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Maximal Inequalities as Neeessary Conditions
“for Almost Everywhere Convergence*

By

D. L. BURKHOLDER

Introduction
Consider the inequality ’
p(T*f> 1) = K [|fldufr».
2

Here (2, U, u) is a o-finite positive measure space, 1 < p << oo, f€ Lp (2, A, u),
T*f(w) = sup |Tyf(w)| where each T is a bounded linear operatorin Ly, A > 0,

1£n<oo
and K is a real number not depending on f or 1.

Such an inequality, or one similar, is often the central part of proofs establishing
the almost everywhere convergence of {T',f} for every f in L,. The inequality
implies, by letting 4 — oo, that T'*f < oo almost everywhere for all f in L,. Thus,
by the Banach convergence theorem (see, for example, page 332 of [6]), the
almost everywhere convergence of {T',f} for every f in L, follows from the almost
everywhere convergence of {7',f} for f in a dense subset of L. Convergence in a
dense subset is often rather easy to establish. It is not uncommon, however, that
proving the above sort of inequality, the maximal inequality, is genuinely difficult.
Can one know in advance whether the maximal inequality approach to proving
almost everywhere convergence is plausible ? Conceivably, almost everywhere
convergence could hold for the particular problem in which one is interested
without a maximal inequality of the above form holding. When is such an inequality
a necessary condition for almost everywhere convergence ?

A. P. CaupErON ([12], II, page 165) and E. M. Stein [10] have obtained

“important results in this direction for operators arising in Fourier analysis. For
StEIN, who generalizes CALDERON’s result considerably, 2 is the homogeneous
space of a compact group and each 7', commutes with translations. However,
many convergence problems in analysis, for example, those most often encountered
in probability theory and ergodic theory, do not have this kind of setting.

In Section 1 of this paper we pose the necessity question somewhat more
generally for arbitrary sequences of measurable functions. We consider a set € of
such sequences and show that if each sequence in € converges almost everywhere
(actually less is needed) and ¥ satisfies one other condition, then % satisfies
a maximal inequality (Theorems 1 and 2). These results apply to many problems
in ergodic theory, probability theory, orthogonal series, and the like. Some of
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these applications are discussed in the succeeding sections. The key requirement
on % in Theorem 1 is that € be stochastically convex. This condition, defined in
Section 1, is usually quite easy to check in the applications and implies that % is
not too small.

Throughout the paper the same symbol is used for a measurable function and
for the equivalence class (of measurable functions any two of which are equal
almost everywhere) containing it. Expressions involving equality and inequality
signs are sometimes to be interpreted as holding almost everywhere. Also, [ is
occasionally used to denote the integral over 2 of f relative to the measure u.

1. A basie question

Let (2, ¥, u) be a positive measure space with u(2) = 1. Let & be the
collection of all sequences f = (f1, fz, ...) with each f, an Y-measurable function
from £ into the complex numbers. For f = (f1, fa, ...) in @ define f* by f*(w) =
=sup |fa(®)], ®eR. Let ¥c P and 0 < p < oo.

ls=n<oo
Question. What conditions on € assure the existence of a real number K satisfying -

(H p(f* > 1) <Kjir, 1>0, [e®€?

In particular, under what conditions on € does the almost everywhere convergence of
each sequence in € imply the existence of such a K

Note that the right hand side of (1) does not depend on f. This usually causes
no difficulty in the applications and can often be accomplished by demanding that
iff = (f1,f2,...) €€, then j'] f1]? = 1 or some other similar. condition. Also, the
condition ‘u(.Q) = 1 can often be dropped in the applications.

If f and g belong to & write f ~ g if f and g have the same distribution, that is,
if f (f) = f @ (g) for all bounded Baire functions ¢ on the obvious product space.
Clearly, if f and g belong to & and f ~ g, then f* ~ g* where the notation is to
denote again that /* and ¢g* have the same distribution.

We shall say that & is stochastically convex if the following condition is satisfied :
Each term of each sequence in % is nonnegative almost everywhere, and if fz =
= (fx1, fre, ---) €€, k =1, 2, ..., then there are sequences g = (91, gz, L)ED,
k=1,2,..., such that '

(i) the gi’s are (stochastically) independent,
i) fe~ge, E=1,2...,

©o

(i) if {ak} is a nonnegative number sequence with Z ar = 1, then there is an
E=1

h e ¥ such that A ~ {Zakg;m}.
E=1

Note that (i) is equivalent to saying that the rows of the matrix (gzn) are
independent.

