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Summary. The work of RAY and N]~v~.u has established that,  for any transition function 
P on a countable set E, (i) there exists a best possible entrance boundary E+ supporting a right 
continuous, strong Markov process X with transition function P and that  (ii) the points y of 
E + are in one-one correspondence with the extremal entrance laws gY of P.  Here, it is shown 
that, if a point y of E + is regular for itself, then the derived characteristic ]Y of the local t ime 
at y is a regular extremal entrance law "coupled" with gy in the sense of N]~vEu. Further,  
coupled laws arise only in this fashion. By using excursion theory, a simple explicit formula 
f o r / v  in terms of gv may be obtained. The paper contains a conjecture about the intrinsic 
character of the RAY-NEV]~ topology and an example which shows emphatically that,  in 
general, local t ime is not a derivative of occupation time. 

w 1. Prerequisites 
1.1. Basic Notation 

Throughou t  the  paper ,  unexpla ined te rminology and nota t ion  are exact ly  as 
in DY~KI~ ' s  book  [3]. 

Le t  E be a countable  set  and let P be a conservat ive  t ransi t ion funct ion on E : 

Pt( i ,F)  = ~ Pt(i , i )  ( i e E ;  F C  W;t ~ 0); 
/e/" 

P t ( i , i ) ~ O ;  P t ( i , E ) = l  ( i , ] ~ E ; t ~ O ) ;  
Ps (i, i) Pt (i, k) ----- Ps+t (.i,/c) (i, k e E ;  s, t ~ 0) ; 

j~E 
such t h a t  

lira P u  (i, i) = P0 (i, i) = 1 (i e E).  
u~0 

To simplify the  notat ion,  we adop t  the  following 
C o n v e n t i o n s .  1. The  Laplace  t r ans fo rm 

j" exp (--)~ t) ht dt 
(o,~) 

of a funct ion h. defined on (0, c~) will be denoted  b y  h(A). Thus,  for example ,  

P (A; i, i) -~ 5 exp (-- 2 t) Pt (i, ]) dt. 
(0, r162 

(Throughout  the  paper ,  the  symbol  " - - "  will mean  "(which) is defined to  be 
equal  to" . )  For  all the  funct ions wi th  which we shall be concerned, h(2) will be 
finite for A > 0 bu t  h (0) m a y  be infinite. 

2. The  integral  over  (0, t) of  a funct ion on (0, r represented b y  a lower case 
le t ter  will be denoted b y  using the  corresponding upper  case letter,  e.g., 

Ht ~ f hsdS. 
(o,t) 
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3. The scalar product ~ a ( i ) b ( i )  of two vectors on E will be denoted by 
(a, b) and the tensor product symbol a G b will denote the matr ix  C with (i, j)-th 
component 

C(i, j) : a(i) b(j). 

4. The unit vector on E will be denoted by  1. 

1.2. Entrance and Exit Laws 

In  the next  three subsections, we recall some of N]~v]~v's theory [12, 14, 15] 
of entrance and exit laws. Much of the early par t  of the paper will be found to 
read almost as a commentary on Nv, v~c ' s  work from a probabilistie standpoint 
but we shall see later the probabilistic theory allows a considerable strengthening 
of the analytic results. 

The reader familiar with N~vv, v ' s  notation will notice tha t  we have inter- 
changed the roles of / and g making / the typical exit and g the typical entrance 
law. This is basically because the ]-functions and g-functions in C~u~G [2] and 
in many  other works on Markov chains are exit, entrance laws respectively 
(though not relative to P). 

An entrance law relative to P is a family gt (t > 0) of non-negative measures 
on E which is such tha t  

Gs (E) < c~,  gs P t  = gs+t (s > 0 ; t ~ 0) .  

Dually, an exit law relative to P is a family ]t (t > 0) of non-negative functions 
on E which is such tha t  

supYt(])<oo, Ps/t=/~+t (s>=O;t>O). 
jeB 

We shall not consider the trivial law g []] with 

gt(i) ~ 0  ( t > O ; j e ~ )  
It (]) - 0 (t > 0; j e E) 

as an entrance [exit] law. 
Because P is conservative, the condition 

as(~)<oo (s>0) 

in the definition of an entrance law may  bo replaced by  the condition 

g~(g)<oo ( s>0)  
and we note tha t  

~,~ (E)  = ~ ~,, (j) 
je.E 

is independent of s for s > 0. We denote the common value of gs (E) by  g (E). 
NEv~,u showed tha t  there is a canonical Choquet representation of the cone 

of entrance laws (the entrance cone). The basic facts are these. 
The map  of E into the closed unit sphere of lz (E) defined by  

i---> P(1; i ,  .) 

is one-one (see Proposition 1 of [14]) and so we may, and shall/tom now on, identi/y 
the point i o / E  with the point P (1; i, -) in 11 (E). Let  E + denote the set of extremal 
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points of the (strongly) closed convex hull of E in ll(E). Unless the contrary is 
explicitly stated, we shall work with the Ray-Neveu topology of E +, namely, 
the topology induced by  the 11 (E) norm. At a later stage, i t  will be convenient 
t o  u s e  

Proposition N 1. E is a dense subset o/ E + and there is a metric ~ on E + de/ining 
the same topology as the ll(E) norm and such that (E+, ~) is a complete (separable) 
metric space. 

This proposition, which asserts tha t  E + is a "Polish space", is contained in 
Proposition 3 of N~v~v  [14]. 

For each y = y(.) in E+, there is a unique entrance law gy such tha t  

gy(l;/) ~ ]e -Sg~( j )d s=y ( i )  ( j e E ) .  
(0,r 

Note tha t  
g~(t) -~ Pt( i , i )  (i, i e E ; t  > 0). 

The entrance laws gy(y e E +) are extremal. An extremal entrance law g is an 
entrance law with the following proper ty:  every entrance law g' such tha t  
gt(]) ~ gt(i) (] e E ;  t ~ 0) is a scalar multiple of  g. 

An entrance law g is extremal ff and only ff there is a point y of B+ such tha t  

g = g (E) gy.  

The points o /E+ are there/ore in one-one correspondence with the extremal rays 
o/the entrance cone. 

Every  entrance law g has a unique Choquet representation of the form 

g -~ g(E) f gu# (d y ) ,  
E+ 

where # is a probabil i ty measure on the Borel ~-algebra of E +. •EVEU sketches 
the Choquet theory of the exit cone but  we shall not make use of this. 

