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Summary. The question considered is the following: If two invertible measure preserving
point transformations commute, in what sense is one a function of the other ? The main theorem
is the following: If two invertible measure preserving transformations commute, and if the
first admits of approximation by periodic transformations, then the second transformation is
a piecewise power of the first, where we say that o is a piecewise power of v if there exists a
sequence [j(n)] of positive integers such that for each measurable set 4 the limit of the
measure of the symmetric difference of 7(4) and o7 (®)(4) tends to zero.

1. Introduetion

The general problem we consider is the following: If two invertible measure
preserving point transformations commute, in what sense of special interest from
the point of view of point transformations is one a function of the other ? As is
well known, the spectral theorem provides a general answer to this question, and
our principal result may be regarded in a sense as a specialization of it.

Ag an application, we mention that it yields a simplification of the constructions
given in [2] and [3] of transformations having continuous spectrum and no roots.
We omit details since giving them would take us too far from the problem we are
considering in this note. Certain related questions, for transformations having
discrete spectrum, are considered in [1].

The main theorem is the following: If two invertible measure preserving
transformations commute, and if the first admits of approximation by periodic
transformations, then the second transformation is a piecewise power of the first
(see § 2 for definitions). Our methods are related principally to those of [2] and [3].

2. Definitions

Let (X, &, u) be a normalized non-atomic Lebesgue space (i.e. isomorphic to
the unit interval), and let ¢ and 7 be invertible measure preserving transformations
of X. All sets that are referred to are understood to be in & even if this is not
explicitly stated.

Definition 2.1. We say that ¢ is a piecewise power of 1 if there exists a sequence
{k(n)} such that

lim p(o(4) AT*® (A)) =0, forall AdeF.

>0

We say that ¢ is a weak piecewise power of v if for each 4 € # and ¢ > 0 there
exists an integer k such that u(o(4) A7%(4)) < e. (By 4 4 B we mean the sym-
metric difference of the sets A and B.)
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Definition 2.2. A collection & of sets having union X.C X will be called a
partition if the sets are in & and are pairwise disjoint. If X, = X we call £ a
partition of X.

We remark that RouLin [5] has defined a (measurable) partition in a different
and deeper way which, however, coincides with our definition if § is denumerable
and X, = X. Since we will make no use of the deeper concept, we choose to give
the simpler definition.

Definition 2.3. Let £ = {4, ..., 44, ...} be a finite or denumerable partition
and let 4 € #. Among the unjons of sets of & there is at least one whose symmetric
difference with 4 has minimal measure. We denote by 4 (&) any one of these sets.
The resulting ambiguity is deliberate and simplifies the notation considerably.
We define 1 - B = B and 0 - B = @} so that we can write

A =S a4,
i=1

where a;,7 = 1,2, ...,is equal to 0 or 1 depending (not uniquely) on 4. Note that
AE) =4 AcXeand A e F (41, Az, ...), where F (41, 42, ...) is the Borel
field generated by the sets 41, 42, ....

Definition 2.4. 7 is an automorphism (of (X, #, u)) if Tis an invertible measure
preserving transformation of X.

Definition 2.5. Let ¢ denote the partition of X into single points and let {&(n)}
be a sequence of denumerable partitions. We write &(n) — ¢ if for ech A e F

we have that
lim (4 4 A(§(n)) =0.
n—>rco
Definition 2.6. We say that an automorphism v admits of approximation by
periodic automorphisms (transformations) if there exists a sequence {£(n)} of
partitions with &(n) = {4;(n), i = 1,2,..., ¢(n)} such that
a) t(4d;i(n)) = Adpan), it =1,2,...,qgn)—1,
b) &(n) —¢e, and

¢) if B(n) = c(qL(n)) A; (n)) then lim ¢(n) u(B(n)) =0,
t=1 n—>00

where ¢(A4) is the complement of A relative to the whole space.