The finiteness condition is satisfied if p(f* < o0) > 0, fe €. Clearly, if each
f € € converges almost everywhere to afinite limit then the finiteness condition is
satisfied.
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Theorem 1. Suppose that € is stochastically convex and satisfies the finiteness
condition. Then there is a real number K such that

u(f* >N =<Kji A>0, fe¥%.

The convexity condition may be modified in various ways. One particular
modification leads to

Theorem 2. Let O << p << oo. Suppose that € satisfies the finiteness condition and
condition Cp stated below. Then there is o real number K such that

u(f*>A<Kjir, 1.>0, fe¥.

Condition Cp: If fr = (fr1, fx2,-..) €%, k= 1,2, ..., then there are sequences
g = (9r1, gre, ---)ED, k= 1,2, ..., such that
(1) the gi’s are independent,
() fi~vgh, k=12 ...,
(i) of {ar} s a real number sequence sotisfying E |ag|? =1, then the series

k=1

oo
Zakg,m converges almost everywhere, n = 1,2, ..., and there is an he € and
k=1

a 8 > 0 such that h ~ {0 aggrn}-
E=1
Proof of Theorem 1. We have to show that the function M defined by

M(A) =sup Au(f* > A)
fe¥

is bounded on (0, co). Suppose this is not true. Then lim sup M (1) = oo

and it is easy to see that this implies the existence of positiv;;:mber sequences
{ar} and {i;} satisfying lim Az = oo, iak =1, and § (arfir) M (Axlag) = oo,
Let f, € € satisfy o = =
p(fx > Arlar) > (ar/2x) M (Axfax) — 1/2%,
kE=1,2,...,and let g1, g2, ... be as in the stochastic convexity condition. Then
w(ge > Axlax) = ulfy > Arjar) and thereforekoi u(gr > Axjar) = co. Since
=1

the sets involved are independent, we have by Borel that for almost all w, g, (w)
> Jxlay for infinitely many positive integers £, which implies that almost every-
where

2) lim sup axg;, = co.

k—co

Let he¥, h~{ Z argre). Then by nonnegativity, we have that almost
E=1
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everywhere
o0
*
SUP > @k Jkn = SUP SUD G Jkn = SUP G gt = o0,
n k=1 n ok %

which implies that A* == oo almost everywhere, a contradiction of the finiteness
condition. Thus, M is bounded and the theorem is proved.

In the proof of Theorem 2 we shall use a typical result about Rademacher
functions. For real ¢, let

rif)=1 if 0=¢<1)2,=—1 if 12<it<]1,
ri{t 4+ 1) =ri(), and rp1()=r(2%), n=1,2,....

Lemma 1. Suppose that for all t in a set of positive Lebesgue measure the series

Z Anprr{t) converges, n=1,2,..., and sup | Z ankrk(t)] < oo. Then
k=1 1sn<oo k=1

lim sup sup |ang| < oo .

k—>o00 0

This is an immediate consequence of a fact about Rademacher series mentioned,
for example, in STEIN ([10], Lemma 2).

Proof of Theorem 2. The proof is similar to the proof of Theorem 1 up to and
including the establishment of (2). The definition of M is changed to

M) =sup AP u(f* > 1),
fe®

the unboundedness of M implies the existence of positive number sequences {a}

and {A;} satisfying lim Az = o, z ay =1, Z (ar/Ak)? M (Ag]ar) = oo, and much
k—o0 k=1 k=1
as before we have that almost everywhere

lim sup aggy, = oo .

k—oc0

By condition €y and the finiteness condition we have that for each ¢, the series

Z 15 (£) axgxn converges almost everywhere, n = 1,2, ..., and
E=1

sup | > 7 (t) 0 gra| < o0
n k=1
on a set of positive measure. By Fubini’s theorem, for all w in a set of positive u
measure, the conditions of Lemma 1 are satisfied by anr = argra (@), hence for
such o,
lim sup axgy (0) = lim sup sup | azgn(w)] < oo,
k->o0 n

k—>o00

giving a contradiction. This completes the proof.
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The following is helpful in some of the applications. Given € c &, define % as

follows: The sequence f = (f1,f2,...) €% if and only if thereisan f = (f1,f2, ...) € ¥
such that

fo=(1+ - +fa)n, n=1,2,...

