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1. Introduction and summary 

In this paper we study the evolution of a family of particles each of which is 
characterized by a real valued quantity which for convenience, we call its energy.We 
assume that  the process originates at "t ime" t = 0 with a single "parent"  particle 
of energy X0, which after a time T splits into N other particles of energies 
Xi  . . . .  , XN respectively. Each of these "offspring" particles then behaves as a 
parent ; its behavior depending only on its energy, and being independent of any 
other existing particles or of the history of the process. The quantities T, N, 
X1, . . . ,  Xlv are random variables. Let  G(t) = P { T  ~ t} be the distribution func- 
tion of T; qj = P {N = j }  be the probability function of N; and ~bj (xi . . . . .  xj ] x0) = 
= P { X 1  <~ xi . . . . .  X j  <= xjlxo} be the conditional joint distribution function of 
Xi  . . . . .  Xj, given that  a parent of energy x0 has given rise to j offspring. 

Let  N (x, t I x0) be the number of particles existing at time t which have energy 
equal to at least x, given that  the process Stal~ed at t = 0 with one particle of 
energy x0. Write N(x, t 11) = N(x, t); and let pn(x, tlx0) = P{N(x ,  tlx0 ) = n} 
and pn(x, t) = P { N ( x ,  t) = n}. 

The process N (0, t [ x0) is simply the total number of particles at t, and is called 
a branching process. These processes have been extensively studied by tlAI~lClS [4], 
[5], BELI~MA~ and HAI~I~IS [1], LEvI2gSO~ [7], and others. 

In the case when q2 = 1 the process is called binary. I f  in addition ~b2 (Xl, x2 ] x0) 
admits a density function, which further satisfies certain homogeneity and 
"conservation of energy" requirements, and ff G is the exponential distribution, 
then the process becomes what is usually called the binary nucleon cascade. In 
this setting the parameter t usually plays the role of the depth of an absorber, 
rather than time, and the fact that  G is exponential is expressed by saying that  
the cascade is in homogeneous matter.  There is an extensive literature on these 
cascades which may be found summarized in BI~At~VCI{A-I~II) [2]. 

Clearly the language of time and energy is not essential, and the general 
cascade model defined in the first paragraph can be applied to a variety of problems 
of population growth in the physical and biological sciences. Another aspect of the 
general process, namely the total energy of all particles existing at t, was studied 
by the author in [10] and [11]. These papers contain further references to treat- 
ments of other aspects of population processes. The most comprehensive work on 
this field is likely to be the book of T. E. ttAm~IS on "Branching Processes", 
publication of which is expected soon. 

* Research sponsored by the Office of Naval Research under contract number Nonr-401 
(43). 
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The main  purpose here is to s t u d y p n  (x, t) for large t. Under  an assumption tha t  
no new energy can be created upon collision, i. e., t ha t  P {X1 -~ ""  ~- XN ~ Xo} 
~- 1, one would expect t ha t  for sufficiently large t all particles will have energy 
-~ x. This means P0 (x, t) --~ 1, and Pn (x, t) -~ 0 for n ~ 1. A more refined question 
concerns the relative magni tude  of  Pn (x, t) and pm (x, t). The main  result of  this 
paper  is to show tha t  for n ~ m 

(1.1) p n ( x , t ) / p m ( x , t ) - - ~ O  a s  t - ->oo.  

On the way  to  proving (1.1) we shall also show tha t  (under suitable conditions 
on G and ~bi), for a ny  x'  ~ x"  and any  n ~ 1 

(1.2) p n ( x " , t ) / p n ( x ' , t ) - - > O  as t - ->c~.  

Bo th  (1.1) and (1.2) are easily shown to be equivalent  to the following state- 
ments  about  the factorial moments  of the process. Let  

(1.3) / ~ k ( x , t ) - ~  7c ] c ! p n ( x , t ) .  
n ~ ] c  i 

Then we shall see tha t  the assertion (1.1) for all n ~ m is equivalent to the assertion 
tha t  for all n ~ m 

(1.4) ~n(x, t)/t~.~(x, t) -+0; 

and tha t  (1.2) for all n is equivalent  to 

(1.5) 'x" tt~ ~ , t ) / t tn  (x',  t) ~ O.  

Results of the form (1.1), (1.4), and (1.5) were first obtained by  J.  LOPVSZA~SKI 
for the special case of  the binary cascade in homogeneous mat te r  (exponential G) 
(see U~BA~IK [13], and LoPuszA~s~I  [8], [9]). The arguments  in these papers use 
closely the properties of  the exponential  distribution. The distribution ~b2 is 
assumed to  admi t  a densi ty  q)2, bu t  no regulari ty conditions on the lat ter  are 
explicitly stated. There are some gaps in the argument ,  and in fact (1.2) and (1.5) 
are no t  correct wi thout  fur ther  restrictions on ~2. This can be seen by  the following 
counterexample.  Let  q2 = 1, G(t) = 1 - -  e - t  for t =~ 0, = 0 elsewhere. Take any  
0 <o~ < ~ - . L e t F ( x )  : 0 f o r x  ~ ~ - -  g, ~- ( 2 x  -~ 2~ - -  1 ) / 2 ~ f o r l - -  :r < x  < 1 

1 for x >  �89 Let  ~b2(xl, x 2 ) =  F ( x l ) F ( x ~ ) .  Then an elementary calculation 
shows tha t  for sufficiently small ~, P l  (0.40, t) ~ P l  (0.41, t) ---- 2 te  - t  - -  e - t  ~ 2 e -2t;  

and  p2 (0.40, t) ~ p2 (0.41, t) -~ e - t  - -  e -2t;  P n  =- 0 for n ~ 3. This contradicts 
(1.2) and (1.5). The proofs of  (1.1), and (1.4) in [8], [9] rest on (1.5), and hence it is 
no t  clear ff these results are t rue for a rb i t ra ry  ~2, even for the special case when G 
is exponential.  (We have not,  however, been able to construct  a counterexample.) 
A summary  of  the URBAI~IK-LoPUSZAlgSKI results m a y  also be found in BARUCHA- 
REID'S book ([2], pages 273--4). 

Since in the present paper we deal with a general class of distributions G, 
our methods are entirely different from those of [8], [9]. We also, however, show 
(1.5) first, and go from there to the remaining results. 

Another question of interest is the following. We have remarked that pn (x, t) -> 0 
for n ~ I, but ff we take x ~- xt a function of t which is decreasing at a suitable 
rate, then one might hope to get more refined results on the asymptotic form of 
Pn (xt, t). Results of this character will be given in part II of this paper. 

