Wahrscheinlichkeitstheorie

On the "Zero-Two" Law for Conservative Markov Processes

Michael Lin*

Department of Mathematics, Ben-Gurion University, Beer-Sheva, Israel

Summary. Let $P=T^{*}$ be a conservative Markov operator on $L_{\infty}(X, \Sigma, m)$, and let $h(x)=\lim _{n \rightarrow \infty} \sup \left\{P^{n}(I-P) f:\|f\|_{\infty} \leqq 1\right\}$. Then $h(x)$ is zero or two a.e. The sets $E_{0}=\left\{\begin{array}{c}n \rightarrow \infty \\ \{h=0\end{array}\right\}$ and $E_{1}=\{h=2\}$ are invariant, and we have:
(a) $\left\|\left|T^{n}(I-T)\right| u\right\|_{1} \rightarrow 0$ for $u \in L_{1}\left(E_{0}\right)$,
(b) $\left\|\left|T^{n}(I-T)\right| u\right\|_{1}=2\|u\|$ for every $n, 0 \leqq u \in L_{1}\left(E_{1}\right)$.

If Σ is countably generated and P is given by $P(x, A)$, we have
(a) $\left\|P^{n}(x, \cdot)-P^{n+1}(x, \cdot)\right\| \rightarrow 0$ a.e. on E_{0},
(b) $\left\|P^{n}(x, \cdot)-P^{n+1}(x, \cdot)\right\|=2$ a.e. on E_{1}, for every n.

A sufficient (but not necessary) condition for $m\left(E_{1}\right)=0$ is that $\sigma(P) \cap\{|\lambda|=1\}=\{1\}$.

If $\left\{P_{t}\right\}$ is a conservative semi-group given by $P_{t}(x, A)$ bi-measurable, there are invariant sets E_{0} and E_{1} such that:
(a) $\forall \alpha \in \mathbb{R}, \lim _{t \rightarrow \infty}\left\|P_{t}(x, \cdot)-P_{t+\alpha}(x, \cdot)\right\|=0$ a.e. on E_{0},
(b) for a.e. $\alpha \in \mathbb{R}, \lim \left\|P_{t}(x, \cdot)-P_{t+\alpha}(x, \cdot)\right\|=2$ a.e. on E_{1}.

1. Introduction

Let (X, Σ) be a measurable space, and let $P(x, A)$ be a transition probability. For every bounded measurable function we set $P f(x)=\int f(y) P(x, d y)$, and for a finite signed measure μ we define $\mu P(A)=\int P(x, A) d \mu(x)$. It is well known that if $m P \ll m,(m>0)$ then $T\left(\frac{d \mu}{d m}\right)=\frac{d(\mu P)}{d m}$ defines a positive linear contraction on $L_{1}(m)$, with adjoint $T^{*}=P$ (i.e., $P f$ is in the class of $T^{*} f$). For the ergedic theory of positive ontractions of $L_{1}(m)$ we refer to [4] (see also [7]).

Harris [10] introduced the following recurrence condition: If $m(A)>0$, then $\sum_{n=0}^{\infty} P^{(n)}(x, A)=\infty$ for every $x \in X$. Jamison and Orey [12] proved that if all P^{j}

[^0]satisfy Harris' condition (aperiodic case), then for any two probabilities μ, ν we have $\left\|(\mu-v) P^{n}\right\| \rightarrow 0$. This clearly implies $\left\|\left(\delta_{x}-\delta_{x} P\right) P^{n}\right\| \rightarrow 0$ for every $x \in X$. Also, the Harris condition implies that $P f=f$ for f bounded implies $f \equiv$ constant.

By using results of Derriennic [2], it can be shown that for any transition probability, the two conditions:
(i) $P f=f, f$ bounded $\Rightarrow \mathrm{f} \equiv$ constant, and
(ii) $\lim _{n \rightarrow \infty}\left\|\left(\delta_{x}-\delta_{x} P\right) P^{n}\right\|=0$ for every $x \in X$, are equivalent to the convergence
(iii) for any two probabilities μ and $v,\left\|(\mu-v) P^{n}\right\| \rightarrow 0$.

Ornstein and Sucheston [15] proved the following "zero-two" theorem: If $P f \leqq f$ for $0 \leqq f$ bounded implies that f is m-a.e. constant ($m P \ll m$), then either, $\left\|\delta_{x}\left(P^{n+1}-P^{n}\right)\right\| \xrightarrow[n \rightarrow \infty]{\longrightarrow} 0$ a.e., or for every $n,\left\|\delta_{x}\left(P^{n+1}-P^{n}\right)\right\|=2$ a.e. (They assume that Σ is countably generated.) This yields that $\left\|T^{n} u\right\|_{1} \rightarrow 0$ for $u \in L_{1}(m)$ with $\int u d m=0$, if the first alternative holds. They deduced from this the above mentioned Jamison-Orey theorem.

Foguel [5-7] eliminated the separability of the σ-algebra, and proved that if P is ergodic and conservative on $L_{\infty}(m)$, then $h(x) \equiv \lim _{n \rightarrow \infty} \sup \left\{\left(P^{n+1}-P^{n}\right) f(x)\right.$: $\left.\|f\|_{\infty} \leqq 1\right\}$ is constant a.e., the constant being zero or two. (The sup in the above limit is the essential sup in L_{∞}.) In this context, there is no need to have P defined by a transition probability anymore.

Derriennic [2] looked at the problem of convergence without the ergodicity assumption. In that case, one would like to know when $\left\|N^{-1} \sum_{k=0}^{n-1} \mu P^{k}\right\| \rightarrow 0 \Rightarrow$
$\left\|\mu P^{n}\right\| \rightarrow 0$. His result is:

$$
\sup \left\{\lim _{n \rightarrow \infty}\left\|(\mu-\mu P) P^{n}\right\|: 0 \leqq \mu, \mu(X)=1\right\}=\sup _{x}\left\{\lim \left\|\left(\delta_{x}-\delta_{x} P\right) P^{n}\right\|\right\}=\left\{\begin{array}{l}
0 \\
2
\end{array} .\right.
$$

For contractions in $L_{1}(m)$, Ornstein and Sucheston [15] had previously proved that

$$
\sup \left\{\lim _{n \rightarrow \infty}\left\|T^{n}(u-T u)\right\|_{1}: 0 \leqq u,\|u\|_{1}=1\right\}=\left\{\begin{array}{l}
0 \\
2
\end{array}\right.
$$

(We note that Derriennic's result can be proved by using the result of Ornstein and Sucheston.) Derriennic also studied the relationships of these results with the tail σ-algebras of the Markov chains associated with $P(x, A)$.