3. Approximation by Periodic Automorphisms

Several different notions of approximation have been given by various authors.
Katox and StEPIN in [4] defined a metric in terms of which an automorphism
can be approximated by periodic antomorphisms. The main result of this section
is to relate this concept of approximation to that given in § 2.

Definition 3.1. An automorphism 7 admits of ¢ KS-approximation by periodic
automorphisms with speed f(») if for each n = 1, 2, ... there exists a partition of
X,E(mn) ={Ci(n),i=1,2,...,9(n)}, and an automorphism 7, such that:
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1) §(n)—¢,
2) tp&(n) = &(n) for each n and 7, permutes the elements of & (n) cyclically, and
7(n)

) 2 p(TaCi(n) AT04(n)) < fg(n)).

i=1
Further if f(n) = 0(1/n%) we say that 7 admits of a K8 (j) approximation.

Theorem 3.1. If an automorphism v admits of a KS(2) approximation, then v
admits of approximation by periodic automorphisms. If T admits of approximation
by periodic automorphisms, then T admits of a KS (1) approximation.

Proof. (1) Approximation by periodic automorphisms implies KS (1) approxi-

mated by periodic automorphisms then for each n there exists a partition
En) = {4;(n),i=1,2,...,9(n)} satisfying the conditions of definition 2.6, where

q(n)
=c (U A ( ) Write B (n) as the disjoint union of ¢ (n) sets of equal measure,

so that B(n)= Fi(n) U U Fymy(n) where u(Fi(n))=pu(F;(n)) for 1 =4,
j = q(n), and define a partition 7(n) of X by:

={4;(n) U Fi(n), t=1,2,...,9(n)}.
Define the automorph1sm oy arbitrarily on F;(n) but so that
onFi(n)=Fi1(n),1 <¢<q(n) and onFym(n)=Fi(n).
Let C;(n) = A;(n) U Fy(n) for 1 <7 < q(n), and let

|z on A;(n)
%= 15, on Fin) for 1=<1i<q(n).

Let G(n) be the subset of Ay (n) such that 16 (n) c B(n), and let H (n) be the
subset of A;(n) such that v=1(H (n)) c B(n) (then u(G(n)) = u(H(n))). Let op
be any automorphism such that g, (G (n)) = H(n), and let

T on Agwm(n)—G(n)
Tp=10n o0 Fyu(n)
on on G(n).

Clearly 7,C;(n) = Cit1(n) for 1 < i <q(n), and 7,Cyy(n) = Cy(n), so that
7p permutes the elements of #(n) cyclically. Since &(n) — ¢, we have
Imu(AAAEMm)=0 for AeF

f->00

Given ¢ > 0 choose N such that n» > N implies u(4 4 4 (&(n))) < §/2 and
u(B(n)) < /2. (Note that from the conditions of definition 2.6 lim u (B (n)) = 0.)

n—roo
q(n)
Suppose 4 (&(n)) = Zaz (n) A;(n), and define A Z“@ n) Ci(n). We
i=1
note the inequality

|u(AA(BUC) —u(AAB)| <u(C) for A,B, and CeF
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from which follows

|u(4 4 AE @) — p(AddAER))
=u (qﬁ)ai (n) Fy (n)) < u(Bm) =4/2 for n>N.

i=1

This implies that u (4 A A (y(n))) < éforn > N, so that (n) — &. Lastly we have

g{n) (n)
S (Tn Cilm) A TCe0) < 2(@,+ 2 > p(Fi(m)
i=1 i=1

<4u(Bm) . Let j(g(n) =4u(B(n).

Then since lim ¢(n) u(B(n)) = 0, we have lim q(n) f(¢(n)) = 0, and 7 admits

> 00 N> 00

of a KS(1) approximation.

(2) K8 (2) approximation implies approximation by periodic automorphisms.

