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Summary. Let X={X(t),telR N} be a centred Gaussian r andom field with 
covariance CX(t)X(s)=r(t-s) continuous on 1RNx IR N and r ( 0 ) = l .  Let 
a(t, s)=(E(X(t)-X(s))2)l/2; a(t,s) is a pseudometr ic  on 1R N. Assume X is a- 
separable. Let D~ be the unit cube in IR N and for 0<k~IR ,  Dk={x~IRU: 
k-lx~Dx}, Z(k)=sup{X(t),t~Dk}. If  X is sample cont inuous and [r(t)[ 
= o ( 1 / l o g ) ] )  as Itl--,oe then 

Z(k)-(2Nlogk)l/2~O as k ~ m  a.s. 

w 1. Introduction 

Let X={X(t),telR N} be a centred Gaussian r andom field with covariance 
NX(t)X(s)=r(t-s) cont inuous on IRNx 1R N and r(0)= 1. Let  a(t, s) be the incre- 
ments variance 

a(t, s) = (~(X(t) - X(s))2) 1/2 = / 2  (1 - r(t - s)) 1/2 (1.1) 

then a(t, s) is a pseudometr ic  on IR N which we shall use frequently, in part icular  
(5 ~ ~c2] 1/2 and for X will be taken to be a-separable. For  x = ( x l ,  ...,xn) let [ x l = , ~ _ z ,  

i 
D c IR N, e > 0, denote by N(D, e) the minimal number  of  a-balls with centres in 
D and radii =<e needed to cover D. The function H(D, e ) = l o g N ( D ,  e) is known 
as the metric entropy of D. 

Let D 1 be the unit cube in 1R N centred at 0. Define D k by D k 
={xEIRN: k 1xED1}, k > 0 .  Then, if 2 is Lebesgue measure on IR N, fl(Dk)=kN; 
Let Zk=sup{X(t ), teDk}. Our main result, obtained as a consequence of  Theo- 
rems 2 and 3, is the following: 

Theorem 1. Let X be as above. Assume that X is sample continuous and 

Ir(t)l=o(1/logltJ) as [tl - ,  ov 
then 

Z(k)-(2Nlogk)l/2~O as k ~ o e  

with probability one. 
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This extends results known for Gaussian processes [6, 8, 13]. 
The asymptotic behaviour of fields has been studied previously by several 

authors under certain local conditions on the covariance and stronger mixing 
conditions [5, 6, 11]. While their results were more precise our interest was to 
obtain information for as wide a class of fields as possible. 

In Sect. 2 we get an upper bound for the tail of the distribution of the 
supremum of a process having an arbitrary parameter space that satisfies 
certain conditions on its metric entropy. This inequality is used in Sect. 3 to 
obtain upper bounds for the supremum, and may be of independent interest. 

Some of the results in this work were obtained at Imperial College, London 
and were included in a Ph.D. thesis submitted at the University of London. 
The help and encouragement of Prof. G.E.H. Reuter is gratefully acknowl- 
edged. The author wishes to thank the referees for many helpful comments. 

We end this section with some notation. C > 0  is a constant that may 
change from line to line, ~b(x)=(2~)-1/2 exp(-x2/2),  O(x)=x-1 4)(x). 

w The Tail of the Distribution of the Supremum 

Lemma 3 below gives an upper bound for the tail when the field has an 
arbitrary parameter space whose metric entropy satisfies Dudley's condition. A 
similar inequality was obtained independently by M. Weber [13]. 

The method used in the proof is a combination of the well-known pro- 
cedure of Sirao [12], used by many authors, with the more recent methods of 
metric entropy introduced by Dudley 1-2] and also used in other works, [3,4]. 
In this section S is a metric space. We start by giving two preliminary lemmas. 

Lemma 1 ([12] Lemma 2). Let X and Y be jointly Gaussian r.v.'s with means 0, 
variance 1 and correlation r. Then P{X >a + h, Y<=a} is a nonincreasing function 
of r for a, h fixed, a>0 ,  h>0.  