In this paper we are interested in the function

$$
h(x)=\lim _{n \rightarrow \infty} \sup \left\{P^{n}(I-P) f:\|f\|_{\infty} \leqq 1\right\},
$$

for a conservative Markov operator P on $L_{\infty}(m)$. It turns out that $h(x)$ is 0 or 2 a.e., which yields an interesting decomposition of the space. Though our theorem may fail for P non-conservative, we conjecture that $\|h\|_{\infty}$ is zero or two in any case.

Using the notion of the linear modulus of a bounded linear operator in L_{1}^{\prime} (see [1], [17]), we can obtain that $h=\lim \left|P^{n}(I-P)\right| 1$, and

$$
\|h\|_{\infty}=\sup \left\{\lim _{n \rightarrow \infty}\left\|\left|T^{n}(I-T)\right| u\right\|_{1}: 0 \leqq u \in L_{1},\|u\|_{1}=1\right\} .
$$

Using that approach, our decomposition theorem was proved by Greiner and Nagel [8] in the particular case that T has an equivalent invariant probability, and $P^{j} f=f \Rightarrow P f=f$ a.e.

In Sect. 3 we look at some properties of the peripheral spectrum of a conservative P on $L_{\infty}(m)$ (which is extended to the complex $L_{\infty}(m)$).

Our decomposition theorem is extended to the continuous parameter case in Sect. 4, and generalizes Winkler's result [20], by dropping all ergodicity assumptions (Winkler needed that each P_{t} be ergodic, and not only the semigroup, which is a stringent condition). (Derriennic's results were extended to the continuous parameter case by Revuz [16], while the result of Jamison and Orey was extended by Duflo and Revuz [3].)

2. The "Zero-Two" Decomposition for a Conservative Operator

In this section we obtain a "zero-two" theorem for a conservative Markov operator without ergodicity assumptions.

Theorem 2.1. Let P be a conservative Markov operator on $L_{\infty}(m)$. Then

$$
h=\lim _{n \rightarrow \infty}\left|P^{n}(I-P)\right| 1=\lim _{n \rightarrow \infty} \operatorname{ess}-\sup \left\{P^{n}(I-P) f:\|f\|_{\infty} \leqq 1\right\}
$$

is an invariant function, $0 \leqq h \leqq 2$, and $m(\{0<h<2\})=0$. Let $E_{1}=\{h=2\}, E_{0}=$ $\{h=0\}$. Then $\left|P^{n}(I-P)\right| 1_{E_{0}} \rightarrow 0$ a.e., and $\left|P^{n}(I-P)\right| 1_{E_{1}}=21_{E_{1}}$ a.e.
Proof. Recall that $\left|P^{n}(I-P)\right| 1_{E}=\operatorname{ess}-s u p\left\{P^{n}(I-P) f:-1_{E} \leqq f \leqq 1_{E}\right\}$. Let $h_{n}=\left|P^{n}(I-P)\right| 1=\operatorname{ess}-\sup \left\{P^{n}(I-P) f:|f| \leqq 1\right\}$. Then $0 \leqq h_{n+1} \leqq h_{n} \leqq 2$, so $h_{n} \rightarrow h$. Also $P h_{n} \geqq h_{n+1}$, so $P h=\lim P h_{n} \geqq \lim h_{n}=h$, and since P is conservative, $P h=h$. Thus E_{0} and E_{1} are invariant sets [4, p. 21]. Let $E=E_{1}^{c}=\{h<2\}$. Then

$$
\left|P^{n}(I-P)\right| 1=\left|P^{n}(I-P)\right|\left(1_{E_{1}}+1_{E}\right)=\left|P^{n}(I-P)\right| 1_{E_{1}}+\left|P^{n}(I-P)\right| 1_{E} .
$$

Each term converges a.e. since the restriction of P to each invariant set is also conservative. Hence on E_{1} we have $\mid P^{n}(I-P) 1_{E_{1}} \rightarrow 2$, since the other term is zero on E_{1}. Hence we have (since $\left.h_{n} \downarrow h\right)\left|P^{n}(I-P)\right| 1_{E_{1}}=2$ a.e. on E_{1}.

We may and do assume that $h<2$ a.e., by restricting ourselves to E. Since $A_{k}=\left\{h \leqq 2-\frac{1}{k}\right\}$ is invariant, and $E=\bigcup A_{k}$, we may restrict ourselves to A_{k}, and so we assume $h \leqq 2-\frac{1}{k}$, and have to show $h=0$.

We need now the following lemma.

Lemma 2.2. Let $S_{n}=P^{n} \wedge P^{n+1}$. If $g \in L_{\infty}$ is invariant, then:
(a) $S_{n}(g f)=g S_{n} f$ for $f \in L_{\infty}$.
(b) $S_{n} g$ converges to the invariant function $S g=\left(1-\frac{1}{2} h\right) g$.
(c) $S g \neq 0$ for $0 \leqq g$, with $\|g\|_{\infty}>0$, when $\|h\|_{\infty}<2$.

Proof. (a) It is well known that $P^{n}(g f)=g P^{n} f$. Now assume $g \geqq 0, f \geqq 0$. Then [7, Def. 4.1] we have

$$
\begin{aligned}
P^{n} \wedge P^{n+1}(g f) & =\inf \left\{P^{n} \varphi+P^{n+1}(g f-\varphi): 0 \leqq \varphi \leqq g f\right\} \\
& =\inf \left\{P^{n}(\psi g f)+P^{n+1}(g f-\psi g f): 0 \leqq \psi \leqq 1\right\} \\
& =\operatorname{ginf}\left\{P^{n}(\psi f)+P^{n+1}(f-\psi f): 0 \leqq \psi \leqq 1\right\}=g S_{n} f .
\end{aligned}
$$

(b) $S_{n} g=g S_{n} 1$, and $S_{n} 1=1-\frac{1}{2}\left|P^{n}(I-P)\right| 1 \rightarrow 1-\frac{1}{2} h$.
(c) follows immediately from (b).

We need also the following claim. It can be proved using the result of [15] (as was done in [14]). The following simpler proof is due to S.R. Foguel.