Z. Wahrscheinlichkeitstheorie, Bd. 3 3 



3 4  P . E .  N E Y  : 

2. The integral equation of the process 

Our formal start ing point  is an integral equation in the probabil i ty function 
Pn (x, t I x0). We shall show tha t  this equation has a unique bounded solution which 
is a probabil i ty function, and thence all results will be derived from the equation. 

First, however, we give a brief heuristic derivation of the equation from the 
physical si tuation described in section 1. First  take  n > 1. Start ing with a single 
particle of  energy x0, there are several mutual ly  exclusive ways in which the 
process may,  at  t ime t, arrive in a state in which exact ly n particles have energy at  
least equal to  xo. Each  way  involves the creation, at  some time y < t, of  some 
number  j of offspring of energies Xl, . . . ,  xj, as a result of the splitting of  the initial 
particle; and the subsequent creation, respectively, of n l  . . . . .  nj particles of 
energies at  least x during the remaining t ime t - -  y by  t h e j  new cascades originating 
at  t ime y. The numbers  n l  . . . . .  nj are subject to the restriction nl  + "'" @ n I = n.  

Since each of the j new cascades s temming from the particles created at  y now act  
as new independent  processes, we m a y  mult iply the probabilities of the above 
events and then sum over all possible values of j,  y, xl ,  . . . ,  xj, n l  . . . . .  nj. This 
yields (for n > 1) 

oo t o o  c o  ~" 

(2.1) pn(x, tlxo) = ~qj  f da(y) f ... f ~Pj(dzl, ...,dxjlxo) ~ l - I~nh(x , t -  y lxd,  
j = l  0 0 0 Bi, n i = l  

where B i , n  = {(nl, . . . ,  nj) : 0 _--< n h ,  h .= 1 . . . .  , j ;  n l  + "'" + n I = n } .  

(The symbol # j  (dXl  . . . . .  d x j  ] xo) means tha t  the  integral is the Stieltjes integral 
with respect to the distribution function ~Sj (xl . . . .  , x j l x o ) . )  

I f  n ---- 0 or 1, then it is also possible to  arrive at  a state of n particles of  energy 
at  least x by  having no collisions up to t ime t. I f  n ---- 0, this is the case for x > x0; 
if n = 1, for x <-- x0. Let t ing ~,I ---- 1 if i = j ,  and zero otherwise ; and D (x) = 1 
if x => 0, and zero otherwise; we m a y  incorporate these boundary  cases in (2.1) 
and obtain for all n -->_ 0 

(2.2) P n  (x, t[ x0) ---- [don D (x - -  x0) ~- (~ln D (x0 - -  x)] [1 - -  G (t)] q- don q0 G (t) + 
o o  ~ i 

+ 5 qj ~ ~a(y) ~...  S 4;(~x~ . . . . .  ~JI ~0) ~ 1-[pn~(x, t - y l x,). 
~'=i 0 Bi, n i=i 

oo 

Let Q(s, x, tlz0 ) = ~pn(x, tlx0)sn, (is] ==_ i). Then multiplying (2.2) thru by 
~Z = 0 

8 n and summing over n yields 

(2.3) Q (*, x, t[ x0) = [O (x - -  x0) q- s O (x0 - -  x)] [1 - -  G (t)] q- q0 G (t) q- 
oo t ] 

+ y, qj f d G(y) f . . .  ff r dxjlxo) 1]  @ (8, x, t -- y lxd. 
~=I 0 i = 1  

Various special cases of  (2.3) are well known and have been studied extensively. 
For  example, if G (t) = 1 - -  e-t for t ~ 0, = 0 otherwise, then differentiation of  
(2.3) with respect to t yields 

(2.4) ~ + 1 @(,,x, t l xo )=q0 , - '+  ~ q j S . . . S ~ ( ~ 1  .. . . .  dx~l~0)I-I~(*,~,tIx,). 
i=i i = 1  
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I f  i t  is fur ther  assumed t h a t  q2 ---- 1, t h a t  r  satisfies the  homogenei ty  condit ion 
(1)2 (!cxl, kx2 ] kxo) =-- 42 @1, x2 [ xo), and i f r  @1, x2 [ 1) admi ts  a densi ty  F2 @1, x~), 
then  we shall see below t h a t  (2.4) can be reduced to 

[ ] 
where Q(8, x, t) = Q(s, x, t] 1). Equa t ion  (2.5) is usual ly called the  J.~_srossY 
G-equat ion (see L. JANossu [6]). For  a s u m m a r y  of work  relat ing to (2.5) see 
Chapter  5 of  BAI~U-C/-IA-I~EII) [2]. We shall now prove  : 

Theorem 1. I /  v = ~ nqn < co, and G(O) = O, then the set o/equations (2.2) 
~t=O 

have a unique bounded solution Pn (x, t I xo). This solution is a probability/unction, 

i.e., pn(x, tlxo ) ~=0 and ~ p n ( x ,  t l x o ) =  1. Q ( s , x , t ] x o ) = ~ p n ( x ,  tlxo)sn is 
~ 0  

the unique bounded (for ]s I ~ 1) solution o[ (2.3). 

Proo/. We proceed by  induct ion on n. Firs t  t ake  n = 0. Then (2.2) reads 

(2.6) po(x, t l x o ) = D ( x - - x o ) [ 1 - - G ( t ) J §  ~ 
t j 

+ ~ qj f dG (y) y . . .  y c j  (dx~, . . . ,  dxj I xo)]-]po (~, t - y I/~) �9 
] = 1  0 i = 1  

Define p(0 ~ (x, t]xo) ~- O, and  for k >-- 0 define 

(2.7) p(ok+l ) (x , t ]xo) -~D(x- -xo)[1- -G( t ) ]§247  
n t j" 

+ ~ qj ] d a ( y )  ] - . .  ] r  . . . .  , dxjl/o)]-[p(o ~ ) ( z , t -  y I x,). 
]=i 0 i=i 

Then 0 <=pg~)(x,t[~o) <= ~ -- G(t) § <= ~, and if 0 <=p$)(x, tlxo) <= I, 
co 

then 0 <=pgk+~)(x, t]xo) =< i -- G(t)§ i. Hence by induction on k 
j=O 

O<=p$)(x, tlxo)<=l for k - - - -0 ,1 ,2  . . . . .  