Theorem 3. If € is stochastically convex, then % is stochastically convex. If €
satisfies condition C,, ", then @ satisfies condition C’;

Here 6’ is the condltlon Cp modified by replacing (ii) of that condition by (ii)
of the stochastlc convexity condition.

The proof of Theorem 3 is clear.

2, Stochastic convexity — examples

Throughout this section let (2, A, u) be Lebesgue measure on the Borel sets of
the unit interval. Additional examples of stochastic convexity appear in later
sections.

Strictly stationary processes. Let € be the set of all strictly stationary sequences
= (f1,f2,...) with 0 =< fy and ffl =< 1. Recall that f is strictly stationary if f ¢ &
and (f1, ... ,fn) ~ (fm+1s .-+ »fm+n) for all m, n. Then € hence also @ is stochasti-
cally convex. To see this let I be the identity function on £2 and let s1, sa, ... be
independent functions on £ satisfying sp ~ I,k =1, 2, ... . The nonnegativity
condition is satisfied. Let fr = (fx1, fx2, ... )€€, k= 1,2, .... Define sequences
Jx bY grn = fxn (). Clearly, (i) and (ii) of the stochastic convexity condition are
satisfied. To see that (iii) is also satisfied let {ak} bea nonnegative number sequence

with iakzl. Then, for each n, _fz AxJen = Zakfglmgl Thus,

E=1
there is a sequence b = (h1, hs,...) €D such that 0 < hl, fhi =1, and by =
= z axgrn almost everywhere, » =1,2,.... The strict stationarity of &
E=1

follows from the fact that (G1, Ga, ..., Gn) ~ (Gui1, -, Gmtn) for all m, n
where Gy = (gin, g2, -..). Thus k € € implying that ¥ is stochastically convex.
The stochastic convexity of % follows by Theorem 3.

Martingales. Here let € be the set of all f = (f1, fa, ...) in & satisfying 0 < f,,
an =1, and E( fn+1|f1, sl = fnn=1,2, Eaehfm % is a submartin-
gale (= semimartingale [4]). It is easy to see that % is stochastically convex. One
may proceed exactly as in the above example until 4 is obtained. The only nontri-
vial step is to verify that % is a submartingale. Using the fact that fy € ¥, fx ~ ¢&
implies that gy is a submartingale, we have that

E(hn+llgk1,---79k'ﬂ), k:172:---)

= z glc:n+1|9kl: oo s Gkn)

and the desired result follows by operating on both ends of this inequality with the
conditional expectation E(-|hi, ... ,hy).



80 D. L. BURKHOLDER:

Similar results can be obtained for martingales, supermartingales, backward
martingales, and the like.

Alternating processes. Here let f = (fo, f1,...) belong to € if and only if
0= fo, f fo = 1, and there are two conditional expectations 7'; and 7's such that
Tifen = fons1and Tafopt1 = fonte, n =0,1,.... It follows that f € € if and only
if0 <o, [fo <1, and

E(fon|f1,fs ) = fann1
E(font1|f2, far -+) = fonta

n=0,1,....Toshow that € is stochastically convex one may proceed again as in
the first example to obtain a sequence & which must be shown to be in . Since
fx €%, fr ~ gx implies that g is also an alternating process (satisfies (3)), we have
that

3)

E(h2n|(gk1;gk3;---): k= 1,2,...)

(=]

= > 0x E(gr. 20981, 9r3, --.)
k=1

= > gk, en1 = heni1,
E=1
and the first part of (3) follows by operating on both ends of this relation with the
conditional expectation E(-|h1, ks, ...). The proof that % satisfies the second part
of (3) is similar.