1.3. Coupling 

NEv~u [14] called an entrance law g and an exit law ] coupled i f  the relation 

P(Z) -- [a(A)]-~/(~)Qg(X) _- 0 (~ > 0) (1.I) 

holds, where at  is defined (independently of s < t) by the equation 

at ~ <gs,/t-s>. (1.2) 

(When we say, for example, "suppose g and ] are coupled", it is to be understood 
tha t  g is the entrance and / the exit law.) 

Proposition 4 of N ~ v ~  [14], which will be particularly important  for our 
t reatment ,  divides into the following two sta~emants. 

Proposition 5T 2. I f  g and / are coupled, then each is extremal. 

Proposition 5[ 3. 1 / two entrance laws gl and g2 are each coupled with the same 
exit law/ ,  then gl and g2 di//er only by a scalar/actor. The dual result is also valid. 

We see tha t  coupling is really a proper ty  of rays. 
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Suppose now tha t  g and / are coupled. Then g, being extremal, is of the form 
g -~ g (E) gY for some y in E +. NEv~v establishes the following results in the course 
of his proof of the above propositions. 

There is a unique transition function P -  on E/Y such tha t  

P -  (2) = P (2) --  [a (2)]-1 / (2)(~ g (2) (1.3) 

and this transition function satisfies 

l i m P ~ ( i , i )  = 1 ( f l e E \ y ) .  
u4O 

Further,  there is a unique entrance law g- [exit l a w / - ]  relative to P -  on E \ y  
such tha t  

g(2) = a (2 )g- (2 ) ,  [/(2) = / - ( 2 ) a ( 2 ) ] .  (1.4) 

Set 
g7 (Y) = /~ -  (Y) = 0 s > 0 

in the case when y E E and, in all cases, define 

a t  = (g~-, IV-s> (0 < s < t) 

independently of s in (0, t). Then 

[a (2)] -1 = f (1 --  e -xt) a t dt ~- [a (0)] -1 . (1.5) 
(0,oo) 

I f  we write 
1.4. Extension o/ P to E+ 

Pt(y , j )  for g~(j) ( j e E ; y ~ E + ; t > 0 )  

and define ( fo r / "  a Borel subset of E +, t > 0 and y ~ E+) 

Pt(y, ~) - ~ Pt (y, j), 
]~En/"  

then the extended P is a transition function on E+ such that 

Pt (y, E) = 1 (t > 0; y e E+). 

Of considerable importance is N]~vEg's result that  the extended P is strong Feller 
and stochastically continuous on E +. We recall tha t  the s ta tement  tha t  P is strong 
Feller means tha t  for every t ~ 0 and every bounded function ~ on E +, the function 
Pt~ defined by  the equation 

(Pt~) (Y) =~ ~ Pt(Y,  j) ~(j) 
jeE 

is continuous on E +. The strong Feller property of P is an immediate consequence 
of Proposition 2 of N~vwg [14]. That  P is stochastically continuous means that,  for 
every bounded continuous function ~ on E +, 

l im(Pt$) (y) = ~(y) (y eE+) .  
t~0 

This property of stochastic continuity is established at  a key stage in the proof of 
Proposition 3 of NEv~u [14]. 

20* 
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1.5. The Strong Markov Theorem o / R A Y  

In  [16], RAY derived some of the results of subsection 1.2 and proved a 
powerful strong Markov theorem. Unfortunately,  there were some errors in RAY's 
original ~reatment but  a recent paper  of KC~ITA and WATA~AB~. [8] provides a 
corrected and elegantly streamlined version of RAY's argument. In  our situation, 
these papers guarantee the existence of a right continuous strong Markov process 
X = (xt, ~ / t ,  Px) with values in E + and with transition function P on E+: 

Py{xt---- ?} = Pt (Y ,?) ,  ( y e E + ;  ] e E ;  t > 0). 

The reader will find tha t  the space E + coincides exactly with the space W~\5~b of 
RAY's paper. If, with the notat ion of KUZ~XTA and WATAZ~AB~ [8], we choose for 
the 1-excessive functions of C1 the functions 

P ( 1 ; - , ] )  ( i c E )  

on E (and this is the only natural  choice) and if we then use KNXGnT'S completion, 
we find tha t  our space E+ is exactly the space denoted by  ER~ (E - -  E~) in 
KU~ITA and WATANABW [8]. As stated there, there is no doubt  tha t  E+ is the best 
possible "entrance boundary" .  

For a point y of E +, define the hitting t ime: 

Tv  ~ inf{s: s > O, Xs = y} . 

By the very useful lemma on page 138 of KUNIT• and WATA~AB~'S paper, TY 
is a Markov time. Hence, according to BLUMENT/~AL'S zero-one law, either 

Pv{Tu = 0} = 1 in which case y is called regular 

o r  

Py(TY = 0} ~-- 0 when we call y semi-polar. 

Because 
l im Pu (i, i) = 1 (i e E) 
u~O 

all points of E are regular. 
1.6. Local T ime  

We now recall some results of BLVNENTHAL and GETOO~ [1]. 
Let  y be a regular point of E +. Then there exists a continuous (non-negative, 

homogeneous) additive functional V (Y), the local time at  y, such tha t  

M~ S e - t d v t ( y )  = Mxexp( - -  Tu) (x eE+) .  (1.6) 
(0,oo) 

Two continuous additive functionals %ol and V 2 satisfying (1.6) are equivalent: 

P ~ { ~  = v~} = 1,  (x ~ E+; t > 0) .  

The aptness of the te rm local time derives from the fact tha t  V (Y) grows only when 

X is at y: 
~ ( Y )  --  S x y (x~) ~ (y), (t > o).  

(o,t) 

ZY being the characteristic function of the set {y}, and that ,  conversely, any 
continuous additive functional with this property is equivalent to a scalar multiple 

of V (Y)- 
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1.7. Normalisation o/Local Time 

In  general, there is no canonical normalisation of local time. In  our ,situation, 
the actual time at  j: 

fit(j) ~ m{s :  O <_ s <_ t, z~=]} 
m denoting Lebesgue measure, is a more natural  measure of local t ime at  a point 
1" of E than is ~p(?') which is equivalent to 

fl(j)/P (1; j, j) 

We therefore introduce the additive functional ~ (y) defined as follows. 

Definition. For a point j o /E ,  de/ine 

eft (j) =- fit (j) . 

