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Maximal Inequalities as Necessary Conditions 
for Almost Everywhere Convergence* 

By 
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Introduction 

Consider the inequality 

Here (2, 91, #) is a a-finite positive measure space, 1 ~ p < 0% ] ~ Lp (.(2, 91,/~), 
T*] (o)) = sup [ Tn/(09) I where each Tn is a bounded linear operator in Lp, 2 > O, 

l~n<vo  
and K is a real number not depending on / or 2. 

Such an inequality, or one similar, is often the central part of proofs establishing 
the almost everywhere convergence of {Tn/} for every / in Lp. The inequality 
implies, by letting 2 -* 0% that  T * / <  oo almost everywhere for all ] in Lp. Thus, 
by the Banach convergence theorem (see, for example, page 332 of [6]), the 
almost everywhere convergence of {Tn]} for every / in Lp follows from the almost 
everywhere convergence of {Tn/} for ] in a dense subset of Lp. Convergence in a 
dense subset is often rather easy to establish. I t  is not uncommon, however, that  
proving the above sort of inequality, the maximal inequality, is genuinely difficult. 
Can one know in advance whether the maximal inequality approach to proving 
almost everywhere convergence is plausible ? Conceivably, almost everywhere 
convergence could hold for the particular problem in which one is interested 
without a maximal inequality of the above form holding. When is such an inequality 
a necessary condition for almost everywhere convergence ? 

A. P. C~LD~blv ([12], II ,  page 165) and E. M. ST~IN [10] have obtained 
i m p o r t a n t  results in this direction for operators arising in Fourier analysis. For 
ST~IN, who generalizes CALDER()_N'S result considerably, ~9 is the homogeneous 
space of a compact group and each Tn commutes with translations. However, 
many convergence problems in analysis, for example, those most often encountered 
in probability theory and ergodic theory, do not have this kind of setting. 

In Section 1 of this paper we pose the necessity question somewhat more 
generally for arbitrary sequences of measurable functions. We consider a set ~ of 
such sequences and show that  if each sequence in (# converges almost everywhere 
(actually less is needed) and ~ satisfies one other condition, then ~ satisfies 
a maximal inequality (Theorems 1 and 2). These results apply to many problems 
in ergodic theory, probability theory, orthogonal series, and the like. Some of 
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76 D.L. BURKHOLDE~: 

these applicat ions are discussed in the succeeding sections. The  key  req~tirement 
on ~ in Theorem 1 is t ha t  c# be stochastically convex. This condition, defined in 
Section 1, is usual ly quite easy to check in the  applicat ions and  implies t h a t  ~ is 
not  too small. 

Throughou t  the  paper  the same symbol  is used for a measurable  funct ion and  
for the  equivalence class (of measurable  functions any  two of which are equal  
a lmost  everywhere)  containing it. Expressions involving equal i ty  and  inequal i ty  
signs are somet imes  to be in terpre ted  as holding a lmost  everywhere.  Also, ~ ] is 
occasionally used to denote  the  integral  o v e r / 2  of / relat ive to the  measure /z .  

1. A basic question 

Let  (/2, 9~,/~) be a posit ive measure  space with # ( / 2 ) ~  1. Le t  ~ be the 
collection of all sequences ] = (]1,/2 . . . .  ) with each fn an 9~-measurable funct ion 
f r o m / 2  into the  complex numbers .  For  / -~ (/1,/2 . . . .  ) in ~ define ]* b y / *  (co) = 

sup [/n(~o) l, co e /2 .  Le t  ~ c ~  and  0 < p  < c~. 
l = < n < o o  

Question. What conditions on ~ assure the existence o] a real number K satis/ying , 

(1) # ( 1 " > 2 ) < = K / 2 ~ ,  2 > 0 ,  l e ~ ?  

In  particular, under what conditions on ~ does the almost everywhere convergence o/ 
each sequence in ~ imply the existence of such a K ? 

Note  t h a t  the  r ight  hand  side of (1) does not  depend o n / .  This usual ly  causes 
no difficulty in the  applicat ions and  can often be accomplished by  demanding  tha t  
if  / = (]1,/2 . . . .  ) ~ ~ ,  then  ]] /1 ]P ~ 1 or some other  similar, condition. Also, the  
condit ion # (/2) ~ 1 can often be dropped  in the  applications.  

I f  / and  g belong to ~ write / ~ g if / and  g have  the  same distr ibution,  t ha t  is, 
ff .[ ~v (/) - ] ~ (g) for all bounded  Baire functions ~ on the  obvious product  space. 
Clearly, if ] and  g belong to  ~ and  / ~ g, t h e n / *  ~ g* where the no ta t ion  is to 
denote  aga,in t h a t / *  and g* have  the  same distribution. 

We shall say t h a t  ~ is stochastically convex if  the  following condition is satisfied: 
Each  t e rm of each sequence in c# is nonnegat ive  a lmost  everywhere,  and i f /~  ~- 

(/~1,/k2 . . . .  ) e ~ ,  k =- 1, 2, . . . ,  then  there  are sequences g~ = (gkl, g~2, . ,  .) e ~ ,  
k = 1, 2 . . . .  , such t h a t  

(i) the gk's are (stochastically) independent ,  

(fi)/~~g~, k=] ,2 , . . . ,  

(iii) if  {a~} is a nonnegat ive  n u m b e r  sequence with ~ a~ ~ ], then  there  is an 

c o  

h ~ ~ such t h a t  h ,,~ { ~ a~g~n}. 