Assume that v admits of a KS(2) approxmlat]on then for each n there exists
an automorphism 7, and a partition of X, &(n = {Ci(n), 1 =1,2,..., g(n)}
satisfying the conditionsof definition 3.1 with f (n) = 0 (1/n2). Foreachi,1 =i < q(n),
we can write Cj(n) = Ci(n) = G;(n) U Fij(n) where tG;i(n)c Cin (n) and
tFin) N Cii(n) =0 for 1=i<gq(n), and where T Gg(my (n) c C1(n) and
7 Fgmy(n) N C1(n) = 0. Clearly we have

18(70 Ci(n) 2 TC3s(m)) = p(t Fi(m)) + p Ciza(n) — TGs(m)) = 2 p(Fi(n))

for 1 < i < g(n), and the analogous equation holds for ¢ = ¢(n).
Let Aq(n) = C1(n) NG1(n) N T1G2(n) N -+ N 741Gy (n), and define
A;(n) = 11 A41(n), 1 <i = q(n). The we have

U As(n)), and
o) =t

p(B(n)) ZﬂCl — A (n)) = q(n) p(C1(n) — 41(n)) .

Since C1(n) — A1(n) = C1(n) "\ (F1(n) Ut 1 Fa(n) U -V T¢I By (m))
it follows that

q(n) a(n)
w(C1(n) <2 pl Filn =S uFo
a(n)
— 43 plrnOu(m) A€ Culr) S 41(alo),

and we have g(n) u(B(n)) = {q(n)?f(g(n)), so that
lim g(n) u(B(n)) =0 since f(n)=0 (%) .

n—>roo
Let (n) = {4i(n), i = 1,2, ..., q(n)}. By the definition of A;(n), it is clear
that Tt 4;(n) = 41 (f) for 1 =i < q(n) The proof that #(n) — ¢ is exactly the
same as the proof used to show the corresponding fact in the first part of this
proof, and 7 admits of approximation by periodic automorphisms.
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4. Commuting Transformations

It will be convenient to introduce some notation first. Throughout this section,
we will assume that 7 and ¢ are automorphisms and that v admits of approxi-
mation by periodic automorphisms and that {£(n)}, £(n) = {4;(n), = 1,...,q(n)}
is the associated sequence of partitions. For each n, we divide 41 (n) into ¢g(n) 1

pairwise disjoint sets By (n), Ba(n), ..., Bym+1(n) where B;(n) consists of those
q(m)+1

points in A;(n) which are mapped into 4;(n) by ¢. That is A1(n) = | B:(n),
i=1

Bi(n) O\ By(n) =0 for i + §,o(Bi(n)) c As(n) for i =1,2,...,q(n), and

(n)
Bymy+1(n) = A1 (n) — qU B;(n).
=1

We will also have occasion to consider transformations which are not neces-
sarily defined everywhere, and if 7 is such a transformation, by 7(4) we mean
{y:y = ©(z), x € A N D;} where D; is the domain of definition of 7.

Remark. If ¢ and 7 commute, then ¢(z) = y implies o (7% (x)) = 7%(y).

g(n)
Definition 4.1. For each n, we set p7=17 on Xg) = UA,- () and leave it
i=1

undefined elsewhere.

Lemma 4.1. For any positive integer k,
nT¥(6(Bi(n))) N o (Bi(n)) =0 if ©+7.
Proof. Note that
aT# (0 (Bi(n))) N 0 (B;(n)) = o ((«7%(Bi(n))) N B;(n)),
and that
nT% (Bi(n)) N Bj(n) = 0

since if £ is not a multiple of ¢(n), ,7%(B;(n)) ¢ 41(n), and if k is a multiple of
¢(m) it is easy to check that ,7%(B;(n)) N A1(n)c B;(n).

Definition 4.2. We say that a set 4 approximates a set B with an error of §
if the measure of the symmetric difference of 4 and B is no more than §, and
we write in this case A = B -+ E(9).

We note also the following combinatorial lemma given in [2]. We include a
shorter proof for the sake of completeness.

