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Summary. Let X ={X(t),teIR"} be a centred Gaussian random field with
covariance £X(t) X(s)=r(t—s) continuous on RN xIR" and r(0)=1. Let
a(t,s)=(E(X () - X(s))»)"?; a(t,s) is a pseudometric on RY, Assume X is o-
separable. Let D, be the unit cube in RY and for 0<keR, D,={xeR":
k=txeD,}, Z(ky=sup{X(?),teD,}. If X is sample continuous and [r(t)|
=o(1/log|t]) as |t|] > oo then

Z(k)—(2Nlogk)'?->0 as k—ow as.

§1. Introduction

Let X={X(t),tecR"} be a centred Gaussian random field with covariance
EX ()X (s)=r(t—s) continuous on RY x R¥ and r(0)=1. Let o(t, s) be the incre-
ments variance

a(t, )=(E(X ()~ X (9)*)>=)/2(1 —r(t—s)* (1.1)

then o(z,s) is a pseudometric on IRY which we shall use frequently, in particular
X will be taken to be g-separable. For x=(x,,...,x,) let [x|=(x?)"? and for

D<R"Y, £>0, denote by N(D,¢) the minimal number of ¢-balls with centres in
D and radii £¢ needed to cover D. The function H(D, g)=log N(D, ¢) is known
as the metric entropy of D.

Let D, be the unit cube in RY centred at 0. Define D, by D,
={xeR": k~'xeD,}, k>0. Then, if 1 is Lebesgue measure on R", A(D,)=k";
Let Z,=sup{X(?),teD,}. Our main result, obtained as a consequence of Theo-
rems 2 and 3, is the following:

Theorem 1. Let X be as above. Assume that X is sample continuous and

[r(®)|=o(1/loglt])  as [t] > o0
then
Z(ky—(2Nlogk)'?->0 as k-

with probability one.
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This extends results known for Gaussian processes [6,8,13].

The asymptotic behaviour of fields has been studied previously by several
authors under certain local conditions on the covariance and stronger mixing
conditions [5, 6, 11]. While their results were more precise our interest was to
obtain information for as wide a class of fields as possible.

In Sect. 2 we get an upper bound for the tail of the distribution of the
supremum of a process having an arbitrary parameter space that satisfies
certain conditions on its metric entropy. This inequality is used in Sect. 3 to
obtain upper bounds for the supremum, and may be of independent interest.

Some of the results in this work were obtained at Imperial College, London
and were included in a Ph.D. thesis submitted at the University of London.
The help and encouragement of Prof. G.E.H. Reuter is gratefully acknowl-
edged. The author wishes to thank the referees for many helpful comments.

We end this section with some notation. C>0 is a constant that may
change from line to line, ¢(x)=Q2r)~ Y2 exp(—x?/2), Y(x)=x""1 p(x).

§2. The Tail of the Distribution of the Supremum

Lemma 3 below gives an upper bound for the tail when the field has an
arbitrary parameter space whose metric entropy satisfies Dudley’s condition. A
similar inequality was obtained independently by M. Weber [13].

The method used in the proof is a combination of the well-known pro-
cedure of Sirao [12], used by many authors, with the more recent methods of
metric entropy introduced by Dudley [2] and also used in other works, [3,4].
In this section § is a metric space. We start by giving two preliminary lemmas.

Lemma 1 ([12] Lemma 2). Let X and Y be jointly Gaussian r.v.’s with means 0,
variance 1 and correlation r. Then P{X >a+h,Y=<a} is a nonincreasing function
of r for a,h fixed, a>0, h>0.

Lemma 2. Under the assumptions of Lemma 1, if

rh—a(l—r)>0 (2.1

P{X>a+h Y<a}<y(a) r(l )

m eXp(—hZ/Z(l —72)).

Proof. Let ¢ and 5 be iid. Gaussian r.v.’s, means O, variances 1. Then (£, ré+
(1 —rH)*2 y) have the same distribution as (X, Y). Therefore
P{X>a+h Y<a}=P{é>a+hri+(1—-r)Y?p<a}
<P{é>a+hns(@a—ra+h)(1—-rH)~ V%)
=P{é>a+htPin>(rh—a(l—r)(1-r})" V2%
< (1—rptiz exp{_(a—kh)z _(rh——a(l—r))z}
T2n(a+hy(hr—a(l—r) 2 2(1—7%)
W(a)(1—r#l2 { h? a’(l1—v) ah }

A

IIA

hr—a(l—1n CPYT2(1=r%) 20141 L+r



Asymptotic Behaviour of Gaussian Random Fields 171

Since r£1 the result follows. [

H'(g)
e

Define so(x)=inf{e: gx}. Note that ¢,(x)—»0 as x— w0

Lemma 3. Let X={X(1),teS} be a c-separable centred Gaussian random field
with £X(t) X(s)=r(t,s) continuous on S xS and r(t,ty=1 for all t. Assume that for
T<S and some 1>0

I(T,7)= [ H"*(Tu)du< .
0

Then
P{sup X(t)>x+ A (T ¢9(x)) = Cy(x)

teT
where A is a constant, A, >4.