Note t h a t  (i) is equivalent  to Saying t h a t  the  rows of the  ma t r ix  (gkn) are 
independent .  

The finiteness condition is satisfied if # (f* < r > 0, ] e c~. Clearly, if each 
] ~ c~ converges a lmost  everywhere  to a finite l imit  then  the  finiteness condit ion is 
satisfied. 
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Theorem 1. Suppose that ~ is stochastically convex and satisfies the finiteness 
condition. Then there is a real number K such that 

# ( ] * > 2 ) ~ K / k ,  2 > 0 ,  / e S .  

The convexi ty  condition m a y  be modified in various ways.  One particular 
modification leads to 

Theorem 2. Let 0 ~ p ~ co. Suppose that ~ satisfies the finiteness condition and 
condition Cp stated below. Then there is a real number K such that 

# ( /*  > 2) <= K/2~, 2 > 0 ,  l e e # .  

Condition Cp : I ] / ~  ~- ( /~1 , /~  . . . .  ) ~ 5 ,  l~ = 1, 2 . . . . .  then there are sequences 
gk = (g~l, g~2, .. .) e ~ ,  k ~- 1, 2 . . . . .  such that 

(i) the g~' s are independent, 

(ii) ]~ ~ g~, ]c--~ 1 ,2  . . . .  , 

(iii) i/ {a~} is a real number sequence satis]ying ~ [aklp = 1, then the series 
k = l  

i a~gkn converges almost everywhere, n = 1, 2 , . . . ,  and there is an h ~ 5 and 
~ = 1  

oo 

a 0 > 0 such that h ~ {O~a~gkn} .  
k = l  

Proo] o] Theorem 1. We have to show tha t  the funct ion M defined by  

M(2) = sup 2 ~ ( / *  > 2) 

is bounded on (0, co). Suppose this is not  true. Then l i m s u p M ( 2 ) =  co 
~t-+ oo 

and it is easy to  see tha t  this implies the  existence of positive number  sequences 

{a~} and {),~} satisfying lim 2~ ~- co, ~ a~ = 1, and ~ (a,~/2~) M (lt~/a~) ~- co. 
k--> oo k=l k=l 

L e t / k  ~ c# satisfy 

# ([*~ > 2~/a~) > (a~/2e) M (2~/a~) - -  1/2 ~ , 

k = 1 , 2 ,  . . . ,  and let gl,  g2, . . .  be as in the stochastic convexi ty  condition. Then 

# (g*k > 2~/a~) tt (f; > 2klan) and therefore ~ /t (g; > 2elae) = co. Since 
k = l  

the sets involved are independent,  we have by  Borel t ha t  for almost  all w, gk (m) 
> 2~/a~ for infinitely m a n y  positive integers k, which implies t ha t  a lmost  every- 
where 

(2) lim sup a~ g~ = co. 
k - - > ~  

Let  h ~ 5 ,  h ~ { ~ a~g~n}. Then by  nonnegat ivi ty ,  we have tha t  almost  
k = l  
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everywhere 

sup ~ a~gkn ~ sup sup a~g~n = sup a~g~ --~ c~ , 
n k=l ~'z, k k 

which implies tha t  h* ~- co almost everywhere, a contradiction of the finiteness 
condition. Thus, M is bounded and the theorem is proved. 

In  the proof of Theorem 2 we shah use a typical result about l~ademacher 
functions. For real t, let 

r ~ ( t ) : l  if O _ < t _ < l / 2 , : - - I  ff 1 / 2 < t < l ,  

r l ( t ~ l ) ~ - r l ( t ) ,  and rn+l ( t )~ -r l (2n t ) ,  n - ~ l , 2  . . . . .  

Lemma 1. Suppose that /or all t in a set o/posit ive Lebesgue measure the series 

angrk(t) converges, n = 1 ,2  . . . . .  and sup [ i  an~rk(t)[ < oo. Then 
k=l l_--<n<oo k=l 

lim sup sup [an~[ < o o .  
k---~ co n 

This is an immediate consequence of a fact about Rademacher  series mentioned, 
for example, in Srv, i~ ([10], Lemma 2). 

Proo/o] Theorem 2. The proof is similar to the proof of Theorem 1 up to and 
including the establishment of (2). The definition of M is changed to 

M(2) = sup 2 ~ ( 1 '  > 2), 

the unboundedness of M implies the existence of positive number sequences {ag} 

and {2k} satisfying lim2k = 0% ~ a~ ---- 1, ~ (a~/).~)~M(2k/a~)= 0% and much 
k---> co k = l  k = l  

as before we have tha t  almost everywhere 

lim sup agg k = ~ . 
k---~ co 

By condition Cp and the finiteness condition we have tha t  for each t, the series 

~ r k  (t)a~gkn converges almost everywhere, u ---- 1 ,2 ,  . . . ,  and 
k = l  

co 

s . p  I 7 r~ (t) a,~ g,~n I < co 
n k = l  

on a set of positive measure. By Fubini 's theorem, for all ~o in a set of positive/~ 
measure, the conditions of Lemma 1 are satisfied by  an~ = a~g~n(CO), hence for 
s u c h  5o ,  

nm sup a~g~ (co) = nm snp sup [ a ~ g ~  (~)l  < oo,  
k--> co k--> co n 

giving a contradiction. This completes the proof. 
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The  following is helpful in some of the  applications.  Given ~ c ~ ,  define %7 as 
follows: The  sequence f ~- (f i ,  f2 . . . .  ) e ~ if and  only ff there  is an ] ~- (/i ,  ]2 . . . .  ) e rd 
such t h a t  

f , =  (ll + "" + ln)/n,  n =  l , 2  . . . . .  

