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Summary. The question considered is the following: If  two invertible measure preserving 
point transformations commute, in what sense is one a function of the other ? The main theorem 
is the following: If  two invertible measure preserving transformations commute, and if the 
first admits of approximation by periodic transformations, then the second transformation is 
a pieeewise power of the first, where we say that a is a piecewise power of ~ if there exists a 
sequence [](n)] of positive integers such that for each measurable set A the limit of the 
measure of the symmetric difference of z(A) and ~j(n)(A) tends to zero. 

1. Introduction 

The genera l  p rob lem we consider is the  fol lowing:  I f  two inver t ib le  measure  
preserv ing  po in t  t r ans fo rmat ions  commute ,  in wha t  sense of  special  in te res t  f rom 
the  po in t  of  view of  po in t  t r ans fo rmat ions  is one a funct ion of  the  o ther  ? As is 
well known,  the  spec t ra l  t heorem provides  a general  answer  to  this  quest ion,  and  
our  pr inc ipa l  resu l t  m a y  be regarded  in a sense as a specia l izat ion of  it .  

As an appl ica t ion ,  we men t ion  t h a t  i t  yields a s implif icat ion of  the  const ruct ions  
given in [2] and  [3] of t r ans fo rmat ions  h a v i n g  cont inuous  spec t rum and  no roots.  
We  omi t  deta i l s  since giving t h e m  would  t ake  us too  far  f rom the  p rob lem we are 
considering in th is  note.  Cer ta in  re la ted  questions,  for t r ans fo rmat ions  having  
discrete  spec t rum,  are  considered in [1]. 

The  ma in  theorem is the  following: I f  two inver t ib le  measure  preserv ing  
t r ans fo rmat ions  commute ,  and  i f  the  first admi t s  of a pp rox ima t ion  b y  per iodic  
t rans format ions ,  t hen  the  second t r ans fo rma t ion  is a pieeewise power  of  the  first 
(see w 2 for definitions).  Our methods  are  re la ted  pr inc ipa l ly  to those  of  [2] and  [3]. 

2. Definitions 

Le t  (X, ~ ,  tt) be a normal ized  non-a tomic  Lebesgue space (i. e. i somorphic  to  
the  un i t  in terval ) ,  and  le t  a and  T be inver t ib le  measure  preserving t r ans fo rmat ions  
of  X.  All  sets t h a t  are referred to  are  under s tood  to be in ~ even ff this  is no t  
exp l ic i t ly  s ta ted .  

Definition 2.1. We say  t h a t  (~ is a pieeewise power of ~ i f  there  exists  a sequence 
{k (n)} such t h a t  

l i m t t ( a ( A ) A z k ( n ) ( A ) )  = O, for all A e ~ .  

We say  t h a t  a is a weak piecewise power of r i f  for each A e ~ -  and  e > 0 there  
exists  an  in teger  k such t h a t / ~  (a(A)  d ~ ( A ) )  ~ e. (By A zl B we mean  the  sym-  
met r ic  difference of  the  sets A and  B.) 

* Research supported in part by NSF grant GP-3752. 



278 R.V. CHAeO~ and T. SCHWARTZBA.D'ER: 

Definition 2.2. A collection ~ of sets having union Xq C X will be called a 
partition if the sets are in ~- and are pairwise disjoint. I f  X~ = X we call 2 a 
partition of X.  

We remark that  ROttLIN [5] has defined a (measurable) partition in a different 
and deeper way which, however, coincides with our definition if 2 is denumerable 
and X$ ----- X. Since we will make no use of the deeper concept, we choose to give 
the simpler definition. 

Definition 2.3. Let 2 = {A1, .. . ,  An . . . .  } be a finite or denumerable partition 
and let A e ~-. Among the unions of sets of 2 there is at least one whose symmetric 
difference with A has minimal measure. We denote by A (2) any one of these sets. 
The resulting ambiguity is deliberate and simplifies the notation considerably. 
We define 1 �9 B = B and 0 �9 B = tt so that  we can write 

A (~) --  a~A 
/ = 1  

where a~, i = 1, 2 . . . . .  is equal to 0 or 1 depending (not uniquely) on A. Note that  
A (2) ---- A if A c X$ and A e o~(A1, A2, ...), where o~'(A1, A2 . . . .  ) is the Borel 
field generated by the sets A1, A2 . . . . .  