Proof. The result is immediate if H(g) is bounded as ¢é—0, therefore we assume
that

H(e)too  as e—0 2.2)

We start by defining a monotone decreasing sequence ¢,,n=1,2,... in terms
of x and H(g). Let «>0 and

8,=)/2inf{e: H(e)<(1+x) H(e,/2)} (2.3)
& =¢8y/2
€,.1=min(eg,/2,0,), nzl (2.4

then ¢,—0 as n—>oo. Let T, ={t}; 1Zi< N(e,)} be a minimal ¢, - net of T'and

Z (w)=sup(X(t,w),teT); Z(w)=sup(X(t, w),teT)

A={w: Z(w)>x+ i xl}; A,={w: Z(w)>y,}
=0

i=

with y,=x+Y x;, xo=H(eo)/x, x;=(1+a)¢,_; H'*(g)) for i=1. Since we have
0
assumed (2.2)

x>0 all i 2.5)

i

o]

T'=J 7; is a countable o-dense subset of T and we have assumed X to be o-
i=0

separable and continuous in probability. Hence T' is a separating set for X.
From A2 A u(d; —Ag)u(A,—A4)u... we get

PUA)SPA)+ Y P(A,—4, ;)

n=1
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Clearly, for X a standard normal r.v.

P(4o)=P{Zy>x+ Hleg)/x}
< N(eo) P{X >x -+ H{eo)/x} SY(x)

On the other hand

P(An—An— I)ZP{Zn>yn= Zn—léyn—l}
Nign)
S Y PXE)>y,; X()Sy,_, all seT,_,}
i=1
Nien)
< Y PAX(E) >y XU DSy}
i=1

1=

where 1~ '€T, ;| and o(t},#7"")<s¢,_,. From (L.1) r(¢}, ;") 2 1—¢}_,/2. Define
r, by r,=1—¢2 /2 then
r=r(, Y (2.6)

for 1<i<N(g,). For 0O<y<l1,nz1 and x large r,>(1—7).
Let £ and # be centred Gaussian r.v.’s with variances 1 and £&n=r,. Then
(2.5), (2.6) and Lemma 1 imply

P{X()>y,; X(t] DSy, P>y 1Sy, 1)
and
P(A,—A, )=N(e)P{C>y,; =y, 4}
suppose we can show that

rx,—(1—r)y, 1 >Ce, [g0x 2.7)

then (2.1) is satisfied and Lemma 2 gives

1 —r2)i/2 2
A e B

but

_e2\1/2 C
(1 rn) é 8n—-l éCH—I/Z(SO)_)O as x— o0
7/'nxn_(l—_rn)ynfl Snﬁ130x

therefore for x large,

N(e,) exp{—xa/2(1 —r,)}

1

S P(4,~ A4, )SY()

I [ 8

o0

=¥ X exp(H(e) = x3/e7-1)

el

<Y(x) ). exp{—2aH(e,)}

n

S20(9) Y. exp{=2uH(es, )
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bute,, , <5n/ﬂ and (2.3) implies H(e,, ,)>(1+a) H(e,). Hence

©

S P, — A, )Z29(x) 3 exp{—2u(l +ay~" His,).

n=1 n=1

Using (2.2), since ¢;—»0 as x—oo the series is convergent and uniformly
bounded as x— oo, therefore

P(4,~A4, )SCY(x) and P(A)<Cy(x).

1

118

It only remains to show that (2.7) holds. We begin by looking at the sum

X;.

1

s

i=0

Lemma 4.

X =41 +0)* (T e).

s

i=0

I

Proof.
Y x=H(eo)x+(1+0) ¥ &_, HY(e)
=0 i=1
SeoH' () +(1+a) Y & HY(s)
i=1

but 2¢;<e;, ;=g <2(g,_,—¢,). Therefore

25 S21+0) [l —e) e+ ¥ o~ B )|

If g;=¢, ,/2,
&~1/2
(€ —e) H'(g)<2 I H'Y*(u)du.
81'/2
Ifg=96,_,
(&;_1—¢) Hl/z(gi) S(+a)(e_—¢) Hl/z(gi_ 1/2)
£ -1/2
=2(1+0) j HY2 () du
£/2
therefore

3 x,<2(1+4) [ T HP@dur20+9) | B du]
i=0 [¢]

£0/2

<401+ I(Tsp). O

o0
Since ¢,—0 as x— oo this lemma implies that Y. x;—0 as x—o0. Therefore
Q



174 J. Ortega

for x large, y,<3x/2 for all n and

ruXy— (L= 1) Y1 >1,%, = 3(L—7,) X/2
>(1-7)x,—3xe,_1/4
=(1=y) (1 +o)e,_, H'*(e,)—3xe;_/4
Ze, 1 (1 =)L +0) H(e;) —3x0/4).

. &
Since &; =7°, H'*(g,)=¢,x and

raXy = (L= Yy 1 >8, 1 8o x(L+2)(1=7)=3/4)
=Ce,_ 180X

provided we choose y so that (1+a)(1—7)>3/4. Hence (2.7) is satisfied. Finally,
using Lemma 4.