Claim. If $\|h\|_{\infty}<2$, then $P^{r} g=g \Rightarrow P g=g$.
Proof. Since P is conservative, so is P^{r}, so we have to show only $P^{r} 1_{A}=1_{A} \Rightarrow$ $P 1_{A}=1_{A}$. Apply Lemma 3.3 of [7] successively and obtain $P 1_{A}=1_{B}$. Hence, for every integer n we have

$$
1_{B}-1_{A}=P 1_{A}-1_{A}=P^{n r}(P-I) 1_{A}=\frac{1}{2} P^{n r}(I-P)\left(1-21_{A}\right) \leqq \frac{1}{2} h_{n r} \rightarrow \frac{1}{2} h .
$$

Hence $1_{B}-1_{A} \leqq \frac{1}{2} h \leqq 1-\varepsilon$, which yields $B \subset A$, and $P 1_{A} \geqq 1_{A}$ implies $P 1_{A}=1_{A}$, since P is conservative.
Proof of the Theorem. Given $m>0$, and $0 \leqq g \neq 0$ invariant, $S^{m} g \neq 0$ by the above lemma. S is pointwise continuous, so for some $n_{1}>0, S_{n_{1}} S^{m-1} g \neq 0$. But $S_{n_{1}} S^{m-1} g=\lim _{n \rightarrow \infty} S_{n_{1}} S_{n} S^{m-2} g$, so $S_{n_{1}} S_{n_{2}} S^{m-2} g \neq 0$. Hence we can find $n_{1}, n_{2}, \ldots, n_{m}$ with $S_{n_{1}} S_{n_{2}} \ldots S_{n_{m}} g \neq 0$.

In order to show that $h=0$, define $g=(h-2 / \sqrt{m})^{+}$, which is Σ_{i}-measurable, hence invariant. ($m>0$ is a fixed integer.)

Let $n_{1}, n_{2}, \ldots, n_{m}$ be as above, and $n_{0}=\sum_{i=1}^{m} n_{i}$. Define $Q=\prod_{i=1}^{m} S_{n_{i}}$, and $U=P^{m n_{0}+m}-Q\left(\frac{I+P}{2}\right)^{m} . \quad$ By definition, $\quad S_{n_{i}}^{i=1} \leqq P^{n_{i}} \quad$ and $\quad S_{n_{i}} \leqq P^{n_{i}+1}, \quad$ so $S_{n_{i}}(I+P) \leqq P^{n_{i}+1}+S_{n_{i}} P \leqq 2 P^{n_{i}+1}$. Hence

$$
Q\left(\frac{I+P}{2}\right)^{m}=\left(\prod_{i=1}^{m} S_{n_{i}}\right)\left(\frac{I+P}{2}\right)^{m} \leqq \prod_{i=1}^{m} P^{n_{i}+1}=P^{m n_{0}+m}
$$

so U is a positive linear operator. If $r=m n_{0}+m$, then

$$
P^{r}=U+Q\left(\frac{I+P}{2}\right)^{m} ; \quad P^{2 r}=U^{2}+\left(U Q+Q P^{r}\right)\left(\frac{I+P}{2}\right)^{m}
$$

and $P^{j r}=U^{j}+R_{j}\left(\frac{I+P}{2}\right)^{m}$ (with $R_{j+1}=U^{j} Q+R_{j} P^{r}$).

$$
\begin{aligned}
P^{\text {ir }}(I-P) & =U^{j}(I-P)+R_{j}\left(\frac{I+P}{2}\right)^{m}(I-P) \\
& =U^{j}(I-P)+2^{-m} R_{j} \sum_{k=0}^{m}\binom{m}{k}\left(P^{k}-P^{k+1}\right) \\
& =U^{j}(I-P)+2^{-m} R_{j}\left\{\sum_{k=1}^{m}\left[\binom{m}{k}-\binom{m}{k-1}\right] P^{k}+I-P^{m+1}\right\} .
\end{aligned}
$$

For $\|f\|_{\infty} \leqq 1$, we have (since $R_{j} 1=2^{-m} R_{j}(I+P)^{-m} 1 \leqq 1$),

$$
P^{j r}(I-P) f \leqq 2 U^{j} 1+2^{-m} \sum_{k=0}^{m+1}\left|\binom{m}{k}-\binom{m}{k-1}\right| \leqq 2 U^{j} 1+\frac{2}{\sqrt{m}}
$$

Now $U 1 \leqq P^{r} 1 \leqq 1$, so $U^{j} 1$ decreases, and $\bar{h}=\lim U^{j} 1$ is U-invariant, so $P^{r} \bar{h} \geqq \bar{h}$, hence $\operatorname{Pr} \overline{\bar{h}}=\bar{h}$. Now, by the claim, $P \bar{h}=\bar{h}$.

But $U \bar{h}=\bar{h}$ and $P \bar{h}=\bar{h}$, so $Q \bar{h}=0$ by the definition. Taking limits we have

$$
h=\lim _{j}\left|P^{j r}(I-P)\right| 1 \leqq 2 \bar{h}+\frac{2}{\sqrt{m}}
$$

Hence $g=\left(h-\frac{2}{\sqrt{m}}\right)^{+} \leqq 2 \bar{h}$, and $Q g \leqq 2 Q \bar{h}=0$. Hence $(h-2 / \sqrt{m})^{+}=g=0$ (since $g \neq 0$ implies $Q g \neq 0$), yielding $h \leqq 2 / \sqrt{m}$. Since $m>0$ is arbitrary, $h=0$.

Corollary 2.3. Let P be a conservative Markov operator, E_{0} and E_{1} as in Theorem 2.1. Then
(a) $0 \leqq u \in L_{1}\left(E_{0}\right) \Rightarrow\left\|\left|T^{n}(I-T)\right| u\right\|_{1} \rightarrow 0$.
(b) $0 \leqq u \in L_{1}\left(E_{1}\right),\|u\|_{1}=1 \Rightarrow\left\|\left|T^{n}(I-T)\right| u\right\|_{1}=2$ for $\forall n$.

Proof. (a) We restrict ourselves to E_{0}, so we may assume $h \equiv 0$. Then

$$
\left\|\left|T^{n}(I-T)\right| u\right\|_{1}=\langle | T^{n}(I-T)|u, 1\rangle=\langle u,| P^{n}(I-P)|1\rangle \rightarrow 0
$$

by the bounded convergence theorem.
(b) Restricting ourselves to E_{1}, we obtain $h=2$, or $\left|P^{n}(I-P)\right| 1=2$ a.e. Then for $0 \leqq u \in L_{1}\left(E_{1}\right)$ with $\int u d m=1$ we have

$$
\left\|\left|T^{n}(I-T)\right| u\right\|_{1}=\langle u,| P^{n}(I-P)|1\rangle=2
$$

Theorem 2.4. Let P have a finite invariant measure μ equivalent to m, and let \hat{P} be the dual Markov operator. Then P and \hat{P} have the same decomposition.
Proof. We may assume $\mu=m$. Since $\hat{P}=T$ on $L_{\infty}(\mu)$, and P-invariant sets are \hat{P}-invariant, $\lim \left|\hat{P}^{n}(I-\hat{P})\right| 1_{E_{0}}$ exists a.e., and is 0 by Corollary 2.3 (a) and Lebesgue's theorem. Also $\left\|\left|\hat{P}^{n}(I-\hat{P})\right| 1_{E_{1}}\right\|_{1}=2 \mu\left(E_{1}\right)$ for every n, and since $0 \leqq\left|\widehat{P}^{n}(I-\hat{P})\right| 1_{E_{1}} \leqq 21_{E_{1}}$ a.e., it is 2 a.e. on E_{1}.