Lemma 2. Under the assumptions of Lemma 1, if 

rh-a(1  - r ) > 0  (2.1) 

(1 --r2) 1/2 
P{X > a + h, Y< a} <= O(a) e x p ( -  h2/2(1 - r2)). 

rh-a(1  -r )  

Proof Let ~ and t/ be i.i.d. Gaussian r.v.'s, means 0, variances 1. Then (~,r~+ 
(1- r2) 1/2 r/) have the same distribution as (X, u Therefore 

P{X >a+h, Y<a}=P{~ >a+h,r ~ +(1 -rZ)l/2rl<a} 
< P{~ >a+h, t l<(a-r(a+h))(1-r2) -~/2} 

=P{~ > a + h }  P { t / > ( r h - a ( 1  - r ) )  (1 - r2)  - a/z} 

(1-r2)l/z f (a+h)2 ( r h - a ( 1 - r ) ) 2 ~  
<27z(a+h)(hr-a(1-r)) exp ,  2 ~ - ~ r ~  J 

<tP(a)(1-ra)l/z { h 2 a2(1-r) ah } 
= h r - a ( 1 - r )  exp 2 ( 1 - r  a) 2(1+r) l + r  
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Since r < 1 the result follows. [ ]  

Define e0(x)=inf  e: . No te  that eo(x)--*0 as x ~ o o  

L e m m a  3. Let X = { X ( t ) , t 6 S }  be a or-separable centred Gaussian random fieId 
with gX(t)  X(s) = r(t, s) continuous on S x S and r(t, t) = 1 for all t. Assume that for 
T c S and some z > 0  

I(T, z) = ~ Hi/2 (T, u) du < oo. 
0 

Then 
P {sup X(t) > x + A 1 I(T, e o (x)) < C 6 (x) 

t s T  

where A1 is a constant, Aa > 4. 

Proof The result is immediate  if H(e) is bounded  as e--*0, therefore we assume 
that  

H(e) ~oo as e--*0 (2.2) 

We start by defining a m o n o t o n e  decreasing sequence e,, n = l, 2 . . . .  in terms 
of  x and H(z). Let c~ > 0 and 

6, = ] / 2  inf{e: H(e) < (1 + c 0 H(eJ2)} (2.3) 

~i = eo/2 

e~+ 1 = min(e,/2, 6,), n > l .  (2.4) 

then ~, ~ 0 as n-+ oo. Let 7],, = { t~'; 1 < i < N (G)} be a minimal e, - net of  T and 

Z,(co) = sup(X(t, co), te  TJ; Z(co) = sup(X(t, co), te  T) 

A={co: Z(co)>x+i~=oXi}; A.={co Z.(co)>y,} 
n 

with y , = x + ~ x i ,  xo=H(eo)/X, x i=(l+cOei_lHln(ei)  for i > 1 .  Since we have 
0 

assumed (2.2) 

x~ > 0 all i. (2.5) 

T I =  @ T~ is a countable a-dense subset of  T and we have assumed X to be a- 
i - 0  

separable and cont inuous in probability. Hence T 1 is a separating set for X. 
F r o m  A~_Aou(A 1 - A o ) w ( A 2 - A a ) w . . .  we get 

P(A)<=P(Ao)+ ~ P ( A , - A n _ J  
n = l  
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but 
(l--r2.) 1/z Csn_ 1 

<~ <~ CH-1/2(5o)--+0 as x-~oo 
r n x . - ( 1 - r . ) Y .  1 5n-l%X 

therefore for x large, 

P (A n - A._ 1) ~ ~ (x) ~ N(en) exp { - x~/2(1 - rn) } 
n = l  n = l  

= 0(x) ~ exp{H(%)-x2/52_ 1} 
n = l  

<~(x) ~ exp{-2~H(5.)} 
n = l  

=<2~(x) ~ exp{-2c~H(52._l) } 
n = l  
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Clearly, for X a standard normal r.v, 

P(Ao) = P {Z o > x + H(eo)/X} 

< N(%) P {X > x + H(5o)/X} < O(x) 

On the other hand 

P(An-  A,, - 1)= P{Z.> yn; Z._ 1 < Y,,- l } 
N(~n) 

<= ~ P{X(t~)>y,; X(s)=<y~_~ all s~T,_~} 
i = 1  

N(~,~) 

<= ~ P{X(tT)>y.; x(tT-1)-<_y._l} 
i = 1  

n n-- 2 1/2. D e f i n e  "- I~T._  1 and a(tT, t j 1)<5._ 1 . From (1.1) r(tT, tj 1 ) > 1 - 5 . _  where tj 
r n by r n = 1 --gn_2 1/2 then 

rn<=r(t i  ' n 1 . t j  ) (2.6) 

for 1 < i < N(5.). For 0 < 7 < 1, n > 1 and x large r n > (1 - 7)- 
Let ~ and ~/be centred Gaussian r.v.'s with variances 1 and 84 q = rn. Then 