P{Z(w)>x+ A4, (T eo)} SP(A)=CY(x). O

§ 3. The Asymptotic Behaviour

The results of Sect. 2 are used now to obtain information about Z(k) as k— oo.

Theorem 2. Let X ={X(t),teRR"} be a centred, g-separable, sample continuous
Gaussian random field with £X(t)X(s)=r(t—s) and r(0)=1. Given £>0 there is,
with probability one, a t(w)eR such that for all k>t

Z(k)<6(k)+ A, I(Dy, &)
where
(4+e)loglogk™
=(2Nloghk)'? +-- ——"—=—
e(k) ( IOg ) + (2N10gk)1/2
and &q=¢,(0(k)).
Proof. Let neN. Define E,=D,, ,—D, and divide this set into p, unit cubes

Pn
denoted by S,,, j=1,...,p, where p,=(n+2)"—n"SCn" ', E,= [} 5,;. Let

i=1

B,;={sup X(1)=0(n)+ 4, I(D{,e0)}s

teSy;

B—UB—$WX®NMHAHm,w
teEn
By a theorem of Dudley-Fernique [3], the fact that the field is stationary
and sample continuous is equivalent to I(D,,v)<oo for some v>0. Therefore,
using Lemma 3

T PB)< Y S P(B,)=C §N1M9kw

n=ng n=ng j=1
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and the Borel-Cantelli lemma implies that there is a n,(w) with probability one
such that, for n>n,

sup X(t)<8(m)+A,1(D,,¢,)

teE,

which in turn implies that there is a t(w), with probability one, such that for
n>1

Z(n+2)<6m)+A4,1(D,, &)
but if ke[n,n+2], k>t then
ZKYEZm+2)<0m)+ A, I(D;,80)SOk)+ A, (D, &)
The following corollary is immediate

Corollary. Let X be as in Theorem 2. For any ¢>0 there is with probability
one a t(w) such that for k>1

Z(k)<(2Nlogk)!? —e. (3.1)

The next theorem gives the “lower half” of Theorem 1. It does not use the
results of the previous section and the proof is based on the methods of
Pickands [9,10].

Theorem 3. Let X ={X(t),telRY} be a centred Gaussian random field with
EX(t)X(s)=r(t—s) and r(0)=1, Assume that

[r(t) =o(1/loglt])  as |t|>c0
then, given ¢>0 there is with probability one a 1(w) such that for all k>t

Z(k)y>(2Nlogk)'? —e.
Proof. Define
c,=(2Nlogk)'?,

L(k)y=exp(ec,/4N),

o,= sup [r(®).
12 L(k)

Then §, ¢,—~0 as k—oco. Let {t*,i=1,...,m,} be a set of points in D, with |¢¥
——tf@L(k) for i=j, m,=[(k/L(k)"]. Let &,, n be i.id. Gaussian r.v.s with mean
0 and variance 1, i=1,...,m,. Define Y,=(1—5)"?¢,+6}*n. Then, using
Slepian’s lemma [4]

P{Z()Sx} <P{X(i)<x, 1Sism,)
sP{Y,=x1=5ismy}

and using Pickand’s method it is enough to show that for some f>1

lim (logk)’ P{Y,<¢,~¢&,1<i<m,}=0. (3.2)

k— o0
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We have

P{1=8)"% &40, nsc,—e 15i<my)
k i k k k

c—e—061%u

1/2
C—e—0"u

Sy(d)+ _}DA P{fiéw, 1—_<—i§mk}¢(u)d”

—s+ A48
éw(AHP{féi(l—%m"—, 1§i§mk}

—e+A6,"7
~sy+expmtogrle, s 5L

c—e+ A8
él//(A)JrEXP{CmN(W)

Let A=2loglogk. Then for 1 <=2
(logk? y(A)—»0  as k—co.

Consider the second term

— & +2A(c,—5) 612+ A2
GXp{kack_lexp{_(Ck g’ + (¢ 8)5k + 5”{}

2(1—46,)
c¢Z—2¢c,8+2A4c, 6112
éexp{CkNCzZ1(L(k))ﬁNeXp{“L¢2}{(T—#L}}
2(1-6,)

8, c? gc gc
_ 1 . ¥k ko %™k
exp{Cck exp{ ——*20 =5y +~*—(1 iy e o(l)ck}}

= —1 _ G £l
—exp{Cck exp{ o(l)c, 7 +2(1_5k)}}

exp{C, ¢y 'exp{C, .}

2
=exp{Cck‘ : exp{%’c——NlogL(k)—

since §,~0 as k— co. Hence

_ 12
(log k)* eXp{kalp (C—k(%)} 50 as k— oo,

Combining (3.3) and (3.4) we get (3.2). [

J. Ortega

(3.3)

(3.4)

Note. The mixing condition used in Theorem 3, r(t)l=0(1/loglt]) as |f|— <o has

recently been weakened by Mittal [7] for the case N=1.

A similar result can be obtained for any set D, contained in a compact set

and containing a neighboorhood of the origin.
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