Theorem 3. I l cg  is stochastically convex, then ~ is stochastically convex. I / c g  
satisfies condition Cp, then ~ satisfies condition C~. 

Here  C~ is the  condit ion Cp modified b y  replacing (fi) of  t h a t  condition by  (ii) 
of  the  stochast ic  convexi ty  condition. 

The  proof  of  Theorem 3 is clear. 

2. Stochastic convex i ty - - examples  

Throughou t  this section let (f2, ?I, #) be Lebesgne measure  on the Borel sets of  
the  uni t  interval .  Addit ional  examples  of  stochastic convexi ty  appear  in la ter  
sections. 

Strictly stationary processes. Let  ~ be the  set of all s tr ict ly s t a t ionary  sequences 
[ = ( /1 ,  [2 . . . .  ) with 0 _--< [i and  f/1 _--< 1. Recall  t h a t  ] is s tr ict ly s t a t ionary  i f / e  
and  (/i . . . . .  /n) "" (/m+l . . . . .  fro+n) for all m,  n. Then  ~ hence also %7 is stochasti-  
cally convex.  To  see this let I be the  ident i ty  funct ion on f2 and  let s i ,  s2 . . . .  be 
independent  funct ions on ~ satisfying s~ ~ I ,  ]c ---- 1 , 2 ,  . . . .  The  nonnega t iv i ty  
condit ion is satisfied. Le t  ]~ = (/~1,/k2 . . . .  ) ~ (f ,  k = 1 , 2  . . . . .  Define sequences 
gk b y  gen = ]gn (s~). Clearly, (i) and  (fi) of  the  stochastic convexi ty  condition are 
satisfied. To  see t h a t  (iii) is also satisfied let {a~} be a nonnegat ive  n u m b e r  sequence 

with  ~ a k =  1. Then,  for each n, f ~ a~g~n = ~ a k ] g k n ~  1. Thus,  
k=l fr k=l 

there  is a sequence h = (hi, h2 . . . .  ) e ~ such t h a t  0 ~ hi, ~ hi ~ 1, and  hn = 

= -~ akggn almost  everywhere,  n = 1, 2, . . . .  The  str ict  s ta t ionar i ty  of  h 
k = l  

follows f rom the fact  t h a t  (G1, G2, . . . ,  Gn) ~ (Gm+l . . . . .  Gm+n) for all m, n 
where G n  ----~ ( g i n ,  g2n . . . .  ). Thus  h ~ ~ implying t h a t  ~ is s tochast ical ly convex.  
The  stochastic convexi ty  of ~ follows b y  Theorem 3. 

Martingales. Here  let (~ be the  set of  all / = (/1, ]2 . . . .  ) in ~ satisfying 0 ~ [n, 
][n =< 1, and  E(/n+l[]l  . . . .  ,/n) >=/n,  n = 1 , 2  . . . . .  Each  ] in r is a submar t in -  
gale ( =  semimart ingale  [4]). I t  is easy to  see t h a t  (~ is s tochast ical ly convex.  One 
m a y  proceed exac t ly  as in the  above example  unti l  h is obtained.  The only nontri-  
vial  s tep is to  ver i fy t h a t  h is a submart ingale .  Using the  fact  t h a t / g  e ~ ,  ]g ~ g~ 
implies t h a t  gk is a submart ingale ,  we have  t h a t  

E(hn+l] (ggl . . . . .  gkn), ]c = 1 ,2  . . . .  ) 

---- ~ a~ E (gk, ~+i I g~l, ..- ,g~n) 
/ c = l  

>= ~ a~glcn : hn , 
k = l  

and the desired result  follows by  operat ing on bo th  ends of  this inequal i ty  with the  
condit ional expecta t ion  E (. ] hi . . . . .  hn). 
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Similar results can be obtained for martingales, supermartingales, backward 
martingales, and the like. 

Alternating processes. Here let / ~  (/0, ]1 . . . .  ) belong to ~ ff and only if 
0 _--< ]0, ] ]0 < 1, and there are two conditional expectations T1 and T2 such that  
T1/2n ~--/2n+1 and T2/2n+l -~-/2n+2, n = 0, 1 . . . . .  I t  follows that  ] e ~ f fand  only 
if 0 ~ / 0 ,  ]/0 < 1, and 

E(/2n ]11, la . . . .  ) = 12n+1 

(3) E(]2n+l[12,/a . . . .  ) = 12n+2 , 

n ~- 0, 1 . . . . .  To show that  W is stochastically convex one may  proceed again as in 
the first example to obtain a sequence h which must  be shown to be in ~. Since 
]~ ~ ~ , / k  ~ g~ implies tha t  g~ is also an alternating process (satisfies (3)), we have 
tha t  

E(h2nl(g~l,g~3 . . . .  ), k = 1 , 2  . . . .  ) 

= ~ a~E(gk,~n[gkl, g~3 . . . .  ) 
k = l  

~ as gk~ 2n§ ~ h 2 n + l ,  
k = l  

and the first part  of (3) follows by  operating on both ends of this relation with the 
conditional expectation E (. ] hi,  h3 . . . .  ). The proof that  h satisfies the second par t  
of (3) is similar. 