Bu t  now it  is s t ra ight  forward  to show t h a t  

i J ~" [ ] ]  p(ok) (x, t ] x~) - ] ]  p(o~- ~) (x, t l x, ) 
= i  i=i 

i / i _ 1  ?" 
(2.s) __< ]p(o~)(~,tlx,)-p~o~-'(z, tlx,)l. ]-[ p(o~-~)(x,t]x~) FIp(o~)(x, tlxh) 

i = 1  h = l  h = i + l  
j" 

<= ~ Ip(o~)(x, t[x~) -p(o~-~)(x, tlx~) I . 
i = 1  

I - Icnce  

I p(o ~§ t I xo) - p(o ~) (x, t I xo) l 
oo t i 

(2.9) <= ~ qj y de  (y) y.,,. y Cj (dx~ . . . . .  dx~lxo) F[p(o ~) (~, t - Y l x~) 
~ = 1  0 i = 1  

J l xl) - y [ p ( o ~ - "  (x, t - y 
i = 1  

3* 
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c o  t i 

=< ~ qj ] ~ v ( y )  ] . . .  f c j (~x l  . . . . .  ~x~ Ix0) Z ]p(o k)(x, t - y lx,) 
#=1 0 i=i 

- ~(o ~-1) (x, t - y] x4) I. 

B u t  I p(01) (x, t I x 0 ) -  p(o ~ (x, t I x0) l =< 1, and  hence b y  induct ion on k in (2.9) we 
see t h a t  

i p(o k+ ~) (x, t I x0) - ~0(0 k) (x, t I xo) 1 <= ~'~ Gk (t), 

where v ~ ~.jqj  < oo by  hypothesis .  
co 

Now H (t) =- ~, v n an (t) satisfies the well known renewal equat ion 
n = l  

t 

(2.10) H (t) = vG(t) -~ v .~ H (t -- y)dG(y) , 
0 

and  hence H(t) ~ oo for any  t ~ oo (see e.g. FELLER [3]). Since Gk(t) is non- 
co 

decreasing, so is H (t). Thus ]p(o k+ ~) (x, t] xo) - -  p(o k) (x, t[ xo)[ ~= ~ v 4 G4 (t) for all 
4 = k  

m ~ 0 and  all x, xo, 0 --~ t ~ t' < oo. Hence  there  is a Po (x, t I xo) =~ 1 such t h a t  

(2.11) ~(k) "x , t I ~o ( , t l xo ) -+po(x  xo) 

uniformly  in x,  xo, and 0 ~ t ~ t'. F r o m  (2.7) it  also follows tha t  po(x ,  tIxo) 
satisfies (2.3). 

Now suppose t h a t  we have  shown for n = 0, 1 . . . . .  N - -  1, (N ~ 2), t h a t  
there  is a funct ion Pn (x, t[ xo) satisfying (2.2) and  such t h a t  0 ~ Pn (x, t] xo) ~ 1. 
I)efinep(~ ) (x, t[ xo) = 0, and  for k ~= 0 

(2 .12 )  p(N k §  (X, t I X0) ~-- WN(gC, t]  X0) 

+ ~,qj dG(y) . . .  q)j(dxl . . . . .  dxj[xo 
] = 1  0 4=1  

where 

WN (x, t[ xo) = [50n D (z - -  Xo) -~ (~ln D (xo - -  x)] [1 - -  G (t)] -~ ~on go G (t) 
t j 

+ Z q~ S ~ G (y) y... ~ ~j (~xl . . . . .  dxj I xo) Y~ M p~, (x, t - y I x4), 

and where 
t 

B j ~ v = { ( n l  . . . . .  n~):(nl . . . .  ,n~)~B~n, nl  # N,...,n~ 4= N}. 

n 
We shall need to carry  along with the  induct ion the  fact  t h a t  ~ p,  (x, t [ x0) =< 1 . 

4 = 0  
This has been shown for n = 0. Suppose it t rue  for n = 1 . . . . .  N - -  1. Le t  

n n--1 
~ n ( x , t ] x o ) =  ~ .p4(x , t ]xo) ,  and ~$)--~ ~ .p4 (x , t ] xo )~ -p~ ) ( x , t [ xo ) .  

4=0  i = 0  

Then  apply ing  (2.2) for n ~- 0, 1 . . . .  , N  - -  1, and  (2.12), yields 

@(~+~)(x, t[xo) ~= I1 - -  G(t)] -~ qoG(t) 
oo t i 

+ y q ~ f ~ G ( ~ ) f . . . f ~ ( ~ x ~  . . . . .  ~x~l ~ (~) xo) i l ~ (~, t l~o)" 
~=I 0 4=1 
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Now induct ion on k yields at  once tha t  

(2.13) ~ ) ( x ,  t]xo) =< 1 

for all k 0 1 2, F r o m  (2.12) it is clear t ha t  ~(k)~ __ , , ... �9 y~u t~, t Ix0) ~ 0, and hence 
fork=O, i .... 

(2.14) 0 __< p~)(x, t J x0) _-< 1. 

;Now by  (2.12) 

(2.15) ]p~+l)(x, t I xo) - p~)(x, t[ zo) l 
c o  t ] 

<=~jI~a(y)f . . . Iej(dxl  ,~jlxo)Z~(~)(x,t ytx~)-~(~-,,~. 
] = 1  0 o:=1 

But  (2.15) is of  exact ly the same form as (2.9), and hence the same argument  as 
before yields t ha t  there is a function 0 ~ p~v(x, t I x0) ~ l, such tha t  

(2.16) p~) (~, t I x0) -~p~  (x, t] x0) 

uniformly in x, x0 and 0 ~ t _< t' ~ 0% where p ~ ( x ,  tlXo ) satisfies (2.2). This 
completes the induct ion for the first par t  of  the  argument .  For  the second we need 
only note  t ha t  (2.13) and (2.16) imply  

e~r (x, t I x0) =< 1.  

To show tha t  these are the unique bounded solutions, suppose t h a t  there is 
another  set, say  rn(x ,  t]x0). Let  Un(X, t lxo  ) -~ e -~ Ipn(x ,  t lxo) --  rn(x ,  t lxo) l , 
where ~-n ~ 0 is to be chosen later. Then the same kinds inequalities t ha t  led to 
(2.8) yield 

co  t ~" 

(2.17) ~o (x, t[ xo) <= ~ ~j y ~-~o~dG (y) y . . .  f ~j(dxl . . . . .  dxjIxo) ~ ~o (z, t - Yl x,). 
j = l  0 i = l  

Since P0 and r0 are bounded  (uniformly in x, xo), it follows tha t  sup {Uo (x, t] xo) : 
x ,  xo, 0 ~ t <_ t'} = u (t') ~ oo. Hence taking the supremum of both  sides of 
(2.17) over x, xo, 0 ~ t ~ t', we get 

t '  

(2.18) 1 g ~ j q j  ] e - ~ ~  
o 

Since by  assumption G(0) = 0, (2.18) is contradic ted by  taking g0 sufficiently 
large. Wri t ing 

p~(x, t]~0) = W~(x, tlxo) 

+ ~qJfdG(Y)f"'fCj(dx~'""dx~[x~ = ~(x,t--ylx~)r 

proceeding by  induct ion on n, and supposing tha t  uniqueness has been proved for 
n ~ 1, . . .  , 25 - -  1, we are led to an equat ion of the form (2.17) for usT (x, t [ x0), and 
thence to the uniqueness for n ~- N. 