Remarks. 1. The proof of Theorem 2.1 uses some ideas of G. Greiner and R. Nagel [8]. However, their Banach lattice approach requires that the norm be order continuous (which does not apply to L_{∞}), and the existence of a positive fixed point (which is not always available for T, the L_{1} pre-dual of P). Hence their result implies Theorem 2.1 only for P with an equivalent finite invariant measure (more or less in the form of Corollary 2.3).
(The extra step involved in our proof is the existence of n_{1}, \ldots, n_{m} such that $S_{n_{1}} \ldots S_{n_{m}} g \neq 0$.) Convergence in L_{∞} norm is treated by Foguel [6], [7].
2. The claim in the proof eliminated the need for the assumption that all P^{k} have the same invariant sets as P, needed in the general set-up in [8].
3. Theorem 2.4 is new even in the ergodic case, and its proof is evident by the use of the modulus operator. It is not known if it is true if μ is σ-finite (and P conservative).
4. In the form of the results of Derriennic [2], Corollary 2.3 can be written as the following "zero-two" law:

$$
\sup \left\{\lim _{n \rightarrow \infty}\left\|\left|T^{n}(I-T)\right| u\right\|_{1}: 0 \leqq u \in L_{1},\|u\|_{1}=1\right\}=\|h\|_{\infty} \in\{0,2\} .
$$

5. If P is not conservative Theorem 2.1 may fail, even if h is invariant. E.g., let P be given on $\{1,2,3,4\}$ by the matrix

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
\frac{1}{2} & \frac{1}{2} & 0 & 0
\end{array}\right)
$$

6. The zero alternative (i.e., $m\left(E_{1}\right)=0$) implies that for every $u \in L_{1}$ we have $\left\|T^{n}(I-T) u\right\|_{1} \rightarrow 0$. However, the next lemma shows that for a Markov operator $P f(x)=f(\theta x)$, obtained from a conservative non-singular transformation θ, we have $m\left(E_{0}\right)=0$ (unless θ is the identity). If θ is exact and conservative, we see that the zero alternative is a strictly stronger property.

Lemma 2.5. Let θ be a conservative transformation. If $\lim \left(P^{n+1}-P^{n}\right) 1_{A}=0$ a.e., then $P 1_{A}=1_{A}$.
Proof. The condition is $1_{A}\left(\theta^{n+1} x\right)-1_{A}\left(\theta^{n} x\right) \rightarrow 0$ a.e. Hence either $\theta^{n} x \in A$ for all $n \geqq n_{0}(x)$, or $\theta^{n} x \notin A$ for $n \geqq n_{0}(x)$. Hence $B=\left\{x: \theta^{n} x \in A \forall n \geqq n_{0}(x)\right\}$ is an invariant set, and contains A. If $m(B-A)>0, x \in B-A \Rightarrow \theta^{n} x \notin B-A$ for $n \geqq n_{0}(x)$, contradicting the recurrence. Hence $A=B$ is invariant.

We now turn to the probabilistic interpretation of the results.
Lemma 2.6. Let $P(x, A)$ and $Q(x, A)$ be transition probabilities, $m P \ll m, m Q \ll m$. If Σ is countably generated, then $\|P(x, \cdot)-Q(x, \cdot)\|$ is measurable, and $\| P(x, \cdot)$ $-Q(x, \cdot) \|=\operatorname{ess} \sup \left\{(P-Q) f:\|f\|_{\infty} \leqq 1\right\}$ a.e.
Proof. The measurability is from [15]. Let $h(x)=\operatorname{ess} \sup \left\{(P-Q) f: \| f_{\infty} \leqq 1\right\}$. Then for f bounded measurable with sup $|f(x)| \leqq 1$ we have

$$
|(P-Q) f(x)| \leqq\|P(x, \cdot)-Q(x, \cdot)\|,
$$

hence $h(x) \leqq\|P(x, \cdot)-Q(x, \cdot)\|$.

Let Σ_{k} be the finite σ-algebra generated by the first k generators of Σ. Then $L_{\infty}\left(\Sigma_{k}\right)$ is finite dimensional (and thus separable), so a.e. we have

$$
\begin{aligned}
h(x) & \geqq \sup \left\{(P-Q) f(x):|f| \leqq 1, f \text { is } \Sigma_{k} \text {-measurable }\right\} \\
& =\|P(x, \cdot)-Q(x, \cdot)\|_{M\left(\Sigma_{k}\right)} \overrightarrow{k \rightarrow \infty}\|P(x, \cdot)-Q(x, \cdot)\| .
\end{aligned}
$$

(The convergence is proved in [15]).
Remark. Lemma 2.6 shows that [5] is a generalization of [15]. Though implicit there, it was not proved. Thus, Theorem 2.1 shows that $\left\|\delta_{x} P^{n}-\delta_{x} P^{n+1}\right\| \rightarrow 0$ for a.e. $x \in E_{0}$. Since $h(x)=\lim _{n \rightarrow \infty}\left\|\delta_{x} P^{n}-\delta_{x} P^{n+1}\right\|$ exists everywhere and is measurable, we have that $F_{0}=\left\{\begin{array}{l}n \rightarrow \infty \\ : h(x)=0\}\end{array}\right.$ is measurable. (We still assume that Σ is countably generated.)