R e m a r k. By the ergodic theorem for strictly stationary processes,each sequence 
in ~f of the first example converges almost everywhere. The same is true for ~ of 
the second example by DooB's convergence theorem for submartingales [4]. Also, 
maximal  inequalities are known to hold for both cases. However, the third example 
is different in this regard. At present, neither the almost everywhere convergence 
question nor the maximal inequality question is settled. However, since stochastic 
convexity is satisfied here, the two questions are equivalent by Theorem 1 and the 
Banach convergence theorem. In  the next section we shall investigate this problem 
further. 

3. Applieations to a problem in operator ergodie theory 

Let (Y2, 2 ,  #) be a positive measure space and T a hnear positive definite self- 
adjoint operator in L1 (tg, ~ ,  #) with norm [[ TIl l  --< 1 Positive definiteness is to 
mean here tha t  the inner product (T / , / )  is nonnegative for all / in L1 (3 L~;  self- 
adjointness, tha t  (T / ,  g) = (/, Tg) for all ] and g in L1 (~ Lo~. Our assumptions 
imply tha t  T has a bounded linear extension in L v and tha t  this extension, also 
denoted by T, does not increase the L v norm of any function in Lp, 1 < p < r 
I t  is known tha t  if 1 < p < co and / ~ L v, then {Tn]} converges almost every- 
where. The p = 2 case of this proposition is due to C~ow and the present author 
([3], Theorem 2 and the remark following Lemma 2); the general case is due to 
ST~i~ [11]. For a different proof of the major part  of the general result, see ROTA 
[8]. I f  / e L1 does {Tn/} necessarily converge almost everywhere ? At the present 
time, this question still seems to be open. A related almost everywhere convergence 



Maximal Inequalities as Necessary Conditions for Almost Everywhere Convergence 81 

result  due to Ro ta  [8] does not  ex tend  to L1 [2]. Some informat ion about  the  L1 
ease is contained in the  following theorem.  This informat ion m a y  help to lead to an 
answer  to the  above  question. 

In the following let T * / =  sup [ T./l . 

0 ~ n < c o  

Theorem 4. The ]ollowing statements are equivalent: 
(i) I / ( ~ ,  9i, #) is a positive measure space and T is a linear positive definite sel/- 

adjoint operator in Ll( f2 ,  91, #) with norm [I T] ]2 ~ 1, then { Tn[} converges almost 
everywhere/or each [ ~ L1. 

(ii) I / ( f 2 ,  91, #) is Lebesgue measure on the Borel sets o/the unit  interval, T1 and 
T2 conditional expectations, and T = T1T2T1 ,  then {Tn / }  converges almost 
everywhere/or each [ ~ L1 (~2 , 91, tt). 

(iii) There is a real number K such that i / r  is a positive integer, Q = {1, 2 . . . . .  r}, 

# is uni/orm probability over f2, and T / ( j )  = 2 pjk/(k) ,  where (Pjk)is  a sym- 
k = l  

metric stochastic matrix o] order r, then 

r  2 > 0 ,  I e L ~ .  
t2 

(iv) There is a real number K such that i /(Y2, ~ ,  it) is a positive measure space 
and T is a linear selj-adjoint operator in L1 (s 91, re) with norm [1 T I[ 1 g 1, then 

t~(T*/>2)<K]]/l@/2, 2 > 0 ,  IcL~. 
D 

Pro@ (i) ~ (ii): The opera tor  T = T1 T2 T1 described in (ii) satisfies the  
condit ion on T in (i). 

(ii) ~ (iii) : Suppose (ii) holds. Then  the set ~ described in the third example  of 
Section 2 satisfies the  finiteness condition since f f ]  = (/0,/1 . . . .  ) ~ ~ then  there are 
condit ional  expecta t ions  T1 and T 2 such tha t  {/2n+l} = {(T1T2T1)n/1}  and 
{/2n+2} - - { ( T ~ T 1 T 2 ) n / 2 } .  Therefore,  since ~ satisfies the stochastic convexi ty  
condition, we have  by  Theorem 1 t h a t  ~ satisfies a max ima l  inequal i ty  of  the type  
described in Theorem 1. This implies the  existence of a real n u m b e r  K such t h a t  if  
T1 and  T2 are condit ional expectat ions,  then  

(4) # (sup I ( T 1 T 2 T ~ ) n / ] > 2 ) < = K f l / ] d # / 2 ,  2 > 0 ,  / e L 1 .  
0 _ ~ n < c o  s9 

Now let T and  (Pjk) be as in (iii). Par t i t ion  the uni t  in terval  into disjoint 
connected sets Bi~ such t h a t  / a ( B j k ) = p j ~ / r ,  j = 1, ... ,r; k = 1 . . . . .  r. Le t  

A j  = w B j e ,  B~ = wBj~.  Then  #(Aj)  = / ~ ( B k )  --~ 1/r. Let  911 be the  
k = l  j = l  

smallest  ~-field containing {A1 . . . .  ,Ar} and let 912 be the  smallest  ~-field containing 
{B1 . . . . .  Br}. Let  T1 = E ( '  [ 911) and T2 --~ E(" 1 912). I f / i s  a funct ion on {1 . . . . .  r} 
let g (co) = ](j) i f  o9 ~ Aj.  Then s t ra ight forward  calculation shows tha t  T 2] (j) = 
= T1T2Tlg(co)  if  co~Aj ,  which implies more  general ly t h a t  T 2 n / ( j ) =  
= (T1 T2 T1)ng(*o) if co E Aj. Note  t h a t  {Tan[} ,,~ {(T1 T2 T1)ng}. Clearly, (iii) 
follows f rom (4) using the  fact  t h a t  T*[  ~ sup ] T2n/] + sup ] Tan(T/ )]  . 