Lemma 4.2, Let oy = (251, ..., ), ] = 1, ..., k be k sequences of zeros and ones
of length n. Let {b;,§ =1, ..., k} be non-negative numbers having sum equal fo one,
and suppose that there is a subset H of {1, ..., n} such that

3
Dbz =1 —n foradl icH.
j=1

Then there exists an tnteger w, 1 < 0w Z k, such that

k
z zbjxjiwmi ZNH)(1—2y)

ieH j=1
where N (H) is the number of elements in H.
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Proof. To see that we may assume without loss of generality that b; = 1/k,
we proceed as follows. First note that we can certainly suppose that bs to be
rational numbers with a common denominator so that b; = m;/m. Now consider
the problem obtained by taking each a;m; times; this reduces the lemma to the
case where the new k equals the sum of the m;s and the new bs‘s are all equal
to 1/m. So assuming b; = 1/k, we have

k

k k k
> 2 2biwver =2, 2%a (71— Zwﬁ)
w—1 ieH j=1 o=1 icH j=1
k k
2(1—72)2 zxwi':(l—’]),z mei

o=1ieH teH o=1
=(1—y) Sk(L—y)=kENH) (1 —n2ZkNEH) L~ 27).

teH
Therefore, for some w, 1 < w = k we have
%
> Sbipze: = N(H) (1 —27).
ieH j=1
We are now ready to prove our main result.

Theorem 4.1. If o7 = 7o and if T admits of approximation by periodic auto-
morphisms, then o s a piecewise power of 7.

We divide the proof into several lemmas.
Lemma 4.3. Under the hypotheses of the theorem, given A € F and 6 > 0, for

each n there exist pairwise disjoint sets C1(n), ..., Cqmy(n) € F such that for n
sufficiently large o (A) is approximated with error 8 by the set

a(n) g(n)
2 zai_ﬂ_l (n) 71 Cj (n) where Aj—j+1 — 0 or Aj—j+1 — 1.
i=1 j=1
q(n) g{n)
Further | JCj(n)c A1(n) and limg(n)p(41(n) — U Csn)) =0.
i=1 n—>o00 =1

Proof. Recalling that {&(n)}, &(n) = {4i(n), i =1,2,...,¢(n)}, is the se-
quence of partitions used in approximating 7, we choose 7¢ large enough so that
for n > ng

a(n) a(n)

AE@n) = 2 ai(n) Ai(n) = > ai(n) 701 A1 (n)
i=1 i=1

and )
A =AE )+ E(9/3).
Tt then follows that ¢(4) = o (4 (£(n))) + E(4/3) and
q(n)

o(4(E(n) = 2, ai(n) TLo(A1(n)
=1

am) q(n) q(n)
= > ai(n) vlo (U By (n)) + > ai(n) 710 (Bgm+1(n)) -
i=1 i=1 i=1
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The measure of this last set is clearly less than or equal to ¢(n) u(Bg@m+1(n)).
Since 7 admits of approximation by periodic transformations, by Theorem 3.1
it admits of a KS(1) approximation where we can choose f(g(n) = 4u(B(n)).
Since Bgny+1(n) c B(n), it follows that

q(n) u(Bym+1(n)) = q(n) u(B(n)) = tq(n) f(g(n) -

Since lim g (») f(g{(n)) = 0, we may assume that ng is large enough so that n > ng

N> 00
implies g (n) g (By (ny+1 (7)) << 0/3. If we define Cj(n) = v+l ¢(By(n)), j = 1,...,9(n),
then by Lemma 4.1, the sets U1(n), ..., Cqn) (n) are pairwise disjoint. Therefore
letting d,, = p(B(n)) we have

q(n) q(n)
Z n)ri-lg (U Bi(n )
t=1
a(n) q(n)
=S gy vt (u w10, <n))
i=1

j=1
g(n) g(n)
= > D ai(n) T2 (n)
j=14=1
q(n) g(n)
=2 2 aijr1710;(n) + E(g(n) dy)
j=1 i=j
q(ﬁ) a(n)

= > 24177105 (n) + B (q(n) da)

j=11i=1

where a;(n) = aprq @) (#) for — g(n) + 1 <1 < 0. As we have already noted, we
can assume that ¢(n) d, << §/3 and thus we have proved

