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Ratio Limit Theorems for Cascade Processes *
By
P.E. Nzy

1. Introduetion and summary

In this paper we study the evolution of a family of particles each of which is
characterized by a real valued quantity which for convenience, we call its energy. We
assume that the process originates at “time” ¢ == 0 with a single ‘“parent’ particle
of energy Xg, which after a time 7' splits into IV other particles of energies
X1, ..., Xy respectively. Each of these “offspring” particles then behaves as a
parent; its behavior depending only on its energy, and being independent of any
other existing particles or of the history of the process. The quantities 7', N,
Xy, ..., Xn are random variables. Let G (f) = P{T < t} be the distribution func-
tion of T'; ¢;= P {N =} be the probability function of N'; and @;(z1, ..., ;| o) =
= P{X1 < 1,..., X; < x| 20} be the conditional joint distribution function of
X1, ..., Xj, given that a parent of energy xo has given rise to j offspring.

Let N (x, | zo) be the number of particles existing at time ¢ which have energy
equal to at least x, given that the process started at ¢ = 0 with one particle of
energy xo. Write N (z, t]1) = N (z, {); and let pn(x, t| ) = P{N (x, t|zo) = n}
and py (2, t) = P{N(z,t) = n}.

The process N (0, ¢| o) is simply the total number of particles at ¢, and is called
a branching process. These processes have been extensively studied by Harris [4],
[5], Beriman and HarRis [1], LEvINsox [7], and others.

In the case when gg = 1 the process is called binary. If in addition @g (%1, %2 | Zo)
admits a density function, which further satisfies certain homogeneity and
“‘conservation of energy” requirements, and if G is the exponential distribution,
then the process becomes what is usually called the binary nucleon cascade. In
this setting the parameter ¢ usually plays the role of the depth of an absorber,
rather than time, and the fact that @ is exponential is expressed by saying that
the cascade is in homogeneous matter. There is an extensive literature on these
cascades which may be found summarized in Bmarvcaa-Reip [2].

Clearly the language of time and energy is not essential, and the general
cascade model defined in the first paragraph can be applied to a variety of problems
of population growth in the physical and biological sciences. Another aspect of the
general process, namely the total energy of all particles existing at ¢, was studied
by the author in [70] and [11]. These papers contain further references to treat-
ments of other aspects of population processes. The most comprehensive work on.
this field is likely to be the book of T. E. Harris on “Branching Processes”,
publication of which is expected soon.
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The main purpose here is to study p, (z, £) for large ¢. Under an assumption that
no new energy can be created upon collision, i. e., that P{X; + +- + Xy < X} =
=1, one would expect that for sufficiently large ¢ all particles will have energy
<< x. This means po(z, £) — 1, and py (2, £) ~ 0 for » = 1. A more refined question
concerns the relative magnitude of p, (z, t) and py (2, £). The main result of this
paper is to show that for n > m

(1.1) Pu (@, )| pm(x, ) >0 as f-—>o0.

On the way to proving (1.1} we shall also show that (under suitable conditions
on ¢ and @), for any «’ < 2" and any n =1

(1.2) Pu@”, Opn(@,t) >0 as t-—>o0.
Both (1.1) and (1.2) are easily shown to be equivalent to the following state-
ments about the factorial moments of the process. Let

(==}

(13) (. ) =2k(Z)k!pn<x,t).

n
Then we shall see that the assertion (1.1) for all # > m is equivalent to the assertion
that for all n > m

(1.4) {2, ) thm (2, £) — 0 ;
and that (1.2) for all » is equivalent to
(1.5) (@, ) pn (2, £) = 0.

Results of the form (1.1), (1.4), and (1.5) were first obtained by J. Lopuszanski
for the special case of the binary cascade in homogeneous matter (exponential &)
(see UrBaANIK [13], and Loruszanski [8], [9]). The arguments in these papers use
closely the properties of the exponential distribution. The distribution ®s is
assumed to admit a density @g, but no regularity conditions on the latter are
explicitly stated. There are some gaps in the argument, and in fact (1.2) and (1.5)
are not correct without further restrictions on ¢z. This can be seen by the following
counterexample. Let g2 = 1, G(f) = 1 — et for t = 0, = 0 elsewhere. Take any
0<a< -+t .Let F(z) = Oforx g;- — o, = (2% + 20 — 1)2afor 5 —a <z <1,
=1 for &> 5. Let @g(x1, x2) = F(x1) F (x3). Then an elementary calculation
shows that for sufficiently small o, p1 (0.40, £) = p1(0.41, {) = 2¢e~t — et |- 2¢~2¢;
and p2(0.40, ) = p2(041,¢) = ¢t — ¢~2¢; p, = 0 for n = 3. This contradicts
(1.2) and (1.5). The proofs of (1.1), and (1.4) in [8], [9] rest on (1.5), and hence it is
not clear if these results are true for arbitrary ¢z, even for the special case when G
is exponential. (We have not, however, been able to construct a counterexample.)
A summary of the URBANIK-LoPUSzZANSKI results may also be found in BARUCHA-
REID’s book ([2], pages 273—4).

Since in the present paper we deal with a general class of distributions @,
our methods are entirely different from those of [8], [9]. We also, however, show
(1.5) first, and go from there to the remaining results.