Proposition 2.7. Let μ be a probability measure. If $\mu\left(X-F_{0}\right)=0$, then

$$
\left\|\mu(I-P) P^{n}\right\| \rightarrow 0
$$

Proof. Let $h_{n}(x)=\left\|\delta_{x}(I-P) P^{n}\right\|$, which is measurable by [15]. Since $h_{n}(x) \downarrow 0$ on F_{0}, by Egorov's theorem there is a set A with $\mu\left(A^{c}\right)<\varepsilon$ such that $h_{n}(x) \rightarrow 0$ uniformly on A. Hence, for $n>n_{0}, h_{n}(x)<\varepsilon$ on A. For $|f| \leqq 1$ measurable we have

$$
\begin{aligned}
\left|\left\langle\mu(I-P) P^{n}, f\right\rangle\right| & \leqq \int_{A}\left|P^{n}(I-P) f(x)\right| d \mu+\int_{A^{c}}\left|P^{n}(I-P) f(x)\right| d \mu \\
& \leqq \int_{A} h_{n}(x) d \mu+2 \mu\left(A^{c}\right)<3 \varepsilon .
\end{aligned}
$$

Hence $\left\|\mu(I-P) P^{n}\right\|<3 \varepsilon$ for $n>n_{0}$.
Derriennic [2] studied the relationship between the tail σ-field and the convergence $\| \mu(I-P) P^{n} \rightarrow 0$. Thus, the zero alternative yields that the tail σ field equals the invariant σ-field (for the shift) P_{μ} a.e., for every μ as in Proposition 2.7. This is stronger then having the equality of these σ-fields P_{m} a.e. (which is equivalent to their equality P_{μ}, for $\mu \ll m$).
Remark. The proof of proposition 2.7 can be adapted to show that

$$
\sup \left\{\lim _{n \rightarrow \infty}\left\|\mu(I-P) P^{n}\right\|: \mu \geqq 0,\|\mu\|=1\right\}=\sup \left\{\lim _{n \rightarrow \infty}\left\|\delta_{x}(I-P) P^{n}\right\|: x \in X\right\}
$$

(In the case that Σ is not countably generated, it is necessary, for given μ, to look at the admissible σ-algebra Σ^{\prime} generated by the Hahn sets of $\left\{\mu(I-P) P^{n}\right\}$.) This is another proof of the first equality of [2, Th. 3]. The supremum is 0 or 2 by reduction, in $L_{1}\left(\Sigma 2^{-n-1} \mu P^{n}\right)$, to the result of [15].

3. On the Peripheral Spectrum of a Conservative Markov Operator

In this section we give a spectral condition for the zero alternative in Theorem 2.1 to hold, extending the result of [14] to the non-ergodic case. We look at the connection between $\sigma(P)$ and $\sigma(\hat{P})$ when P has a σ-finite invariant measure.

We are interested in the peripheral spectrum $\sigma(P) \cap\{\lambda:|\lambda|=1\}$. (P is extended to the complex L_{∞}.)
Theorem 3.1. Let P be a conservative Markov operator such that $\sigma(P) \cap\{|\lambda|=1\}$ $=\{1\}$. Then $\lim _{n \rightarrow \infty} \sup \left\{P^{n}(I-P) f:|f| \leqq 1\right\}=0$ a.e.
Proof. Clearly $P^{k} f=f \in L_{\infty} \Rightarrow P f=f$, since k-th roots of unity are not in $\sigma(P)$. By Theorem 2.1 for fixed k, there is an invariant set A_{k} with $\lim \left|P^{n k}\left(I-P^{k}\right)\right| 1$ $=0$ on $A_{k}, 2$ on $X-A_{k}$. We restrict ourselves to A_{k}. Let $Q=I+P+\ldots+P^{k-1}$. Q is invertible since k-th roots of unity are not in $\sigma(P)$ (spectral mapping theorem).

$$
\begin{gathered}
\sup \left\{P^{n k}(I-P) f:\|f\|_{\infty} \leqq 1\right\}=\sup \left\{P^{n k}(I-P) Q Q^{-1} f\right\} \\
\leqq\left\|Q^{-1}\right\| \sup \left\{P^{n k}\left(I-P^{k}\right) g:\|g\|_{\infty} \leqq 1\right\} \rightarrow 0 \text { a.e. }
\end{gathered}
$$

Hence $\left|P^{n}(I-P)\right| 1_{A_{k}} \rightarrow 0$ a.e. Hence on $\bigcup_{k=1}^{\infty} A_{k},\left|P^{n}(I-P)\right| 1 \rightarrow 0$ a.e. But X $=\bigcup_{k=1}^{\infty} A_{k}$, as is proved in [14], because $I+P$ is invertible.
Theorem 3.2. Let θ be a conservative non-singular transformation. Then either θ^{k}, $=$ Identity for some $k>0$, or $\sigma(P) \supset\{|\lambda|=1\}$.

Proof. It is shown in Schaefer [17, p. 326] that $\sigma(P) \cap\{|\lambda|=1\}$ is cyclic. Hence, if it is not the full unit circle, it is a discrete subgroup of the circle, so for some $k>0, \sigma\left(P^{k}\right) \cap\{|\lambda|=1\}=\{1\}$. Hence P^{k} satisfies the conditions of the previous theorem, and for every $A \in \Sigma, \lim P^{n k}\left(I-P^{k}\right) 1_{A}=0$ a.e. By Lemma $2.5 P^{k}=I$.
Remark. For θ having a σ-finite invariant measure and invertible, a similar result was obtained by different methods for the L_{2} operator, by A. Bellow (Ionescu Tulcea) in [11], and (by another method) by R. Sine [18]. However, for a unitary operator it can be proved easily using the spectral theorem, and if θ is not invertible, the result for the L_{2} isometry holds by the theorem of B. Sz.-Nagy and C. Foias [19, p. 85].

We now show that the converse of Theorem 3.1 is false, even if P is also ergodic. Our example will also show that the spectral assumption of Theorem 3.1 need not hold for a Harris recurrent Markov operator, even if it has a finite invariant measure (and even if the dual Markov operator is Doeblin).

Example 3.3. We let $X=\{0,1,2, \ldots\}$, and $m\{j\}=2^{-j-1}$. Define $(T u)(j)=$ $\left(u_{0}+u_{j+1}\right) / 2$. Then T is a contraction of $L_{1}(X, m)$, and since $T 1=1$, it is conservative, and easily checked to be ergodic, and also aperiodic. $P=T^{*}$ is the Markov operator on $L_{\infty}(m)$, and, being Harris aperiodic, satisfies the zero alternative (i.e., $m\left(E_{1}\right)=0$). ($[12,15]$) To compute $\sigma(P)$ we can compute $\sigma(T)$. We show that, for $|\lambda|=1, \lambda I-T$ is not onto L_{1}.