For a regular point y o / E  + 1 E, we define q~ (y) (up to equivalence) by the equation 

q~t (Y) =- ~ft (Y). 

For a semi-polar point y o/ E+ \ E, we de/ine 

q~t (Y) =- number o/ visits by X to y during time [0, t]. 

In  w 5 of their paper, BLV~lZNT~AL and GETOOR show tha t  for a semi-polar 
point y, q~t (y) is a /inite (though, of course, discontinuous) additive functional 

w 2. Summary of Results 

2.1. Regular Laws 

As already explained, an extremal entrance law g is necessarily of the form 
d 

g = K Pt  (y, j) = K dT My 9st (?) (2.1) 

where y e E+. The partial dual result provided by Lemma 2.2 is important .  First 
we make a 

Definition. Call an extremal entrance law g regular f f the  point y of E+ associated 
with g as in Eq. (2.1) is regular. Call an exit law ] (extremal or not) regular ff  

lira sup Fe (j) = O. 
t~0 jeE 

The definition of regularity is transferred from cxtremal laws to extremal rays 
in the obvious manner. 

From Proposition N 2, we know that ,  if  g and / are coupled, then each is 
extremal. I t  is also true tha t  each is regular but  we shall prove this in several steps. 
We indicate some of these here. 

Lemma 2.1. I / g  and / are coupled, then ] is regular. 

Lemma 2.2. I / y  is any point of E +, then the (componentwise) derivative 
d 

/tY(J) ~ dt~ Mi~t (Y) (t > 0) (2.2) 

exists and, i/non-trivial, de/ines an exit law/Y relative to P. An  exit law / is extremal 
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and regular if and only i/ it is el the/orm K /Y where K is a positive constant and y 
is a regular point el E+. 

N o t e s .  1. For  a point i of E, we have 

/~ (j) = P~ (j, i).  

2. For a semi-polar point z of E +,/~ need not be extremal and hence there are 
(non-regular) extremal exit laws which are not  of the form K/v  (y ~ E+). 

We remark that  a slight rearrangement of our discussion would make it  
independent of the work of ]~LUMENTI~AT, and GETOOR. I t  is possible to construct 
/Y by a procedure independent of the theory of additive functionals and then to 
deduce the existence of local time at y from the following lemma. 

Lemma 2.3. Let y be a regular point o/ E + and set 

~s (Y; 8) ~- ~ / ~  (i) fls (/'). (2.3) 
jeE 

Then,/or every e > O, 

lim Px ~ sup ]Vs (Y; 8) -- Vs (Y)] > e} -~ 0 (x e E § t > 0). 

We express the conclusion of this lemma by writing : 

q~ (y ; (~ ) --~ q) (y) uni/ormly in probability. 

The next  theorem and (especially) its corollary are two of our main results. 

Theorem A. I / y  is a regular point el E +, then the laws gY and/u are coupled. 

Conversely, i / g  and / are coupled, then there exist a regular point y el E + and 
constants K1 and K2 such that 

g-~ KlgY,  / ~ Ks/Y.  

The transition/unction P -  corresponding to the couple (g, /) (see w 1.3) is then the 
transition/unction el the process X killed at time TY. 

Corollary. The coupling relation sets up a one-one onto map between the regular 
extremal rays el the entrance and exit cones. 

A regular point y of E+ determines and is determined by a unique pair of 
coupled rays, namely, the rays thorugh gy and/y.  5T]~vv,~ called a pair of coupled 
rays a/ictitious state. We prefer to follow CItU~G's general formulation [2 ; w II.4] 
according to which each point of E+\E is a fictitious state. We shall call a regular 
point of E+\E a regular fictitious state. 

2.2. Charaeterisation o/the Topology o / E  + 

In the course of proving Lemma 2.2, we shall obtain a probabilistic characterisa- 
tion of the gAr-Nv, v~v topology of the regular part  of E +. 

Theorem B. Let y be a regular point o/E+ and let {y(n): n ~ 1, 2 . . . .  } be any 
sequence o/points o / E  +. Then y (n) --> y i /and  only i/  

lira Py(n){TY < t} ~-- 1 (t > 0). (2.4) 
~b ---> o o  
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In  general, the "only if"  par t  of Theorem B is false without the assumption 
tha t  y is regular. (See the example in w 7.2.) An extension of TheoremB valid for 
all points y would establish tha t  the RAY-N~vsu topology is t ruly "intrinsic". 
I make the following conjecture. 

Conjecture. Let y be any point el E + and let {y(n): n ~ 1, 2 . . . .  } be any sequence 
o /po in t s  el E+ such that y(n)  ~ y (n -~ 1, 2 . . . .  ). Then a necessary and su//icient 
condition that y (n) --> y is that 

lira max[Py{TY(n)  < t} ,  Py(n){TY < t}] = 1 (t > 0). (2.5) 
n --~ oo 

The sufficiency of condition (2.5) is easily established. What  remains undecided 
is the necessity of the condition in the case when y is semi-polar. 

2.3. Preparatory Remarks  

Throughout the remainder o /Sec t ion  2, y will denote a regular point el E + \ E .  
(We assume that  there is one.) 

Our aim now is to find further formulae for ~ (y) which will enable us to express 
/y explicitly in terms of gY and the elements Pt  (i, ]) of the original transition on E. 
We shall be able to express gy in terms of/Y in the case when y is recurrent but  not 
when y is transient. 

The distinction between the recurrent and transient cases is important .  As 
usual, we call y recurrent f f  

sup (s: xs = y} -~ ~ a.s. Py. 

otherwise, we call y transient. 
The following lemma, which is quite trivial, allows us to decide whether or not 

y is transient from a knowledge of either gy or/y .  

]]emma ft.4. The/ol lowing statements are equivalent: 

(i) y is recurrent; 

(il) as i ranges over E,  

gy(O) =- S g~(i) du 
(0,  oo) 

takes no value other than 0 or oo; 

(iii) as i ranges over E,  

/Y(O) =- f /~( i )du 
(0, co)  

takes no value other than 0 or oo. 

2.4. The Recurrent Case 

When y is recurrent, we shall be interested solely in those states of E which can 
be reached from y and from which therefore y can be reached. 

Let us there/ore assume throughout this subsection that P is irreducible recurrent 
and let us denote by  7~ the strictly positive invariant  measure (unique but  for a 
normalisation factor) on E:  

O < g ( ] ) - ~ z ~ ( i ) P t ( i , ] )  ( t ~ O ; ] ~ E ) .  
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We denote by  P*  the dual transition function on E defined as follows: 

Pt*(i, j) z ~(]) Pt(], i) /z(i) .  