Another question of interest is the following. We have remarked that p,, (z,{) -0
for n = 1, but if we take x = z; a function of ¢ which is decreasing at a suitable
rate, then one might hope to get more refined results on the asymptotic form of-
Pa (@, ). Results of this character will be given in part II of this paper.
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2. The integral equation of the process

Our formal starting point is an integral equation in the probability function
Pa(x, t| 2o). We shall show that this equation has a unique bounded solution which
is a probability function, and thence all results will be derived from the equation.

First, however, we give a brief heuristic derivation of the equation from the
physical situation described in section 1. First take » > 1. Starting with a single
particle of energy g, there are several mutually exclusive ways in which the
process may, at time £, arrive in a state in which exactly » particles have energy at
least equal to xp. Each way involves the creation, at some time y < ¢, of some
number j of offspring of energies 21, ..., z;, as a result of the splitting of the initial
particle; and the subsequent creation, respectively, of ng,...,n; particles of
energies at least x during the remaining time ¢ — y by the j new cascades originating
at time y. The numbers 7, ..., n; are subject to the restriction ny 4 --- -4 n; = =.
Since each of the j new cascades stemming from the particles created at ¥ now act
as new independent processes, we may multiply the probabilities of the above
events and then sum over all possible values of 7, y, %1, ..., %7, %1, ..., n;. This
yields (for n > 1)

(2.1) palw, t|2g) =
i

where Bj, = {(n1,...,m):0 = ny, h=1,...,§; ng + - + nj = n}.
(The symbol @;(day, ..., dw;| xo) means that the integral is the Stiecltjes integral
with respect to the distribution function @;(zy, ..., ;| xo).)

If » = 0 or 1, then it is also possible to arrive at a state of n particles of energy
at least z by having no collisions up to time ¢. If n = 0, this is the case for > x;
if n =1, for # < xy. Letting §;; = 1 if ¢+ = j, and zero otherwise; and D(x) = 1
if =0, and zero otherwise; we may incorporate these boundary cases in (2.1)
and obtain for all » = 0

(22)  palx, t{zo) = [Son D (x — o) + S1a D (w0 — #)][1 — G(#)] + donqo G (¢) +
—-]—ZijdG J‘“-f@]-(dxl,.. d%le Z Hpnh(x, y[x,)

j=1 Bjni=1

¢ )
J. y)j‘ _f@j dwl5'-':dlex0)z ﬂpnh(wzt—ylxi)7
0

Bjn =1

ﬂMz

Let Q(s, @, t| xo) = > pal(x, t|x)s”, (|| < 1). Then multiplying (2.2) thru by
=0
s and summing over n yields

(2.3)  Q(s,z,t|x0) = [D(x — 20) + s D(wo — @) [L — G(O)] + g0 G(t) +
—%—Zq,J-dG(y)j' f@;(dwl,...,dxj]xo)ﬁQ(s,x,t-ylxi).
i=1

j=1
Various special cases of (2.3) are well known and have been studied extensively.
For example, if G(f) =1 — et for t = 0, = 0 otherwise, then differentiation of
(2.3) with respect to ¢ yields
(2.4) [% + 1] Q (s, t|w0) = qoet + > g¢j [+ [ Dj(day, ... dw;lxo)ﬂ Q (s, %, t) @1).
i=1

i=1
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If it is further assumed that gg = 1, that @, satisfies the homogeneity condition
Dy (kewy, kx| ko) = Do (w1, x| o), and if D (21, w2 1) admits a density ga (1, x2),
then we shall see below that (2.4) can be reduced to

(2.5) [-a% + 1} Qs o, t) = J'f o (21, 22) @ (s, —;1- , t) Q (s, —;; ) t) dxi dxg,

where Q(s, z, ) = Q(s, z, t|1). Equation (2.5) is usually called the JaNossy
G-equation (see L. Jawossy [6]). For a summary of work relating to (2.5) see
Chapter 5 of BaruvcHA-REID [2]. We shall now prove:

Theorem 1. If v = znqn < oo, and G(0) = 0, then the set of equations (2.2)
n=20
have a unique bounded solution py (x, t|xo). This solution is a probability function,

e, Pu(@, t|m) =0 and 3 pu(x, t|we) = 1. Q(s, x, t|zo) = > pal@, t)@e)s® is
n=0
the unique bounded (for |s| < 1) solution of (2.3).
Proof. We proceed by induction on #. First take n = 0. Then (2.2) reads

(2.6)  po(x,t|we) = D(x — o) [1 — G(£)] + q0 G(t) +

i
+Zq]fdG f-~-f¢j(dx1,...,dxj]xo)ﬂpo(x,t—y[xi).

j=1 =1
Define p{” (x, t|@o) = 0, and for k = 0 define
27)  pfV (2 t|x0) = D& — @) [1 — G(H)] + g0 G(1) +

+§qudG ) [ Dy (daas... dx]]xo)ﬂp(’“’xtHy[xi).

j=1 t=1
Then 0 < p{"(x, t|xo) <1 — G (1) 4 qu(t) <1, and if 0 <P (x, t|mo) <1,
then 0 < pff* ¥ (x, t|zg) <1 — G(¢ —{—Zq; ) =< 1. Hence by induction on &

0 < pi( x,t]mo)gl for =0,1,2,....