Definition 2.4. T is an automorphism (of (X, ~-, #)) if T is an invertible measure 
preserving transformation of X. 

Definition 2.5. Let s denote the partition of X into single points and let {2 (n)} 
be a sequence of denumerable partitions. We write $ (n) --~ e if for ech A e o~ 
we have that  

lim # (A A A (2 (n))) = O . 
~ ---~ 0 0  

Definition 2.6. We say that  an automorphism T admits o/approximation by 
periodic automorphisms (trans/ormations) if there exists a sequence {2(n)} of 
partitions with 2(n) = (A~(n), i = 1, 2 . . . . .  q(n)} such that  

a) 7:(A~(n)) = A~+l(n), i = 1,2 . . . . .  q(n) -- 1, 

b) ~ ( n ) - + e ,  and 
/~(n) \ 

c) if B(n)-= c{~.JAi(n)}  then lim q ( n ) t t ( B ( n ) ) = 0 ,  
\ i =1  / ~--->- oo  

where c(A) is the complement of A relative to the whole space. 

3. Approximation by Periodie Automorphisms 

Several different notions of approximation have been given by various authors. 
KATOK and ST~PIN in [4] defined a metric in terms of which an automorphism 
can be approximated by periodic automorphisms. The main result of this section 
is to relate this concept of approximation to that  given in w 2. 

Definition 3.1. An automorphism ~ admits of a KS-approximation by periodic 
automorphJsms with speed ](n) if for each n = 1, 2 . . . .  there exists a partition of 
X, 2 (n) = {Ci (n), i = 1, 2 . . . . .  q (n)}, and an automorphism Tn such that :  
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1) ~(n)-~ ~, 
2) ~n ~ (n) = $ (n) for each n and ~n permutes the elements of~ (n) cyclically, and 

q(n) 
3) ~#(TnCi(n)  LJ zCi(n)) < /(q(n)). 

i = 1  

Further f f / (n)  = 0 (l/n/) we say that  T admits of a KS(]) approximation. 

Theorem 3.1. I] an automorphism T admits el a KS(2) approximation, then v 
admits o/ approximation by periodic automorphisms. I] ~ admits el approximation 
by periodic automorphisms, then ~ admits el a KS  (1) approximation. 

Proo/. (1) Approximation by periodic automorphisms implies KS( l )  approxi- 
mated by periodic automorphisms then for each n there exists a partition 

(n) = {At (n), i ~- 1, 2 . . . . .  q (n)} satisfying the conditions of definition 2.6, where 
[q(n) \ 

B (n ) ~ c (.~J A l (n ) ) . Write B (n ) as the disj oint union of q (n ) sets of equal measure, 

so that  B(n )  = F l ( n )  u . . .  u Fq( , ) (n)  where ~(F~(n))  = ~(F~(n))  for 1 =< i, 
j ~ q(n), and defne a partition ~(n) of X by:  

( n ) = { A ~ ( n ) u F ~ ( n ) ,  i : l , 2 , . . . , q ( n ) } .  

Define the automorphism an arbitrarily on F~ (n) but  so that  

an F~ (n) = Fl+l (n), 1 ~ i < q (n) and an tflq(n) (n)  : F1 (n). 

Let Ci (n) : At (n) w Fi (n) for 1 _~ i g q (n), and let 

'r on At(n) 
Z n =  an on Fl(n) for 1 ~ i < q ( n ) .  

Let  G(n) be the subset of Aq(n)(n) such that  "~G(n) c B(n), and let H(n) be the 
subset of Al(n) such that  z- l (H(n))  c B(n) (then /,(G(n)) ~/a(H(n))) .  Let 0n 
be any automorphism such that  0n (G (n)) = H(n),  and let 

"c on Aq(n)(n)--G(n) 
~:n~--- an on .Fq(n)(n) 

On on a(n) .  