The transition function P*  is, of course, the transition function on E of the time 
reversal of the Markov random function (xt, ~/[t, P~) (provided tha t  we allow 
infinite probabilities in the null recurrent case). 

We introduce the normalised local t ime: 

Lt(i) -- fit(i)/~(i) (i ~E) 

and we shall show tha t  the limit 

Lt(y) =- lim ~ P~(y, ])Lt(]) (2.6) 
~ 0  j e E  

exists uniformly in probabil i ty and defines the canonical normalisation of local 
t ime at  y. 

(Note .  The normalisation of ~ is, of course, arbi t rary except in the positive 
recurrent case when it is natural  to have 7~ (E) ~ 1. However, once the normalisa- 
tion of ~ is chosen, Lt(y) is defined for all regular states y.) 

Let us there/ore rede/ine /v by the equation 
y . d 

/t (~) ~ ~ MeLt(y). (2.7) 

Let  us also set (compare definition (2.2)) 

d 
]~Y (i) =- ~ MyLt (~) = g~ (i)/~(i). (2.8) 

Then/*Y is an exit law relative to P*, the boundedness o f / * v  being a con- 
sequence of the equation 

sup S IF (i) dt = sup S 1~ (i) dt. (2.9) 
l e e  (0,oo) i e E  (0, oo) 

Dually, we define 
g;~ (i) -- ~ (i) 1~ ( i ) .  

Then 
g ~ ( i )  = 1 (t > 0) 

l E E  

and g*Y is an entrance law for P*.  I t  is trivial tha t  (g'Y,/*Y) is a couple for P *  
and so defines a fictitious state y* of P*.  I t  is natural  to identify y* and y: 

*y �9 
gt (~) ~-- Pt*(Y, i).  

We now have two topologies on the regular par t  of E + : the original RAu 
topology induced by  P, the P-topology, and the corresponding P*-topology 
induced by  P*.  

Theorem C. The/ollowing relations hold on E: 
* Y  ~ �9 * y  gt lim g~ Pt*; gv = lim g~ Pt ;  

a~o ~4o 
�9 * g  

/ 2 u  = lim Pt* [~; /t v = lira Pt/a �9 
e~o ~0 

A sta tement  equivalent to Theorem C is the following. 
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Theorem C'. The transition/unction P* is stochastically continuous at y in the 
P-topology, i.e., 

lim ~. P*~ (y, j) ~ (]) = ~ (y) 

whenever ~ is bounded and continuous in the P-topology el E +. 

Coronary to Theorem C . / / a n  entrance law g and an exit law / are coupled, then 
there exist constants K1 and K2 such that the equations 

/t (i) -~ K1 ]im ~ Pt (i, ]) go (j)/zc (]), 

gt (i) = K2 lim ~ a (j)/~ (]) Pt (], i) 
~o ice 

hold/or i in E and t > O. 
Theorem C and C' would be trivial if the P- and P*4opologies of the regular 

part  of E + were identical. However, the one-sided nature of the characterisation 
of the RAy-Nwv]~u topology afforded by Theorem B makes it clear tha t  this need 
not be so. We shall give a concrete example in w 7.2. The important  point is that,  
whereas the property el stochastic continuity is preserved at regular points by "time- 
reversal", the Feller property is, in general, lost. That  stochastic continuity is 
preversed at regular points is perhaps not surprising because, at a fixed time, x. 
is almost surely left continuous. 

Eq. (2.6) shows that  L(y) is an "average" of L(]) over states ?" near y. More 
generally, we have the following result. 

Theorem D. Suppose that ho(~ ~ A) is a sequence el probability measures on E 
such that 

limMho<LT, h0> ---- 0 (2.10) 

where T =- Ty. Then 

lira <L, ho} ---- L (y) uni/ormly in probability. 

The peculiar significance of the expression 

Mh~ <LT , he> 

will be explained in w 6.2 but Eq. (2.10) is clearly a reasonable condition to impose 
on the averaging process h. 

In general, it is not true that  there is a sequence {i (n): n = 1, 2 . . . .  } of points 
of E such that  

lira L (i (n)) -~ L(y) uniformly in probability. 
~ - - +  o o  

Indeed, we shall give in Section 7 a rather striking example to show that,  in 
general, it is not possible to define Lt (y) by a formula of type 

Lt(y) -~ lira re{s: 0 <~8 g t ,  O(x~,y) < 6} 
he 

In other words, it is not possible to express local time as a derivative of occupation 
time. 
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2.5. The Transient Case 
The case when y is transient is more difficult to study. I t  is natural  to look for 

an analogue of Eq. (2.6) of the form 

q~t (Y) = K lim ~, P6 (Y, i) fit (i)/~ (i) (2.11) 

where ~ is a subinvariant  (i. e. superregular) measure for P.  The problem is: which 
subinvariant measures may  be used ? We shall content ourselves here with 
establishing one version of Eq. (2.11): 

q~(y) = g l i m  ~ Po(y, ]) fit (?')/gY(0; i).  (2.12) 

Integrat ion of Eq. (2.12) with respect to Pl yields the formula 

/y (i) = K lira ~ g~ (j) ~(i)/gy (0; i) (2.13) 
ale jeE 

which expresses [y explicitly in terms of gy. The analogue of Theorem D with 

gY(O;j) for ~(?') 
is valid. 

2.6. Instantaneous States 
This paper provides rigorous confirmation of an idea implicit in much of 

L~vY's work [9, 10], namely, tha t  the s tudy of a regular fictitious state is exactly 
equivalent to tha t  of a non-fictitious instantaneous state. 

I f  b (in E) is an instantaneous state of X, i.e., ff 
p 

Po (b, b) = - -  c~, 

then, in terms of the new time parameter  t - -  fit (b), X behaves as a (strong Markov) 
process for which b is a regular fictitious state. Conversely, if y is a regular point of 
E+\E, then, in terms of the new time parameter  t -~ ?~ (y), X behaves as a (strong 
Markov) process X + for which 

P~{x + e E  w y}---- 1 ( x e E  +, t > 0) 

and y is an instantaneous state of X +. 
Details of the LEvY measure for ~ (y) and of the theory of excursions from y 

are given in Section 5. 
2.7 

Some of the results of this paper  were announced in WILLIAMS [19, 20]. 
The proof of RAY's theorem promised in [20] was similar to, but  less general and 
less elegantly expressed than, tha t  in KUNITA and WATA~AB~ [8]. I t  is not worth 
publishing now. 