But now it is straight forward to show that

i
Hp(k)(x, tle) — [ [ o (. t)21)
i=1

z~1

i—1 j
28) = Z | o (@, t|20) — pfF~V (z, ¥ @) - hﬂ p&’”*”(x,t]xhzl‘[ps’”(x,tm)
=1 =i+1

= z | P8 (&, 8] ag) — pF 0 (, ] 23)] .
Hence
| (Hl)(x t| @) — pP (=, t| 2p) I

29 <zg7j.dG y)j _f@] dxl,...,dxj'.l‘o)

j=1

j
[ [P @, t — y|a)
i=1

j
—T [ V@t — ylay)

=1

3*
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<Zq]J'dG y) [+ [Di(day, ... dx,|x0)z]p(k) @, ¢ —y|z)

j=1 i=1
— V@, t —yla)]|.
But | pl” (x, t|20) — p{’ (%, t|20)| =< 1, and hence by induction on % in (2.9) w
see that
[0 (@, ¢|20) — P (2, ] w0) | < v% Gu(t),

where ¥ = Z jq; << oo by hypothesis.

Now H (t) = > v Gy (t) satisfies the well known renewal equation

n=1

t
2.10) H@) =»G(0) +» [H{t—y)dG(),
0

and hence H(f) < oo for any f < oo (see e.g. FELLER [3]). Since Gy (f) is non-

decreasing, so is H (f). Thus |pff™™ (x, t|zo) — p{ (z, t|w0)| = zv@ G;(t) for all
i=k
m =0and all z, 29,0 <t < ' < oo. Hence there is a py(x, t|x0 ) = 1 such that

(2.11) PP (x, | 2o) — po (@, t| 20)
uniformly in x, 2o, and 0 < ¢ = ¢'. From (2.7) it also follows that po(x, t|xo)
satisfies (2.3).

Now suppose that we have shown for n =0,1,...,N — 1, (N = 2), that
there is a function py (x, ¢| o) satisfying (2.2) and such that 0 < p, (z, t| o) < 1.
Define p'§ (x, t|20) = 0, and fork = 0

(2.12) p%+ (2, t| o) = W (2, | 20)

0 i ] i
+ 2 g [dG(y) [+ [ ;w1 ... day| ) Z{PS’@) z, t—y|aa) | [ pol, t—?/]%i)},
j=1 0 i=1

where e
Wi (e, t|2o) = [00n D (x — 20) + 10D (o — 2)][1 — G(¢)] + dongo G (?)

o

—{—Zq]j'dG f---j'(ﬁ,-(dxl,.. daj | 20) >, Hpnh —y| @),
=1 ‘Bi =1
and where 7 "
B;N: {(7’&1, ,%j)l(nl, ""nf)EBj”7 n =+ N’ Mg * N}

n
‘We shall need to carry along with the induction the fact that z Pi(z, t|w) = 1.
i=0
This has been shown for n = 0. Suppose it trueforn =1, ..., N — 1. Let

n
on (@, t|@0) = > pi(@,t|x), and o = zpz (x, tlxo) + P (@, ] wo) .
i=0
Then applying (2.2) forn = 0,1, ... ,N — 1, and (2.12), yields
o V@, t|z0) =11 — G(H)] + G (1)
©o i j
+ 2 [dG ) [ [ i, ... . da;]x0) ] [ oF (. ¢] o).

j=1 0 i=1
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Now induction on £ yields at once that
(2.13) o® (@, t|xg) <1

forall £ =0,1,2,.... From (2.12) it is clear that p¥ (z, ¢|2) = 0, and hence
fork=0,1,...

(2.14) 0=pP(x,t|m)=1.

Now by (2.12)

(2.15) |p(k+1)(x, t|zo) — P (x, t| o)

<zq,_['dG ) [ [ Bidas, ... dy|x0) Z [p(k) (@, t — ylwa) — PP, t — y|w)].
j=1

But (2.15) is of exactly the same form as (2.9), and hence the same argument as

before yields that there is a function 0 < py (, t} 29} = 1, such that

uniformly in @, zp and 0 <t < ¢ << co, where py(z, tlxg) satisfies (2.2). This
completes the induction for the first part of the argument. For the second we need
only note that (2.13) and (2.16) imply

on (@, t|ze) < 1.

To show that these are the unique bounded solutions, suppose that there is
another set, say ry (%, t|20). Let uy (w, t|20) = e | py(x, t]30) — rp (2, t|xo)|,
where o, = 0 is to be chosen later. Then the same kinds inequalities that led to
(2.8) yield

(2.17)  ug(x, t| o) <zq]fe “VAG (y) [ [ Ds(day, ... ,dus| 20) Zuo @, t—yl ).
j=1 =1
Since pg and g are bounded (uniformly in , %), it follows that sup {ug(x, t]xo):

x,20,0 S =t} = u(t’) < oo. Hence taking the supremum of both sides of
(217) overx, zg, 0 = ¢ < ¢, we get

’
(2.18) 1< >jgfem*vdQ(y).
0

Since by assumption G(0) =0, (2.18) is contradicted by taking «q sufficiently
large. Writing

pn(%, tlxo) = Wn (.%', t]xo)

1
+ 2 [dGy) [ [ Bi(day, ... dx;|z0) Z {pn z,t—y| ) HI’O (x t——y[x,}
0

‘L#O(

proceeding by induction on #n, and supposing that uniqueness has been proved for
n=1,...,N — 1, weareled to an equation of the form (2.17) for uy (x, t[mo), and
thence to the uniqueness forn = N.

