F  x R x {0} (3.5) 

where 

(3.6) F =  {x~E: x regular for M} (regularity defined in (2.13)). 

Define 

(3.7) G={t :  R t_ =0,Rt  >0  } where R o_ =0. 

G is the set of left endpoints of intervals that are contiguous to M. Let 

(3.8) G 1 = {teG: x t_ ~F}, 

(3.9) G 2 = {teG: t sM,  Xt(~f }. 

The following theorem follows from Maissoneuve [13] (Theorems 4.1 and 
9.2) 

(3.10) Theorem. There exists a continuous additive functional K, with 1-poten- 
tial smaller than 1, carried by F x R x {0}, and a kernel P from (E x R x R, E x 
x ~ )  into (f2, J///*) satisfying P~'Y'"{R=0}=0 and /sx'Y'u(1-e-R)_-<l for all 
(x, y, u) such that 

(3.11) E'[ ~ e-~Zsf(Os)]=E" e-sZsPXs'rs'vs(f)dKs 
ssG1 

for all positive predictable processes Z~ and all positive measurable functions f 

We note that since {X t, Ut: t=>0} is also a Hunt process, one can show, 
repeating the proof of [13], that K t is an additive functional of (X, U),and if f 
is measurable with respect to q/, the usual completion of a{X s, Us: s>0}, then 

(3.12) P~'Y'~ =P~ '~  

where P~'" are transition kernels defined for (X, U). Let 

(3.13) M 1 = {t: t~M, XteF},  
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(3.14) /~ = inf {t > 0, teM1}. 

Using the quasi left continuity of the MAP (X, Y), one can show that all stop- 
ping times T such that [ T ] e M 1 - M  1 are totally inaccessible. Further, M 1 de- 
fined above has no isolated points. Applying (3.11) to f(co)= 1 -  e -R{'~ we get 

co 

(3.,15) E'(e R)= E ' ~  e-S(1 --e-Rs)+ E'~ e -S llu,(s)ds 
seG1 0 

oo 

=E" ~ e-@Xs'~ -r~) dKs+E'~e-~lza,(s)ds. 
s = 0  0 

It was shown in [12] t h a t / 3 ( x ' ~  except on a set of K potential 0. 

Define 

-i (3.16) L~- 1Ml(S)ds+K t 
0 

L~ is the local time of equilibrium of order 1 at M 1 and increases on M 1. Let 

(3.17) M 2 = {t: tsM, Xt6F }. 

It was shown in [13] that the set 

{(t, co): teG(co), Xt(co)q~F } 

is well measurable. Therefore there exist stopping times T, such that this set is 
equal to ~ [T,] (where [T,] are the graphs of T,,). Define now 

s =~L on {c;T~ 
(3.18) " (oo otherwise 

then {(t, co): teM(co), XAco)r = ~) [S.]. 
n = l  

Therefore one can define 

(3.19) L~t = Z )~(Xs,)J, 
n:Sn<t  

where J1, J2. . .  are i.i.d, exponential (1) random variables and 

(3.20) 2(x) = E ~ (1 - e-  R). 

TO make this functional additive and measurable, one has to enlarge the 
probability space to include the exponential random variables. This was done 
in [11] in some detail, and for the sake of conciseness will be omitted in this 
paper. Let 

(3.21) Lt=L~ + L ~ 

L t is an additive functional that increases on M. Let L be its inverse, 
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~ 0  =a{x~s ' y~, rs: s__< t} 
(3.22) 

~ ~  r~, z,: s>O} 

and Jr JC{; the usual completions of those a-algebras. One can easily verify 
that (s J/{', J~;, X~, Y,t, zt, 0~t, W) is a MAP. We call it the ladder process as- 
sociated with the MAP (X, Y). 

Since X is ergodic, there exists a unique invariant measure ~ for the pro- 
cess X. Consider the MAP (X, Y) whose transition function is given by 

(3.23) P~(Xt=j, Z ~B) =~(J) PJ { X t=  i, Yte - B }. 
' ~( i )  

Following Arias and Speed [-1], we call this process the dual MAP. In the 
same manner we have constructed the ladder process for (X, Y) we construct a 
ladder process K~,, ~, ,  -~ for (X, f'). We call it the ladder process of the dual 
process. 

