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Summary. This paper contains the mathematical validation of a new approach to 
mathematical programming problems based on a penalty ftmction method. The given problem 
is replaced by a second ,,auxiliary" problem which, in many cases may be solved by stand- 
ard methods since it involves the maximization of a concave function of a single variable 
over an interval. The auxiliary problem is defined implicitly in therms of the constituents 
of the original problem. Examples are presented in order to illustrate the theoretical results. 

1. Introduction 

The various "penalty function" algorithms which have been introduced in 
recent years may be placed into two broad categories which might be termed 
parametric and nonparametric. The class of parametric methods includes the 
Sequential Unconstrained Minimization Technique (SUMT) of FlnCCO and 
McCoRMICK [3] and the algorithms described by ZA~GWrLL [8]. Parametric 
methods are distinguished by the presence of a variable which weights the penalty 
term associated with the constraints of the problem and which is varied by the 
problem solver in order to attain the desired solution. Nonparametric methods, 
such as HUARD'S "Methods of Centers" [6] and FIACCo and McCorMICK's "SUMT 
Without Parameters" [4], treat the objective function as an additional constraint. 
Convergence is obtained by a successive tightening of tiffs artificial constraint and 
the amount of tightening is determined from problem data alone; the problem 
solver does not independently vary any external parameter to attain the desired 
solution. 

The parametric techniques may be further subdivided into "exterior" and 
"interior" methods. I f  the sequence of points generated is feasible, the method is 
termed interior. By contrast, the exterior methods generate a nonfeasible sequence 
and the method yields the solution ff the sequence ever becomes feasible. An 
example of an interior method is SUMT whereas the techniques of PIET~ZY- 
KOWSKI [7], ZANGWILL [8], and FIAcco and McCoRMICK [5] are exterior algorithms. 
0nly recently nonparametric exterior methods have been introduced [2]. 

Lagrangian techniques [e. g., see I] are related to parametric penalty function 
procedures in that both types deal with the constraints by incorporating them, 
together with the objective function, into an "auxiliary" function whose uncon- 
strained minima must be computed. The parameter(s) in the auxiliary function are 
then varied in such a way that the minimizing points of the auxiliary function 
approach the solution of the original problem. 

An excellent survey which includes a description of the methods mentioned 
above in addition to several others may be found in [2]. 
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The method to be described in this paper  is a parametric interior algorithm 
which has some of the features of the methods of centers and some of the features 
of a lagrangian approach. Comparisions to existing techniques will be offered from 
time to t ime in the sections tha t  follow. Section 2 describes the general method of 
approach while Section 3 contains the details of the method together with proofs. 
T h e  structure of the "auxiliary problem" is investigated and it is shown tha t  the 
method is valid from a mathematical  standpoint with the proper assumptions on 
the constituents of the original problem. 

Some examples are given in Section 7. 

2. Definitions and Assumptions 

The problem which we are interested in solving has the form 

minimize ~ (x) 

subject to g(x) > 0 (2.1) 

x ~ C  

where g (x) = (gl(X) . . . . .  gm (x)), x e E n and C is some nonempty  subset of E n 
(possibly E n itself). Let  G - ~  {x: g ( x ) >  O} and S = G (u C. For  any given 
problem the decomposition of S into G and C is determined by  the nature of the 
technique to be described. In  general, C will be E~t, (En)+ or a linear polyhedron 
in E ' ,  t ha t  is to say, we will generally be interested in letting the nonlinear con- 
straints describe G. Computational considerations will dictate tha t  C should be 
chosen in such a way tha t  nonlinear functions may  be easily minimized over it. 
The mathematical  theory of the method does not depend on the choice of C. 

I t  is necessary to make a certain number  of assumptions on the constituents 
of (2.1) in order to validate the theory. We therefore assume tha t  

a) r is convex, 

b) g~ is concave (i = 1 , . . . ,  m), 

e) C is closed and convex, (2.2) 

d) i n t G n  C r r  

e) problem (2.1) has a solution, and 

f) the function 0 (., r) defined in Section 3 possesses a unique min- 
imizing point over C ff i t  is minimized a t  all. 

Let  x* denote the solution of (2.1). Assumption (2.2-f) will imply tha t  x* is 
unique. 

The following notat ion will be used throughout the paper. 

(E~)+ 

OG 

int G 
x(.) 