) q(m
o(d) = Z z ai—j+1 71 Ci(n) - E(5).
i—1j=1
g(n) g(n)
It is obvious that|_J Cy(n) c 41 (n), and since u (41 (n) —\_J Cj(n)) = (B (y+1(n)),
i=1 j=1
q(n)
it is clear that lim g(n) u(41(n U Ci(n

f—>o0

Lemma 4.4. Suppose that for each positive integer n the measurable sets A, , By, Oy
and Dy, satisfy the following relations '

2) CncAy, and D,c B,, and
3) there exists a set ¥ € F such that
limu((Ap U Bp)AF)=0 and Hmu(CprUDy)dF)=0,

f—> 00 n—>00

then
impu(d, — Op) =0 and limy(B, —D,)=0.

n—>00 n—o0

Proof. The proof is straightforward and we shall omit it,
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q(n) q(n)
Let 4 e, and given § > Olet Z Zai_]u,l (n) 78-1C;{n)be the set construc-
i=1 j=1
ted in Lemma 4.3 which approximates o (4) with error § for n > no. We canalso
g(n)
assume that for n > ng [a(4)] E(n)) = Za (n) 4;(n) approximates o (4} with

error 8. Consider, then, the intersection of these two sets,

a(n) q(n)

(1) > Za n) 511 (n) 70105 (n)

i=1
q(n) q(n)
= > a;( n)(i“z—yﬂ n) 1 Ci(n ))
f=1 j=1

which approximates o(4) with error 24. Define

Gn={i|a;(n)=1, i=12,...,q()}.
g(n)

Since Zai_j+1 (n) C;(n) c A; for each 7, we have for { € G, that
=t a(m) .
(2) Z @i-j+1(n) 787105 (n) = Ai(n) + E (y:(n)
=t a(n)
where z yi{n) =290.

a(n)
For each fixed n, define b;(n) = u(C;(n))/p (UCHn)), for j=1,2,...,9(n).

a(n)
Let Hy= {z ely| Za@_ﬁ.l b;=1— 77} where # is an arbitrary fixed number,

0<n<]1, and let In_Gn——Hn

g(n)

Lemma 4.5. Given 8 >0 > > a;311 757105 (n) approvimates o (A) with error 6
t€eHgp j=1
for n sufficiently large. Furthermore,

lim N (Hy) u (Al(n))—llmN(Hn),u(ﬁO] ) p(o(4)).

1~—> 00 n—>roo J=
Proof. Assume that the lemma is not true, then since by (1)
a(n)
zdi_j+1 (n) 18-1C3(n), n>nep,
16Gn j=1
approximates ¢(4) with error 2J we must have that for n arbitrarily large,
a(n)
z Z Qi—j+1 (’)?/) 71 Oj (n)
ieln j=1
must be a set of substantial measure. That is, there must exist § > 0 such that
a(n)
we have u ( Z z i1 (n) 10 (n)) > f > 0,forarbitrarilylarge #. This implies
i€lyn j=1

a{n)

(n)
B) 0<p< M( > D i (n) TG (n)) <@ —=nu (q(J C; ("))N(In)-
i=1

i€la 7=1
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Since

q(n) ,

Z z ai—jr1(n) T10;(n) Z a;(n) A;(n
i€Hn j=1) ieHy
and
q(n ,
> 2 i (r) T Ci(n) C Y aj(n) Ay (n),
i€ln j=1 ieln

these sets satisfy the relations given in Lemma 4.4 with F = ¢(4), and applying
this lemma we get the following results:

Since
(Za ) N(In) p(41(n))
i€ln
(n)
lim ‘ N(Ip) p(A1(n)) — ﬂ( 2 qZ @i—g+1(n) T 01(ﬂ)> =0.
n—>00 i€l j=1
Since !
q(n)
lim g(n) (A1 (n) —(JCs(n) =0 and N (In) = q(n)
N—>00 j=1
this implies that
(n)
N (T (u o)) =1 3 S s v10y00)| 0.
n—o0 i€ly =