n n 

Z. Wahrscheinlichkeitstheorie,  Bd. 3 6 
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(iii) ~ (iv): This is p roved  by  s tandard  approx imat ion  arguments .  Le t  2 be a 
posit ive n u m b e r  and  N a posi t ive integer. Le t  T and  / be as in (iv). I t  suffices to 
bound # (sup [ Tn/1 > ~) appropr ia te ly .  

0 = < n < h  r 

Let  /2k = {wl sup ]Tn/(w)[ > 1/k,}, Uk be the  operat ion of multiplica- 
O<=n~_N 

t ion b y  the  characterist ic  funct ion o f /2k ,  Tk =- U~ TU~,  and ],~ =- U,~/, k -= 1, 
2 . . . . .  Then  # ( / 2 k ) <  c~, and  the opera tor  Tx, essentially act ing in a finite 
measure  space, satisfies the  assumpt ions  of  (iv). Since, for 0 <-- n <_ N,  Uk T n / - +  
--> T n / i n  L1 norm as/~ -+ r we have  b y  an induct ion a rgumen t  t h a t  TJ~n ~ Tn[ 
in L1 norm as/c -> co, 0 ~< n --< N.  This implies t h a t  

(5) ~ (sup IT, ll > X) < sup ~ (sup I T~/~I > z) .  
0 ~ n ~ N  l_--<k< c~ O<:n~_N 

On the other  hand,  f l ]~ I =< f I/[ for all k. We need to consider our problem, 
therefore,  only for finite measure  spaces, and  hence only for those satisfying 
~(/2) = 1. 

Assume tha t /~( /2)  = 1 but  let T, [, 2, N be as before. Le t  {B1, B2 . . . .  } be a 
countable  collection of sets in ~l such t h a t  Tn [  is measurable  with respect  to  the  
smallest  a-field containing {B1, B2 . . . .  }, n = 0, 1 . . . . .  2V. Le t  ~3k be the  smallest  
a-field containing {B1 . . . . .  Bk}, Uk the condit ional expecta t ion  E (. I ~3k), Tk = 
= U~ T Uk, and  [~ = U7r lc = 1 ,2  . . . . .  The opera tor  T~ satisfies the  assump-  
t ions of  (iv) and  again we have  (5) for this case. This t ime  we conclude t h a t  our 
p rob lem need be considered only for ?i finite, hence fo r /2  finite. B y  appropr ia te ly  
spli t t ing up  the  measure  placed on each point  o f /2 ,  i t  is easy to see, again by  an 
approx ima t ion  a rgument ,  t h a t  equal  measure  may  be placed on each point  o f /2 .  

Therefore,  assume t h a t  (/2, ~1, #) is uniform probabi l i ty  over  {1 ,2 ,  . . .  ,r} 
where r is a posit ive integer. Le t  T , [ ,  ~ , N  be as before. Then Tnf ( j )  

= ~ a}~)/(Ic), j = 1, . . . . . .  , r ;  n =  1 , 2 ,  , where ,[a(nh]k, is the  n- th  power  of  a 
k = l  

mat r ix  (aj~) equal  to its conjugate  t ranspose and  such t h a t  2 ] a t k ]  =<1, 
j = l  

k = 1 . . . . .  r. Le t  Plk = ] a j ~ I , j  + /c, and  define PZ by  ~ pj~ ---- 1. Then (pj~) 
k = l  

is a symmet r i c  stochastic ma t r ix  satisfying 

I T~/(j)I < ~ la}~ )] I/(k)l = ~ P}~)I/(~)[, 
k = l  k=l 

which implies, assuming that (iii) holds, that 

# ( T * /  > ,~) g K f l l  I d~/,~ 
D 

where K is the  constant  of  (iii). This completes the  proof  t h a t  (iii) ~ (iv). (Note 
t h a t  a value of K working for (iii) works for (iv) and conversely.) 

(iv) ~ (i): Le t  T be as in (i). I f  / e L1, then  the  set where T*] > 0 is the  union 
of  a countable  n u m b e r  of  sets of finite measure.  Accordingly, one m a y  suppose 
t h a t  (/2, 9~, #) is a-finite. We know t h a t  {Tn/}  converges a lmost  everywhere  for all 
[ in a dense subset  of  L1. I f  (iv) holds we have  t h a t  ff J e L1 then  T * / %  c~ a lmost  
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everywhere by taking ~ -~ c~ in the maximal  inequality. Therefore, by  the Banach 
convergence theorem, (iv) ~ (i). 

4. On the Hopf ergodic theorem and the Dunford-Sehwartz ergodie theorem 

A linear operator T in L1 of a probabili ty space (f2, 9~, #) is doubly stochastic 
(confer [8]) if, for / i~ L~, T / ~  0 i f / ~  O, f T / =  f/ ,  and T1 = 1. 