(2.5), (2.6) and Lemma 1 imply 

P{X(tT)>Yn; X(tT-1)<=Y. 1}-<-P{~>Yn;~/~Yn-1} 
and 

P(An-An_ I)<=N(%)P{~ > y.; rl<= y._ l} 

suppose we can show that 

rnxn-(1 -rn) Y.-1 > Csn-15o X (2.7) 

then (2.1) is satisfied and Lemma 2 gives 

~(y._ l)(l _r2)l/2 { x .  2 }  
P(A.-An_O<N(en)r~xx~--(-l~r.~-~._ ~ exp 2 (~ -  r.) 
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but e.+ 2 < ~./]/2 and (2.3) implies H(e.+ 2) > (1  -~ ~ )  H( ,~n) .  Hence 

P(A.-A._I)<Z~P(x)  ~ e x p { - Z ~ ( l + ~ ) " - l H ( < ) } .  
n = l  n = l  

Using (2.2), since e l ~ 0  as x ~  the series is convergent and uniformly 
bounded as x ~  ~ ,  therefore 

P(A.-A._I)<=Ctp(x  ) and P(A)<=C'~(x). 
n = l  

It only remains to show that (2.7) holds. We begin by looking at the sum 

X i �9 
i = 0  

Lemma 4. 

Proof 

xi<4(1 +.)2I(T, eo). 
i = 0  

i X i  = H ( ' ~ o ) / X  ~-  (1 + ~) ~ e,_ 1 Hl/2(gi) 
i = 0  i = l  

_-<~oH1/2(~o)+(1 +~) ~, ~i_lH1/2(,~i) 
i = 1  

but 2g i < el_ 1 ~ ei- 1 < 2(ei- 1 - el). Therefore 

~ xi<2(1 +c 0 [(%- gI)HI/2(~o)-  }- 
i = 0  

If e i = gi- 1/2, 

If e i = 6 i_ , 

therefore 

(e~_ ~ - ehH1/2(e3]. 
i = 1  

ei - 1/2 

(ei- l -el)Hll2(ei)<2 [. H1/2(u)du. 
zi /2  

( 'Si-- 1 - -  ~'i) H1/2(gi) ~ (1 q- o:) (~i- 1 - -  ~'i) H l /2(~i- 1/2) 

ei - 1/2 

=<2(1+~) ~ H1/2(u)du 
el/2 

 o,2 ] 
x i < 2 ( l + ~ )  H1/2(u)du+2(l+oO ~ H1/2(u)d u 

i=O ~ 2 0 

=< 4(1 + a)2 I(T,, ,%). [] 

co 

Since So~0 as x ~  this lemma implies that ~ x i ~ 0  as x ~ o v .  Therefore 
0 
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for x large, y .<3x /2  for all n and 

r . x~- (1  - r . )  y._ , > r . x . -  3(1 - r . ) x / 2  

> ( 1 - ? ) x , - 3 x e 2  / 4  

= (1 - 7) (1 + c~) e . _ ,  H */2 (G)  - 3 x e 2 - , / 4  

> G-  * ((1 - 7)(1 + c~) H i / 2 ( g , )  - -  3Xeo/4). 

Since e i = ~ ,  H1/2(gl)~goX and 

r x . - ( 1  - r . ) y . _  i >e ._  1 eo x((1 +cOO - 7 ) -  3/4) 

C ~ n _  i ~0 X 

provided we choose 7 so that (1 + ~ ) ( 1 -  7)> 3/4. Hence (2.7) is satisfied. Finally, 
using Lemma 4. 

P{Z(oo)> x + Al  I(T, eo) } < P(A)< CO(x). [] 

w 3. The Asymptot ic  Behaviour 

The results of Sect. 2 are used now to obtain information about Z(k) as k ~ oo. 

Theorem 2. Let X = { X ( t ) , t M R  N} be a centred, a-separable, sample continuous 
Gaussian random field with gX( t )X ( s )=r ( t - s )  and r (0 )= l .  Given e > 0  there is, 
with probability one, a z(co)elR such that for all k > z 

where 
Z(k) < O(k) + A ,  I(D 1, ~o) 

(�89 + e) log log k N 
O(k) = (2 N log k) 1/2 -t (2N log k) 1/2 

and e o = eo(O(k) ). 