Remark. By the ergodic theorem for strictly stationary processes,each sequence
in @ of the first example converges almost everywhere. The same is true for € of
the second example by DooB’s convergence theorem for submartingales [4]. Also,
maximal inequalities are known to hold for both cases. However, the third example
is different in this regard. At present, neither the almost everywhere convergence
question nor the maximal inequality question is settled. However, since stochastic
convexity is satisfied here, the two questions are equivalent by Theorem 1 and the
Banach convergence theorem. In the next section we shall investigate this problem
further.

3. Applications to a problem in operator ergodic theory

Let (2, A, u) be a positive measure space and 7' a linear positive definite self-
adjoint operator in Ly (2, %, u) with norm || T'||; < 1. Positive definiteness is to
mean here that the inner product (7'f, f) is nonnegative for all f in Ly N Ly; self-
adjointness, that (T'f, ¢) = (f, T'g) for all f and ¢ in Ly N L. Our assumptions
imply that 7' has a bounded linear extension in L, and that this extension, also
denoted by 7', does not increase the L, norm of any function in Ly, 1 << p < oo.
It is known that if 1 << p <C oo and f € Ly, then {T*f} converges almost every-
where. The p = 2 case of this proposition is due to CEOW and the present author
([3], Theorem 2 and the remark following Lemma 2); the general case is due to
STEIN [11]. For a different proof of the major part of the general result, see Rora
[8]. If f € Ly does {T*f} necessarily converge almost everywhere ? At the present
time, this question still seems to be open. A related almost everywhere convergence
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result due to Rota [8] does not extend to Ly [2]. Some information about the Ly
case is contained in the following theorem. This information may help to lead to an

answer to the above question.
In the following let T*f = sup |7™f] .

0=n<co

Theorem 4. T'he following statements are equivalent:

() If (2, N, p) is a positive measure space and T s a linear positive definite self-
adjoint operator in L1 (2, A, p) with norm || T'| |1 = 1, then {Tf} converges almost
everywhere for each f € Ly.

(i) If (2, A, p) is Lebesgue measure on the Borel sets of the wnit interval, T and
To conditional expectations, and T = T1TsT1, then {T*f} converges almost
everywhere for each f € L (Q, A, w).

(iil) There is a real number K such that if r is a positive integer, 2 = {1,2,...,r},

W is uniform probability over Q, and Tf(j z pirf k), where (pjr) ts @ sym-
metric stochastic matrix of order r, then

w(T*f>2) < K [|f|dujr, 2>0, feL;.
Q

(iv) There is a real number K such that if (2, U, p) is a positive measure space
and T is a linear self-adjoint operator in Ly (Q, %, p) with norm || T'|[1 £ 1, then

p(T*f >3 <K [|fldu/a, 2>0, feli.
Q

Proof. (i) = (ii): The operator T = T17sT; described in (ii) satisfies the
condition on 7' in (i).

(ii) = (iii): Suppose (ii) holds. Then the set € described in the third example of
Section 2 satisfies the finiteness condition since if f = (fo, f1, ...) € € then there are
conditional expectations 7 and T such that {fon11} = {(T1T2T1)"f1} and
{fanso} = {(TaT1T2)%f2}. Therefore, since ¥ satisfies the stochastic convexity
condition, we have by Theorem 1 that ¥ satisfies a maximal inequality of the type
described in Theorem 1. This implies the existence of a real number K such that if
T, and T are conditional expectations, then

4) u (sup [(T1 T2 T)"f| > 2) <Kf|f]d/z/z, 21>0, fels.

0=n<oo

Now let T' and (ps;z) be as in (iii). Partition the unit interval into disjoint
connected sets Bj; such that u(Bjg) =pufr, j=1,...,r; k=1,...,r. Let
Aj = UBjk, Br = U_Bjk. Then /J,(A,) = ‘[,L(B]C) = 1/7’. Let %Ay be the

B=1 i=1
smallest o-field containing {4,,...,4,} and let %Ay be the smallest o-field containing
{B1,....By}. Let Ty = E(-| 1) and Ts = E(-| Ag). If fis a function on {1, ... ,7}
let g(w) = f(j) if w € 4;. Then straightforward calculation shows that T2f(j) =
=T1T:T19(w) if wed;, which implies more generally that 727f(j) =
= (T1T:T1)"g(0w) if wed; Note that {T22f} ~ {(T1T2T1)*g}. Clearly, (iii)
follows from (4) using the fact that 7*f < sup | T2 f| + sup | T27(T'f)]| .
. n n

Z. Wahrscheinlichkeitstheorie, Bd. 3 6
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(iii) = (iv): This is proved by standard approximation arguments. Let 1 be a
positive number and N a positive integer. Let 7" and f be as in (iv). It suffices to
bound w (sup | Tf| > A) appropriately.