Let  (~, ?I,/~) be Lebesgue measure on the Borel sets of the unit interval. Let  
be the set of all sequences (/, T/ ,  T2/, . . . )where  0 ~ / ,  ] /  ~ 1, and T is doubly 

stochastic. (Note tha t  T may  change from sequence to sequence.) 

Theorem 5. The set ~ hence also ~ is stochastically convex. 
The ttOPF ergodic theorem [7] implies tha t  each sequence in ~ converges 

almost everywhere. Thus, by Theorems 1 and 5, a maximal  inequality holds for 
~ .  By using arguments almost exactly the same as those used to prove the (iii) 
(iv) par t  of Theorem 4, one can show tha t  this implies the following (confer [9]) : 
There is a real number  K such tha t  if (~2, ~, #) is a positive measure space and T 
is a linear operator in L1 (~, 9~, #) such tha t  l[ T I l l  ~ 1 and ]1 T [ [ ~  ~ 1, then 

n- -1  

# (sup [ ~ T ~ / ] / n > ~ ) ~ K ~ ] / ] d # / ~ ,  
l ~ n < o o  k = O  .(2 

> 0, / a L1, from which follows easily the almost everywhere convergence of each 

such sequence { ~ Tk//n}, which is the content of the discrete one-parameter 
k = 0  

DUNFOI~D-ScHwARTZ ergodic theorem [5]. Thus, the I)CNFORD-ScHwARTZ theorem 
follows from the more special I t o r~  theorem. 

Again a maximal inequality turns out to be a necessary as well as sufficient 
condition for almost everywhere convergence. This would have been of particular 
interest during the period of eighteen years or more in which a t tempts  at  proving 
the almost everywhere convergence were being made. 

Proo/o/ Theorem 5. Suppose tha t  (]~, T~/~, T2/k . . . .  ) ~ ~ ,  k = 1 ,2  . . . . .  Let  
I be the identi ty function on [2 and let sz, s2, ... be independent functions on $-2 
satisfying s~ ~ I ,  k --  1 ,2  . . . . .  Also, suppose tha t  ?l is the smallest ~-ficld with 
respect to which every s~ is measurable. Consider the set of all functions of the 
form 

(6) ~ - - -  ~ a ( j l  . . . .  , in)  ~1 jl (sl) - ~ j n  (sn) 
jl j,, 

where n is a positive integer, the sum contains only a finite number  of terms, the 
a 's  are scalars, the ~'s are characteristic functions of sets in ~, and ~. ~i3"~ : 1, 

i ---- 1 . . . . .  n. This set, a linear manifold, is dense in L1 (~(2, 9I, #). At a function (6) 
in this set, define the value of an operator T by 

~ ' "  ~ a(jl . . . . .  jn) (TlqJ1]~)(sl)"" (Tn%~]~)(sn) . 
J~ in 

Straightforward calculations show tha t  this uniquely defines T and tha t  T satisfies 

6* 
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the conditions of double stochastici ty on the set in question. Hence T can be 
extended to a doubly  stochastic operator  in L1. Denot ing the extension also by  T, 
we see t h a t  T n []~ (s~)] = (T~/~) (s~) for all k, n. Therefore 

(I~,T~I~ . . . .  )~(lk(s~), T[l~(s~)] . . . .  ) ,  k = ~ , 2  . . . . .  

the sequences on the r ight are independent,  and if {ak} is a nonnegatve number  

sequence with ~ ak = 1, then {Tn a~/~(s~)} belongs to %' and has the 
k = l  k = l  

same distribution as { 2  a~Tn[/~(s~)]}" Thus, ~ is stochastically convex. The 
k = ]  

stochastic convexi ty  of  ~ follows by  Theorem 3. 
R e m a r k .  I f  in the definition of  (d it is also required tha t  T be self-adjoint then 

again ~ is stochastically convex. This provides an alternative approach to some of  
the results of Section 3. 

5. 0rthogonal series o~ the Walsh-Paley type 

Let  (tg, 9J, #) be a positive measure space with tt (Y2) = 1. Let  ~v0, ~vl, . . .  be 
independent  real functions such tha t  f~vk = 0 and fq0~ = 1, k = 0, 1 . . . . .  Let  
~v0 = 1 and, ff n > 0, let ~vn = ~nl~n~ "'" ~nk where n = 2 n~ § 2 n . . . .  § 2 n~ and 
nl  > n2 > "'" > n~ > 0. Clearly, {~Pn} is an or thonormal  sequence. I f  {~n} is 
the sequence of  Rademacher  functions, then {~Vn} is the sequence of  WMsh-Paley 
functions. However,  we do not  limit ourselves to this special case. 

~--I 

Theorem 6. Let Sn ~-- ~ a~f~,  n ~ 1 , 2  . . . .  , where {a~} is a complex 
k = O  

number sequence. Then {$2~} is a martingale. 
Pro@ We have t h a t  

2 n + l -  1 2 n -  1 

k =  2 n k=O 

Operating on both  sides with the conditional expectat ion E (. [ ~0 . . . . .  ?n - l )  gives 
E ($2~,~ ] ~0 . . . .  , q~n-1) = S ~  which implies the desired result. We have used the 
fact  t ha t  $2~ and the sum mult iplying ~n are functions of  qJ0 . . . . .  ?n - l ,  and tha t  

(7) E ( ~ n  ] ~90 . . . . .  ~9n--1) = 0 .  

Note  tha t  Theorem 6 remains true ff the only assumption made about  {~n} is 
(7). 