We have seen tha t  Pn (x, t ] x0) ~ 0, and hence to show tha t  this is a probabi l i ty  
c o  

funct ion we need only show tha t  e (x, t I xo) : ~ p n ( X ,  t I x0) : 1. But  ~ satisfies 
n ~ 0  
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(2.19) ~(x, tlxo) = [1--  G(t)] ~- qoG(t) 
co t i 

+ ~qj ~dG(y)S"" S ~ j ( d x l ,  . . .  ,~xsl x o l ~ ( x ,  t - y l x , ) .  
? ' = 1  0 i = 1  

An a lmost  direct copy of the  uniqueness proof  just  given shows t h a t  (2.19) also has 
a unique bounded solution. But  ~ (x, t lxo ) = 1 is a solution, and  hence the  only 
bounded solution. 

Turning to  (2.3), it follows f rom the definition of Q t h a t  for [ a] ~ 1 the  la t ter  
is a bounded  solution of this equation.  The  uniqueness proof  again proceeds 
exac t ly  as above.  This completes  the  proof.  

During the  remainder  of the  paper  we shall need an essential homogenei ty  
assumpt ion  on the  @j-distributions, name ly  t h a t  for all cons tants /c  >= 0, and  all 
j ~ - l , 2  . . . .  

(A- 1) ~bj (k xl . . . . .  /c xj I k x0) = ~ j  (Xl . . . .  , xj I x0). 

I f  this condit ion is satisfied, then  by  replacing Pn (x, t] xo) b y  Pn (kx,  t[ kxo) one 
m a y  easily show t h a t  the  la t ter  satisfies (2.2). Hence  b y  the  uniqueness pa r t  of 
theorem 1 we have  

(2.20) pn (x, t[ x0) = p~ (k x, t[ k x0). 

Thus  pn(x, t]x0) =- pn(x/xo, t[ 1), and  writ ing pn(x, t] 1) = pn(X, t), Q(s, x, t] 1) 
-- Q(s, x,  t), and ~5j(Xl, . . .  ,xll 1) = ~bi(Xl, .. .  ,xj), we see f rom (2.2) and (2.3) 
t h a t  these functions sat isfy 

(2.21) pn(x ,  t) = [ ~ o n n ( x -  1) ~- 51nD(1 - -x)]  [1 - -  G(t)] ~- (~onqoG(t) 
~ t J ( x  ) 

+ 2 q j l d a ( y / y . . - I e j ( e x l  . . . . .  e x j / Z  12Ip~ ~ , t - y  
? ' = 1  0 Bj,~ i = 1  

and  Q ( s , x ,  t) = [D(x  - -  11 + s D ( 1  - x)][1 - o( t ) ]  + qo a ( t )  

(2.22) + ~ q; I da  (y) f . . .  I ~J (dxl . . . .  ,dx~/1~ Q s, - - ,  t - y .  
? ' = 1  0 ~ i = 1  X~ 

Tha t  these equations have  unique bounded  solutions can be argued as before. We 
thus  have  

Corollary 1. I /  ~ , - - - -~nqn < ~ ,  G ( 0 ) =  0, and (A-I) is satisfied, then the 

equations (2.21) have a unique bounded solution pn(x ,  t) = pn(x ,  t 11), which is a 

probability/unction. Q (s, x ,  t) -~ ~.Pn (x, t)8 n i8 the unique bounded (/or ]s ] _<-- 1) 
solution o/(2.22), n = o 

We r emark  t h a t  ff G(t) = 1 -- e -t then  (2.22) can easily be reduced to  the  form 
(2.5). 

For  one of our subsequent  results we shall also need a smoothness  condit ion 
in x0. For  any  d > 0, let zJ~bj (Xl, . . .  ,xj[x0) denote  the  probabi l i ty  (with respect  
to  ~bj) of  the j -cube  whose sides are (x~, x~ Jr A),  i ---- 1, . . .  , j .  Then  the  require- 
men t  is t h a t  there  is an e > 0 and  an ~ < c~ such t h a t  for aU A > 0, and  all k 
sat isfying 1 < k < 1 ~- e, we have  

Aq)j(x~ . . . . .  x~lkxo) < ~.  
(A-2) ~ . . ~  _ 
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(Note tha t  qualitatively, the physical condition that  higher energy parents tend 
to have higher energy offspring is consistent with (A-2) with ~ ---- 1.) 

Most of our subsequent analysis will be carried out in terms of the moments of 
the process, and we hence proceed to write down the equations satisfied by these 
functions. I t  will be convenient to work with the factorial moments. The k-th 
factorial moment  is defined to be 

oo 

~ ( z ,  t) = k! ~ p~(x,  t), 
= 0  

where we adopt the usual convention tha t  ( ~ ) = 0  for n < k. We introduce o u r  

next  main assumption. Note tha t  until now there has been no restriction on the 
range of qS~ (only tha t  it be zero for negative arguments). We now assume tha t  

(A-3) .[... fCj(dxl .. . . .  dxj) = 1 for j = 1 ,2  . . . . .  
Aj 

~_ .. "" �9 < 1 In  words this says where Aj @1 . . . . .  x j ) : 0 = < x / , i =  1, . , y  x ~ =  . 

tha t  the total  energy of a family of offspring particles does not exceed the energy 
of their parent  particle (with probabili ty one). 

I t  will become apparent  later tha t  this assumption is crucial for our main 
results to hold. An immediate consequence of (A-3) is the fact tha t  

(2.23) pn(x,t)=O for n > [ 1 1 ,  

where Ix] is the largest integer smaller than or equal to x. Heuristically, one may  
argue this fact by  saying tha t  due to (A-3) the total  energy of the process at  any 
t ime t is always at  most one, since this is the initial energy, and no new energy is 
ever created. But  then it is impossible to have more than [l/x] particles of energy 
at  least x. Analytically, (2.23) can be easily deduced from (2.21) by  induction on 
n, and using the fact tha t  

(2.24) p0 (x, t) ----1 for x > l .  

The latter follows from the fact tha t  for x > 1, the function 1 satisfies (2.21) for 
n = 0, and from the uniqueness of the solution. 

An immediate consequence of (2.23) is tha t  

[l/x] 

n ~ 0  

is a finite sum, and hence all moments  exist. Another trivial but  useful consequence 
is tha t  

(2.26) ~ ( x , t ) ~ O  for k > [ 1 ] .  

The existence of moments thus being guaranteed, we may  multiply both sides of 

(2.21) by k! ( k )  and add over n, or differentiate (2.22) k times with respect to s. 