0sn=N

Let Qf = {w| sup |T*f(w)| > 1/k}, Uy be the operation of multiplica-
0=ns=N

tion by the characteristic function of Qp, Ty = UpT Uy, and fr = Ugf, k =1,
2,.... Then p(Q%) << co, and the operator T, essentially acting in a finite
measure space, satisfies the assumptions of (iv). Since, for 0 = n < N, UpTf —
— Tnfin L; norm as k — oo, we have by an induction argument that 7% f; — Tnf
in Ly norm as k — o0, 0 = » < N. This implies that

5) p (sup |T7f| > 1) < sup p (sup | Thfe| > 4).
0E=n=N 1=k<oo 0ZnEN

On the other hand, {|fx| < f|f] for all k. We need to consider our problem,
therefore, only for finite measure spaces, and hence only for those satisfying
p(2) =1

Assume that 4 (Q) = 1 but let T', f, A, N be as before. Let {By, Bz, ...} be a
countable collection of sets in U such that 7'#f is measurable with respect to the
smallest o-field containing {B,, Bz,...},n = 0,1, ... ,N. Let By be the smallest
o-field containing {B1, ..., B}, Uy the conditional expectation E(-|By), Tk =
= UpT Uy, and fr = Ugf, b =1,2,.... The operator Ty satisfies the assump-
tions of (iv) and again we have (5) for this case. This time we conclude that our
problem need be considered only for ¥ finite, hence for £2 finite. By appropriately
splitting up the measure placed on each point of £, it is easy to see, again by an
approximation argument, that equal measure may be placed on each point of £.

Therefore, assume that (£, U, ) is uniform probability over {1,2,...,7}
where r is a positive integer. Let T,f, 4, N be as before. Then 7f(j)

.
= > a@Pf(k), j=1,...,r; n=1,2,..., where (@) is the n-th power of a
=1

matrix (a;;) equal to its conjugate transpose and such that > |aj| <1,
i=1
;
k=1,...,r. Let pjz = |ase|,j + k, and define py; by > pjx = 1. Then (ps)
k=1
is a symmetric stochastic matrix satisfying

| T ()| ékil 0] |1 (8| %z w118
= =1

which implies, assuming that (iii) holds, that
p(T*) > ) = K [|{] dufa
2

where K is the constant of (iii). This completes the proof that (iii) = (iv). (Note
that a value of K working for (iii) works for (iv) and conversely.)

(iv) = (i): Let T be as in (i). If f € Ly, then the set where 7'*f > 0 is the union
of a countable number of sets of finite measure. Accordingly, one may suppose
that (22, U, u) is o-finite. We know that {1} converges almost everywhere for all
f in a dense subset of Ly. If (iv) holds we have that if f € L; then T*f < co almost
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everywhere by taking 4 — oo in the maximal inequality. Therefore, by the Banach
convergence theorem, (iv) = (i).

4. On the Hopf ergodic theorem and the Dunford-Schwartz ergodic theorem

A linear operator 7' in L; of a probability space (22, U, u) is doubly stochastic
(confer [8]) if, for fin Ly, Tf = 0iff = 0, [Tf = [f,and T1 = 1.

Let (2, U, 1) be Lebesgue measure on the Borel sets of the unit interval. Let
€ be the set of all sequences (f, T'f, T2f, ...) where 0 < §, f f =1, and 7T is doubly
stochastic. (Note that 7' may change from sequence to sequence.)

Theorem 5. T'he set € hence also € is stochastically convex.