D[O] 
N(x*; ~) 

R 

{x: x = @1 . . . . .  xn) T and x > 0) 

botmdary of G 

interior of G 

alternate notation for the function x: ~ - +  x(~) 

domain of the function 

open sphere about x* of radius e 

closure of N. 
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3. The General Approach 

Associated with problem (2.1), we require a function ~: (Era) + -+ (El) + such 
tha t  the composite function z(g (.)) has the properties 

a) 7~(9(x))=0 if x e a G n C ,  
b) z ( g ( x ) ) > 0  if x ~ i n t G r  (3.1) 

c) z ( g ( ) )  is concave and continuous over G n C. 

We shall refer to such functions as penalty terms. Examples of such functions are 

a) z (g (x)) = rain {gl (x) . . . .  , g~ (x)} 

b) jr(g(x)) = ]-~ (gi(x)) ~' where ~ > 0 ,  ~ i = l  
i = 1  i = 1  

0 ff gl(x) for s o m e i  

c) ~ ( g ( x l ) =  -~ t 
~= l/(g~(x)) i f  g(x) > 0 

(3.2) 

We note in passing tha t  similar definitions are made in constructing other 
parametric penalty function approaches. The SUMT method of FIAcCO and 
McCo~zCK essentially required a function ~: i n t ( E m ) + - + E  1 such tha t  the 
composite function ~(g(.)) has the properties 

a) ~:(g(xk)) -+ --  oo if  x~-+ aG n r 

~(9(x)) finite if  x ~ i n t G n C  (3.3) 

b) ~ (g ( ) )  concave over in tG (~ C 

in place of (3.1). We also note that  HVARD'S methods of centers (which are non- 
parametric algorithms) make use of functions of the same type as described in (3.1). 

We now define the penalty /unction 0 : Em X (El) + --~ E 1 by  means of the 
equation 

0 (x, r) = q5 (x) - -  r ~ (g (x)) (3.4) 

where r > 0 is a scalar parameter.  We note that  0 (., r) is convex as a function 
of x and 

/=~5(x )  if x e 0 G n C ,  (3.5) 
O(x 'r )[<qS(x)  if x ~ i n t G n C .  

Thus it would appear tha t  0 (', r) is more likely than qi to have a minimum in the 
set int G n C. This is desirable from a computational standpoint if  the constraints 
defining G are troublesome, for knowing that  the minimizing point avoids all 
constraints of the form gi (x) > 0 essentially means tha t  an unconstrained min- 
imization technique may  be employed in determining this minimizing point. Of 
course, it could happen tha t  0(., r) is not minimized over S at  all for certain 
values of r. 

When dealing with SUMT, the function 0 (', r) has the properties 

O ( x , r ) = { + ~  x ~ a G n C ,  
finite x ~ int G n C. 

Thus the function 0 (., r) generally attains its minimum over S for fixed r and this 
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minimum must occur in the set int G r C. As above, the constraints g~ (x) ~ 0 
essentially may  be ignored in the determination of this minimum. 

We now define the auxiliary/unction @ : D [@] --> E1 by  means of the relations 

D [@] : {r ~ 0 : 0 (., r) attains a minimum over S}, 

@ (r) = min 0 (x, r) .  (3.6) 
x e S  

The point X (r) which minimizes 0 (., r) over S is unique. Hence X:  r -+ X (r) is 
a single valued mapping of D [@] into S and we shall refer to this as the minimizing 
function. 

In  the following section, we describe the properties of the auxiliary function 
and the minimizing function. I t  will be, shown tha t  there is a close relationship 
between problem (2.1) and the auxiliary function and in order to solve (2.1) it 
suffices to maximize ~ over D [~]. The function @ turns out to be concave and differ- 
entiable over D [@] and hence should be easy to maximize. A difficulty arises in the 
fact tha t  the determination of @ at  any particular value of r requires the solution of 
a nonlinear program. I t  is shown, however, tha t  this nonlinear program is rela- 
t ively easy to solve ff r is sufficiently large, for in this case the minimization of 
0 (', r) is effectively taken over C rather  than G n C. On the other hand, if r is too 
large, the te rm --  rT~(g (x)) dominates in 0 and it could happen tha t  0 does not 
a t ta in a minimum over S. 