Having constructed the ladder process we define the following operators 

(3.24) Aof ( j  ) = lim f( j )  - E~(e~~ (Xt)), 
t$O t 

(2O 

(3.25) U~,of(j ) =E ~ ~ e -~t ei~ 
0 

(3.26) H z, of(J) = l imf  (J) - EJ(e- ~ ei~ f (X~)) , 
s$O S 

(3.27) I~ z of(J) = lim f (j) - EJ(e- xe~ eiOfe, f (~ , ) )  
s$O S 

We assume here that f (A)=0,  and hence we do not need the condition 
l{~s.~ in (3.26) and (3.27). Note that since ei~ is in the domain of the 
infinitesimal generator of the original process (3.24) is well defined. Similarly 
f(j)  e~0y- ~t is in the domain of the infinitesimal generators of both (X,~, Y~,, z~) 
and (X~, Y,~, "~s), and therefore (3.26), (3.27) are well defined. We now state the 
main result of this paper. 

(3.28) Theorem. (The symmetric Wiener-Hopf factorization). Let 
(s d/g, ~/~, Xt, Yt, Or, W)  be a perfect MAP,  where Xt is defined on a finite state 
space and is ergodic. Let (f2, ~ ,  Jgt, Xt, Yt, Or, W)  be its dual process. Then for all 
2>0,  O~R 

;~X - A(O) = H*o A(2)- i H , 2,0 

where A is an invertible operator that does not depend on O, and H* is the 
adjoint of the operator H with respect to the invariant measure ~. 

The proof of this Theorem consists of two main steps. The first one uses 
Theorem (3.10) to express the operator Uz, o as a product of two operators. As 



186 H. Kaspi 

functions of 0, the first one will be the Fourier transform of a finite measure 
concentrated on ( -oo ,0 ]  and the other the Fourier transform of a finite mea- 
sure concentrated on [0, oo). Silverstein [19] has used Theorem (3.10) in a simi- 
lar fashion to prove the Wiener-Hopf factorization for L6vy processes. The 
second step identifies those operators as the resolvent of the ladder processes 
and the adjoint of the resolvent of the dual process. 

Define 

(3.29) 

d4= ~ 2(Xs) l{~}(dt) 
sEG2 

dB o = dJ t + dE t 

where 2(x) is defined in (3.20). 
Note that 

(3.30) G~ = {t: teG, X t_ ~F} 

={t: teG, X t_eF,  X t s F } u { t :  teG, Xt_~F,  XtgfF}. 

The first set in the union was denoted in [13] by G r. We call the second G]. 
Note that G]c~G 2 is not necessarily empty. To avoid counting points that are 
in it twice, we shall have to elaborate more on the structure of (K, P) of Theo- 
rem (3.10). 

The following was shown in [13]. 

(i) There exists a continuous additive functional (CAF) A and a transition 
kernel P1 satisfying the same conditions as/5 of Theorem (3.10), such that 

oo 

(3.31) E" Z e-S(1-e-R(~ = E" ~ -~ ~xs e P ~ ' ~  
s~G r 0 

(ii) There exists a CAF B, and a transition kernel q((x, u), ") from (E x R, 8 
x ~)  into itself, such that 

(3.32) E ' ~  e-S(1-e-a(~ 
s~G~ 

c~ 

t d l  = E'~ e -~ ~ q[(X~,O),dx, y l E ~ " " ( ( 1 - e - e ) f ) d B s .  
0 E x R \ F x ( O }  

We now let h, k, l be the derivatives of 
t 

(i) ~ /5x~'~ 
0 

(ii) i ~ q[(X~,O) ,dx',dy')E~''y'(1-e R)dSs' 
0 E x  R ' - . F  x {0} 

(iii) Ct=m[(O , t)c~M] where m is the Lebesgue measure on IR, 

with respect to L c, respectively. Let P" be the transition kernel of (X, U), then 
fi defined in (3.12), (3.13) is equal to 

(3.33) h(x, O) Pl((x, 0)," ) + k(x, 0) q((x, 0), n'(" )). 
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To avoid counting points in G ~ G  2 twice we redefine q ( ( x , O ) , ( E ' , . F ) x  {0}) to 
be 0 for all x. We assume from now on that /5 is defined by (3.33) with q 
adjusted as above. Let 

(3.34) 

Note that 

(3.35) 

[E x' ~ U,) x_ l~g>,~] x ~ f  
Q~(x, g) = ~ E~(1 - e  -R)  

I,P ~' ~ u)  I~R~ ~] x~F. 

Mt = tYs~_ if Gtq~G 2 
~ if Gt~G 2. 