The Hopr ergodic theorem [7] implies that each sequence in @ converges
almost everywhere. Thus, by Theorems 1 and 5, a maximal inequality holds for
%. By using arguments almost exactly the same as those used to prove the (iii) =
(iv) part of Theorem 4, one can show that this implies the following (confer [9]):
There is a real number K such that if (2, %, u) is a positive measure space and 7'
is a linear operator in L (2, U, u) such that || 7T'||1 < 1and || T || < 1, then

@ (sup | z Txf|/n > ) <K“ﬂd‘u/l

1£n<oo k=0

A >0, f € L1, from which follows easily the almost everywhere convergence of each

n—1
such sequence { Z T fln}, which is the content of the discrete one-parameter
E=0
DuNFORD-SCHWARTZ ergodic theorem [5]. Thus, the DUNFORD-SCHWARTZ theorem
follows from the more special Horr theorem.

Again a maximal inequality turns out to be a necessary as well as sufficient
condition for almost everywhere convergence. This would have been of particular
interest during the period of eighteen years or more in which attempts at proving
the almost everywhere convergence were being made.

Proof of Theorem 5. Suppose that (fz, Txfx, kak, ..)EC, k=1,2, . Let
I be the identity function on 2 and let s1, s, ... be mdependent functlons on Q
satisfying sy ~ I,k =1,2,.... Also, suppose that ¥ is the smallest ¢-field with
respect to which every s; is measurable. Consider the set of all functions of the
form

(6) Z z @(j1s - 5in) @15,(51) *** Pujo(Sn)

where 7 is a positive integer, the sum contains only a finite number of terms, the
a’s are scalars, the ¢’s are characteristic functions of sets in 9, and Z @i, =1,

i
@ =1, ... ,n. This set, a linear manifold, is dense in Ly (Q, A, u). At a function (6)
in this set, define the value of an operator 7 by

Z Z (415 -+ sJn) (T1pr5,) (81) - (Tapy;,) (Sn) -

Straightforward calculations show that this uniquely defines 7 and that 7 satisfies

6*
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the conditions of double stochasticity on the set in question. Hence 7' can be
extended to a doubly stochastic operator in L;. Denoting the extension also by 7,
we see that 77 [fi (sx)] = (T%fx) (szx) for all k, n. Therefore

(s Tefes o) ~ (fe(sx), Tlfe(se)l,-.), k=1,2,...,

the sequences on the right are independent, and if {az} is a nonnegatve number

[ee)

sequence with Z ay =1, then {T Z arfr(sg)} belongs to € and has the
k=1 E=1

same distribution as {z ay T*[fr(sx)]}. Thus, € is stochastically convex. The
k=1

stochastic convexity of & follows by Theorem 3.

Remark. If in the definition of € it is also required that 7' be self-adjoint then
again ¥ is stochastically convex. This provides an alternative approach to some of
the results of Section 3.

5. Orthogonal series of the Walsh-Paley fype

Let (Q, U, u) be a positive measure space with pu(2) = 1. Let ¢o, @1, ... be
independent real functions such that f(pk =0 and f(p,% =1,%k=0,1,.... Let
wo =1 and, if » > 0, let v, = @, @, -~ @, Where n-= 2" | 2" ... 4 2" and
ny > ng > - > ng = 0. Clearly, {y,} is an orthonormal sequence. If {gp,} is
the sequence of Rademacher functions, then {y,} is the sequence of Walsh-Paley
functions. However, we do not limit ourselves to this special case.

n—1
Theorem 6. Let S, = z aryr, n=1,2,..., where {axr} is a complex
E=0
number sequence. Then {Sou} is a martingale.
Proof. We have that
on+l_1 o —1
Senir=Son+ D axpe=Son+ @n D GouipPr-
k=2n k=0
Operating on both sides with the conditional expectation E (- [ @0, ..., Pn—1) ives
E(Syu1| @0, .- s@n-1) = Sy which implies the desired result. We have used the
fact that S,. and the sum multiplying @, are functions of ¢q, ... ,ps—1, and that

(7) E’((pn|<p0,...,<pn_1)=0.

Note that Theorem 6 remains true if the only assumption made about {¢,} is

(7)-
From now on, if { is a measurable function such that the inner products (7, yz)
n—1
exist, let Sypf = Z (f, we)wr denote the n-th partial [sum of the orthogonal
E=0

expansion of fin terms of o, w1, ... .

Corollary 1. If f € Lo(2, U, u) then {Ss.f} converges almost everywhere.
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Proof. We have that
21
ISt =3 |y [lff2 <.