The similarity between this method and the lagrangian method [see e. g., 1] 
is apparent  here, for both types of algorithms a t t empt  to maximize an auxiliary 
function over its domain. In  general, the lagrangian method makes use of several 
"multipliers" and does not destroy the structure of the constraint functions, 
whereas the present method uses a single parameter  and lumps all of the con- 
straints together. A more important  difference lies in the fact tha t  the determination 
of the value of the auxiliary function is always unconstrained (with respect to C) 
using the lagrangian method whereas here this calculation is unconstrained only 
for certain values of r. 

4. The Structure oI the Auxiliary Function 

In  this section we describe the properties of the auxiliary function @ defined 
by  (3.5) in detail and present the mathematical  validation of these properties. 
Often it  will be convenient to derive certain relationships tha t  exist between @ 
and Problem (2.1) and we shall do this when the occasion arises, rather than wait 
until the properties of Q have been established completely. 

We first characterize the set D[@] by showing tha t  it is not empty  and is, 
in fact, an interval. Let  

r* ~ inf ~(x)-- O(x*) 
~intG~c ~(g(x)) ' 

where x* is the solution of Problem (2.1). Note tha t  r* ~ 0. 

Theorem1.  Under the hypotheses o/ Section 2, the point r*eD[@] so that 
D [@] =~ ~5. 

Pro#. From the definition of r* we have 

r* 7~(g(x)) ~ q~(x) -- qS(x*) 
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i. e.~ 
r  < ~(x)  - r* x(g(x)) 

for all x ~ S. I n  particular, since x* ~ S, we have 

r* 7~(q(x*)) <~ O. 

But  r* and z (g (x*)) are both  nonnegative so tha t  

r* z (g(x*) )  = O. 
Hence 

O(x*, r*) = qh(x*) - -  r* z (g(x*) )  

<~ qh(x) - -  r* z (g(x ) )  

for all x e S and the theorem is proved. 
The next  corollary follows directly f rom the above proof  and the definition 

of X (r). 

Corollary. Under the hypotheses o] Section 2, 

a) X ( r * )  = x* ,  

b) r*~(g (x*) )  = 0 .  

We now show t h a t  D [~] contains more than  the single point  r*. 

Theorem 2. Under the hypotheses o/ Section 2, the interval Jr*, r* + 6] is 
contained in D [~] /or  some ~ > O. 

Proo/. Le t  N : N ( x * ;  e) be an open neighborhood of  x* of  radius e > 0 
where 

a N  n i n t G  n C ~ q~. 

Such a neighborhood exists since we have assumed t h a t  int  G n C # ~b and 
x* eS .  Let  r* be given by  (4.1) and define 

t t l  = O(x*, r*) 

/~2 = rain 0 (x, r*) 
azcns 

~'1 = ~ ( g ( x * ) )  

r2 ---- max  z (g (x ) ) .  
a2VnS 

Note  tha t  #2 > / ~ i  since the unique min imum of 0 occurs at  x*. Also note t ha t  
v~ > 0 since aN  n int  G n C @ ~ and z (g(x ) )  > 0 when x e int  G (~ C. 

Choose 5 > 0 so tha t  

# 2 - t ~ i  if  v l = O  
(~ < 3v2 

r a i n ( / ~ - # i  / ~ # l  3vl ' 3v2 ) i f  vl # O. 

~qow when r = r* -~ 6 we have 

I O(x*, r) - 0(~*,  r*)[ = ~ ~ ( g ( x * ) )  

- - 0 ~ 1  

~2 -- ~i 

3 
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so tha t  

0 (x*,  r) < #1  § ~ - m 

In  words, the value of 0 (., r) at x* differs from #1 by  at  most g2 - ~ 3 

On the other hand, on the set OhT n S we have 

] 0 (x, r*) - -  0 (x, r) l : ~ 7~ (g (x)) 

< ~ v 2  
g 2  - -  # i  

3 ' 
so tha t  

This implies tha t  

0 (x, r*) < ~ ~ A  + 0 (x, r). 

#2 --  #1 
~2 3 < 0 (x, r ) ,  

which is to say tha t  0 (., r) differs from #2 by  at  most  ~ - ~ 1  at  any point 3 
in aN  n S .  

Now 0 (., r) must  be minimized somewhere in N (~ S since this set is compact. 
I t  cannot at tain this minimum along aN (~ S since there is a point (i.e., x*) in 
N r S which gives a lower value to 0 (., r) than any point in ~N n S. Hence 
0 (., r) attains its minimum over int N (~ S. By assumption (2.2f) this minimum 
is at tained a t  a unique point and the proof is complete. 