We now use the last exit decomposition which follows from (3.10) to obtain 

E ~ [ei~ ] =E~[e i~  1M(t)] 

+ E:' {e iO Yt f ( X t  ) lto, < t}} 

= EX[d~ 1M(t)l 

+ E~( ei~ f ( X t )  ei~ ltG~ < t, G~r 

+ EX[ei~ e i~ 1 ~  <t, G~o~}] 

t 

= E ~ ~ e '~ Qt_s(Xs ,  h) dB  ~ + E~(e~~ f (Xt) 1M(t)) 
0 

where h(x, u) =f (x )  e i~ 
We first note that since the exponential random variables were independent 

of the MAP 

hence 

(3.36) 

t t 

E ' f e  ~~ ( g  h'~d" j ~ ,_  ~,~.~, ,_d s = E'~ e '~ "~ Qt ~(Xs, h) dLd 
0 0 

E" (e i~ re f (Xt  ) 1Gt < t) = E" i ei~ r~ Qt -  s (X s, h) dL s. 
0 

We now go back to the resolvent U~,of 

o3 

(3.37) Ux, o f ( i ) = E i  S e ~ te i~  
0 

= Ei~  e - ~ t e  i~ 1 M ( t ) f ( X t ) d t +  E i !  e ~ ~ d ~  ~ dt  
0 k O  

= E i ~ e -~t doY~ l (Xt ,  O) f (Xt )  dLt 
0 

+ E i e -  [ j ~t  . . . . .  h)dL~ dt. 
0 s = O  
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We treat the two summands in the last expression separately. Using the time 
change u=L t the first one is equal to 

E i ~ e- ~ e i~ l(X,s, o)f(X~) ds. 
0 

As for the second summand, we use the fact that (t,x)+Q,(x, .) is jointly uni- 

versally measurable, the fact that ~ e-a"Q,(x, 1)du< and Fubini's theorem 
to obtain: o 

~ e -*t } ei~ 
0 s = 0  

= e-~ei~ e-~(t-~)Qt_~(Xs,h)dt dL~ 
s = O  t = $  

= ~ e-*Se i~ ~ e-Z"Qu(Xs,hldudLs 
s = O  u = O  

and using the time change u = L t this last expression is equal to 

! e-Z~ei~ ~ e-~"O (X h)du ds. 
~.~u\ ~s '  

u = O  

To summarize, we have shown that 

(3.38) Uz, of(i)=Ei ~ e-Z~se i~ l(X,s,O)f(X,) 
0 

+ ~ e Q,(X,s, h) du ds. 
0 

To avoid long formulae we define 

(3.39) Gx, of(i ) = l(i, O)f(i) + ~ e-aUQ,(i, h) du. 
0 

We recall now the definition of H~,of(i ), the infinitesimal generator of 
(X~s,Y~s,%) applied to ei~ This operator on IR m is invertible and its 
inverse is given by the resolvent 

o~ 

(3.40) Ei 5 e a~sei~ 
0 

This resolvent is finite for 2 > 1, by the choice of the local time, and using the 
fact that E is finite we can prove that it is finite for all 2 > 0. 

Combining (3.38), (3.39) and (3.40) we obtain the following 

(3.14) Lemma. 

U~,of(x)=H~,~ G~,of(X). 
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No te  that  O ~ H ~ , ~ f  is the Four ier  t ransform of a finite measure  concen- 
t ra ted on [0, oe), and O--*Gz, o f  is the Four ier  t rans form of a finite measure  
concent ra ted  on ( -  oe, 0]. We also note  that  

co 

O~ S e-X"Qu(Xs,h) du 
0 

is a Four ier  t ransform of a measure  that  has no mass  at 0. 

Remark. Using the identity 

_ x { - 2 Z s + i O Y ~  s 1 [Ux, o f (X)_  E (e Ux, of(X~))] 
S 

= -  E x [, e ~- ~'+ i~ f (X t )  dt 
S 0 

for all s=O,  and the fact that  the limit as s-*O on the left side exists, one can 
show that  Gx, o f (x) ,  defined above,  is equal to 

(3.42) 1.~ 1 ~ ~ a,+io~ r162 ~dt. 11111 - - / -~  J ~, j l x x  t /  
s~.O S 0 

We now turn to the dual process. Let  

(3.43) l)a, of(X) = ~x ~ e - xt eiO ft f(j~t) dt. 
0 

Then  

(3.44) 0z 0 = U* , L, 0 

where 

Uff, o(i,J)= U~o l~il(J)-~z(i ) 4,0 l~jl(i). 