We have seen that py, (z, t] %) = 0, and hence to show that this is a probability

[eed
function we need only show that o (z,#|xo) = z Pu(x, 8] 20) = 1. But o satisfies
n=0
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(2.19) o(,t|xo) =[1 — G()] + g0 G'(t)
oo ¢ )
-+ ZijdG(y)_f---J'@j(dxl, ...,dlexgﬁg(x,t~y|xi).
i=1

i=1 0
An almost direct copy of the uniqueness proof just given shows that (2.19) also has
a unique bounded solution. But g (x, tlxo) = 1 is a solution, and hence the only
bounded solution.

Turning to (2.3), it follows from the definition of @ that for [s| =< 1 the latter
is a bounded solution of this equation. The uniqueness proof again proceeds
exactly as above. This completes the proof.

During the remainder of the paper we shall need an essential homogeneity
assumption on the @;-distributions, namely that for all constants £ = 0, and all
j=1,2,...

(A-l) @j(kxl,...,kxj[kxo):@j(xl,...,lewg).

If this condition is satisfied, then by replacing ps(x, t|xo) by pa(kz, t| kzo) one
may easily show that the latter satisfies (2.2). Hence by the uniqueness part of
theorem 1 we have

(2.20) Pz, t]20) = palke, t| ko).

Thus py(x, #|@0) = Palx/xo, t|1), and writing py (x, t|1) = pu(w, 1), Q(s, 2, t]1)
= Q(s,x, 1), and D (21, ..., 7| 1) = Dj(xx, ... ,25), we see from (2.2) and (2.3)
that these functions satisfy

(2.21) pa(@,t) = [douD(x — 1) + 61 D1 —2)][1 - G@#)] + 50n§Io G (1)

—I—Zq]jdG ) [ [ By(dar, ... day) > I—I_pnh(__ . )

i=1 Bjai=1

and Q(S,x,t)=[D(w—1)+$D(1—x)][l-—G(t)]—FqO (.)
(2.22) —i—Zq]fdG [u-jcb,-(dxl,...,dxj)l_'[lqs,;_i,t_y),

. j=1
That these equations have unique bounded solutions can be argued as before. We
thus have

Corollary 1. If v = > ngn < o0, G(0) =0, and (A-1) is satisfied, then the
n=0
equations (2.21) have a unique bounded solution py(x,t) = pa(x, t|1), which is a

probability function. Q(s, x,t) = > Pn(x, t)s® is the unique bounded (for |s| < 1)
solution of (2.22). f=0

We remark that if G/(f) = 1 — et then (2.22) can easily be reduced to the form
(2.5).

For one of our subsequent results we shall also need a smoothness condition
in 9. For any A > 0, let AD;(x1, ... ,x;|x0) denote the probability (with respect
to @;) of the j-cube whose sides are (#;,x; + 4),7 =1, ... ,j. Then the require-
ment is that there is an ¢ > 0 and an « < oo such that for all A > 0, and all £
satlsfylng 1 <k<1+4 ¢ wehave
A@,(xl,“.,zjlkxo) <
AQJ(.'L‘l, ,lexo) =

(A-2)
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(Note that qualitatively, the physical condition that higher energy parents tend
to have higher energy offspring is consistent with (A-2) with o« = 1.)

Most of our subsequent analysis will be carried out in terms of the moments of
the process, and we hence proceed to write down the equations satisfied by these
functions. It will be convenient to work with the factorial moments. The k-th
factorial moment is defined to be

e 0=k S (2)pale,),

7n=0

where we adopt the usual convention that (Z) = 0 for n < k. We introduce our

next main assumption. Note that until now there has been no restriction on the
range of @; (only that it be zero for negative arguments). We now assume that

(A-3) [ [@ydar, ... da) =1 for j=1,2,...,
4

J
where .4]‘:J(x17"-:x]'):0§xi:i:1:---:j;zxi§1}. In words this says
i=1

that the total energy of a family of offspring particles does not exceed the energy
of their parent particle (with probability one).

It will become apparent later that this assumption is crucial for our main
results to hold. An immediate consequence of (A-3) is the fact that

(2.23) Pu(x,8)=0 for n> [;ﬂ,

where [«] is the largest integer smaller than or equal to x. Heuristically, one may
argue this fact by saying that due to (A-3) the total energy of the process at any
time ¢ is always at most one, since this is the initial energy, and no new energy is
ever created. But then it is impossible to have more than [1/x] particles of energy
at least z. Analytically, (2.23) can be easily deduced from (2.21) by induction on
n, and using the fact that

(2.24) polx,t)=1 for x>1.

The latter follows from the fact that for z > 1, the function 1 satisfies (2.21) for
n = 0, and from the uniqueness of the solution.
An immediate consequence of (2.23) is that

[1/z}
(2.25) pi (@, f) =kl > (Z)pn(x,t)

n=0

is a finite sum, and hence all moments exist. Another trivial but useful consequence
is that

(2.26) tr(x,t)=0 for k> [%} .