By Theorem 6 and the martingale convergence theorem [4], the desired result
follows.

If Ay is a set containing exactly two numbers and y(pr € 4y) = 1, we shall say
that ¢ has a two-point disiribution. If @ has a two-point distribution, =0, 1,
2, ..., then we shall say that {¢@x} satisfies the two-point condition.

Theorem 7. Suppose that {@r} satisfies the two-point condition. If 1 < p < oo
and f e Lp(Q, U, u), then

(8) Sonf = B(f|@os - pn-1), n=1,2,...,

and {Sonf} converges almost everywhere and in Ly, norm. Suppose that, in addition,
U is the smallest o-field with respect to which every ¢ is measurable. Then the above
sequence converges to | and {y,} is a complete orthonormal system.

Proof. It follows from the assumptions on {¢;} that there exist numbers a;, by
such that u(pr = ajp) = bjr > 0, box -+ b1z = 1,1 + apgasr = 0, and 1 + a?k =
= 1/bjx, 5 =10,1;k=0,1,....1Ingeneral, if f is integrable then

Souf (0 f 1) H + g (0) e () du () -

Let A4 = A(jo,....jn-1) = {@|@r(w) =ax, k=0,...,n —1}. Note that
n—1

u(d) = n (1 4 a%;)~! using independence. Clearly, if w e A then by the above
E=0

relations we have that

Souf () = [ () du ()u(4
A

This establishes (8).

The convergence of {Ss.f} now follows from (8) and the martingale convergence
theorem. The convergence is to E(f| o, @1, ...), which is f under the stated
additional condition. The completeness of {y,} follows.

Theorem 8. Suppose that @o, @1, ... are identically distributed and that ¢o has
a two-point nonsymmelrical distribution (pr~po, k=1,2, ..., but not —@ ~ @o).
Let 1 = p < 2. Then there is an f € Ly such that {Syf} diverges almost everywhere.

If o, @1, ... are the Rademacher functions, then symmetry holds. For this
case, STEIN [10] has shown that there is a function f in Ly such that {S,f} diverges
almost everywhere. His approach does not seem to be applicable to the nonsym-
metric case. Neither does a theorem of ArLExITs ([I], p. 250) apply here, since in
the nonsymmetric case the sequence {y,} does not satisfy the second condition
of his theorem.

Proof. Let 1 < p < 2. Let €, be the set of all sequences (S1f, Sef, ...) such
that [ f =0 andf |f {10 1. Then (6 p satisfies the condition Cy. For let {8y fr} €% p,
k=1,2,.... Let f; = Tfr where T is the conditional expectation F (- (@0,
@15 --.) Then fk, Yu) = (Tfr, wu) = (fx, Twa) = (fx, yu), implying that
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{Snfi} = {Snfr}. There is a Baire function f; such that f; = fz (g0, @1, -..).

Let ny; be distinet positive integers satisfying mngzo << ng1 << ---. Let gy =

= [t (Przo> Prgz> )

Then the sequences (Si19x, S29k, ...), k= 1,2, ..., are independent and S*fi ~

~ S*gr, k=1,2,....Let {ax} be areal number sequence satisfying Z lag|? = 1.
E=1

Then z arpSngr converges almost everywhere, for all n, since the series consists
E=1
of only a finite number of nonzero terms. By Lemma 2, stated below, we have

that the series Z argr converges almost everywhere and in Ly norm to a function
r=1
h satisfying

[|n|? §2p21flakgklp <2».

Since 8, is a bounded operator in Ly, it follows that Sph = Z axSngy. Clearly,
E=1
{81 (h/2)} € €p. This implies that ¥, satisfies condition Cp.

Suppose that Theorem 8 is not true. Then there is a po satisfying 1 < po < 2
such that {S,f} converges on a set of positive measure if f e L,. That is, %,
satisfies the finiteness condition, and since Ly c L, here, we also have that €
satisfies the finiteness condition. Thus, by Theorem 2, there is a real number K
such that if p is either py or 2, we have that

w(8*f > 1) < Kji», 1>0, fe%,.