Since 5 and [ are independent of », this gives a contradiction in (3) proving the
first part of the lemma, and proves further that we must have

g{n)

lim Z Z Ai—j+1 (n) 7i-1 Oj (n) =0

<o that n—>co 4€lp j=1
lim e > a(n) Au(m) = im N (1) (A () =

n—o0 \ielp n—>o0

which implies that
lim g (> a;(n) Ay (n)): lim N (H) u(41(n)) = im N (H,) (ﬁoj ) u(a(4)).

n—s00 ('ieH,. 7> 00 n—>c0
Lemma 4.6. Given § > 0, for n sufficiently large there exists an integer o depen-
ding on n, 1 = w = q(n) such that

q(n)

2 Gipr1(n zaz—ﬂl n) T8-1Cy(n)
i€Gln =1
approximates o (A) with error 346.
a(n)
Proof. For ¢ € H, we have Zai“f“ (n) by(n) = 1 — ». By applying Lemma 4.2
i=1

with 2 = a;—y11 and k = ¢ (n) we get that there exists an integer v, 1 < w < ¢(n)
such that
q(n)

2. i—o+1(n) D ai—j1(n)by(n) = N(Hy) (1 — 27)

1€Hq j=1
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which implies that

g (n)
Zal wr1(n zaz—ﬁlﬂ('ﬂ “1C5(n)) = N (Hp) (QLJ Ol(n)) (1—29).
teHa =1 j=1

Lemma 4.5 assures us that by taking » large we can assume that
a(n)

N(Hnm(u Of(n)) > p(o(d) — 3,

j=1
and letting % = 6/2 (u (0 (4)) — 8) we have that

(n)
( zaﬂm (n) qz g1 10 (n)) = p(o(d)) —26.

teHn =1

Obviously
¢(n)

> Aiwr1(n) Z%—Hl n) ©41 Cj(n)
i€Hy
g(n)

c z i—p+1 () Zaz—y—l—l Ti 10]( )
1eGa
g(n) a(n)

c> > ailn) T1Cm).

i=1 j=1

By Lemma 4.3, this last set can be agsumed. to approximate o (A4) with error 8.

The measure of the first set is at least u(o(4)) — 26 therefore it approximates

o(4) with error 3§ and the same holds true for the intermediate set, thereby
proving the lemma.

Proof of Theorem 4.1. By taking » sufficiently large, we have

q(n)
= > di-at1( n) zaz_m n) 710y (n) + E(36).

teGn

Using (2) we have (Wlth all indices understood modulo ¢(n))

4) zaz w+1(n) Ai(n) + B (59)
1€Gq
— 3 am) 1ol 4;(n) + E(69)
i+ w—1€Gn
= go-1 z ai(n) Ai(n) + E(G(S) .
i+ w—1€Gn
g(n)
Since Z ai(n)A;(n)c Za, (n) 4;(n), and thislast set approximates 4 with error
it o—1eGy,
8, it follows that ,u( z a;(n) A@(n)>___ u(d)y+ 8. Since v and o are
tto—1cGq

measure preserving, however, it follows from (4) that

,u(A)—66=y(o'(A))—66§,u< > ai(n)Ai(n)), sothat > a;(n) 4i(n)

it+w—1e@a i+o—1eGn
approximates 4 with error 76 and therefore

o(4) = 1014 + E(146).



Commuting Point Transformations 287

This shows that ¢ is a weak piecewise power of 7. To see that we may in fact
obtain the stronger result, apply the previous result to 4;(n) and note that since
o and 7 commute and are measure preserving, the relation

0(4s(n)) = TF®'8 (A1 (n)) + E(e) implies o(4i(n)) = t#e) (44(n)) + E(e),
i=1,...,q()

A straightforward argument completes the proof if we choose ¢ = £(n) so that
g(n) - gq(n) 0.
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