The existence of moments thus being guaranteed, we may multiply both sides of

(2.21) by k! (:) and add over n, or differentiate (2.22) k times with respect to s.

This yields
4 1 ®
(2.27) pr(@,t) = v (x,8) + v [dG(y) [dF () ux (; t— y) ;
[} 0
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where
oo j

(2.28) Fa)y=v13 > ¢
j=1i=1

and j

(2.29) Dy(x)=P;(1,...,1,2,1,...,1), theax being the i-th component;
and where v1 (2, ) =[1 — G D(1 — %), and for k = 2

oo 4
(2.30) v (z, 1) :jgzgjb"d(}(y)f-.-f¢j(dx1, o day) Z (kl, k}) Hyk ( )
(B;,c was defined below (2.12).) Note that F is in fact a distribution function and

that F(1) =
It will be convenient to adopt the following notation for convolutions:

Tg(t—y)dG(y) =gx 4

f(—;—)dF () =fOF

Ot—iHo

oo 1
[ [#(5.e—y)aP@acy) = he1ary,
00

where g, f, and h are any functions of one and two variables respectively for which
the above integrals converge. We shall also write ¢ = G, Gy = Gy_1% G, F = F1,
Fo=F, 10F,Fy=Gy=1,F, =1— F,. Finally set

U%O)(x, 8) = vg(x,t), andforn =1set

(2.31) o (@, t) =10V (2, ) 8 [GF] = vp (2, ) ® [Gn Fa].

Corollary 2. For all k=1, up(x,t) = Zv"vi”) (x,t). The series converges
n=0
uniformly in ¢ and for x = xg > 0, and is the unique bounded solution of (2.27)
(bounded 1m0 <t <t < o0, 0 <z = =1).

Proof. It is easy to show that there is a K < oo such that vp(x,t) < Kforallt
and all # = 29 > 0, and hence that vV (x, t) < K Gy () F, (x) < K F, (o). The

fact that > ¥} (wp) << oo for any » < co then implies the first part of the
i=0
corollary. The uniqueness follows by an argument very similar to that of theorem 1.

3. Main results

We shall need regularity assumption on F and G. Let X be the random variable
with distribution F. We shall require a smoothness condition on F in the neigh-
borhood of 1. To be precise, we assume that there exists a y = 0 such that

(A-4) limz-? P{e-* < X <1} exists.

>0+

It is easy to find various reasonable sufficient conditions for (A-4) to hold; for
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example that X should have a positive continuous density in an interval (s, 1] for
some 0 < & < 1, or that X should have a density with a positive continuous
derivative of some order in (g, 1]. That some condition such as (A-4) is needed can
be seen from counter-examples of the kind given in section 1.

The requirement on @ involves the tails of the distribution. We shall assume
that for any » > 1 there is an oy > 0, such that

Gt + o) — G(t)

Gn(t + o) — Gulf)

uniformly for 0 < o = «p. Note that a sufficient condition for (A-4) is that the
associated densities (g, g5} of (G, G4) should satisfy ¢ (f)/gx (f) — 0 as ¢ — co. This
is satisfied by many common densities, such as the exponential, gamma, chi-
square, truncated normal (truncated at zero), ete.

We are now in a position to state our main results.

Theorem 2. If v < oo, G(0) = 0, and (A-1), (A-3), (A-4), are satisfied, and G
either satisfies (A-5) or is truncated (i.e., G(t) = 1 for some t <C oo), then for any
0 <2 <2 =1, and any integer k such that 0 << k& < [1/x],

(A-5)

-0 as ¢-—>o0,

3.1) e, ) [pr(x ,t) >0 as {—>oo0.
If kb > [1]a], then pr(x, t) = 0.

Theorem 3. Under the conditions of theorem 2 plus (A-2) we have for all integers
m = [1/x] and all n > m, that

(3.2) Pule, )pm(x,0)—>0 as f-—>oco0.

We break up the proofs into several lemmas. The first states a well known
relation between the probability function {p,(z, )} and the moments {uz(z, t)}.
It enables us to reduce the problem about the probabilities to one about the
moments, a device previously used by Lopuszaxskrin [8] and [9].

[1/z]
1 (— Lyk+n
Lemma 1. Pn(x, 1) :mkgnm'“[uk(x,t)

Proof. Substitute the definition of yz (x, f) and note (2.26).

In the next two lemmas we summarize some consequences of (A-4) and (A-5).

Lemma 2. If F satisfies (A-4) and if b, b, b"' are any constants satisfying
0<b =b=b" <1, then there exist constants A << oo and B < 1, such that for
any integer ny = O we have
£ (2”)

T @)

(3.3)

foralln = 1, and all (&', x') satisfying b’ < o' < ba'’ < b".