Let $v_{k}=\frac{(2 \lambda)^{k}}{(k+1)(k+2)}$ for $k \geqq 0$. Then $\sum_{k=0}^{\infty}\left|v_{k}\right| m\{k\}<\infty$.
We try to solve $(\lambda I-T) u=v$, with $u \in L_{1}$. We get the equations

$$
\lambda u_{j}-\left(u_{0}+u_{j+1}\right) / 2=v_{j} \quad(j=0,1,2, \ldots)
$$

or

$$
u_{j+1}=2 \lambda u_{j}-u_{0}-2 v_{j}
$$

Thus a finite solution can be obtained, given u_{0}.
Hence $u_{1}=(2 \lambda-1) u_{0}-2 v_{0}$, and by induction we have

$$
u_{j}=\left[2^{j} \lambda^{j}-\sum_{k=0}^{j-1}(2 \lambda)^{k}\right] u_{0}-2 \sum_{k=0}^{j-1}(2 \lambda)^{k} v_{j-k-1} .
$$

To have $u \in L_{1}$ we check if $\sum_{j=0}^{\infty}\left|u_{j}\right| / 2^{j}<\infty$.

$$
\begin{aligned}
\frac{u_{j}}{2^{j}} & =\left[\lambda^{j}-\frac{1-(2 \lambda)^{j}}{(1-2 \lambda) 2^{j}}\right] u_{0}-\sum_{k=0}^{j-1} \lambda^{k} \frac{v_{j-k-1}}{2^{j-k-1}} \\
& =\left[\lambda^{j}-\frac{1-(2 \lambda)^{j}}{(1-2 \lambda) 2^{j}}\right] u_{0}-\lambda^{j-1} \sum_{k=0}^{j-1} v_{j-k-1} /(2 \lambda)^{j-k-1} \\
& =\left[\lambda^{j}-\frac{1-(2 \lambda)^{j}}{(1-2 \lambda) 2^{j}}\right] u_{0}-\lambda^{j-1} \sum_{k=0}^{j-1} v_{k} /(2 \lambda)^{k} .
\end{aligned}
$$

With our particular choice of v_{k},

$$
\sum_{k=0}^{j-1} v_{k} /(2 \lambda)^{k}=\sum_{k=0}^{j-1} \frac{1}{(k+1)(k+2)}=\frac{j}{j+1}
$$

Hence

$$
\frac{u^{j}}{2^{j}}=\frac{-u_{0}}{(1-2 \lambda) 2^{j}}+\frac{2(1-\lambda)}{1-2 \lambda} \lambda^{j} u_{0}-\lambda^{j-1} \frac{j}{j+1}
$$

Since $\quad \sum_{j}\left|\lambda^{j-1}\left(\frac{2 \lambda(1-\lambda) u_{0}}{1-2 \lambda}-\frac{j}{j+1}\right)\right|=\sum_{j}\left|\alpha-\frac{j}{j+1}\right|=\infty$ for any constant α, no choice of u_{0} will yield $u \in L_{1}$. Hence $\lambda \in \sigma(T)$.
Remark. We note that the previous example showed $\sigma(P) \cap\{|\lambda|$ $=1\} \neq \sigma(\widehat{P}) \cap\{|\lambda|=1\}$ (even for a finite invariant measure). However, we do have the following result.
Theorem 3.4. Let P be conservative with σ-finite invariant measure, and \hat{P} its dual operator. If $0 \neq f \in L_{\infty}$ satisfies $P f=\lambda f$, with $|\lambda|=1$, then $\hat{P} f=\bar{\lambda} f$ (and $\hat{P} \bar{f}$ $=\lambda \bar{f}$). Hence P and \hat{P} have the same unimodular eigenvalues.

Proof. Let Σ_{i} be the σ-field of P-invariant sets. These sets are also invariant for \hat{P}. Now $P f=\lambda f \Rightarrow P|f| \geqq|P f|=|f|$. By conservativity $P|f|=|f|$, and $|f|$ is $\Sigma_{i}-$ measurable. We can therefore restrict ourselves to $\{|f|>0\}$. Hence, without loss of generality we may and do assume $|f|>0$ a.e. We also assume $\|f\|_{\infty}=1$.
$1 /|f|$ is also Σ_{i}-measurable (though not necessarily bounded).
If $A \in \Sigma_{i}$, then $P\left(1_{A} g\right)=1_{A} P g$, as is easily checked. By linearity and continuity, for each Σ_{i}-measurable $f_{0} \in L_{\infty}, P\left(f_{0} g\right)=f_{0} P g$ for $g \in L_{\infty}$. By monotone continuity, also $P(g /|f|)=(P g) /|f|$ for $g \in L_{\infty}$. The same holds for \hat{P}.

Let $h \in L_{1}$ with $1 \geqq h>0$ a.e. Then

$$
\int T\left(\frac{f h}{|f|}\right) \cdot \frac{\bar{f}}{|f|} d m=\int \frac{f h}{|f|} P\left(\frac{\bar{f}}{|f|}\right) d m=\int \frac{f h}{|f|^{2}} P \bar{f} d m=\bar{\lambda} \int h d m
$$

Hence

$$
\int h d m=\left|\int T\left(\frac{f h}{|f|}\right) \cdot \frac{\bar{f}}{|f|} d m\right| \leqq\|f h /|f|\|_{1}=\int h d m
$$

We must therefore have $\left|\int T\left(\frac{f h}{|f|}\right) \cdot \frac{\bar{f}}{|f|} d m\right|=\int\left|T\left(\frac{f h}{|f|}\right) \cdot \frac{\bar{f}}{|f|}\right| d m$. Hence there exists a complex α, with $|\alpha|=1$, such that $T\left(\frac{f h}{|f|}\right) \cdot \frac{\bar{f}}{|f|}=\alpha\left|T\left(\frac{f h}{|f|}\right) \cdot \frac{\bar{f}}{|f|}\right|$ a.e., and the first equality we obtained shows that $\alpha=\bar{\lambda}$.

$$
T(f h /|f|) \cdot \bar{f} /|f|=\bar{\lambda}|T(f h /|f|) \cdot \bar{f} /|f||=\bar{\lambda}|T(f h /|f|)| .
$$

Clearly $|T(f h /|f|)| \leqq T h$ by positivity of T. Since we obtained before that

$$
\int|T(f h /|f|)| d m=\int h d m=\int T h d m
$$

we obtain now $|T(f h /|f|)|=T h$, so that $T(f h /|f|)=\bar{\lambda}(|f| / f) T h$. Now (using the above remark on multiplication by invariant functions), since $\hat{P}=T$ on $L_{1} \cap L_{\infty}$, we have

$$
\hat{P}(f h)=|f| \hat{P}(f h /|f|)=\bar{\lambda}\left(|f|^{2} / \bar{f}\right) \hat{P} h=\bar{\lambda} f \hat{P} h .
$$

Taking a sequence $0<h_{n} \leqq 1$ in L_{1} with $h_{n} \uparrow 1$, monotone continuity of \hat{P} yields $\widehat{P} f=\bar{\lambda} f \hat{P} 1=\bar{\lambda} f$.
Remark. If P is not conservative, the theorem may fail. Let T on l_{1} be defined by $T\left(u_{1}, u_{2}, \ldots\right)=\left(u_{2}, u_{3}, \ldots\right)$. Then $T 1=1$ and $\|T\|_{1} \leqq 1$. Since $T\left(\lambda, \lambda^{2}, \lambda^{3}, \ldots\right)$ $=\lambda T\left(\lambda, \lambda^{2}, \lambda^{3}, \ldots\right), \hat{P}$ has all the unit circle in its point spectrum, while $T^{n} \rightarrow 0$ strongly in L_{1} shows that P has no unimodular eigenvalues.