I wish to thank Professors J. LA~RTr,  D. G. KE~DAI~ and, especially, G. E. tI. R~VTER 
for their helpful comments on this work. 

w 3. The Direct Part  ot Theorem A 

3.1 
First, we prove two analytic results. 

Proo[ o/Lemma 2.1. Suppose tha t  g and / are coupled. Then, with the notation 
of w 1.3, 

F t  = (1 - P i -  1 ) /g (E)  <<_ ]/g(E) (t > 0). 
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Hence, from Eq. (1.4), 

Ft  --- fasF;-_sds <= {At/g(E)} 1. 
(0,t) 

Since a(2) exists for 2 > 0, At is finite for finite t and hence 

l imAt = 0. 
t$o 

The regularity of [ follows. 

Lemma 3.1. Let [ be any regular exit law. For each t > O, extend/t  (') to E+ by 
the [ollowing definition which is independent o / s  ~ t: 

[t(z) -~ ~ Ps(z , j ) / t - s ( j )  ( z e E + \ E ) .  
jeE 

Then, ]or each t > O, Ft( ' )  is continuous on E+. 

Proo/. Since P is strong Feller on E +, the function PoFt  is continuous on E + 
when ~ > 0. However, the equation 

P o F t  --  Ft ---- PtFo - -  Fo 
implies tha t  

on E +. Lemma 3.1 follows. 

s - lim P~ Ft ---- Ft 
~o 

3.2 

Suppose throughout the remainder of Section 3 tha t  y is a regular point of E +. 
The simple Marker  property implies tha t  the characteristic 

F~ (]) -= MI Ft (Y) 

of ~ (y) satisfies the equation 

PsF~ = F~+t -- F v 

on E. Tha t  the der ivat ive/y  of Fy  therefore exists and is an exit law is well known. 
(See Theorem 2.2.3 of NEv]~u [12].) 

We now prove tha t  gv. and/v, are coupled. Set 

a~ -- (g~, /~-s} (s < t) 

(compare definition (1.2)). Then 

AtV+h - -  A v = ~ g~ (]) F v (?') --~ ~ Pa  (Y, ]) MI ~t (Y) ---- My [~t+h (y) - -  ~h (y)]. 
je~ jeE 

Hence, letting h tend to zero, 
Af  = M u~t(y).  

The Strong Marker  Theorem applied at  t ime Ty yields 

/Y(2) = aY(2) f e - a t d e { T Y  ~= t} 
(0,r 

and so we have 

where 

P (2) - -  [u (2) Q gY (2)/aY (2) ---- P -Y  (2) 

PFY(i ,  j) = Pt{Tu > t, xt ---- j } .  
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Hence gY a n d / y  are coupled. We le t / -Y,  g-Y, a-U be the appropriate functions 
/- ,  g-, a -  for the couple (gy, ]y) (see w 1.3). Note tha t  

d P~{TY < t}. I t  ~ (i) = ~ = 

3.3. Proo/ o/ Theorem B 

Since/Y is regular, it follows from Lemma 3.1 tha t  

/Y (4; z) is continuous in z on E + . 
Since 

p (4; z) = l-y (~; z) ay (~) (z e E+) 
where 

/-~(;~; z) - f e - ~ d P ~ ( T Y  <= t} 
(0,~) 

we have 
l im/-~(~;  z) -~ 1. 
Z--->y 

By the (inverse) continuity theorem for Laplace-Stieltjes transforms. 

l i m P d T y g t } = l  ( t>0 ) .  
Z-->y 

The proof of the s ta tement  tha t  condition (2.4) implies tha t  y (n) --> y (whether or 
not y is regular) is easy and is left to the reader. 

w 4. Exit Laws and Additive Funetionals 

4.1 
In  Section 4, we shall prove, among other results, Lemmas 2.2 and 2.3 and the 

converse par t  of Theorem A. Let  us examine the converse par t  of Theorem A first. 
Suppose tha t  g and ] are coupled. Then (Proposition N 2) g is extremal so tha t  

g = g(E)gY for some point y of E +. I / w e  knew tha t  g is regular, i. e., tha t  y is 
regular, then we could conclude from Proposition N 3 and the direct par t  of Theorem 
A tha t  / ~ K/Y. Actually, we do the reverse. We do know (Lemma 2.1) tha t  / is 
regular and (Proposition N 2) tha t  / is extremal. We shall establish Lemma 2.2 
which will imply tha t  [ is of the form K/z  for a regular point z of E +. But  then the 
converse par t  of Theorem A, i.e., the fact tha t  y = z, will follow from the direct 
par t  of Theorem A and Proposition N 3. 

4.2 
We require a generalisation of Lemma 2.3. For the terminology used in this 

subsection, the reader is referred to Chapter VI  of D u  [3]. 
We shall call a functional ~ of X regular ff ~0 is non-negative and (strictly) 

homogeneous, continuous and additive and also such tha t  

lim sup MxTt = 0. 
t~O xeE 

In  particular, a regular functional is a W-functional. 

Theorem 4.1. 1I / is a regular exit law, then there exist a sequence A = {6n} 

with 6n ~ 0 and a set ~ o/lull  measure such that, whenever 09 E ~ ,  the limit 

~ (~) -~ lim ~ t~t (i; ~) 1~ (i) 
A~a~0 i c e  
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exists uni/ormly on compact intervals. I] we set 

~t(co) -~ 0 (t >= o, co e g \ f ~ ) ,  

then ~v is a regular/unctional and 

Ft (i) = Ivi~ ~t (i e E;  t > 0) .  

Theorem 4.1 is very similar to Theorem 6.6 in DY~KIN [3] and may be deduced 
from that  theorem with the aid of earlier results, especially Lemma 6.2 and Proposi- 
tion 6.9 B, from DY~cKnc's book. I t  should be noted that  we require ~ to be 
strictly and not merely almost homogeneous. I t  is possible to prove the theorem 
by a more direct argument involving a use of martingale theory similar to that  on 
page 306 of MEYEI~ [11]. 