Proof. We need a theorem of the form of theorem 2 of [12]. Let Z; = — log X;,
where {X;} are independent identically distributed with distribution F. Let H
denote the distribution function of Z;. Then H satisfies the hypothesis of theorem
2 [12]. Then the latter theorem states that for y1 << ys, we have Hy (y1)/Hy (y2) — 0
as n — oo. Although the convergence is not asserted to be uniform for any parti-
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cular set of (y1, y2), the proof is actually strong enough to yield such uniformity,
and we shall here require it. It is easily seen that from the definition of {Bj,} and
{Cyx} in [12], it follows that given any ¢ > 0 and any 0 <C y1 < ys <C oo, there are
sequences { By} and {Cos} such that By, — 0, Cop = 0(n¢), ¢ < oo, and such that
for all y e[y1, y2],
Ly + DHaly) _
el(y + Dyr* =
This implies that for any 0 < a' < a < a” < oo there are constants 4 < oo,
B < 1 such that

(3.4) (1 — &) (1 — Bog) = (1 + &)2Cyy .

Holy)
(3.5) Trinty”) = 4 Bn
for all (y',y”) satisfying ¢ <y +a <y’ Za”. Setting % = — logz”,
y' = —logx’',a’ = —logb”,a"" = —logb’',and a = —log b, we have our lemma.

Lemma 3. If G satisfies (A-5) then for any integer n
Go-1(t + &} — Gn1(f)

(3.6) Goli £ 1) = Gl —0 as {-—>oc0, uniformlyfor 0 <o =op;
and

Gu-1(t) — Gu(t)
3.7 Gall) — Gua 0

Proof. This can be shown by induction on »n. We omit the details of the calcula-
tion. (In the case of (3.7) take o0 = c0.)
The next two lemmas are the main ones in the proof of theorems 2 and 3.

Lemma 4. If the conditions of theorem 2 are satisfied, and 0 << o' < b < b" < 1,
then

(3.8) L@, Hpp( ,t) >0 as t—>oo
uniformly forb’ <’ < bz b,

Proof. Suppose that G satisfies (A-5). The proof is by induction on k. First
take k = 1. By corollary 2 of theorem 1

5 Some® ) S v {1 — GO]% Cult)} - (D(L— ) O Fule))
pmE’,t) _ n=0 _ n=0

MED T Sy - G00 60) - (D0 ~#) 0 R

S 00 [Ga(t) — Gmsr ()] [F% ()]
(3.9) =220
() = Gua (O] LF @)
N oo
S [Ga(t) — Guss O] [F (2]
n=10 n=N+1
= N+1 + o0 )
S v (G (t) — Grer ()] [F )] >
n=0 n=N+1

The first term on the right side of (3.9) goes to zero because of (3.7). On the other
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hand, by lemma 2, the second term can be made arbitrarily small (uniformly for
(z', ") in the required domain) for N sufficiently large. This takes care of £ = 1.
Suppose that the lemma is proved fork = 1, ..., M. By corollary 2

°z_°gn o1 (@7 1) @ [Gn (1) Fi (2]

ums {1
(3.10) @) / -
Zg” vm1 (2, 1) @ [Gn () £ (37)]
O 2]
Let vi(@sm; b, te) = qufdGn(y) f---_f@;(dxl, o day)
j=1 1 Aj
k i x
'B;Z,!L(kl, skj)i];];#h(x ,t—y)

Then forany 0 < 4y =< ¢, (3.10)

oZov”vMﬂ(x”;n +1;0,t — Ao) Fp(x”)
(3.11) <=0

S opre (s mof 15 0,8 — Ao) # Fau(x)
n=0

n,g g" oy (@34 156 — Ao, t) # Fp (27)
L=

Svruope (@' - 156 — Ao, £) % Fy ()
n—0

We shall show that for suitable choice of 49 and ¢, the right side of the above
inequality can be made arbitrarily small. First we show that given & there is
to << oo and an Ag =< ¢y such that

o1 (@ 5m 415 0,8 — Ag) % Fp(2”)
vnge1 (23 m 4= 15 0,8 — Aoy Fp(x')

We start by finding an Ny such that (3.12) holds for all » = Ng. Divide the
interval [2”, 1] into m subintervals of equal length 8, where m is chosen large

’

enough so that § < min {% , i (' — x’)}. Then for any = the left side of (3.12) <

(3.12)

<¢ forall t=14.

m—1 2" +(k+1)6

UM+1<xT] ;n-l—l;OJ“Ao)an(V})
F=0 a3tk
(3.13) =1 20

@'M+l<i sn 4 1;0,t~Ao) dF (1)

E=0 &'+ (k+1)8 1

where the inequality may hold since the segments [#’, 2 -~ 6] and [1 — (3/4) -
- (#"" — '), 1] have been deleted from the range of integration of the denominator.
Then (3.13) <

m—1

* 44 * 24 x// . .
3 BB k) = B Do)t (g i+ 1306 —4o)

m—1 ,

S FL A (k4 18] — Fie + (h+2) a])vM+1(
k=20

(3.14)

x
w’+(k+l)6’n+1’0’tﬂ‘40)
=

Now clearly one can find a by < 1 such that for all (z’, «") satisfying b’ < 2’
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<bx"” £b”,andk =0,...,m — 1, wehave

@+ (k+1)5 & 4 (k+1)0

(3.15) 7+ ko T+ (k+1)6

< bo; Sho; SEETUL <.