Clearly vn Ci (n) ----- Ct+l (n) for 1 _--< i < q (n), and Tn Cq (n) (n) = C1 (n), so that  
zn permutes the elements of ~] (n) cyclically. Since ~ (n) -~ e, we have 

l imlu(AAA(~(n)))=--O for A c ~ .  
n - - ~ o o  

Given $ > 0 choose N such that  n > N  implies ~u(AAA(~(n ) ) )<  6/2 and 
/.,(B(n)) < 6/2. (Note that  from the conditions of definition 2.6 lira/z(B(n)) = 0.) 

n - ->  o o  

q(n) q(n) 
Suppose A ( ~ ( n ) ) :  ~a i (n )  At(n), and define A(~(n))---- ~a~(n)Ct(n).  We 

i = 1  i = 1  

note the inequality 

[ / ~ ( A A ( B w C ) ) - - # ( A A B ) ]  ~ # ( C )  for A , B ,  and C e ~ ,  
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f rom which follows 

] # (A A .A (~ (n))) -- # (A A A (~ (n))) I 

\/=l/q(n) ) < = # [ ~ a t ( n ) F f ( n )  <=l.t(B(n)) <=rS/2 for n > N .  

This implies tha t /~  (A A A (~ (n))) < ~ for n > iV, so t h a t  ~ (n) -~  s. Las t ly  we have  
q(n) q(n) 

/=1 i=1 
4 # ( B ( n ) ) .  Le t  /(q(n)) = 4 # ( B ( n ) ) .  

Then  since l im q ( n ) t t ( B ( n ) ) - ~  O, we have  lira q ( n ) / ( q ( n ) ) =  O, and ~ admi ts  

of  a K S  (1) approx imat ion .  
(2) K S  (2) app rox ima t ion  implies app rox ima t ion  b y  periodic au tomorphisms .  
Assume t h a t  ~ admi ts  of  a K S  (2) approx imat ion ,  then  for each n there  exists 

an a u t o m o r p h i s m  Tn and  a par t i t ion  of X,  ~(n) --~ {Ci(n), i --~ 1, 2, . . . ,  q(n)}, 
sat isfying the  conditions of definition 3.1 with / (n) = 0 (1/n2). For  each i, 1 ~ i ~ q (n), 
we can write C~(n ) - -  Cl(n) = G i ( n )  u F i ( n )  where ~G~(n) c C t + l ( n )  and  

Fi  (n) n C~+I (n) -~ 0 for 1 ~ i < q (n), and  where ~ Gq(n) (n) c C1 (n) and  
Fq (n)(n) n C1 (n) ~ 0. Clearly we have  

tt(~n Ci(n) A "~ Ci(n)) = tt(T Fi(n)  ) + ~t Ci+l (n) - -  TG~(n)) : 2 # ( F i ( n ) )  

for 1 ~ i ~ q (n), and  the  analogous equat ion holds for i ~ q (n). 
Le t  A l ( n )  -~ Cl(n)  n G l ( n )  n T-1G2(n) (~ "'" n T-q(n)+lGq(n)(n), and define 

A~(n) --- ~ i - l A l ( n ) ,  1 ~ i ~ q(n). The  we have  

q(n) 
B (n) --~ ~.J (C~ (n) - -  Ai (n)),  and  

i=1 
q(n) 

# ( B ( n ) )  -~ ~ # ( C i ( n )  - -  A~(n)) : q(n) ~ t ( C i ( n )  - -  A l ( n ) ) .  
i~1 

Since Cl (n) - -  Al(n)  ---- Cl (n) 5~ (F~ (n) W ~- lF2(n )  W ""  W T-q(n)+l ~q(n) (7~)), 
i t  follows t h a t  

q(n) q(n) 
#(Cl (n )  - -  Al (n ) )  g ~ # ( ~ - i + l F l ( n ) )  ~- ~ # ( F i ( n ) )  

i=l i=1 
q(n) 

= 1 ~ t t ( .~nCi (n  ) A "~C~(n)) g �89 
i=1 

and we have  q (n) # (B (n)) ~ �89 q (n) ~ ] (q (n)), so t h a t  

l i m q ( n ) # ( B ( n ) ) = O  since / ( n ) = 0 ( ~ ) .  
n ---> ~ o  

Le t  N(n) = {A,(n), i ---- 1, 2 . . . . .  q(n)}. B y  the  definition of A~(n), i t  is clear 
t h a t  "cAi(n) ~ At+l(/)  for 1 ~< i < q(n). The  proof  t h a t  N(n) --> s is exac t ly  the  
same as the  proof  used to show the corresponding fac t  in the  first pa r t  of  this 
proof,  and  z admi ts  of  approx ima t ion  b y  periodic au tomorphisms .  
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4. Commuting Transformations 