F rom now on, if ] is a measurable function such tha t  the inner products  (], ~vk) 
1 

exist, let S n / =  ~ (/, ~k)W~ denote the n- th  partial isum of the orthogonal  
k = 0  

expansion o f ]  in terms of~0,  ~01 . . . . .  

Corollary 1. I / / ~  L2 (~, 9i, #) then {$2./} converges almost everywhere. 
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Proo]. We have  t h a t  
2 n 1 

SIS 41 oo 
k = O  

B y  Theorem 6 and  the  mar t ingale  convergence theorem [4], the  desired result  
follows. 

I f  A~ is a set containing exact ly  two numbers  and # ( ~  E A~) = 1, we shall say 
t h a t  ~k has a two-point distribution. I f  ~e has a two-point  distr ibution,  ]c = 0, 1, 
2, .. .  , then  we shall say t h a t  {~k} satisfies the  two-point condition. 

Theorem 7. Suppose that {~k} satisfies the two-point condition. I] 1 ~ p < c~ 
and / ~ Lp ([2, ~, #), then 

(8) $2~1 = ~(11  ~o . . . . .  ~ - 1 ) ,  n = 1 , 2  . . . . .  

and {$2~/} converges almost everywhere and in Lp norm. Suppose that, in addition, 
is the smallest (r-field with respect to which every q)~ is measurable. Then the above 

sequence converges to / and {~0n} is a complete orthonormal system. 
Proo]. I t  follows f rom the assumpt ions  on {Fk} tha t  there exist numbers  ajk, bik 

such t h a t  ,u (qJk  ~-- aj~) = bj~ > 0, bob ~ b l k  --~ 1, 1 ~- ao~al~ = 0, and  1 + aj 2 ~- 
1/bj~, j = O, 1 ; k = O, 1 . . . . .  I n  general, i f / i s  integrable then  

n - - 1  

$2~/(~o) = f / i f )  ~ [  (1 § ~k(og)~k(t))dff(t)  . 
~2 k = 0  

Let  A = A ( j o ,  .. .  , in- i )  = {~o]~(~o) ~- a&~, k = 0 . . . . .  n - -  1}. Note  t ha t  

# (A)  = ~-[ (1 + a~kk) -1 using independence.  Clearly, if  ~o c A  then  by  the above 
k = 0  

relations we have  t h a t  

S~_,,/(~o) = f l (t) d# (t)/# (A) . 
A 

This establishes (8). 
The  convergence of {$2~/} now follows f rom (8) and the mar t ingale  convergence 

theorem.  The  convergence is to E ( / l ~ 0 ,  ~1 . . . .  ), which is / under  the  s ta ted  
addi t ional  condition. The  completeness of {~0n} follows. 

Theorem 8. Suppose that q~o, ~1 . . . .  are identically distributed and that qJo has 
a two-point nonsymmetrical distribution (q~k ~ ~o, k = 1, 2 . . . . .  but not - -~o ~ qJo). 
Let 1 ~ p ~ 2 Then there is an / ~ Lp such that {Sn]} diverges almost everywhere. 

I f  ~0, ~0~ . . . .  are the  R a d e m a c h e r  functions,  then  s y m m e t r y  holds. For  this 
case, S T ~  [10] has shown t h a t  there  is ~ funct ion [ in L t  such t h a t  {Sn[} diverges 
a lmost  everywhere.  His  ~pproach does not  seem to be applicable to  the  nonsym- 
metr ic  case. ~ e i t h e r  does a theorem of ALwxITs ([1], p. 250) app ly  here, since in 
the  nonsymmet r i c  case the  sequence {~0n} does not  sat isfy the  second condition 
of his theorem.  

Proo]. Let  1 ~ p ~ 2. Le t  c#p be the  set of all sequences (S~[, $2/~ ...) such 
t h a t  ~ / ---- 0 and  ~ I / I f  ~ 1. Then  c ~  satisfies the  condit ion C~. For  let {Sn/~}~V~,  
/c = 1, 2 . . . . .  Le t  /~ ~- -T/k  where T is the  condit ional expecta t ion  E('[q)o, 
~t  . . . .  ). Then  (/~, ~fln) : (T]~, ~ )  = (/~, T ~ )  = (/~, ~n), implying t h a t  
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{SniP} = {Snik}. There is a Baire function ]~' such tha t  [~ = / ~ '  (~0, ~1 . . . .  ). 
Let  n~ I be distinct positive integers satisfying n~0 < nkl < " " .  Let  g~ = 

= / k '  (~.~0, ~.~1 . . . .  )" 
Then the sequences (Slgk, S2g~ . . . .  ), k ~- 1, 2 . . . . .  are independent and S*]k ,,~ 

"~ S*gk,]~---- 1,2, . . . .  Let  ( a t ) b e  a real number sequence satisfying ~ ta~lP ~- 1. 
k = l  

Then ~ akSngk converges almost everywhere, for all n, since the series consists 
k = l  

of only a finite number of nonzero terms. By Lemma 2, stated below, we have 
c o  

tha t  the series ~ a~g~ converges almost everywhere and in Lp norm to a function 
k=t  

h satisfying 

Ilhlp<-_2,~y]a~g~]~<=2,. 
k = l  

o o  

Since Sn is a bounded operator in Lp, it follows tha t  Snh = ~ a~Sngg. Clearly, 
k = l  

{Sn (h/2)} E ~ .  This implies tha t  ~ satisfies condition C~. 
Suppose tha t  Theorem 8 is not true. Then there is a P0 satisfying 1 g To < 2 

such tha t  {Sn[} converges on a set of positive measure if [ e Lp0. That  is, ~p0 
satisfies the finiteness condition, and since L2 c Lp, here, we also have tha t  ~2 
satisfies the finiteness condition. Thus, by Theorem 2, there is a real number  K 
such tha t  ff/~ is either P0 or 2, we have tha t  

~(S*/>~)<_K/~p, ~ > 0 ,  / E ~ .  