(2 being to complex  conjugate  of z). The  analogue of (3.14) in this case is 

(3.45) 0 z  0 - / ~ - 1  a z  0" , - 2~,0 , �9 

where Hx, o, Gx, o are defined for the dual process as Hz, o and G~, o were defined 
for the original process. Since all opera tors  here are invertible we get f rom 
(3.41), (3.44) and (3.45) 

(3.46) G z, o I~*,o = H x.o G*,o. 

We note  that  an equat ion  similar to this appears  in Arjas and Speed's  [1] 
proof.  In the discrete t ime pa rame te r  case the corresponding opera tors  were 
Fourier  t ransforms of finite measures  in 0, i.e. all entries in the corresponding 
matr ices were Four ier  t ransforms.  As we shall see below, this is not  so in our  
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case, and this causes part of the difficulty in passing from the discrete time 
parameter to the continuous time parameter case. 

We return now to the operators Ha, o. Ha,of(j ) is the value of the infinite- 
simal generator of (X~s, Y~s, Zs) applied to f ( j )e  {i~ at}. We now use a result of 
~inlar [5] for this generator to get: 

(3.47) Ha, o(J,J) = Ha, o 1 {~}U) = k~ + 2 a ( j )  - i ObU)  - vJ(oo) 

+ ~ S (1-et-at+i~ 
t = 0 y = 0  

=k~+2gt(j)-iOS(j)-vJ(oo)+ ~ ( 1 . e  i~ v~(dy) 
y=O 

+ ~ ~ (1-e-a~)vJ(dtxdy) 
y = O t = O  

where vJ(dt xdy) are L6vy measures on R 2 and v~(dx) is the L6vy measure 
given by 

(3.48) v~(dx) = ~ e -at vJ(dt x dx). 
0 

This yields 

(3.49) 

where 

For jq=k 

Hz, o(J,J) = Aa(J) - ~ ei~ v~(dy) - iO[b(j) 
y=a 

+ i ei~ v~(y, a] dy 
y=O 

-da(J)=ki+2a(J)+ ~ ~ (1-e-at)vJ(dtxdy)-vJ(oo).  
/ = O y = O  

(3.50) 

where 

Hx, o(j,k)=Ha, ol(k)(J)=-kjk ~ S e{-at+i~ 
y = 0 t = 0  

kjk = lim PJ(X~, = k), 
t~o t 

k j= - ~ kjk, 
k * j  

j=t= k, 

and Fjk(t,y ) is the distribution of the jump size of (%, Y~s) due to a jump of X~s 
from j to k. 
For the dual process 
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(3.51) (/tx,o)j~ =-4~(J)- ~ ei~ Iz{(dy) 
y=a 

y = 0  

I~,O)jk  - - k j k  ~ ~ X = ~ e{-X'+i~ dy). 
y = O t = O  

(3.52) Lemma. There exists an invertible operator A~ on R", which does not 
depend on O, such that 

(3.53) Gx, of=H*,o ~ A~ f 

Proof Let f iJ(A)=#J(-A),  and ff~k(dt x A)=ffjk(dt x -A) .  Substituting (3.49), 
(3.50), (3.51) into (3.46), we get for every k and j 

(3.54) F(o) - ~ o ~(o) =_P(o) + ~ oR(o) 

where 

(3.55) F(o) = F~ (I4~, o)j,.(d.'2, o),. + (d~,o)j~&fj) 
m:4-j 

~* ~ e i~ --(Gx, o)jk v~(dy). 
y~a 

] (Ga, O)jk " " dyj  

F(0)= Y~ (G, ^* , o)j,,,(H.~, o),. + (G~ o)jk Az(k) 
meek 

-a  

--(G;~.O)jk [. ei~ fi~(dY), 
y = - - o o  

0 

g(O)=(d~,o)jk[g(k)+ S e'~ 
y =  - - a  

Note that 0--,F(0), 0~-K(0) are the Fourier transforms of finite measures con- 
centrated on [0, oe), while 0 ~ff(0), 0--,R(0) are the Fourier transforms of finite 
measures concentrated on ( - o e ,  0]. (measure in this context may be negative.) 

Remark. O~(Gz, o)jk is the Fourier transform of a measure that puts mass at 0 if 
and only if j =  k and {t: t~M, X t = k} has positive Lebesgue measure. In this case, 
k is regular for the maximum of the dual process if and only if Vt k (the L6vy 
process associated with k) is compound Poisson (see [16]). Thus O---'(G~,o)kk is 
the Fourier transform of a measure that puts mass at 0 if and only if 
0 ~(I2I~,o)kk is the Fourier transform of a measure concentrated on ( - o e ,  0]. 