I t  will be convenient  to introduce some nota t ion first. Throughout  this section, 
we will assume tha t  ~ and a are automorphisms and t h a t  T admits  of  approxi- 
mat ion  by  periodic automorphisms and tha t  {~ (n)}, ~ (n) = {A~ (n), i = 1 . . . .  , q (n)} 
is the associated sequence of  partitions. For  each n, we divide A1 (n) into q(n)-~ 1 
pairwise disjoint sets B1 (n), B2 (n) . . . .  , Bq(n)+l (n) where B/(n) consists of  those 

q ( n ) §  

points in Al (n)  which are mapped  into A/(n)  by  (~. Tha t  is A l (n )  -~ ~.JB~(n), 
i = 1  

Bt(n)  n B j ( n ) =  0 for i ~ j, (~(Bi(n))cA~(n)  for i = 1,2 . . . . .  q(n), and 

q(n) 

Bq (~)+l (n) = A1 (n) - -  U B~ (n). 
i = 1  

We will also have occasion to consider t ransformations which are no t  neces- 
sarily defined everywhere, and if ~ is such a t ransformation,  by  v (A) we mean 
{y: y = ~ (x), x c A n Dr} where Dr  is the domain of  definition of  ~. 

R e m a r k .  I f  g and ~ commute,  then a(x) = y implies a ( ~ ( x ) )  ~ ~ ( y ) .  

q(n) 

Definition 4.1. For  each n, we set nv = ~ on X~(n) ~ ~.J Ai (n)  and leave it 
undefined elsewhere, i=1 

Lemma 4.1. For any positive integer k, 

n~k((~(Bi(n))) n a(Bj(n))  = 0 if  i ~ ] .  

Proo]. Note tha t  

~ (~ (B/(n))) n ~(Bj (n)) = ~ ( ( ~  (B~ (n))) n Bj (n)),  
and tha t  

n ~ ( B i ( n ) )  (~ B](n) = 0 

since if  k is not  a multiple of  q(n), n ~ ( B i ( n ) )  ~: A l (n ) ,  and if  k is a multiple of  
q(n) it is easy to check tha t  n~ ~ (Bi (n)) (~ A1 (n) c B~ (n). 

Definition 4.2. We say tha t  a set A approximates  a set B with an error of  
ff the measure of  the symmetr ic  difference of  A and B is no more than  ~, and 
we write in this case A ~-- B ~- E (6). 

We note also the following combinatorial  ]emma given in [2]. We include a 
shorter  proof  for the sake of  completeness. 

Lemma 4.2. Let ~i ~ (xt~ . . . . .  Xln), ] -~ 1, . . . ,  k be k sequences o] zeros and ones 
o/length n. Let {b~, ] ~ 1 . . . . .  k)  be non-negative numbers having sum equal to one, 
and suppose that there is a subset H o/ {1 . . . . .  n} such that 

Ic 

~,b~x~i~  l - - ~  /or all i e H .  
] = 1  

Then there exists an integer (9, 1 ~ ~o ~ k, such that 
k 
~b~x~x~ > N (H) (1 - -  2~) 

i ~ H  ]=1 

where N (H) is the number o/ elements in H. 



282 R.V. CHAOO~r and T. SCHWA~TZBAUER: 

Proo/. To see t h a t  we m a y  assume wi thout  loss o f  generahty  t h a t  bj = Ilk, 
we proceed as follows. First  note  t h a t  we can certainly suppose t h a t  b / s  to be 
rat ional  numbers  with a common  denominator  so t h a t  b I = mj/m. Now consider 
the problem obtained by  taking each ~jmj t imes;  this reduces the  lemma to the 
case where the new k equals the sum of the m/s  and the new b/s are all equal 
to  1/m. So assuming bj ~ 1/k, we have 

Z y b xj, xo, = Z Z xo. ( Z 
~ = 1  ieH ] : 1  m=l ieH \ ' "  ] = 1  / 

k k 

~ = 1  ieH ieH to=l 

> (1 - -  V) ~ k ( 1  -- V) = k N ( H ) ( 1  - -  V) 2 > k N ( H ) ( 1  - -  2V).  
ieH 

Therefore, for some ~o, 1 < e, < k we have 
k 

y bjxj x   >=N(H)(1 
ieH ]=I 

We are now ready to  prove our main  result. 

Theorem 4.1. I] aT -~ -ccr and i/ �9 admits o I approximation by periodic auto- 
morphisms, then a is a piecewise power o/~. 