This yields 
t 1 

(2.27) ~k(x,t)=vk(x,t)+vSdG(y)SdF(~)luk(-~,t--y),  
0 0 
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where 

(2.28) 

and 

(2.29) 

F ( x ) = v - 1  ~ ~qjqS~j(x) ,  
] = 1 i = 1  

r  (x) ~ fiSj (1 . . . . .  1, x,  1 . . . . .  1), the x being the i- th component ;  

and where v l (x ,  t) : [1 - -  G(t)]D(1 - -  x), and for/c ~ 2 

(2.3o) ~k(x, t) _ ~ f dG(y) S"" I~(dx~ . . . . .  d~j) ~ ~ ,  , ~.) H ~ ,  t ~ ,  t - -  y .  
] = 2  0 B~,~ " ' "  J i = 1  \ 

t 

(Bjk was defined below (2.12).) Note  tha t  F is in fact  a distribution function and 
t h a t F ( 1 )  = 1. 

I t  will be convenient to adopt  the following nota t ion for convolutions : 
o o  

] g ( t - -  y )dG(y)  =- g* G 
0 

1 

oo 1 

0 

where g, / ,  and h are any  functions of one and two variables respectively for which 
the above integrals converge. We shall also write G ~ G], Gn ~ Gn-1 * G, 2' ~ F1, 
-[fin = F n - 1  0 iF ,  FO = GO = 1, F* = 1 - -  Fn. Finally set 

v(k ~ (x, t) = v~ (x, t), and for n ~ 1 set 

(2.31) v(~n) (x , t) = v(kn-1) (x , t) �9 [ G F] = v~ (x , t) �9 [ Gn Fn] . 

Corollary 2. For all lc ~ 1, / ~ ( x ,  t ) =  ~ vnv(n)(x, t). The series converges 
~ 0  

uni]ormly in t and /or x ~ xo > O, and is the unique bounded solution o/ (2.27) 
(bounded in O ~ t ~ t' < oo , O < xo ~ x ~ 1). 

Proo/. I t  is easy to show tha t  there is a K < c~ such tha t  v~ (x, t) < K for all t 
and all x > x0 > 0, and hence tha t  v(n)lx t) < KGn(t)F*n(x ) < KF:~(xo). The - -  k t ~ 

o o  

fact  t ha t  ~ v /F  * (x0) < oo for any  v < oo then implies the first par t  of  the 
i = 0  

corollary. The uniqueness follows by  an a rgument  very  similar to tha t  of theorem 1. 

3. Main results 

We shall need regulari ty assumption on F and G. Let  X be the random variable 
with distr ibution F.  We shall require a smoothness condition on F in the neigh- 
borhood of 1. To be precise, we assume tha t  there exists a ~ => 0 such tha t  

(A-4) l l m x - ~ P ( e  -~ ~ X ~ 1} exists. 
x - ~ 0 +  

I t  is easy to find various reasonable sufficient conditions for (A-4) to hold;  for 
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example tha t  X should have a positive continuous densi ty in an interval (e, 1] for 
some 0 ~ s < l, or t ha t  X should have a densi ty  with a positive continuous 
derivative of  some order in (e, 1]. Tha t  some condition such as (A-4) is needed can 
be seen from counter-examples of the kind given in section 1. 

The requirement  on G involves the tails of  the distribution. We shall assume 
tha t  for any  n > 1 there is an ~0 > 0, such tha t  

G ( t + ~ ) - -  O(t) ~ 0  as t-->c~, 
(A-5) Gn(t + ~) -- Gn(t) 

uniformly for 0 < ~ ~ ~-0. Note  tha t  a sufficient condition for (A-4) is tha t  the 
associated densities (g, gn) of (G, Gn) should satisfy g (t)/gn (t) --> 0 as t -~ ~ .  This 
is satisfied by  m a n y  common densities, such as the exponential,  gamma,  chi- 
square, t runca ted  normal  ( t runcated at  zero), etc. 

We are now in a position to state our main  results. 

Theorem 2. I / v  < 0% G(O) = O, and (A-l), (A-3), (A-4), are satisfied, and G 
either satisfies (A,5) or is truncated (i.e., G(t) = 1 /or some t < oo), then /or  any 
0 g x'  < x"  g 1, and any integer Ic such that 0 < k ~ [1/x'], 

(3.1) p k ( X " , t ) / p k ( x ' , t ) - - §  as t---~c~. 

I] k > [l/x], then p~ (x, t) = 0. 

Theorem 3. Under the conditions o/theorem 2 plus (A-2) we have/or  all integers 
m ~ [l/x] and all n > m, that 

(3.2) p n ( x ,  t)/pm (x, t) --> 0 as t--> c~. 

We break up the proofs into several lemmas. The first states a well known 
relation between the probabil i ty funct ion {pn (x, t)} and the moments  {ttk (x, t)}. 
I t  enables us to reduce the problem about  the probabilities to one about  the 
moments ,  a device previously used by  LOPUSZA~SKI in [8] and [9]. 

1 [~x] (__ 1)~+ n 
Lemma 1. Pn (x, t) = 7 .  k = ~ ~ -  ~ i tt~ (x, t ) .  

Pro@ Subst i tute  the definition of#~ (x, t) and note (2.26). 

I n  the next  two lemmas we summarize some consequences of (A-4) and (A-5). 

Lemma 2. / /  ~' satisfies (A-4) and i] b, b', b" are any constants satis/ying 
0 < b' ~ b ~ b" < 1, then there exist constants A < co and B < 1, such that /or  
any integer no ~ 0 we have 

F~ (x") < A B n (3.3) F~0+~ (x') 

lot  all n >= l, and all (x' ,  x")  satis]ying b' <= x'  <= bx"  <~ b".  

Pro@ We need a theorem of the form of theorem 2 of [12]. Let  Z~ = - -  log Xi ,  
where {Xi} are independent  identically distr ibuted with distr ibution F.  Let  H 
denote the distr ibution funct ion of  Z~. Then H satisfies the hypothesis  of theorem 
2 [12]. Then the lat ter  theorem states tha t  for Yl < y2, we have Hn (yl) /Hn (y2) --> 0 
as n -> c~. Al though the convergence is not  asserted to be uniform for any  parti- 
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cular  set of (yl ,  y2), the  proof  is ac tua l ly  s t rong enough to yie ld  such un i formi ty ,  
and  we shall  here require  it .  I t  is easi ly seen t h a t  f rom the  defini t ion of  { B n }  and  
{Cn} in [12], i t  follows t h a t  g iven any  s > 0 and  any  0 < y l  ~ y2 < r there  are  
sequences {B0n} and  {Con} such t h a t  Bon -+ O, Con = 0 (nc), e < 0% and  such t h a t  
for all y e [Yl, Y~], 

(3.4) (1 - -  e)n(1 - -  Bon) ~ F(n~, § 1)Hn(y) [kF(~ + 1)y~]n < (1 + e)nC0n �9 

This  impl ies  t h a t  for a n y  0 < a '  ~< a < a "  < o�9 there  are cons tan ts  A < 0% 
B < 1 such t h a t  

(3.5) Hn(y') < A B n  
ttno + n (y ' )  = 

for al l  (y ' ,  y")  sa t is fying a '  ~ y '  + a _--< y "  < a" .  Se t t ing  y '  ---- - -  log x" ,  
y"  ---- - -  log x ' ,  a '  : - -  log b" ,  a"  = - -  log b ' ,  and  a ~- - -  log b, we have  our lemma.  