Proof. Let neN.  Define E . = D . + 2 - D  . and divide this set into p. unit cubes 

denoted by S.j, j = 1 . . . . .  p. where p. = (n + 2) N -  n u < Cn N- * ; E. = ~ S.j. Let 
i = 1  

B, j=  {sup X(t)> O(n)+ AII(D > ~o)}, 
tESnj 

Pn 
B. = ~ B.j = {sup X(t) > O(n) + A 11(D 1, Co)}. 

j=  i teen 

By a theorem of Dudley-Fernique [3-1, the fact that the field is stationary 
and sample continuous is equivalent to I(D>v)<oo for some v>0.  Therefore, 
using Lemma 3 

n=no n=no j =  l n=no 
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and the Borel-Cantel l i  l e m m a  implies that  there is a no(CO ) with probabi l i ty  one 
such that, for n > n o 

sup X (t) < O(n) + A 11(D1,8o) 
tEEn 

which in turn implies that  there is a z(CO), with probabi l i ty  one, such t h a t  for 
n>-c 

Z(n + 2) < O(n) + A 11(D 1, %) 

but  i f k~[n ,n+2] ,  k > ~  then 

Z(k) <= Z(n + 2) < O(n) + A 1 I(D 1, %) < O(k) + A 1 I(D i, eo). 

The following corol lary is immedia te  

Corollary. Let  X be as in Theo rem 2. For  any e > 0  there is with probabi l i ty  
one a z(co) such that  for k > z 

Z(k) < (2N log k )  1/2 - -  & (3.1) 

The next theorem gives the " lower  half" of  Theo rem 1. It does not  use the 
results of  the previous section and the p roo f  is based on the methods  of 
Pickands [9, 10]. 

T h e o r e m  3. Let X={X( t ) , t~ IR  N} be a centred Gaussian random field with 
8X(t)X(s)  = r ( t - s )  and r(O)= 1. Assume that 

[r(t)[=o(1/logltl) as It[--* oo 

then, given e > 0  there is with probability one a z(co) such that for all k> z 

Z(k) > (2N log k )  1/2 - 8. 
Proof Define 

c k = (2N log k) 1/2, 

L(k) = exp (e cff4 N), 

8k= sup rr(t)J. 
t >_ L(k) 

Then 8kCk~0 as k ~ o o .  Let  {t/k,i=l . . . .  ,ink} be a set of  points  in D k with ]t~ 
-t~l > L(k) for i~=j, m k = [(k/L(k))xJ. Let ~i, t / b e  i.i.d. Gauss ian  r.v.'s with mean  
0 and var iance 1, i = 1 . . . .  , mk. Define Y/= (1 - 6k) 1/2 ~i + 6~/2 rl. Then, using 
Slepian's l e m m a  [4] 

n { z ( k ) <  x} <=n{x(t~)<=x, 1 <=i<=mk} 

< P{Yi< x , l  <=i<mk} 

and using Pickand 's  me thod  it is enough to show that  for some fi > 1 

lira (logk)P P{Y~<=Ck--e, 1 <=i<mk} =0.  (3.2) 
k ~ c o  
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We have 

P{(1-6~) 1/2 ~i + c5~/2 0 ~ ck-  e, 1 <=i<=rn~} 

P .<_ - -  l<i<=m~ < ~(A) + ~' -  (1 - ~k) ~/2 ' --- u)  d u  

( c~-~+Aa~/z } <tP(A)+ P~i< -~Z~k)xT~ , l <i<=mk 

=r <-c)I~_~+~S/2}} 

(c=-=+Aal := 
<r \ ~ll~)575 )}' 

Let A=21oglogk.  Then for 1 < f l<2  

Oog ky ~(A)-+O 

Consider the second term 

as k ~ .  (3.3) 

I _ 
c 2 2 1/2 

=exp Cc~ 1 exp 2(1 -Sk) ~ (1 -~k) 4 

=exp{ Cc~ l exp{-~ -t 2(i-~c~- 5k)JJ~ 

<exp{C 1 c[ 1 exp{Czck}} 

since 6k-~0 as k ~  oo. Hence 

(logk)r Cm~O \ (1__C3k)1/2 ]j--+0 as k--*oo. (3.4) 

Combining (3.3) and (3.4) we get (3.2). [] 

Note. The mixing condition used in Theorem 3, Jr(t)J=o(1/logrt]) as I t l ~  has 
recently been weakened by Mittal [7] for the case N =-1. 

A similar result can be obtained for any set D~ contained in a compact set 
and containing a neighboorhood of the origin. 
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