We divide the proof  into several lemmas. 

Lemma 4.3. Under the hypotheses o/the theorem, given A e ~ and 6 > O, /or 
each n there exist pairwise disjoint sets C1 (n) . . . . .  Cq(n) (n) e J"  such that /or n 
suHiciently large a(A) is approximated with error ~ by the set 

q(n) q(n) 
~ ai-i+l (n) ~i-1 Cj (n) where a~_i+l -= 0 or a~_l+ 1 = 1. 

i = 1  ] = 1  

q(n) q(n) 
Further ~.JCi(n ) CAl(n) and l imq(n)l~(Ai(n) --~.JCi(n)) = O. 

] = 1  n--> c~ i = 1  

Proo]. Recalling t h a t  {~(n)}, ~(n) = {Ai(n), i -= 1, 2 . . . . .  q(n)}, is the se- 
quence of  part i t ions used in approximat ing  ~, we choose no large enough so t h a t  

for n > no 
q(n) q(n) 

A (~(n)) ---- ~a i (n )  A~(n) = ~a~(n) z~-lAl(n) 
i = l  5=1 

and 
A = A (# (n)) + E (0/3). 

I t  then  follows tha t  a (A) = a (A (~ (n))) + E (0/3) and 

q(n) 
(A (~ (n))) ---- ~ ai (n) T ~-1 a (A1 (n)) 

i=1 
q(n) q(n) ~ q(n) 

-~ i=l~a~(n)Ti-la(i~J=l Bl(n) ] -~- i=l~a~(n) r t - lc ; (Bq 'n)+l (n))"  
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The measure  of  this last  set  is clearly less t han  or equal  to  q(n)tz (Bq(n)+l (n)). 
Since ~ admi ts  of  approx imat ion  b y  periodic t ransformat ions ,  b y  Theorem 3.1 
i t  admi ts  of  a K S ( l )  approx imat ion  where we can choose /(q(n) ~ 4/~(B(n)).  
Since Bq (n)+l (n) c B (n), i t  follows tha t  

q (n)/z (Bq (n)+l (n)) ~ q (n)/A (B (n)) ~_ i q (n) / (q (n)) .  

Since lira q(n)/(q(n)) ~ O, we m a y  assume t h a t  no is large enough so t h a t  n > no 
n - - ~  o o  

implies q (n) /z ( Bq (n)+l (n)) < (~/3. I f  wo define Ci(n ) = ~-j+l  c;(Bj(n)), ] -~ 1 . . . .  , q(n), 
then  b y  L e m m a  4.1, the  sets Cl(n) . . . .  , Cq(n)(n) are pairwise disjoint. Therefore  
lett ing dn = I~ (B(n)) we have  

4=1 

~-- ~, a~ (n) v ~-1 Tf-I Cj (n) 
4=1 \j=z 

q(n) q(n) 
= ~ ~ ai (n) ~:,+j-2 Cj (n) 

]=1 4=1 
q(n) q(n) 

---- ~ ~ a i - j + l ~ - l C j ( n )  + E(q(n) dn) 
i=1 i=i 
q(n) q(n) 

= ~ ~ a i _ j + l ~ i - l C j ( n ) +  E(q(n)dn) 
j= l  i~1 

where at (n) ~ al+ q (n)(n) for - -  q (n) + 1 < l g 0. As we have  a l ready noted,  we 
can assume t h a t  q(n) dn < 6/3 and thus we have  proved  

q(n) q(n) 
co(A)-~- ~ ~ a~_j+lT4-1Cj(n) + E((5). 

i=1 ]=1 
q(n) q(n) 

I t  is obvious t h a t  U c j  (n) c A 1 (n), and  since/z (A 1 (n) -- (.J Cj (n)) -~ la (Bq (n)+l (n)), 
i=1 i= l  

q(n) 
i t  is clear t h a t  l im q (n) # (A 1 (n) - -  ( . J  Cj (n)) = 0. 

n-~oo 4=1 

L e m m a  4.4. Suppose that/or each positive integer n the measurable sets An ,  Bn, Cn 
and Dn satis/y the/ollowing relations 

1) A n f ~ B n = O ,  

2) C n c A ,  and D n c B n ,  and 

3) there exists a set .F ~ ~ such that 

l i m # ( ( A n  u Bn) A F) = 0 and limlz((C n tA Dn) A F) = O, 
n - - W O O  n ' - - >  O0  

then 

l im/z(An - -  Cn) = 0 and l im/z (Bn  - -  Dn) ~ O . 

