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Summary. Let P=T% be a conservative Markov operator on L (X, X, m),
and let h(x)=lim sup {P"(I—P)f: | fl,=1}. Then h(x) is zero or two a..

The sets E,= {ni; = 0} and E, ={h=2} are invariant, and we have:

@ T —T)jull;—0 for ue L (E),

) | 1T*(I—T)|ull, =2||u|| for every n, 0SueL (E,).

If 2 is countably generated and P is given by P(x, A), we have

(@ 1P (x,")—P""i(x,*)|—0ae on E,,

(d) |1P*(x,*)—P"*1(x,*)| =2 a.e. on E, for every n.

A sufficient (but not necessary) condition for m(E;)=0 is that
a(P)n {{Al=1}={1}.

If {B} is a conservative semi-group given by P(x, A) bi-measurable, there
are invariant sets E, and E; such that:

(a) YaeR, lim |B(x,*)—F_,(x,)|=0ae. on E,,

{—00

(b) for ae. xR, lim |P(x,*)—F (%) =2ae on E,.

1. Introduction

Let (X, X) be a measurable space, and let P(x, 4) be a transition probability. For
every bounded measurable function we set Pf(x)=(f(y)P(x,dy), and for a
finite signed measure p we define uP(4)=[P(x, A)du(x). It is well known that

. d d(upP
if mP<m, im>0) then T (—H) =£

dm dm
L, (m), with adjoint T*=P (ie, Pf is in the class of T*f). For the ergedic
theory of positive ontractions of L, (m) we refer to [4] (see also [7]).

Harris [10] introduced the following recurrence condition: If m(A4)>0, then

Y P®(x, A)= o0 for every x&X. Jamison and Orey [12] proved that if all P/

n=0

defines a positive linear contraction on
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satisfy Harris’ condition (aperiodic case), then for any two probabilities y, v we
have [[(u—v)P"|—0. This clearly implies |(5,—0,P)P"|—0 for every xeX.
Also, the Harris condition implies that Pf=f for f bounded implies
f=constant.

By using results of Derriennic [2], it can be shown that for any transition
probability, the two conditions:

(i) Pf=/, f bounded =>f=constant, and
(i) lim |[(6,—d,P)P"[|=0 for every xeX, are equivalent to the convergence

(iii) for any two probabilities u and v, |(u—v) P*||—0.

Ornstein and Sucheston [15] proved the following “zero-two” theorem: If
Pf<f for 0=f bounded implies that f is m-a.e. constant (mP <m), then either,
Héx(P”“—P")HﬁO a.e., or for every n, |6 (P"*'~P"| =2 ae. (They as-

sume that ¥ is countably generated.) This yields that |T"u|,—0 for ueL,(m)
with [udm=0, if the first alternative holds. They deduced from this the above
mentioned Jamison-Orey theorem.

Foguel [5-7] eliminated the separability of the ¢-algebra, and proved that
if P is ergodic and conservative on L_(m), then h(x)= lim sup {(P"*' — P") f(x):

n—-x

Ifl,=1} is constant ae., the constant being zero or two. (The sup in the
above limit is the essential sup in L .) In this context, there is no need to have
P defined by a transition probability anymore.

Derriennic [2] looked at the problem of convergence without the ergodicity

n—1

N—l Z 'qu

k=0

assumption. In that case, one would like to know when —0 =

[ ,eP"| — 0. His result is:

. . 0
sup {lim |(u—uP)P"|: 0= p, p(X)=1} =sup {lim ||(6,— 6, P) P"| } ={2-
For contractions in L, (m), Ornstein and Sucheston [15] had previously proved
that

n— oo

. 0
sup {im || T"(u—Tu)l|,: 0=u, ||u||1=1}={2~

(We note that Derriennic’s result can be proved by using the result of Ornstein
and Sucheston.) Derriennic also studied the relationships of these results with
the tail g-algebras of the Markov chains associated with P(x, A).

In this paper we are interested in the function

h(x)=lim sup {P"(I —P)f: | fll, =1},
n—oo
for a conservative Markov operator P on L_ (m). It turns out that h(x) is O or
2 a.e,, which yields an interesting decomposition of the space. Though our
theorem may fail for P non-conservative, we conjecture that ||k is zero or
two in any case.
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Using the notion of the linear modulus of a bounded linear operator in L;
(see [17, [17]), we can obtain that h=1im |P*(I — P)| 1, and

1]l =sup {lim | [T"(I—T)|ul,: OsueL,, |uf,=1}
Using that approach, our decomposition theorem was proved by Greiner and
Nagel [8] in the particular case that T has an equivalent invariant probability,
and Pif=f= Pf=fae.