From this we can easily deduce comparable inequalities for functions / in Lp not 
necessarily satisfying f / =  0: We obtain the existence of a real number  K such 
that  ff p is either Po or 2, then 

~J 

for )~ > O, [ e Lp. This implies by  the M~RcI~K[]~w~cz interpolation theorem 
([12], I I ,  page 112) that  the norm i iS*] ]~ of S* is finite for p0 < P < 2. Let  
U n / ~  ([, y~n)~pn for / in L~. Then for P0 < P < 2, we have tha t  

sup I I I = 
n 

=< 

Let P0 < P < 2. Let  n ---- 2 nl 

sup ] Isn+l  - sn l  

2 sup [ [ snl  =< 2] ] s* l  < c o .  

n 

"~- "'" ~- 2 nk, n l  > "'" > n k  ~ O. T h e n  

k 

j= l  

where lip + l/q = 1. But, by HOLDER'S inequality, 
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since ]~0 [ has two nonzero values attained on sets of positive measure implying 
that  I~01~ and ]~0Iq are not proportional. Thus, sup l I Unl Ip -- 0% a contradic- 

tion, and the theorem is proved. 

Lemma 2. Let 1 <__ p <= 2. Suppose that 11,  12,  " "  are independent ]unctions 

on a probability space (Y2, 91, tt) such that ~ SI]~I ~ < ~ and ~]~ = O, Ic 
I c = l  

o o  

-~ l, 2 . . . . .  Then the series ~ /~ converges almost everywhere and in L~ (D, 91, ~) 

n o r ~ n  a n d  

k = l  k = l  

Although this is well known, we sketch a proof. First suppose that  - - /~  ,-~/~ 

n ,,, i for all/c. Then ~ rk(t)]k /k for each t ~ [0, 1] where rl ,  r2 . . . .  are the P~ade- 
k = l  k = l  

maeher functions (confer Section 1). Hence, 

9k=l 0 .Ok=l 

=< I 
0 /c=l 

j" 

For ]~ nonsymmetrie, one may suppose the existence of functions gl, g2,.-. 
(enlarge the space if necessary) such that/i, gl, 12, g2 .... are independent and 

n 

[e ~ g~ for all /c. Since ] e -  Z gk is mapped into Z / ~  by the conditional 
k=l k=l Ic=l 

expectation E (. ] i [g) and every conditional expectation has Lp norm 1, we have 
k = l  

that 
n n 

k=l k=l /;=I 

n 

which is less than or equal to 2 ~  f ]]~[P by (9) applied to { ] ~ -  gg} and an 
k = l  

elementary inequality. The martingale convergence theorem now hnplies the 
desired result. 

I f  {~sg} does not satisfy the two-point condition, then {~n} is not complete. 
For example, if ~0 is not two-point, then there is a nonzero function ], orthogonal 
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to  every  y~n, of  the  form/(co)  = 1, c l ,  c2 according as ?0 (co) is less t h a n  al ,  is in 
[al, a2], is grea ter  t h a n  a2, respect ively .  

As a fur ther  con t ras t  to  the  resul ts  of  Theorem 7 (and of  Corol lary 1) we have  
the  following. 

Theorem 9. Let 1 ~ p < 2, l ip  + 1/q -~ 1. Suppose that q3o, q~l . . . .  are 
identically distributed, q~o ~ Lq, and that ~o does not have a two-point distribution. 
Then there is an / ~ Lp such that {$2,[} diverges almost everywhere. 

The proof  of this  theorem will he omi t t ed  since i t  is v i r t ua l ly  the  same as t h a t  
of Theorem 8. The grea tes t  change is in using the  fact  t h a t  here sup 11 $2" ]lr = r 

for p ~ r ~ 2 .  To see this,  let  l / r +  1 I s =  1, g~ = (q~2~-- ~2~+1)/~2, [7~ = 
n 1 

= (sign gk) ([ g~ ]/] ]g~ [Is) s-l,  and  [ = 1-~/~. Then ]l [[]r = 1 and  
k = 0  

n--1 

S2~n/(co) = 1~ fib(t)(1 -]- q~2k(co)q~2~(t))(1 + q~2~+l(co)~2~+~(t))d/z(t) 
k = 0  

= 1~  ~ (co) f /~  (t) g~ (0 d~ (t); 
k = 0  

hence, 

I Is2~.l ]r_>- I Is2~o/I Ir 

=(] lg0]l r l ]g0[[s)  n. 

Since [go I is nonconstant on the set where go * 0, we have that I I go ]lr I I go I ls > 
> I] go I I~ = 1, and the desired result is implied. 

Added in proof, May 9, 1964: S. SAWYER has recently discovered still another condition 
assuring that almost everywhere convergence will imply a maximal inequality. This condi- 
tion seems to be applicable in certain crgodic theory contexts rather different from those 
discussed here. 
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