Note tha t  the special character of r* was not used in the proof of this theorem. 
Indeed, we could have replaced r* and x* by  any point r ' e  D[@] and x(r')  to 
obtain the property tha t  D [@] is either an interval or a collection of intervals 
each open on the right. I t  will be shown tha t  D [@] is, in fact, an interval. 

We know tha t  D [@] always contains some points to the right of r*. Without  
any additional assumptions, it is not generally true tha t  the entire interval 
[r*, -~ c~] lies in D[@]. Nor is it true tha t  there need be points to the left of  r* 
for, in particular, r* could be zero but  D[@] c (El) +. 

The corollary which follows is of prime importance since it implies tha t  the 
constraints gl (x) ~ 0 can be effectively ignored in computing @(r) for r > r*. 

Corollary. I / r  + eD[@], r+ > r*, then 

X (r+) E i n t G  n C.  

Proo/. I f  x+ = X (r+) e OG (~ C, then 

~5 (x+) ---- rain {~b (x) - -  r+ ~(g(x))} 
x e S  

~5 (x*) - -  r + ~(g(x*)) 

<_ ~ ( x * ) .  

But  since x* is the unique solution of (2.1), either x+ -~ x* or we have a contradic- 
tion. Suppose, then, tha t  x + -~ x*. I t  follows tha t  

qS(x+) ~- qS(x*) ~ q~(x) --  r + a(g(x))  
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for all x e S. Thus 
�9 (x) - ~(x*) 

r+ =< ~ ( ~ ; ) ~  

for all x e int  G n C. Bu t  this is the defining proper ty  of  r* so tha t  we arrive at  
a contradict ion and the proof  is complete. 

I t  can be shown tha t  0 ~ r < r* implies t ha t  X(r )  = X(r*) ,  so tha t  it is as 
difficult to  obtain 0 (r) for such r 's as it is to  obtain the solution x* since an 
unconstrained minimization technique cannot  be employed in this instance. 

The next  theorem characterizes D [0] as an interval. The proof  of  this theorem 
is essentially identical to the proof of Theorem 8 in reference [1] and hence is 
omit ted here. 

Theorem 3. Under the hypotheses o] Section 2, D [0] is convex. 

Having  established the nature  of  D[0]  we now tu rn  to the properties of  0. 
The proo] of the following theorem is straightforward.  

Theorem 4. Under the hypotheses of Section 2, 0 is concave and monotone 
decreasing. 

Eventua l ly  we whish to establish the differentiability of  0. To do this, i t  is 
convenient  to first establish the cont inui ty  of  X (.). 

Theorem 5. X (.) is continuous over D[0  ]. 

Proof. Fix r+ e D [0] and s > 0. We must  show tha t  there is a ~ > 0 such tha t  

] r - - r + l < ~  and r e D [ o  ] 
implies t ha t  

l I X ( r ) - - x  +]l < s ,  

where x + = X (r+). Assume tha t  ON (x+; s) n S is no t  emp ty  for otherwise the 
theorem is trivial. Set N ~ N (x+; e) and 

M > max ]~(g(x))  - -  re(g(x+))] 
x ~  a~v n s 

and let ~ > 0 be any  number  such tha t  

1 
M-{fib(x)  - -  r  - -  r+ (# (g (~ ) )  - -  re(g (x+)))} > 

for all x E 0N ~ S. Pick r E D [ 0  ] c~ N(r+;  8). 
Then 

{r  - -  r+ re(g(x))} - -  {fib(x +) - -  r+ re(g(x))} > M S  

> J r - r +  I f r e ( g ( x ) ) -  re(g(x+)) I 
H (r - -  r +) {re (g (x)) - -  re (g (x+)) } 

so tha t  
fib(x) - -  rre(g(x)) > fib(x +) - -  rre(g(x+)) 

for all x ~ aN  n S. Since r e D [0], 0 at ta ins  its min imum over S. The last in- 
equali ty shows tha t  i t  cannot  be minimized over ON n S so tha t  the min imum 
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mus t  occur in int2g (~ S, i.e., 

[lX(r)--x +]I < ~ 

and  the proof  is complete. 
We are now in a position to  prove tha t  ~ is differentiable over D [~] and exhibit  

its derivative. 

Theorem 6. Under the hypotheses o I Section 2, ~ is continuously dillerentiable 
over D [~] with 

de 
a ~  - - ~ ( g ( x ( . ) ) ) .  