Proo/. The proof  is s t ra ight forward and we shall omi t  it. 
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q(n) q(n) 
Let  A ~ ~ ,  and given d > 0 let ~ ~ a/-]+i (n) z ~-i Cj (n)be the set construc- 

i=1 j = l  

ted in Lemma 4.3 which approximates a(A) with error ~ for n > no. We canalso 
q(n) 

assume that  for n > no [~(A)] (~(n)) = ~a~(n)A~(n) approximates ~(A) with 
i=l 

error & Consider, then, the intersection of these two sets, 
q(n) q(n) 

(1) ~. ~. a~ (n) ai-i+l (n) ~/-1 CI (n) 
]=1 i=1 

q(~n) , /q(n) 
= ~. ai(n) ( ~ a~-j+l (n) T i-1Cl(n )] , 

i=1 \ j = l  

which approximates ~ (A) with error 2 & Define 

Gn = {liar(n)= 1, i =  1 ,2 , . . . ,q(n)} .  
q(n) 

Since ~ ai-i+l (n) Cy(n) c A~ for each i, we have for i ~ Gn tha t  
j = l  

q(n) 
(2) ~ a~-j+i (n) ~-i Cj (n) = A~ (n) § E (yt (n)) 

i=l 
q(n) 

where ~ y~ (n) ~ 2 ~. 
i=1 

lq(n) ) 
For each fixed n, define b](n) = l~(Cj(n))//~ ~.J=lC~(n) , for j = 1, 2 . . . . .  q(n). 

Let Hn = i ~ Gn I ~ a~-j+i bj => 1 -- r l where ~ is an arbitrary fixed number, 
]=1 

0 < ~ / < 1 ,  and let I n = a n - - H n -  

q(n) 
Lemma 4.5. Given ~ > 0 ~ ~ai-j+l z~-lCj(n) approximates a(A) witherrord 

ieHn ]=1 
]or n su][iciently large. Furthermore, 

lq(n) \ 
]im N(Hn)#(Ai(n)) - - - - - l imN(I tn)#~j~=iC,(n) )=/z  (o'(A)). 

~-----> oo ~g ---> r 

Proo I. Assume that  the lemma is not true, then since by (1) 
q(n) 

"~ ~, a~_j+~(n) ~ - i  A ( n ) ,  n > no, 
i~G,, i = i  

approximates o" (A) with error 2 d we must have that  for n arbitrarily large, 
q(n) 

Z Z ai-$+i (n) 7; ~-i C$ (n) 
ieln ] = i  

must be a set of substantial measure. That  is, there must exist fl > 0 such that  

) we have /~ ~ ai-j+i (n) ~i-i Cj (n) > fl > 0, for arbitrarilylarge n. This implies 
i ~1=1 

(a) 0 < fl < /~ ~ a ~ - ~ + l ( n )  T i - I C ] ( ~ )  < (1 - -  ~]1/~//=UlC~(n) X ( I n ) .  
i ~ ]=1  
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Since 

and 

q(n) 
2 ai-i+l(n)~i-1Cj(n) c 2a;(n)Ai(n) 

i~Hn ]=1) ieHn 

q(n 
~ ai-]§ (n) ~- l  Cj(n) c ~ a~ (n) An(n) , 

these sets satisfy the relations given in Lemma 4.4 with F ~ (r(A), and applying 
this lemma we get the following results: 

Since 
/~ ( Z ai (n) A~ (n)l = iv (In) # (A1 (n)) 

\i~Iu ] 

lim N(In)l~(Al(n)) -- I~ ~ a l - j + l ( n )  ~j-1C~(n) --- 0. 
i i=1 

Since 
q(n) 

Jim q(n)/~(Al(n)--~JCj(n))= 0 and iv([~) <=q(n) 
n-~r162 ]=1 

this implies that  

] ~  iv(In)/~ti~=lCl(n) --/~ ie~i, ~__la~-,+l(n),l-lC,(n ) ~-0.  