Dividing now both sides of (3.54) by 1 + i 0 we get 

[ F(O) iOK(O).] 1 - i 0  F(O)  iOK(O) 
(3.56) [ i ~ 0  1 - i O  J l + i O - l  +i~  ~ l +iO 
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Since 1/(1+i0) is the characterist ic funct ion of  the negative exponential  dis- 
tribution, the right side of  (3.56) is the Fourier  t ransform of a finite measure 
on ( - o o ,  0]. This measure puts mass at 0 only if 0 ~ / ~ ( 0 )  is the Fourier  trans- 
form of a measure that  puts mass at 0. 

N o w  if O~=I;l~,o(k,k ) is the Four ier  t ransform of a finite measure, we can 
take ~ and b(k) in the definition of  K(0) to be 0, and hence R(0 )=0 .  If  
O~I:t*o(k, k) is not  the Fourier  t ransform of a finite measure then O~(Gx, o)jk is 
the Fourier  t ransform of a measure that  puts no mass at 0, and hence so is 
g(o). 

The left side of  (3.56) is the Four ier  t ransform of a measure concentra ted 
on [0, oo) convoluted  with the measure 

Let 

2 ~ e ~ x l{x< o~- l{x= o/(A) �9 
A 

- F(0) i 0K'(0) 
M(0)=l - i0  1 - i O  

m m 

M(O) is the Four ier  t ransform of a measure M ( ' )  concentra ted  on [0, oo). Since 
the right side of  (3.56) is the Four ier  t ransform of a measure concentra ted  on 
( -  0% 0) we must  have 

2 7 e i~ ~ e(X-Y)dM(y)dx - ~ ei~ 
x = O  y = x  x = O  

for all O~R. Using Fubini 's  theorem, we get 

2 7 ei~ i e(i~ 
y = 0  x = 0  

or equivalently 

and hence 

Hence 

l +iO y y=o 

2 7 e-YdM(y) 
M(0) = y = o _ const 

1 - iO 1 -iO" 

F ( o ) -  i oK(o) = c(.~) = P(o) + i og(o) 

where c is a constant  that  does not  depend on 0. Since the result is true for 
every j and k in E, we get 

(3.57) * - * - G~,oH~,o-H~,oG~,o-A~ 

where Az is an invertible opera tor  that  does not depend on 0. F r o m  (3.57), the 
lemma follows. 

Proof of Theorem (3.28). By the previous lemma 

(3.58) G ~,o = A ~ i~,,o i 
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and substituting this into (3.14) we get 

(3.59) U~, o = Hs A~ImI~,o 

or equivalently since Ua, o is the inverse of 2 I - A  o 

2 I - A o = I ~  oA~ I H , 2 , 0  

which is the desired factorization. 
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4. Maximum and Content Funetionals 

We now treat the maximum and content functionals, defined for MAP's for 
which X is ergodic and has finite state space. Let 

(4.1) M~= sup Y~, rot= inf Y~ 
O<_s<_t O<_s<_t 

W,=~--m,. 

In some dam models, W t is the content of the dam at time t, and in queu- 
ing models W t is the virtual waiting time at t. We shall derive their distri- 
butions in terms of the ladder processes. Using the Wiener-Hopf factorization 
proved in the previous section, we shall obtain a duality relation between the 
distributions of W t and rh,- the minimum of the dual MAP. Conditions for 
existence of a limiting distributions for W t will then follow from those for th r 

(4.2) Theorem. For all OeR, 2>0,  f e b &  let: 

(4.3) @~,of(i) = U  ~ e(-~'t+i~ f (X t )d t .  
0 

Then 
&x - H - a G x o .  , 0 - -  ,~,0 , 

Proof  Using Theorem (3.11), we let Z s = el~ f(co) = l(R>t_ s> o} f ( X t _  ~(o~)) 

E" [e i~ f (Xt) 1 (Gt < ~] = E" [e (i~ rG~_ } f (X~) I(G ~ < ~, c,, ~G~,~I] 

t 

+ E" [e(i~ f (Xt) I(G t < t, G~Gm~] = E" ~ e i~ Q~ s f (Xs) dB ~ 
0 

where (~0 f ( x ) =  Q,(x, g), and g( j, y)= ei~ Hence 

E" [ei~ f (X,)] = E'(ei~ f (Xt) 1M(t)) 