Sketch o/proo/o/  Theorem d.1. Set 

~t(8) = <~t, 1o>. 
Then, for 0 --< s --< t, 

M~{~t (~)l~%} = ~ (~) + Ft-~+~ (x~) -- F ~ ( ~ ) .  
Hence 

~ (81, 82) ~- ~ (~I) - ~ ( ~ )  

+ [Ft-~+~l (x~) - Ft-~+~2 (x~) - F~ 1 (x~) - F ~  (x~)] (4.1) 

is a right-continuous martingale in s on [0, t] and we note that  the bracketed 
expression on the right hand side of Eq. (4.1) is small with ~ -~ max(~l ,  ~2) 
uni]ormly in s, Xs and t. (The absolute value of the bracketed term is not greater 
than 2 I] F~ [I.) By DooB's Martingale Inequality, 

M~ L[sup,-~ v'~ (8~, 82)] 2 =< 4 M~ [~t (8~) - ~ (,~)]2 

and, Jf ~ < t ,  

- _-< 4 II F2t It I] II. 

(Compare Lemma 6.5 of DYI~KIN [3].) I f  we choose the sequence A such that  

7 II r I; < oo, 
~ezl 

then Theorem 4.1 follows from the Borel-Cantelli lemma. 

Corollary. The equation 

exhibits a one-one correspondence between the set o/regular exit laws and the set o/ 
equivalence classes o/regular ]unctionals. 

Definition. A regular functional will be called extremal ff the associated regular 
exit l~w is extremal. 

The part  of Lemma 2.2 not already proved is contained in the following result. 

Theorem 4.2. I / c f  is an extrcmal regular /unctional, then qD is equivalent to a 
regular ]unctional o/the type KqD (y) where K is a constant and y is a regular point 
o / E  +. The regular exit law / associated with q~ is there]ore equal to K/y.  
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.Proo/ o] Theorem 4.2. Suppose that  9 is extremal regular. Then, for every 
Borel subset A of E+, the equation 

~t(A) =- SzA(xs)~(&), 
(o,t) 

ZA denoting the characteristic function of A, defines a regular functional ~(A). 
Since 

el(A) + cf(E+\A) -~ 

and ~ is extremM, it follows that  

cf(A) = c (A)9  

where c is clearly a probability measure on the Borel subsets of E+. But,  for almost 
every ~o. 

d%(A) 
d ~ .  - -  ZA (X.)  

almost surely in ~-measure and so the only values which c may  take are 0 and 1. 
I t  follows easily that  c must be concentrated at  a single point y of E+ : 

c(y) = 1. 

(Recall that,  by Proposition N l, (E +, r is a complete separable metric space.) 
Hence 

~t = j" X{y} (Xs) dcps. (4.2) 
(0,0 

Since ~ is continuous, the point y must be regular (for a semipolar point is visited 
only finitely often). We already know that  Eq. (4.2) characterises multiples of 

(y) (see w 1.6). Theorem 4.2 follows. 
The results of this section suggest tha t  Chequer methods may provide a natural 

for proving theorems which assert tha t  time substitutions must arise from locM 
time integrals. See Theorem 8.4 of DYNKIN [3] and w 5.9 of ITO and McKEx~ [61. 

w 5. Inverse Local Time. Excursions 

5.1 
Throughout Sections 5 and 6, y will denote a fixed regular point of E+\E (we 

again assume that  there is one) and we shall simplify the notation by writing 

q ~ ,g ,a , / - , g - , a - ,P -  
for 

cf (y), g,v, aY, ]-v, g-y, a-V, P-Y . 
Set 

Qt ~ ~  ff q~oo ~ l i m q ~ u G t ,  
u~co 

inf{s: q~s > t} otherwise. 

The Strong Marker  Theorem implies tha t  (~t, :yo, py) is a process with inde- 
pendent increments. 

Theorem 5.1. 
My exp[-- ;tCt] = exp[-- t~(J%)] (5.1) 
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where T(,~) has the/ollowing explicit Lgvy-Khinehin decomposition: 

T(~) = [a(~)]-i = f (1 - e - ~ t ) a  t dt + [a(0)]-l .  (5.2) 
(0,oo) 

Proo/ (see l~nv~c [14, 15]). On integrating Eq. (5.1) with respect to t, we 
obtain 

[T(~)] -1 : My f e x p [ - -  ~et] dt : My f e x p ( - - / t )  d~t ---- a(~) 
(0, r (0, co) 

The remaining assertion of Eq. (5.2) is simply a restatement of N~v~u's formula 
at  (1.5). 

For completeness, we state without proof 

Lemma 5.1. Let 
~:t =- inf {s: s q- ~s (Y) > t}, 

x t  + ~ , ,  ~t - ~ Z ~ , .  

x + Then X + - ( t , J[+, Px) is a strong Marlcov process such that 

P~{x+ ~ E u y } =  l ( x s E + , t > O ) .  

The transition/unction P+ o / X  + satis/ies: 

P+(~; y, Y) -= [~ q- T( ,~) ] - I ;  

P+ (~; Y, ]) = [~ + T( / ) ]  -~ g- (~; ]); 
P+(A; i, y) ----/-(A; i) [A ~- T(A)]-I; 

P+(;O = P-().) + [;. + ~( ; . ) ] - " / - ( ; . )  x g-(;.) 
on E x E .  

5.2 

Definition. For any additive functional ~, write 

The remainder of our treatment hinges on the following result. 

Theorem 5.2. For t ~ O, i ~ E and ] e E, 

My{fit(i) [ Qt < oo} ---- tg-(0; i ) / - (0;  i),  (5.3) 

Su)l < oo} 
= t [g-(0; i) P-(0;  i, ] ) / -(0;  ?') + g-(0; ]) P-(0;  ], i ) / - (0;  i)]. (5.4) 

There is no doubt that  the "right" way to prove this theorem is by the use of 
excursion theory. The formulae required for the present situation have been 
known for some time, thanks to N~vEu [13, 14], but  no full probabilistic treatment 
from "strong Markov" arguments has been given. However, NEv•v provides 
very convincing evidence for his formulae at the end of his paper [14]. 

The structure of the random set {t: xt = y} is completely described by 
Theorem 5.1. The interior of the set {t: xt * y} is, of course, the union of a count- 
able number of disjoint open intervals. The statement that  the behaviour of X 
inside one of these intervals depends only on the length of that  particular interval 
may be made precise as follows. 
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Take a fixed t > 0. Let  

a -~sup{8:  8 ~=t, x s= y} 
~ min{u: u ~ t ,  x u : y }  

with ~ ~- oo ff no u satisfies the bracketed condition. (Note that  ~ is a Markov 
* 

time but  tha t  a is not.) L e t d / ,  be the Borel field generated by the random variables 
xv+u (u ~ 0) and let d/6 be the smallest complete Borel field containing the sets 

{ x s = ] ; ~ > 8 }  ( ] e E ; 0 - < 8 - < t ) .  