L e m m a  3. I]  G satisfies (A-5) then /or  a n y  integer n 

(3.6) Gn-lGn(t(t ++ ~)~) --__ GnGn(t)-1(t) "--> 0 as t - +  oo, u n i / o r m l y / o r  0 < ~ ~ ~o ; 

and 
(3.7) Gn-l(t) - Gn(t) 

Gn (t) --  Gn+i (t) - ~  O. 

Proo]. This can be shown b y  induc t ion  on n. W e  omi t  the  deta i l s  of  the  calcula- 
t ion.  (In the  case of (3.7) t ake  ~ = c~.) 

The  nex t  two l emmas  are  the  ma in  ones in the  proof  of theorems 2 and  3. 

L e m m a  4. I / t h e  condit ions o / theorem 2 are satisfied, and 0 < b' <_ b <-- b" < 1, 
then 

(3.s) "x" # ~ t  , t ) l ~ ( x ' , t ) - + O  as t - + r  

un i /o rmly  /or b' <= x '  <--_ b x "  < b" . 

Proo/ .  Suppose  t h a t  G satisfies (A-5). The  proof  is b y  induct ion  on k. F i r s t  
t ake  k ---- 1. B y  corol lary  2 of theorem 1 

o � 9  o�9 

~n v(l~)(x', t) Y. v ~ {[1 --  G(t)] * Gn (t)}" {D(1 --  x") �9 Fn (x ')}  
~1 (x ' ,  t) n = 0 n = 0 

o � 9  o�9 

~tl (X' , t) ~ yn V(k)(X', t) ~ yn {[1 --  G(t)] * Gn (t)}" {D(1 --  x') �9 Fn (x')} 
n=O n=0  

Y v~[G(t) - G~+l(t)] [P: (z")] 
~ = 0  

(3.9) 
vn[Gn(t) -- Gn+l(t)] IF* (x')] 

n = 0  

iV 
Y ~, [G, (t) -- G~+I (t)] [F~* (x")] 

< n = O  = ~v+l + '~=~v+-------L 

E ~,,'[G(t) - G~+l(t)] IF* (~')] 
n = 0  n=N+l 

The first term on the right side of (3.9) goes to zero because of (3.7). On the other 
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hand, by  lemma 2, the second term can be made arbitrari ly small (uniformly for 
( x ' ,  x " )  in the required domain)  for N sufficiently large. This takes care of  k = 1. 

Suppose tha t  the lemma is proved for k = 1, . . . ,  M. B y  corollary 2 
oo 

n i t  
Y VM+I(X , t )  (~ J a n (  )J~n ( x t ' ) ]  r ,ui+l (x , t) ~ = o (3.10) 

o o  

llM+l (x',  t) F. v n VM+i (X', t) �9 [ Gn (t) Fn (X')] 
f t = 0  

oo t2 

L e t  v k ( x ; n ; t l ,  t2) --  ~ q i  f d G n ( y )  f " "  f q ) j ( d x l  . . . . .  dx i )"  
] = 1 ti At  

T h e n f o r  a n y 0  =< A0 ~ t, (3.10) 

"P VM+J_ (9; ; n [ -  1 ; O, t - -  AO) * .F n ( x" )  

(3.11) < n=0 
- -  o o  

~.r n vM+l(x'; n + 1; O, t - -  Ao) * Fn(X')  
n = O  

oo 
V n VM+ 1 (X"; n + 1 ; t - -  Ao,  t) * Fn (x") 

@ ~z=O 

~  V VM+ 1 (X ; n @ 1 ; t --  AO, t) * Fn (x') 
n--O 

We shall show tha t  for suitable choice of  A0 and t, the r ight  side of the above 
inequal i ty  can be made  arbitrari ly small. First  we show t h a t  given s there is 
to < oo and an A0 =< to such tha t  

VM+l(x";n  @ 1; O,t - -  A o ) * F n ( x ' "  ) 
(3.12) - -  - 7 ~ , . - - - - :  = VM+i(x , n  + 1,0, t - -Ao)*Fn(X')  < e fora l l  t > t0. 

We star t  by  finding an N0 such tha t  (3.12) holds for all n _--> No. Divide the 
interval  [x",  1] into m subintervals of  equal length d, where m is chosen large 

{b'  1 (x,, x,) } Then for any  n the left side of (3.12) < enough so tha t  ~ < min ~ - ,  ~ . = 

~n--i x"+(k+l)6 
: J" VM+l(~-~;~+l;O,t--Ao) d~n,~, 

k = 0 x"+k(5 
(3.13) m--1 x'+(k+2)6 

~ I VM+I(X---~ ; n + l ; O , t - - A o )  dFn07' 
k=O x'+(k+l)~ 

where the inequali ty m a y  hold since the segments [x' ,  x '  + $] and [1 - -  (3/4). 
. ( x "  - -  x ' ) ,  1] have been deleted from the range of integrat ion of  the denominator .  
Then (3.13) =< 

m -- 1 ( x,, ) 
(F~* [x" -}- k d] -- F~* Ix" + (k -}- 1) 6]) VM+l "x" + (k + l )  d ' n + 1 ; 0, t --A0 

(3.14) k= o 
~n-- 1 

X' 
(F~*[x' + (k + ] ) o ] - F * [ x ' +  (k + 2) d]) VM+I x ' +  (k + 1)~ 

k=0 
; n +  l ; O , t - - A o )  

Now clearly one can find a bo < 1 such tha t  for all (x', x") satisfying b' =< x'  =< 



4 4  P . E .  N n ~ :  

~= bx" ~ b" ,andk ~ 0 . . . . .  m -- 1 , w e h a v e  

x ' +  (k ~- 1)(~ x' -t- (k ~- 1) ~ x'~- (k + 1)~ < b o .  
(3.15) x"+k(~ ~ b o ;  x " + ( k + l ) ( ~  ~ b o ;  x'--~-+ (k -[- 2) ~ = 