+E" i ei~ Qt-s'~ f ( X s ) d B  o. 
0 

Going now through the same computations we did when computing Uz, o f ( i  ) 
we get 
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oo 

~b~,of(i)=U ~ e ~-2~+i~ 
0 

0 

where l, L, 15 were defined in the previous section. This, after the t ime change 
u = Lt, is equal  to 

s = O  

+pxr ~ e_2, x l lR> , ) f (X , )  ds=H~,~ Gx, of(i). 
u = 0  

(4.4) Theorem.  For all 2 > 0 ,  OeR, f ebg  let 

oo 

(4.5) ~,  of(i  ) = E i ~ e {- 2t + iowa)f(X,) dt. 
0 

Then 

(4.6) 7J~,0 = / ~ ,  ~ G~,0 

w h e r e / ~ ,  G are defined for the descending ladder  process, in the same manne r  
t h a t / - / a n d  G were defined in Sect. 3 for the ascending ladder  process. 

Proof Identical  to the p roo f  of  T h e o r e m  (6.2), with 
X~, Yt, Yt - mr, Z = 1, and  f(co) = 1 ~R >t-~ > 0 ) f (X t -  ~) el~ Y~ - "" 

(4.7) Theorem.  Let rh t = inf f'~ and let 
O<_s<_t 

the M a r k o v  process 

(4.8) rh~,0J(i)=/~ i ~ e{-2~+i~ 
t = 0  

Then Jot all O~R, 2 > 0 ,  f 6bg  

~P2,of (i)=rh~,of (i). 

Proof We use an analogue  of the W i e n e r - H o p f  factor izat ion for the descending 

ladder  processes. L e t / ~ ,  ~ be defined for the dual process a s /~ ,  G were defined 
for the original process, then for all 2 > 0, O~R 

(4.9) " * - - * - " G~,oH2,o-H~,oG2,o-A2 

where A is an invertible ope ra to r  that  does not  depend on 0. Therefore  

- - ~ ,  --i- % - 1  ~,o=H~loG~,o=G2. oA2 A~Hz, o 

- -  4 , 0  4 , 0  0 4,0)* -- 2 , 0 "  
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T h e o r e m  (6.7) gives us a dual i ty  re la t ion  be tween W t and  rh t as follows 

(4.10) i = ~  P { VV~cA, X t = j}  PJ{rfitc - A, Xt = i}. 

(4.11) Corol lary .  I f  rht~rfi, and r h > -  oo a.s., then VV t has a limiting distribution 
as t ~oo.  

Cond i t ions  under  which rh~ goes a.s. to a finite l imit  were discussed for the 
discrete t ime p a r a m e t e r  case by  N e w b o u l d  [-15], and  his proofs  carry  wi thout  
difficulty to the con t inuous  case [-10]. W e  shall  s tate here the resul t  wi thout  
proof.  

(4.12) Theorem. Let (X, Y) be a MAP,  for which X is defined on a finite state 
space and is ergodic. Then one, and only one, of the following holds 

(a) Yt degenerates (i.e. there exist constants 31 . . . . .  tim such that Yt jumps fij 
- i l l  when X jumps from i to j and remains constant otherwise). 

(b) l im sup Yt = + 0% l im inf Yt = - oo. This happens if, and only if 
t ~ o o  t ~ o o  

1 
1Pi{Y t>O}dt=oo  , ~ t P i { Y t < O } d t = o o  forsome icE. (4.13) ~ 

1 1 

(c) l im Yt = + ~ .  This happens if  and only 
t ~  oo 

~1 ~176 
(4.14) S-P~{Yt>O}dt=~176  ~l[ t P ' { Y t < O } d t < ~ 1 7 6  forsome icE. 

i t  

(d) l im Yt = - oo. This happens if and only if 
t ~  oO 

(4.15) ~ l-Pi{Yt>O}dt<oo,  ~ l Pi{Yt<O}dt=oo for some icE. 
i t  i t  

(4.16) Corol lary.  VV t has a limiting distribution if and only if 

(4.17) P~{Yt>O}dt<oo, ~ -P~{Y~<O}dt=oo for some icE. 
1 1 t 

Using a Taube r i an  theorem,  one can show that  this l imit  is 

l im 2H~,~ G~, o 1(i). 
k ~ 0  

It  will further  be independen t  of  i. 
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