& +20 =
Hence by lemma 2
Fele” + ko] | Fala”+4-(k+1)d] = Fulo'+ (k+2)0]
File' +(k~+1)0]°  File'+(k+1)6] *  Fola'+ (k+1)0]
all -0 as n — oo, uniformly for k, #’, " in the required ranges. Next note that

2" [[x" 4 (& -~ 1)6] = o'[[«" -+ (K + 1)J], and hence that

’7 4

X X

UMH(m’m§”+1§0,t“A0)§UM+1<m>;n—[— 1;0,t — Ayp)

(since by its definition var41 is clearly a non-increasing function of its first argu-
ment). Hence, dividing the numerator and denominator of (3.14) by F, [z -+
4+ (k& -+ 1)6], we see that the left side of (3.12) goes to zero as n — oo, and thus is
< ¢ for n > some sufficiently large N.
We now consider the ratio (3.12) for n < Ny. By the induction hypothesis we
havefor k=1, ..., M that
we (@, O/pg (e’ ,t) >0 as {—oo0,

uniformly for b’ < 2" < ba"” < b". Thus given any Ay <C oo and ¢ > 0, thereis a
tp << co such that for¢ = fpandy < 4,
.’L"/ x/
(3.16) /tk(»x-i—,t——y)éeyk(x—i,t—y)
for (x',«’') in the required range and #; = «'’. Therefore by definition of vy (x ;7 ;¢1, 12)
vmar (', n+1,0,t— Ag) = evpyrs1(2’;n + 150, — Ao)

forallt =4, b <a' <bx'" <b"”.
This in turn implies that for ¢ = {4,
Cum(a”;m 4 150,86 — Ao)k Fp(2'') =

’’

1
= [oarea (24 10,6 — do) aFa ()

3.17) = SfUM+1 (x— i+ 1;0,t—A0> dFn(n)

= S_fUM+1(% sn + 1;0,t——A0))an(17)

=cgoyr(®;n+1;0,i— Ag) 2 Fp(x').

Although in the above construction fo may depend on =, it is clear that one may
choose it sufficiently large so that (3.17) holds for n =0, 1, ..., Ny. Since the
result has already been established for n = Ny we have (3.12).

We turn to

(3.18) onsr (@5 m + 138 — Ao, 1) 5 Fr (2”)

vy (a3 - 158 — Ao, )k Fp(x) *

Arguing as we did for (3.12), we show that given any & > 0, there is an N such
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that (3.18) < e for all » > Ny and all (2', ") satisfying b’ < &’ < ba”’ < b,
We complete the proof by showing that for any N¢ we may pick 4p, so that for
sufficiently large ¢

No
Svruprea (e’ sn 4 15t — o, t) % Fp(x”)
(3.19) ] <e.
Zg” v+ (@750 + 158 — Ao, 1) % Fa(a')
n=

To show the latter, it is in turn sufficient to prove that for n = 0,1, ..., Ny,

1 77
_fUM+1 (3;— ;n 4 1;t—AoJ)an(77)

P

(3.20) e
[ (Z-snt 23t = do.t) dPuat)

>0 as f{->oo.

’7

Let t)—j zq,j---f@j(dxl,...,dxj)z <k1 k k])ﬁmc (x , )an( ).

e By K ki) 5 ED

From (3.6), lemma 3, it follows that forn = 1,2, ...
i
fh (t—y)dGn(y )/fh(t — N dGui1(y) >0 as t—oco.
t—4o t— Ao
This implies (3.20).

It remains only to consider the case when G is truncated. Say G(z) = 1. Then
for sufficiently large ¢, first term of (3.9) and the second term of (3.11) may be
dropped; and those parts of the proof dealing with these terms deleted. The
remainder of the proof goes through as before.

Lemma 5. Under the conditions of theorem 3
(3.21) P (22, 8) [ o (22, 8) =0 as f—>oco.

Proof. It is sufficient to prove (3.21) for » = m 4 1; and to show this it is in
turn sufficient (by lemma 4) to prove the existence of an 2’ > z and a Dy <C eo,
such that

(3.22) fant1 (@, ) < Do g (27, 1) .
The proof is again by induction. Take n = 1. Then

(3.23) pe(,f) = va(x, t) -!—vfdG de y2<% ,t—y),
where
=} 11—z 1—2
(3.24) va(x, 1) — zq]jda(y)j---quj(dxl,..  day) 22ﬂ<_ t—J)lLL(%,t—y).
= z x k=1
tEk

Note that the range of integration of @; may be truncated above at 1 — 2 since if
x; > 1 — x, then (2, xz) e 4; implies x; + 2 =< 1, which in turn implies z; <

and u (x—mk , t) = 0; similarly if 2y > 1 — z. Next note that u (% , t) =0 for

i
@; > x implies that > u (%i ) t) = [%] . Hence
i1 3 L
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1—2 1—2

[4
(3.25) wa(e, ) <2[1/a] S q; [dC () [+ [ D;(dar, ..., day) zp<_ t—y)
0 @ ]

i=1

Now making a change of variable z; = (1 — x)x;in the above integral and applying
(4-1) and (4-2) we can show that there is an « <C co and a £ > 1 such that

(3.26) vale, f) < 24 [ﬂ ko, 1).
But p(x,t) = Zv” 1—-a (l—x)®[GnFn]—[l—G(t]*zv"Gn F; ().
n=20
Hence, we have
v;O)(x,t):vg(x,t)§2oc[%] (1—a *z"’nGn F (kx),

n=0
and by (2.31)

(3.27) v (x, t) = v oD (z, t)*[GnFn]<2oc[ ](1— (t))*ivfai(t)ﬁ’;‘(kx).