From this we can easily deduce comparable inequalities for functions f in Lp not
necessarily satisfying J' f = 0: We obtain the existence of a real number K such
that if p is either po or 2, then

u(8*f> 1) < K [|f|pdujir

for 4 >0, fe Ly This implies by the MarcINKIEWICZ interpolation theorem
([12], 11, page 112) that the norm ||S8*||, of 8* is finite for po < p << 2. Let
Uanf = (f, wn)yn for f in Ly. Then for po << p < 2, we have that

sup || Un|lp = sup || Sns1 — Sal|p
® n
< 2eup |85 = 2] 8% | < o.
2
Letpo<p<2. Let n=92Mm L «ec L 2% g3 > --- > ng = 0. Then

|| Uallp = Iklﬂ/)nl]p [yn|lq
=1:I1H¢n,-||pll<pn,-llq= (ol | 11¢ol[a)*

where 1/p + 1/¢ = 1. But, by HOLDER's inequality,

L=]lpol[3 <llpoll»|lpolla
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since |@o| has two nonzero values attained on sets of positive measure implying
that |@o|? and |@o|? are not proportional. Thus, sup || Uy||p = oo, a contradic-
n

tion, and the theorem is proved.

Lemma 2. Let 1 < p < 2. Suppose that f1, fa, ... are independent functions
on a probability space (2, %, p) such that » [|fx|? <oco and {fr=0, k
E=1

=1,2,.... Then the series z fr converges almost everywhere and in Ly (2, U, u)
E=1
norm and

(1S rlr=20S [l
k=1 E=1

Although this is well known, we sketch a proof. First suppose that — fr ~ fz

for all k. Then Z e fr ~ Z fr for each t € [0, 1] where 1, 73, ... are the Rade-
~1
macher funotlons (confer Sectlon 1). Hence,

n 1 n
© [ 2fe|pdye = I [1 2 re@)fute) | dps ) s
2 k=1 Q k=

gl
30

k

ST

/
1S et flo [Zdtrzdﬂ(w)

k=1

! Ms

/2
] du (o)

ax

1A

[k (o) |Pdu(w)

173
For f; nonsymmetric, one may suppose the existence of functions g¢1, g2, ...

(enlarge the space if necessary) such that f1, g1, f2, g2, ... are independent and

fr ~ gr for all k. Since ka — ng is mapped into ka by the conditional
=1

I \s
-

expectation (- | Z fx) and every conditional expectation has Ly norm 1, we have
k=1
that

IS = |30 Sl

T M3

n
which is less than or equal to 227 [|fz|? by (9) applied to {fx — g¢} and an
k_

elementary inequality. The martingale convergence theorem now implies the
" desired result.

If {@x} does not satisfy the two-point condition, then {y,} is not complete.
For example, if go is not two-point, then there is a nonzero function f, orthogonal
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to every g, of the form f(w) = 1, c1, ¢z according as g (w) is less than ¢;, is in
[a1, as], is greater than as, respectively.

As a further contrast to the results of Theorem 7 (and of Corollary 1) we have
the following.

Theorem 9. Let 1 <p <2, 1/p 4 1jg = 1. Suppose that @9, @1,... are
identically distributed, @o € Ly, and that @o does not have a two-point distribution.
Then there is an f € Ly such that {Ss.f} diverges almost everywhere.

The proof of this theorem will be omitted since it is virtually the same as that
of Theorem 8. The greatest change is in using the fact that here sup || S| |r = o0

n

for p <r < 2. To see this, let 1/r + 1/s =1, gp = (@ar — @ar+1)/ V2, fr =
n—1

= (sign gz) (|gx|/| |gx|]s)*~%, and f =] fx. Then ||f||r =1 and
E=0

n—1
Soaf(@) =TT [f£®) 1+ par(@) par(t)) (1 + gart1(w) P21 () du ()
k=0 2

n—1
[Tox(w) [ 1@ g ) dpt);
k=0

l

hence,

|| 8o [r = [ Senaf] |+
= (l1go]]+11g0][s)"-

Since | go| is nonconstant on the set where go + 0, we have that ||go] |- ||go||s >
> ||g0||3 = 1, and the desired result is implied.

Added in proof, May 9, 1964: S. SAWYER has recently discovered still another condition
assuring that almost everywhere convergence will imply a maximal inequality. This condi-
tion seems to be applicable in certain ergodic theory contexts rather different from those
discussed here.
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