4. A "Zero-Two" Decomposition for a Conservative Semi-Group

In this section we treat the continuous time case: We deal with a semi-group $\left\{T_{t}\right\}$ of positive contractions on $L_{1}(m)$, with dual semi-group $\left\{P_{t}\right\}$. We assume continuity at $t>0$. It is shown in [13] that if $T_{t_{0}}$ is conservative, so is every T_{t}, and this is equivalent to having the whole semi-group conservative.

For technical reasons, we assume that the σ-algebra Σ is countably generated (e.g., X is a separable locally compact metric space). We assume that $\left\{P_{t}\right\}$ is obtained from a transition probability semi-group $P_{t}(x, A)$ such that $\int f(y) P_{t}(x, d y)$ is (t, x) measurable, for each bounded measurable function. This implies weak-measurability of $\left\{T_{t}\right\}$, and, since $L_{1}(m)$ is separable, continuity at $t>0$.

Theorem 4.1. Let $P_{t}(x, A)$ be a semi-group of transition probabilities on $(X, \Sigma), m$ a probability on Σ with $m P_{t} \ll m$ for every $t>0$. Assume:
(1) $P_{t} f(x)=\int f(y) P_{t}(x, d y)$ is (t, x) measurable.
(2) Σ is countably generated.
(3) $\left\{P_{t}\right\}$ is conservative on $L_{\infty}(m)$.

Then there exist invariant sets E_{0} and $E_{1}=E_{0}^{c}$, such that:
(i) $\forall \alpha \in \mathbb{R}, \lim _{t \rightarrow \infty}\left\|P_{t}(x, \cdot)-P_{t+\alpha}(x, \cdot)\right\|=0$ a.e. on E_{0}
(ii) For a.e. $\alpha \in \mathbb{R}, \lim _{t \rightarrow \infty}\left\|P_{t}(x, \cdot)-P_{t+\alpha}(x, \cdot)\right\|=2$ a.e. on E_{1}

Proof. Let $h_{t}(\alpha, x)=P_{t}(x, \cdot)-P_{t+\alpha}(x, \cdot) \|$, for $t>0$ and $t+\alpha>0$. Since the underlying σ-algebra is countably generated, an inspection of the proof of [15, Theorem 3.1] yields that $h_{t}(\alpha, x)=\lim _{k \rightarrow \infty}\left\|P_{t}(x, \cdot)-P_{t+\alpha}(x, \cdot)\right\|_{M\left(\Sigma_{k}\right)}$ where Σ_{k} is a finite σ algebra (generated by the first k generators of Σ). Hence $h_{t}(\alpha, x)$ is measurable in (α, x), by hypothesis (1).

Since $\left\|P_{t}\right\| \leqq 1, h_{t}$ is decreasing, and $\lim _{t \rightarrow \infty} h_{t}(\alpha, x)=h(\alpha, x)$ is measurable in
x, . (α, x).

Now $h(\alpha, x)$ is defined for every $\alpha \in \mathbb{R}, x \in X$, and we have [20] $h(-\alpha, x)$ $=h(\alpha, x), h(\alpha+\beta, x) \leqq h(\alpha, x)+h(\beta, x)$, for every $x \in X$. By Lemma 2.1 for fixed $\alpha>0$ we have a.e.

$$
\begin{aligned}
h(\alpha, x) & =\lim _{n \rightarrow \infty}\left\|P_{n \alpha}(x, \cdot)-P_{n \alpha+\alpha}(x, \cdot)\right\| \\
& =\lim _{n \rightarrow \infty} \sup \left\{P_{\alpha}^{n}\left(I-P_{\alpha}\right) f:\|f\|_{\infty} \leqq 1\right\} .
\end{aligned}
$$

Since P_{α} is conservative, $h(\alpha, x)$ is 0 or 2 for a.e. x, by Theorem 2.1. For $\alpha<0$ use $h(\alpha, x)=h(-\alpha, x)$ to obtain $h(\alpha, x)$ is 0 or 2 a.e.

Let μ be a probability measure on \mathbb{R}, equivalent to Lebesgue's measure.
Let $A=\{(\alpha, x): 0<h(\alpha, x)<2\}$, and let $A_{\alpha}=\{x: 0<h(\alpha, x)<2\}$. We have just seen that $m\left(A_{\alpha}\right)=0$ for every α, and $\mu \times m(A)=\int m\left(A_{\alpha}\right) d \mu=0$.

Let $B=\{(\alpha, x): h(\alpha, x)=0\}$, and $B_{x}=\{\alpha: h(\alpha, x)=0\}$. The properties $h(\alpha, x)$ $=h(-\alpha, x)$ and $h(\alpha+\beta, x) \leqq h(\alpha, x)+h(\beta, x)$ imply that B_{x} is a subgroup of \mathbb{R}.
B is measurable in $\mathbb{R} \times X$, so $\int 1_{B}(\alpha, x) \mu(d \alpha)$ is measurable on X, and

$$
E_{1}=\left\{x: \int 1_{B}(\alpha, x) d \mu(\alpha)=0\right\}=\left\{x: \mu\left(B_{x}\right)=0\right\}
$$

is measurable in X. Let $E_{0}=E_{1}^{c}$.
Since B_{x} is a subgroup of $\mathbb{R}, \mu\left(B_{x}\right)>0$ implies [9, p.68] that B_{x} contains an interval around the origin, and therefore $B_{x}=\mathbb{R}$.