Then, on the set {~ < c~}, 

Py (xt = i { z, 7, ~ ,  ~z~} = g~- o(i)/~-,(0 (5.5) 
a ~ - a  

Here is an extremely informal proof of Eq. (5.3) based on Eq. (5.5). Suppose 
that  x0 = y, i.e., use the Pv measure. Given that  an excursion interval is of 
length l, it follows from Eq. (5.5) tha t  the expected time spent in i during that  
interval is 

1 
1 fg7  (i)/7-s(i)d8. 

a -  (1) o 

However, the content of the L6vy-Khinehin formula (5.2) is that  the number of 
excursion intervals of lengths between 1 and 1 + dl made by X before time pt is 
Poisson parameter a-(l) dl. Hence 

My{fi~( i ) let<oo} S°~I~ 
/=0 s=0 

= g-(0;/)  1-(0; i).  

as required. Eq. (5.4) may be "proved" similarly. 

5.3 

Instead of justifying the above argument, we now describe an alternative use 
of excursion theory which yields a proof of Theorem 5.2 requiring less sophisticated 
methods. 

Sketch o/proo[ o/Theorem 5.2. Take a fixed pair (i, ?') of states of E. Set 

~ t - ~  if ~ + ~ ( i ) + ~ ( j ) _ _ _ t ,  
inf{s: q~s + f18 (i) + fls (i) > t} otherwise. 

Set 
Zt ~ X~  , ,fl't ~ " /~c"  

Then (zt, ~, Jr) is a right continuous strong Markov process with lifetime 

taking only the values y, i and j. The transition function of Z ~ (zt} may be 
calculated by standard methods (see N]~vwv [13]) but  it may be seen directly 
tha t  the problem of proving Theorem 9.1 reduces to that  of proving the exactly 
analogous problem for Z. This is much more elementary. 

In  a finite time interval, Z makes only finitely many excursions from y and 
the excursions may be labelled in the order in which they occur. That  the excur- 
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sions are "independent of their past and future" may be stated in conventional 
strong Markov terms and the probabilistie facts required are covered by Corollary 2 
to Theorem II.15.2 of (the second edition of) Cnv~G [2]. The algebra which leads 
to the formulae of Theorem 5.2 is somewhat involved but as the entire calculation 
has now been reduced to the handling of exponential variables, it does not seem 
worth spelling it out. 

w 6. Theorems C and D 

6.1 

We now assume that  X is irreducible and recurrent. 

Lemma 6.1. 

/or some constant K. 

Proo/. Set 

g-(0; i) = K n(i) (j ~ E) 

B V  - ] a 7  ds = (g-(O), fi->. 
( t ,  oo  ) 

That y is recurrent implies that  a(0) = oo. Hence, from Eq. (1.5), 

[a(2)] -1 = ]2e  -zt B[- dt --~ 2 <g-(0),/-(2)}. (6.1) 
(0, oo) 

I t  now follows that  

2 g-(0) P (2) = 2 g- (0) [P-(2) + / - ( 2 )  @ g-(k) a (4)] 

= 2 g-(o)P-(~) + 2 <g-(o), 1-(~)> a (4)g-(k) 
= 2g-(0) P-(2) + g-(2) ---- g-(0). 

The measure g-(O) is therefore invariant. 
We may and shall assume that  ~he local time at y is normalised so that  the 

constant K of Lemma 6.1 is equal to unity:  K = 1. Theorem 5.2 then takes the 
following simple form. 

Theorem 6.1. For t > O, i ~ E and ] E E ,  

My{Lt(i)} = t, 

eov~ (s (i), Z~ (j)} = t t[ p-(o;~(j)~, j) + P-(o; !,~(i) i) J'] 

6.2. Proo/ o~ Theorem C 

From Theorem 6.1, we deduce that  

My <s g~> = t, 

Vary </~t, go> = 2t ~ ~ g~ (i) P-(O; i, j) go (i)/~ (j) ---- 2 t Mg~ <LT, g~>. (6.2) 

A calculation very similar to that  used in the proof of Lemma 6.1 shows that  

Mg~ (LT,  g~> ~ A~. 
Since 

lira A~ ---- 0, 
~ 0  

21 Z. W~hrscheinlichkeitstheorie verw. Geb., Bd. 11 
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it  follows from TC~BYCHErF'S inequality that  

lim Py{I <Lt, g~> -- tt > s} : 0. 
~1o 

However, (<T-t, go> -- t, Pu) is a centered process with independent increments 
and so a martingale. We may therefore deduce (as in the proof of Theorem 4.1) 
tha t  

lira sup  sl  > = O. 

But, if xo = y, then 

sup I < s  go> - s I = s , p  I <Ls, go> - ~ ,  1. 
O<=s~_t O<s<~t 

(A positive [negative] "error"  

(L~, g0} -- ~s 

would imply a larger absolute "error"  at the first [last] visit to y after [before] 
time s.) 

I f  we now piece together the above results, we reach the following conclusion. 

Lemma 6.2. Let A be a sequence o/positive reals such that 

~A(~)<~ 

Let ~ be the set o/co in $2 such that 

lira (Lt (co), g~} = ~0t (co) (6.3) 

/or every t > O. Then 

P~([2) = 1. 

Let  zJ and ~ be as in Lemma 6.2. Let  i be a point of E and let 

= T t  = i n f { s :  x ,  = i } .  

Because of the irreducible recurrent character of X,  we have 

Py{~ < oo} = 1. 

I f  co e ~ ,  then, for every t, 

lira ~Lt+~(r - -  L~(eo), g6} = ~t+~(o~) - -  cf,(o~) , 
Ae~10 

i.e. co a 0 ~ .  Hence t~ C 0 ~  and the Strong Markov Theorem gives 

1 ---- P.v (0~ ~ )  ---- P,~, (5 )  ---- Pl (~ ) .  

Lemma6.3. With ~ as in Lemma 6.2, we have 

Pi (~) = 1 (i e E) .  

We may therefore integrate Eq. (6.3) with respect to P, and apply FATOV's 
Lemma to obtain 

lim inf ~ go (i) ff P*~ (i, i) ds ~ at* (i). (6.4) 
.~eo,lo 1 (o.0 
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A second application of FATov's Lemma shows that  the sum over of the left hand 
side of inequality (6.4) is not greater than t. 