Prool. Fix r ~ ~ D [~] and , / >  0. The definition of  ~ allows us to write 

e (r0 + ~) -- e (r0) 

where x 0 = X (r~ 
On the other  hand,  

0 (x ~ r0 + V) - 0 (xo, to) 

(r0 + ~) =(g(xo)) - ro ~(g(x0)) 

= - ~ ( g  ( x O ) ) ,  

e(r 0 -~- ~/) -- e(r ~ ~ O(X(r ~ + ~/),r 0 -t- •) -- O(X(r ~ ~- •),r ~ 

= - -  zr(g(X(r ~ q- r/))). 

The cont inui ty  of  0z, g and X (.) then  implies t h a t  the r ight  hand  derivative of  ~ is 

de ru 
d ~ +  = - -  n ( g ( x ~  

Similar reasoning establishes t h a t  the left hand  derivative also equals the above 
expression and the  proof  is complete. 

The same me thod  of  proof  will establish the next  

Corollary. The right derivative o/ ~ exists at the le/t endpoint o/ D [~] and is 
equal to -- 7~ (g (.)) evaluated there. 

Thus,  up to this point  we have shown t h a t  ff is a differentiable concave funct ion 
defined over an interval  in (El) +. The next  two theorems relate this auxiliary 
funct ion to  problem (2.1) and show t h a t  the problem of maximizing Q over D Lo] 
will yield the solution of  (2.1). We shall t e rm the problem of maximizing ~ over 
D [~] the  auxiliary problem. 

Theorem 7. Under the hypotheses o/Section 2, the ]ollowing relationship holds: 

e (r) <_ r 
/or all r ~ D [Q] and x ~ S. 

Proo/. Follows directly f rom the definitions of ~ and ~. 

Theorem 8. Under the hypotheses o/Section 2, the point r* given by (4.1) maximizes 
over D[~]. Furthermore, X (r*) : r* and ~(r*) = q~(x*). 

Proo/. F r o m  the proof  of  Theorem 1 we know t h a t  0 ( ' ,  r*) a t ta ins  its min imum 
over S a t  x*. The corollary to this theorem states t h a t  X ( r * ) ~  r* and 
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r*z~(g(x*)) =- O. Hence  ~(r*) = ~5(x*). Since 

~(r) ~ ~b(x*) 

for any  r e D[Q], i t  follows t h a t  ~ is maximized  a t  r* and  the  proof  is complete.  
Hav ing  established the  relat ionship between the auxi l iary  prob lem and 

p rob lem (2.1), we now describe the behavior  of the funct ions ~(g(X( . ) ) )  and  
r  as funct ions of r in order to be able to describe the type  of convergence 
obta ined as r --> r*. 

T h e o r e m 9 .  Under the hypotheses o/ Section 2 the /unctions :~(g(X(.)) and 
q~ (X (.)) are monotone increasing. 

Proo/. F r o m  the definition of ~, we have  

(X (r')) - -  r '  ~z (g (X (r'))) ~ ~b (X (re)) - -  r '  7~ (g (X (re))) 
and 

(X (r0)) - -  r 0 :~ (g (X (r0))) ~ ~5 (X (r')) - -  r 0 7~ (g (X (r '))).  

Adding these two inequalities, we obtain  

(re -- r'):~(g(X(r'))) <= (re -- r '):~(g(X(r~ 

Since r 0 > r ' ,  we have  
7~(g(X(r'))) ~ 7e(g(X(r~ 

so t h a t  :~ (g (X (.))) is monotone  increasing. 
Using this fact ,  and  the  inequal i ty  

~5 (X (r')) - -  r '  :~ (g (X (r'))) ~ ~ (X (r0)) - -  r '  z (g (X (re))) 
we obta in  

r  ~ qS(X(r~ 

and the proof  is complete.  