Now $x \in E_{0} \Leftrightarrow \mu\left(B_{x}\right)>0 \Leftrightarrow B_{x}=\mathbb{R} \Leftrightarrow h(\alpha, x)=0 \forall \alpha \Leftrightarrow \mu\left(b_{x}\right)=1$, and

$$
\iint_{R \times E_{0}} h(\alpha, x) d(\mu \times m)=\int_{E_{0}}\left[\int_{R} h(\alpha, x) d \mu(\alpha)\right] d m(x)=0
$$

Since $h(\alpha, x)$ is 0 or $2 \mu \times m$-a.e., we have

$$
\begin{aligned}
2 m\left(E_{1}\right) & \geqq \iint_{R \times E_{1}} h(\alpha, x) d(\mu \times m)=\iint_{R \times X} h(\alpha, x) d(\mu \times m)=2(\mu \times m)\left(B^{c}\right) \\
& =2-2(\mu \times m)(B)=2-2 \int \mu\left(B_{x}\right) d m=2-2 m\left(E_{0}\right)=2 m\left(E_{1}\right) .
\end{aligned}
$$

(We used the fact that $\mu\left(B_{x}\right)$ is 0 or 1 .) Now equality in the previous inequality means $h(\alpha, x)=2$ a.e. on $R \times E_{1}$, and for μ a.e. $\alpha, h(\alpha, x)=2$ a.e. on E_{1}.

It remains to prove the invariance (in $L_{\infty}(m)$) of the sets E_{0} and E_{1}. Take $\alpha>0$ such that $h(\alpha, x)=2$ a.e. on E_{1}. Then $h(\alpha, x)=21_{E_{1}}$ a.e., so (by Lemma 4.1) E_{0} and E_{1} are the decomposition sets for P_{α}, given by Theorem 2.1. Hence $P_{\alpha} 1_{E_{i}}=1_{E_{i}}$. Weak-* continuity of the semigroup yields the required result.
Remarks. 1. We may probably drop the assumptions that Σ is countably generated, and that $\left\{P_{t}\right\}$ is given by transition probabilities. We will need still a bi-measurable $g(t, x)$ such that $P_{t} f(x)=g(t, x) \mu \times m$ a.e., (g depends on $f \in L_{\infty}(m)$), in order to get [20, Lemma 3] $h(\alpha, x)$ measurable such that $h(\alpha, x)$ $=\lim _{t \rightarrow \infty}\left|P_{t}\left(P_{\alpha}-I\right)\right| 1(x) \mu \times m$ a.e. The limit is to be taken in L_{∞} sense, or (equivalently) as $\lim _{n \rightarrow \infty}\left|P_{n \alpha}\left(P_{\alpha}-I\right)\right| 1(x)$ (since $\left|P_{t}\left(P_{\alpha}-I\right)\right| 1$ is decreasing, in $\left.L_{\infty}\right)$. Lemma 2 of [20] needs the (simple) proof without transition probabilities, and then the version $h(\alpha, x)$ will have to satisfy everywhere $h(\alpha, x)=h(-\alpha, x) ; h(\alpha+\beta, x)$ $\leqq h(\alpha, x)+h(\beta, x)$ so that our proof will apply.
2. Winkler's proof [20] made use of the fact that for (almost) every α, $h(\alpha, x)$ is a.e. constant, which is not necessarily true without ergodicity of (almost) every P_{α}.
3. Revuz' remarks in [16] indicate that Theorem 4.1 (ii) cannot be improved to obtain $\left\|P_{t}(x, \cdot)-P_{t+\alpha}(x, \cdot)\right\|=2$ a.e. on E_{1}, for every $\alpha, t>0$. Let $P_{t} f(x)$ $=f\left(e^{2 \pi i^{t}} x\right)$ on the unit circle, and let m be Lebesgue's measure. Using Lemma 2.5 for $P_{\alpha}(\alpha$ not an integer $)$, we obtain $m\left(E_{0}\right)=0$. But $P_{t+k}=P_{t}$.

Acknowledgements. I am grateful to R. Nagel for sending me a preprint of [8], and to L. Sucheston for some helpful comments.

References

1. Chacon, R.V., Krengel, U.: Linear modulus of a linear operator. Proc. Amer. Math. Soc. 15, 553-560 (1964)
2. Derriennic, Y.: Lois "zéro ou deux" pour les processus de Markov. Applications aux marches aléatoires. Ann. Inst. H. Poincaré Sect. B 12, 111-129 (1976)
3. Duflo, M., Revuz, D.: Propriétés asymtotiques de probabilités de transitions des processus de Markov récurrents. Ann. Inst. H. Poincaré Sect. B 5, 233-244 (1969)
4. Foguel, S.R.: The ergodic theory of Markov processes. New York: Van-Nostrand-Reinhold 1969
5. Foguel, S.R.: On the "zero-two" law. Israel J. Math. 10, 275-280 (1971)
6. Foguel, S.R.: More on the "zero-two" law. Proc. Amer. Math. Soc. 61, 262-264 (1976)
7. Foguel, S.R.: Harris operators. Israel J. Math. 33, 281-309 (1979)
8. Greiner, G., Nagel, R.: La loi "zéro ou deux" et ses consequences pour le comportement asymptotique des opérateurs positifs. (To appear.)
9. Halmos, P.R.: Measure theory. New York: Van-Nostrand 1950
10. Harris, T.E.: The existence of stationary measures for certain Markov processes. Proc. Third Berkeley Sympos. Math. Statist. Probab. 2, 113-124(1956)
11. Ionescu Tulcea, A.: Random series and spectra of measure preserving transformations. Ergodic Theory (F.B. Wright, editor). 1963
12. Jamison, B., Orey, S.: Markov chains recurrent in the sense of Harris. Z. Wahrscheinlichkeitstheorie verw. Gebiete 8, 41-48 (1967)
13. Lin, M.: Semi-group of Markov operators. Boll. Un, Mat. Italia (4) 6, 20-44 (1972)
14. Lin, M., Sine, R.: A spectral condition for strong convergence of Markov operators. Z. Wahrscheinlichkeitstheorie verw. Gebiete 47, 27-29 (1979)
15. Ornstein, D., Sucheston, L.: An operator theorem on L_{1} convergence to zero with applications to Markov kernels. Ann. Math. Statist. 41, 1631-1639 (1970)
16. Revuz, D.: Lois zéro-deux pour les processus de Markov. C.R. Acad. Sci. Paris ser. A 289, 475-477 (1979)
17. Schaefer, H.H.: Banach lattices and positive operators. Berlin-Heidelberg-New York: Springer 1974
18. Sine, R.: Spectral interpolation and a theorem of Tulcea. Bull. Calcutta Math. Soc. 70, 371-373 (1978)
19. Sz.-Nagy, B., Foias, C.: Harmonic analysis of operators on Hilbert space. Amsterdam-London: North Holland 1970
20. Winkler, W.: A note on continuous parameter zero-two law. Ann. Probab. 1, 341-344 (1973)

[^0]: * Research done during a sabbatical visit at the Ohio State University