Lemma 6.4. 
g*(i)  = 1 (t > 0) .  

i 

Equality there/ore holds at (6.4). 

Proo/. Since z = g-(0), we have 

~g*(2; i )  = ~ 2 1 ( ~ ; i )  g-(O;i) = ~ g - ( 0 ) , / - ( ~ ) ~  a(~). 
i i 

The proof is completed by quoting Eq. (6.1). 
Because equality holds at (6.4) for any sequence A which tends to zero 

sufficiently rapidly, it  follows that  

lim f ~ g~ (i) P*8 (], i) ds = G~ (i). 
~$o (o,0 J 

That  we may differentiate formally to obtain the result 

lira ~ ~(]) Pt* (J, i) = gt* (i) (6.5) 
~o j 

follows from Proposition 2 of NEvv, t~ [14]. (Note that,  for each (~ > 0, g~P*. is 
an entrance law relative to P*.) 

Eq. (6.5) is the first assertion of Theorem C and since the other assertions of 
Theorem C are easily seen to be equivalent to Eq. (6.5), Theorem C is proved. 

Eq. (6.2) explains the significance of hypothesis (2.10) and Theorem D may 
be proved by an obvious modification of the methods used above. 

6.3 

That  Theorem C' would imply Theorem C is trivial. Consider the second 
assertion of Theorem C: 

P,(y, j) = lim ~ P*(y, i) P,(i, j). (6.6) 
~0 l e e  

I f  we knew that  P*  is stochastically continuous at y in the P-topology, then 
Eq. (6.6) would follow immediately from the fact that,  for fixed t and ], Pt  (x, ~) 
is continuous in x. 

The converse proposition that  Theorem C implies Theorem C' is much less 
trivial. I t  follows from Eq. (6.6) that  

lira ~ P*(y,i)  P ( 1 ; i , ] ) =  P(1;y,])  
~ 0  i ~ E  

for every ]. This is precisely the condition which we need to deduce that  the 
measures P*~ (y, .) converge weak*-ly to the unit mass at y by the method 
explained on pages 328 and 329 of Nitrify [14]. 

The results of w 2.5 may be proved by methods very similar to those used 
above. 

.o1. 
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w 7. Examples 

7.1 

We come now to the  proof  that ,  in general, local t ime at  a fictitious state 
m a y  not  be expressed as a derivative of  occupat ion time. I n  view of  the essential 
equivalence of  ins tantaneous states of  E and regular fictitious states of  E+\E, 
i t  will be sufficient for our purpose to establish that ,  in general, t ime in an 
ins tantaneous state m a y  not  be expressed by  a formula of  the type  

fit(b) = lim re(s: 0 < s _< t; 0,@(x~, b) < ~} 
h~ 

E x a m p l e  7.1. Consider the process X of  Example  3 of  w I I .20  of  C~u~r  [2] 
with 

qr = 21 (i = 1, 2 . . . .  ). 

This is a special case of  the process " K  1" which was constructed by  KOL~OGO~OV 
and exhaust ively analysed in K E ~ D ~ L  and R~UTER [7]. For  this process, E+ = E 
and E + is a compact metric space with 0 as the (unique) limit point  of  the 
sequence 1, 2, 3, . . . :  

lim p~j (t) = p0j (t) (j ~ E, t > 0). 
i - - +  r  

(This is Eq.  (43) of KENDALL and I~VTE~ [7].) We m a y  therefore assume tha t  X 
is a s tandard  process. 

We base our proof  of  the fact  t ha t  no ]ormula o/ the  type 

fit(O) = lim re{s: 0 <-- s <- t, z~ > n} (7.1) 
ha 

Z l 3 n  ---> c o  

can hold on a remarkable  "self-reproductive" proper ty  of X. 

Theorem 7.1. Let 

j_~2 

x ~ , -  1 otherwise. 

Then the strong Markov process Z has exactly the same transition /unction as X .  
This is an intui t ively obvious consequence of the  analysis of  K 1 given in 

KENDALL and I ~ U T ~  [7] and C~vNG [2]. I t  m a y  be proved easily by  the methods 
of  W~LLIAMS [17]. 

NOW set 

et ~ inf{s:  fis(O) > t},  

fi~(o) --- m {u :  0 _< u _< s ;  ~ = 0 } ,  

@~ ~ inf{s:  fi~(0) > t}. 

I t  is a simple exercise to show tha t  

2re{s: 0 <_s <_et;x~>2}=m{s: 0-<s---e~;~s>l} .  

I t  therefore follows f rom Theorem 7.1 tha t  
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(Lemma 7.1.) the Po-distributions el the random variables 

2~m{s :  O<~s<~gt;Xs>=k} (k = 1 ,2 , . . . )  (7.2) 
are identical. 

I f  Eq. (7.1) were true, then 

Hm m(8:0 ~ s  ~< e~;x~ ~ k) 
h~ -~ t. (7.3) 

2~k-+oo 

However,  in view of  Lemma 7.1, Eq. (7.3) could be true only if  each of  the random 
variables at  (7.2) is constant  almost  surely (P0) and this is obviously quite absurd. 

N o t e .  For  conditions under  which the locM time at  a point  m a y  be expressed 
as a derivative of  occupat ion time, see GRIEOO [5]. Our example shows tha t  
GRIEGO'S hypothesis  t ha t  the convergence of  U ~ (x, y) to U~(x, xo) is uni/orm in x 
m a y  not  be relaxed completely. All of  the other  hypotheses of  [5] are satisfied in 
our example. 

7.2 

The next  example shows tha t  the P and P *  topologies m a y  differ at  a regular 
point. 

E x a m p l e  7.2. We take Example  4 of  w I I .20  of  C~VNG [2]. The following 
results m a y  be verified easily. 

I n  the P- topology,  the limit 
l i r a  j n  

n-+oo 

exists and is a semi-polar fictitious state ]o~ representing the top of  the ~'-th 
escalator and 

E +  - -  E v { 1 ~ ,  2 . . . . .  } .  

The process is irreducible positive recurrent  and the measure ~ with 

~ ( j ~ )  =- (qj .)-~ (j > 1, n > 1) 

~ ( 0 )  - 1 

is invariant. 

In the P*-topology, there are no fictitious states and 

lim jn = O. 
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