Since ~ and fl are independent of n, this gives a contradiction in (3) proving the 
first par t  of the lemma, and proves further that  we must  have 

q(n) 
lim ~ ~ ai-]+l (n) T ~-1 C] (n) = 0 

n-->oo ieln ]=1 
so tha t  

t 
lim]u ( ~ai (n  ) Ai(n)) ---- lim iv(In)/~ (A1 (n)) ---- 0,  

n-->oo \i~I,~ n-->~ 

which implies tha t  
/q(n) ) 

lim # ( ~ ai (n) At (n) / = lim iV (H) # (A1 (n)) = lira iv (Hn) [z (i~= 1C l (n) = #(~(A)). 

Lemma 4.6. Given ~ > 09 /or n su//iciently large there exists an integer ~o depen- 
ding on n, 1 <= (o <: q (n) such that 

q(n) 
a~-~+l (n) ~ ai-l+l(n) T ~-1Cj (n) 

ieGn ]=1 

approximates a (A ) with error 3 d. 
q(n) 

Proo/. For i E Hn we have ~ a~-j+l (n) b f (n) ~ 1 - -  ~]. By  applying Lemma 4.2 
]=1 

with xj~ = ai-]+l and k = q (n) we get tha t  there exists an integer e~, 1 ~ co ~ q (n) 
such tha t  

q(n) 
ai-o)+l(n) ~ a l - j + l ( n )  h i (n )  :.~ i v ( H n )  (1 - -  2 ~ )  

ieHn ]~ 1 
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which implies that 
q(n) /q(n) \ 

~al-~+l(n) ~ai-j+l/~(Ti-lCj(n)) ~_N(Hn)/~y1Cl(n))(1-- 2~). 
ieHn ~=I "= 

Lemma 4.5 assures us that by taking n large we can assume that 
/q(n) 

and letting N ~ 8/2 (# (a (A)) -- 8) we have that 

( :  q+ ) # ai-~+l(n) ~ai-l+l~i-lCi(n) ~ # ( a ( A ) ) - - 2 8 .  

Obviously 
q(n) 

a~-m+i (n) ~ ai-l+l (n) T i-I C I (n) 
ieHn j=l 

q(n) 
C ~ ai-m+l (n) ~ at-]+l (n) ~-1 C] (n) 

ieGn ~'=i 
q(n) q(n) 

C ~ ~ ai-i+l (n) T i-I C I (n)- 
i=I j=l 

By Lemma 4.3, this last set can be assumed to approximate ~ (A) with error 8. 
The measure of the first set is at least #(~(A)) -- 28 therefore it approximates 
G(A) with error 38 and the same holds true for the intermediate se~, thereby 
proving the lemma. 

Proo[ o] Theorem 4.1. By taking n sufficiently large, we have 

q(n) 

~(A) = ~ai-~+l(n) ~ai-l+l(n) ~i-lCj(n) -~ E(3~). 
ieGn ]= 1 

Using (2) we have (with all indices understood modulo q (n)) 

(4) ~(A) = ~ ai-~+l (n) Af (n) § E (5 6) 
ieGn 

---- ~ ai (n) ~:m-1Ai (n) -~ E (6 (~) 
i~-o~--leGn 

= ~ - i  ~ a~(n) A~(n)-~E(68). 
i§ 

q (n) 
Since ~ at (n) Ai (n) c ~ at (n) Al (n), and this last set approximates A with error 

i+eo--leGn i = 1  

8, it foUows that #(\i+=-l+a.~ af(n) Ai(n))~ [~(A)+ 8. Since T and a are 

measure preserving, however, it follows from (4) that 

~(A)--6~--~((~(A))--6(5~/~( i+~_leq?l(n)At(n)) ,  so]thati+~_leo. ~ ai(n) Ai(n) 

approximates A with error 75 and therefore 

a(A) ~ z~-lA ~- E(145). 
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This  shows t h a t  a is a weak  piecewisc power  of  ~. To see t h a t  we m a y  in fact  
ob ta in  the  s t ronger  resul t ,  a p p l y  the  prev ious  resul t  to  A1 (n) and  note  t h a t  since 

and  T commute  and  are  measure  preserving,  the  re la t ion  

( A t  (n)) : ~k(n'~) (A1 (n)) ~- E (8) implies  q (A~ (n)) : ~(n,e) (A~ (n)) -[- E (s) ,  

i -~ 1, . . . ,  q (n) .  

A s t r a igh t fo rward  a r g u m e n t  completes  the  p roo f  i f  we choose s ~ s (n) so t h a t  
(n) .  q(n) -~  O. 
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