Hence by  lemma 2 

F*[x" + k6 ] F*[x" ~-(k + l)6] F*[x' + (k + 2)6] 
F~[x '~-(kd-1)6]  ' ~*[x ' -b (k~l ) (~]  ' F*[x'-~(k~-l)(~] 

X vl all -->0 as n -+ oo, uniformly for k, x', in the required ranges. Nex t  note t ha t  
x"/[x" + (k ~ 1)~] > x'/[x' + (k ~- 1)~], and hence tha t  

( x, ) 
VM+I x ' - '+ (k~- I )d  ;n@l ;O , t - -Ao ) -<-VM+l  x ' + ( k + l ) d  ; n @ l ; O , t - - A o )  

(since by  its definition VM+l is clearly a non-inereasing function of  its first argu- 
ment). Hence, dividing the numera tor  and denominator  of  (3.14) by  F~[x'd-  
+ (k + 1)d], we see tha t  the left side of  (3.12) goes to zero as n -~ c~, and thus  is 
< e for n > some sufficiently large N0. 

We now consider the ratio (3.12) for n ~ No. By  the induct ion hypothesis  we 
have for k ~ 1 . . . . .  M tha t  

tt~ ( x " ,  t ) l # ~ ( x ' ,  t) --> 0 as t ~ ~o ,  

uniformly for b' <= x' < bx" ~ b". Thus given any  Ao < ~ and s > 0, there is a 
to < c~ such tha t  for t > to and y ~ Ao 

( ) (3.16) ~ \ - ~ ( , t - - y  ~ e # ~  , t - - y  

for (x', x") in the required range and x~ > x".  Therefore by  definition ofv~ (x; n;  t l ,  t2) 

VM+I(X", n Jr- 1, O, t -- Ao) < 8, VM+I(x';o~, -~ 1 ;0, t - -  A0) 

for all t >- to, b' ~ x' <~ bx" ~ b".  
This in tu rn  implies t ha t  for t > to, 

VM+I (x"; n -b 1 ; 0, t - -  A0) * Fn  (x") = 

1 

1 

(3.17) ~SfVM+l(X-~ ; n + l ; O , t - - A o )  dFn(~7) 
Xr~ 

1 

= SVM+~(x'; n d- 1; O, t -- Ao) *Fn(x ' ) .  

Although in the above construct ion to m a y  depend on n, it is clear t h a t  one m a y  
choose it sufficiently large so t h a t  (3.17) holds for n = 0, 1, . . . ,  No. Since the 
result has already been established for n > No we have (3.12). 

We tu rn  to 
VM+I (XH; n ~-  1 ; t - -  A 0 ,  t) * F n (x  H) 

( 3 . 1 8 )  VM+~ (x'; n + 1 ; t - -  A o ,  t) * 2 ~  (x') " 

Arguing as we did for (3.12), we show tha t  given any  s > 0, there is an No such 
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t h a t  (3.18) < e for all  n > No and  all  (x', x") sa t i s fy ing b' <= x' <--_ bx" <= b". 
W e  comple te  the  proof  b y  showing t h a t  for a n y  No we m a y  p ick  A0, so t h a t  for 
suff icient ly large t 

3to 
~n VM+I (X"  ; n ~-  1 ; t - -  A 0, t) * F n  (X")  

n = 0  
(3.19) ~'o+i < s .  

v n VM+I (X'; n -t- 1 ; t - -  A0, t) * Fn(x') 
n = O  

To show the  la t te r ,  i t  is in t u r n  sufficient to  prove  t h a t  for n = 0, 1, . . . ,  No,  

1 

(3.20) 1 - + 0  as t - + o o .  

/ x" Ao,t) dFn+l (V) f vM+l I - -  ;n ~- 2; t - -  
x" \ ~  

x "  ] = 1  ~j ,~  ' " =  

F r o m  (3.6), l emma 3, i t  follows t h a t  for n = 1, 2 . . . .  

t t 

f h (t --  yl dGn (y)/ f h (t -- yl dGn+l (y) -+ 0 
t - - A o  t - - A o  

This implies  (3.20). 

a S  t - - >  o o  . 

I t  r emains  only  to  consider  the  case when G is t runca ted .  Say  G (T) = 1. Then  
for sufficiently large t, first t e rm  of  (3.9) and  the  second t e rm  of (3.11) m a y  be 
d ropped ;  and  those  pa r t s  of the  p roof  deal ing wi th  these  t e rms  dele ted.  The 
r ema inde r  of  the  p roof  goes t h rough  as before.  

L e m m a  5. Under the conditions o/theorem 3 

(3.21) ~n (x, t)/~m (x, t) --> O as t - ->oo .  

Proo/. I t  is sufficient to  p rove  (3.21) for n ~- m ~- 1 ; and  to  show this  i t  is in 
t u r n  sufficient (by l emma 4) to  p rove  the  existence of an  x '  > x and  a Do < 0% 
such t h a t  

(3.22) ttn+l (x, t) < Do/~n (x', t ) .  

The  proof  is aga in  b y  induct ion.  Take  n = 1. Then  

t 

0 

w h e r e  J ) 
(3.24) . . . . .  dxj)Z2  t - - y  , t - - y  . 

] = 1  x x i , k = l  
i 4 - k  

Note  t h a t  the  range of  in tegra t ion  of ~bj. m a y  be t r u n c a t e d  above  a t  1 - -  x since ff 
xi > 1 - -  x, t hen  (x~, x~)sA~ implies  xi + xk _--< 1, which in t u rn  implies  x~ < x 

a n d / ~  , t  = 0 ;  s imi lar ly  ff x ~ >  l - - x .  N e x t  note  t h a t  # , t  = O f o r  

i ) [ ] - - ,  t < t I enee  
i =  l x i  : ~ " 
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1-xl-x  ~ ( x  ) (3.25) v2(x, t) <= 2[i/x] ~ qj y~G(y) f . . .  f Hj(~xl .. . . .  ~xj~l~ ~ ,  t - y 
0 x x 

Now mak ing  a change of  var iab le  xi = (1 - -  x) x~ in the  above  in tegra l  and  app ly ing  
(A- l )  and  (A-2) we can show t h a t  there  is an ~ < oo and  a k > 1 such t h a t  

(3.26) v 2 (x , t )  ~ 2 o ~ [ 1 ] / ~ ( k x ,  t ) .  

oo oo 

]~ut ~ (x, t) = ~ ~ (1 - G (t)) D (1 - -  x) �9 [r Fn] = [1 - -  ~ ( t ) ] ,  ~ ~ r (t) ~ (x). 
n = O  n = 0  

Hence,  we have  
oo 

v O) (x. ,) = (. - . ( , )  ) .  
n ~ 0  

and  b y  (2.31) 
oo 

(3.27) 
L ~ J  i = n  

Thus  b y  corol lary  2 

= [ 1 ]  ~ n * (3.28) /~2(x, t)  < 2 g  (1 - -  O ( t ) ) *  (n ~- 1)?~ G n ( t ) F n ( k X  ) �9 
~ 0  

Now choose k'  such t h a t  I < k' < k. Then  b y  l emma 2 there  is an  A < oo and  a 
$ , ! 