Thus by corollary 2
328 ) =20] L]0 - 60)53 0+ Dy Ga) Fika).
#=0

Now choose %’ such that 1 < k' < k. Then by lemma 2 there is an 4 < oo and a
B < 1 such that F, (kz)/F, (k'z) < A B*. Hence there is a ¢ < oo such that

‘ug(x,t)§2oc[%}0( GO) % > 9 G (O) Fy (k' ).

n=0

Setting aC' = Dy and k'« = a’, we thus have (3.22) for n = 1.
Now assume (3.22) true for n = 1, ..., m — 1. Consider vg(z, ) as defined in
(2.30). We have

Ot (@ Zq;jdG Z (km—l-l ) f"'f@f (dxy, ..., dx;) n,uk( )

- 1aens kj
(3.29) = B A i=1

where Aj,m (@) = {(x1, ..., %) (@1, ..., 25)ed ;& =1 —x(m — k),t=1,...,5}
The interchange of order of summation and integration is permissible since there
is a finite number of terms in the sum. The restriction of the range of integration

to Ag-“y)n +1 is legitimate for the following reasons. First, by (2.26), & —xx— <1, for
otherwise ug, ( Z - ) =0. Second (1, ...,%;)¢4;implies in = 1. Hence for
any 4 =1, ...,j we have xZOSI—sz§1—kaQ—1—x(m—{—l—klo)

P DT
By rearranging some terms in (3.29) we can show that

(3.30) omir(@.0 = > [dG(y z(l(c_’;”}c)',) [ [ Pdan, .. dm)-

j=20 Bj,m
j Mlc»+1< b — ?/) l
i

=1(k1+1).uki(x_i“=t_y>'

3, m+1

ALl
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(There would be equality in (3.30) except that the terms

zq?ydaz [ f@,dxl,...,dx,-)/mH(x%,t_y)

j=2 ?’ﬂlA ,m+1

have been added to the right side.)
But now ppa(x, £) = [1/a] pr(z, £), and hence

S (ke (afa, )+ 1) g e, ) < [1e]

i=1
Hence we deduce from (3.30) that
0 4
1
331 omia(e) < m+ 1) 7] 206w
m
'Z( ) [oor [y, ., dap) T [ e (_~ t—y)
Bjm kl’ . k] Aj,m+1 (@) i=1
Now let z; = %— , where k > 1 is sufficiently close to 1 so that 1 — kx(m — k;) >
> % — % (m 4+ 1 — k;) and so that 4-2 holds. Then using (4-1) and (4-2) one
shows that
(3.32) vmer(x,8) < a(m L 1)[ } fdG ) >, ( k) [ [ @sday, ..., day) -
5 A

Bim A(kl)
- f
.HM,CZ(_.,;_ ><<7 (m 1) }um ka,t).
i=1 i
Now by corollary 2
(3.33) Um (@, t) = z Um (%, £) @ [v7 Gy Fy],
n=20

and thus
P (@, 1) < a(m + 1) [ﬂ > vk, 0) & [y Gy Fy].
n=0

Thus
yeo®, | (2,1) < o (m - 1) [ﬂ nivm(kx, B & [vn Gy Fal,

and

(334)  miilf) Sa(m 1) [ﬂ 2 (14 1)om (2,02 % G P,

Take any ' such that 1 < k' << k. We have
z ka
(3.35) om (b ) # (G Tl = {460 (y) AP ) om (— t— y) :

Choose M such that 1/M (1 — ka) = 8 < 4 (k — &')2. Then

M—1 kx+(G+1)8

(3.36)  om (k, £) ® [Gp F] = fdGn S [ dFa() vm<’“_ t——y)
i=0 kzx+id

M—-1

i
< [d@ Fy(kx+i6) — F, ; ke ).
= Ja6a () S [Py ba -+ 18) — Fiew o+ (i + 1) 0 vm (o500~ );
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and
, ¢ M—1kz+(i+2)6 e
om(l 2,8 © (G Fa] = [dGu(y) > | AFu(n)vm (——,t—y)
0 =0 Fa+@+1)8 Y

(where + may hold since part of the range of integration has been chopped off),
¢ M-1
(337) = [dGn(y) 3 [Fa(k z + G +1)8)
0 i=0

* 1, . 4
— Fy(k x+(z+2)6]vm(m,t—y>.
Now forall i =0,1,..., > — 1 we have

kx 4+ 16 Ko+ (@-42)6
Frrarns=p>1 and oy =>1.

Hence by lemma 2 there are 4 <C co and B <C 1 such that

Fp(kz +i0) — Fy (kx + (i +1) )
Fr(Kz~+ (1 +1)0) — Fi(Kz + (14 2)9)

Furthermore %' < k implies

B39 (et Y) 2o (mr e y)-
Thus (3.36), (3.37), (3.38) and (3.39) imply

(3.40) v (kx, 1) @ [FpGn] < A« Broy (K ,t) % [Fy Gal,
which together with (3.34) implies (3.22) and hence the lemma.

(3.38) < ABn.

Proof of Theorems 2 and 3. These results now follow at once from lemmas
1, 4, and 5.
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