5. Some Computational Considerations 
The prob lem of maximizing ~ over  D [~] is a one dimensional  maximiza t ion  

p rob lem to which a n u m b e r  of  a lgori thms could be applied. Any  such a lgor i thm 
will, however,  require the evaluat ion of ~ a t  a n u m b e r  of  points  in D [~]. Each  
such evaluat ion  requires the solution of a non-l inear program.  Wi th  C chosen 
properly,  and with  r '  > r*, we know f rom the corollary to Theorem 2 t h a t  the 
p rob lem of minimizing 0 ( ' ,  r ')  over  S is essentially the prob lem of  minimizing 
0 ( ' ,  r ' )  over  C. I towever ,  unlike other  interior methods  (such as SUMT), the  set  
D [~] ~= {r > 0) in general. For  ff too large a value of r is chosen, the  pena l ty  
t e rm  dominates  in the expression for 0 ( ' ,  r) and thus  0 ( ' ,  r) m a y  not  possess a 
m i n i m u m  over C. On the  other  hand,  ff r < r* the  de te rmina t ion  of  ~ is as 
difficult as finding the solution of the  original problem. A possible me thod  for 
avoiding these difficulties would be to choose C compac t  and car ry  out  all 
auxi l iary  computa t ions  over  this set. 

To ini t iate the algori thm, it is possible to use a "SUMT-l ike"  a lgor i thm to 
calculate a value of r e D [~]. Suppose the  functions ~b and  zc (g (.)) are diffrentiable 
and let t be any  posit ive number .  The  funct ion 

1 
~(g(.)) - ~(g(.)) 
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satifies the  proper t ies  (3.3) ff ~(g(.))  satisfies (3.2). I f  assumpt ions  (2.2) hold, 
the  funct ion 

~ ( x )  - t ~(g (x)) 

will a t t a in  a m i n i m u m  a t  some point  x ( t ) e i n t G  n U. Since qb and  ~(g(-)) are 
differentiable, we have  

V r  - -  t V ~ ( g ( x ) )  ~- 0 

a t  x (t). I n  t e rms  of ~, we have  

t 
V ~ ( x )  (~(g(x))p V ~ ( g ( x ) )  = 0 

a t  x(t)  so t h a t  the  n u m b e r  r ~ ~ t /~  (g (x (t))) is in D [~] and  exceeds r*.  Moreover,  
wi th  this choice of  r 0, i t  is clear t h a t  X (r0) -~ x (t). 

I f  p rob lem (2.1) fails to have  a solution because ~5 is unbounded  f rom below, 
Theorem 7 implies t h a t  D [~] = ~b. Thus  it  would be impossible to  ini t ia te  the  
a lgor i thm as in the  above  p a r a g r a p h  since ~ (x) - -  t ~ (g (x)) would also be unbounded  
f rom below over  C. The  same s i tuat ion holds if  G (~ C = ~ for in this ease also, 
SUMT cannot  produce  an initial m i n i m u m  of its pena l ty  function. 

Methods for choosing r0 and  a "maximiz ing  sequence" of  r ' s  are under  in- 
vest igat ion.  As compared  to SUMT, these questions are more  critical since 
D [~] is l imited and  since r* is unknown a t  the  outset .  I n  SUMT, D [~]-~ {r > 0} 
and  i t  is required to eva lua te  

l im X (r) lira e (r). 
~'--->0 r -~O 

Any sequence of r's tending to zero will accomplishing this f rom a ma thema t i ca l  
viewpoint .  

On the  other  hand,  in SUMT the evaluat ion  of X (r) and  ~ (r) are re la t ively  
difficult for small  values of  r since 0 (., r) is ve ry  large near  ~G n C. I n  the present  
method ,  rTc(g(X(r)))  approaches  0 as r approaches  r*  and  0(-, r ) =  ~b(x) for 
x e 8G (~ C so t h a t  0 (., r) should be re la t ively  easy to minimize for r near  r* 
(assuming ~ is well behaved) .  

6. Example  

Minimize 
q5 (x) = (xl - -  1) 2 -~ (x2 - -  2) 2 

subject  to 
x l  - x~ >= 0 

2 - - x l - - x 2 ~ O .  

Using the  pena l ty  t e r m  ~ given b y  (3.2b) we have  

@(r) -~ min  {(xl - -  1) 2 -~ (x2 - -  2)~ - -  r ( x l  - -  x~) 1/2 (2 - -  xl  - -  x2)1/2). 

This  function,  toge ther  wi th  the  funct ion r  are depicted in Fig. 1. The  
de te rmina t ion  of  X(.) for var ious  values of  r was obta ined  by  using a var ia t ion  
of the  l~letcher-Reeves conjugate  gradient  method .  Note  the  irregular  curva ture  
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of the graph of r The solution of this problem is 

x *  = x r  = 

and 
Q(r*) ---- r  = 1. 

2.0 

1.0 

xfr)) ~ 

r 
j 

0 1:0 2:0 30 

Fig. 1. The auxiliary function of example 2 
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