B < 1 such t h a t  F n ( k x ) / F n ( k  x) < A B  n. Hence  there  is a C < oo such t h a t  
co 

t _ ~ J  n ~ 0  

Set t ing  ~C = Do and  k ' x  = x ' ,  we thus  have  (3.22) for n ---- 1. 
N o w  assume (3.22) t rue  for n --~ 1 . . . .  , m - -  1. Consider v~ (x, t) as defined in 

(2.30). W e  have  
oo t i 

vm+~(x,t) =~q j~dG(y )~  kl ,~ ""~ (dx~ . . . .  d x j ) . [ I ~  , ~ , t - - y  , 
(3.29) i = 2 0 B'~,~+~ \ . . . .  ~/,(~)~.,~+~ i = 1 

w h e r e A j , m ( x )  = {(xl  . . . .  , x~) : (xl  . . . .  , xj) e A  , xi ~ 1 - -  x ( m  - -  kt), i = 1 . . . . .  j } .  
The in terchange  of' o rder  of  s u m m a t i o n  and  in tegra t ion  is permiss ible  since there  
is a finite number  of t e rms  in the  sum. The res t r ic t ion  of  the  range  of in tegra t ion  

to  a(=) is l eg i t imate  for the  following reasons.  F i r s t ,  b y  (2.26), kl x < 1, for (x ) 
otherwise # ~  -~[,  t - -  y = 0. Second (xt  . . . . .  x~ )eA~ imp l i e s  ~ x ~  --< I .  Hence for 

a n y  i o =  I . . . . .  j we h~ve x~ o ~ 1 - - ~ x ~  ~ 1 - - x ~ k ~ =  1 - - x ( m - f -  1 - - k i o ) .  

B y  rear ranging  some t e rms  in (3.29) we can show t h a t  

oo t Iea( )  ( § (3.30) v~+~(~, t) = ~ (~ 1)" / ~. . .  ~fH~(dxl . . . . .  d~)- k~! ..- k~! ] 

x t 
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(There would be equal i ty  in (3.30) except  t h a t  the  te rms  

J ( x )  
j = 2 i = 1 A},~)+I 

have  been added  to the  r ight  side.) 
Bu t  now te~+l(x, t) =< [1/x] tee(x, t), and  hence 

J 

i = 1  

Hence  we deduce f rom (3.30) t h a t  

[ 1 ]  ~'  t 
(3.31) Vm+x(x,t) <= (m~- 1)[ x ~qj fdG(y) .  

j=2 0 

k~;,~, . . . ,  k S"" f e ; ( ~  . . . . .  d~j) te~ ~ ,  t -  y . 
, Ag, m+l (x )  "=  

t X i 
Now let x i = -k- ' where k > 1 is sufficiently close to 1 so t ha t  1 - -  kx(m -- kl) > 

1 x 
> ~- - -  ~ (m @ 1 --/c~) and  so t h a t  A-2 holds. Then  using (A-l)  and (A-2) one 

shows t h a t  

i1] : ( , o )  (3.32) vm+~(x,t) <=c~(m ~- l) x fda(y) ~... fq~1(dx~ ... . .  dxi). 
0 Bi, m \  ~1 ,  " ' ' , ]~]  A !~z) 

�9 ]~te~, ~ ( , t - - y  _--<e(m-}-l) #m(kx, t). 
i = 1  

Now b y  corol lary 2 
o o  

(3.33) tern (x, t) = ~ Vm (x, t) �9 [vn Gn Fn], 
~ t ~ 0  

and thus  

Thus  

o o  

n = O  

( k )  X = ~v~+l ( "  , t) < ~(m + 1) m(kx, t) * [~n GnFn] 
n 

and 

(3.34) tem+l(x,t) ~ ( m  @ 1) Ixl---jn~=~n_ -~- 1)Vm(kx, t)~[VnGnFn]. 

Take  any  k'  such t h a t  1 < k'  < k. We have  

1 
( ~ )  vo(~x, ~) �9 E ~  = ~ ( ~ ) ~ ( ~ ) v ~  (~ ,  ~- ~) 

kx 

1 (k k')x.  Then Choose M such t h a t  1/M (1 - -  kx) = d < T - -  

(3.36) vm(lcx, t)*[G,~_Fn] = fdGn(y) ~ f dFn(~)V~n -TT,t--y 
0 i=O k x + i 5  

t M- -1  �9 ( kx 
.[dGn(y) ~[F~(kx @ id)--  Fn(kx @ (i @ l)(~)]Vm kx +(i-k l)d 
0 i = 0  
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and  
t M-1Mx§247 (]c~ ) 

Vm(]C'x,t)$[GnFn] ~ ] d G n ( y ) ~  f dFn(~)Vm - - , t - - y  
0 i=0/~'x+(i§ 

(where r may  hold since par t  of the range of in tegrat ion has been chopped off), 

t M-1 
(3.37) ~ ]gGn(y) ~. [F:(l~' x zr (i ~- 1) 5) 

o i=o 
- - F ~ ( / c ' x + ( i + 2 ) ~ ] v m  k ' x + ( i + l ) ~ ' t - - Y  . 

Now for all i ~- 0, 1, . . . ,  ~ - -  1 we have 

/~x § i~ /c'x ~ (i § 2)~ 
] ~ , x + ( i + l ) d ~ f i l > l ,  and  / c , x + ( i + l ) d ~ / ~ 2 > l .  

Hence by  lemma 2 there are A ~ oo and  B ~ 1 such tha t  

F~* (kx + i~) - F* (kx + (i +1) ~) 
(3.38) F* (/~'x § (i § 1) ~) - 2"* (/~x + (i § 2) ~) ~ A B n . 

Fur thermore  /~' ~ / c  implies 

( ) ( ) (3.39) Vm-/Jxq-(i+l)d , t - - y  ~Vm k x q _ ( i q _ l ) d , t - - y .  

Thus (3.36), (3.37), (3.38) and  (3.39) imply  

(3.40) Vm(~X, t) �9 [FnGn] ~ A" .Bnvm(]C' x, t) * [Fn Gn], 

which together with (3.34) implies (3.22) and  hence the lemma. 

Proo/ o/ Theorems 2 and 3. These results now follow at  once from lemmas 

1, 4, and  5. 
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