In Sect. 3 we look at some properties of the peripheral spectrum of a
conservative P on L (m) (which is extended to the complex L (m)).

Our decomposition theorem is extended to the continuous parameter case
in Sect. 4, and generalizes Winkler’s result [20], by dropping all ergodicity
assumptions (Winkler needed that each P be ergodic, and not only the semi-
group, which is a stringent condition). (Derriennic’s results were extended to
the continuous parameter case by Revuz [16], while the result of Jamison and
Orey was extended by Duflo and Revuz [3].)

2. The “Zero-Two” Decomposition for a Conservative Operator

<

In this section we obtain a “zero-two” theorem for a conservative Markov
operator without ergodicity assumptions.

Theorem 2.1. Let P be a conservative Markov operator on L (m). Then

h=lim [P*(I — P)| 1 = lim ess-sup {P"(I—-P)f: |f] =1}
is an invariant function, 0Sh<2, and m({0<h<2})=0. Let E,={h=2}, E,=
{h=0}. Then |P*(I-P)|1;,—0 ae., and |P"(I—P)|1y, =213 ae
Proof. Recall that |P*(J—P)|ly=ess-sup{P"I—P)f: —1zSf=1g. Let

h,=|P"(I—P)|1=ess-sup {P"(I—P) f:|f|£1}. Then 0=h, ,<h, =2, so h,—h.

n+1=
Also Ph,zh,. ,, so Ph=limPh,>2limh,=h, and since P is conservative,

Ph=h. Thus E, and E, are invariant sets [4, p.21]. Let E=E{={h<2}. Then
|P"(I=P)[1=[P"(I=P)i(lg, +1g)=|P"(I~P)| 15, +|P"(I—P) 1.

Each term converges a.e. since the restriction of P to each invariant set is also
conservative. Hence on E; we have |P"(I —P)l; —2, since the other term is
zero on E,. Hence we have (since h,|h) [P"(I —Pll1; =2ae. on E,.

We may and do assume that h<2 a.e., by restricting ourselves to E. Since

1 . ) .
Akz{h§2—E} is invariant, and E =UAk, we may restrict ourselves to A4,,
and so we assume th—E, and have to show h=0.

We need now the following lemma.
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Lemma 2.2. Let S,=P" A P"*!, If geL_ is invariant, then:
(@) S,(gf)=8S,f for fe L.
(b) S,g converges to the invariant function Sg=(1—3%h)g.
(c) Sg=£0 for 0=g, with |ig,,>0, when |k, <2

Proof. (a) It is well known that P"(gf)=gP"f. Now assume g=0, f=0. Then
[7, Def. 4.1] we have

P* AP g f)=inf {P"g +P"* (g f—p): 0L <gf}
~inf {(P*(gf)+P"* " (gf—Ygf): 0Sy 1)
—ginf {P"(Yf)+P"* L (f —§f): 0Sy <1} =gS,f

() S,g=¢S,1,and S,1=1—-1|P"I-P)|1>1—1h
(c) follows immediately from (b).

We need also the following claim. It can be proved using the result of [15]
(as was done in [14]). The following simpler proof is due to S.R. Foguel.

Claim. If |h| <2, then P'g=g = Pg=g.

Proof. Since P is conservative, so is P, so we have to show only P'1,=1, =

P1,=1,. Apply Lemma 3.3 of [7] successively and obtain P1, =1, Hence, for

every integer n we have '
1,~-1,=P1,—1,=P"(P-I)1,=3P"(I-P)(1-21)<ih,—1h

Hence 15;—1,<1h<1-¢ which yields Bc 4, and P1,21, implies P1,=1,,

since P is conservative.

Proof of the Theorem. Given m>0, and 0<g=0 invariant, S"g=%0 by the above
lemma. S is pointwise continuous, so for some n,>0, S, $" 'g#0. But
S, S"'g=1lim§S, S, 8" *g, so §,S,S""?g*0. Hence we can find

n17R2
n= 00

ny,ny,...,n, with§, S ...S, ¢%0.

In order to show that h=0, define g=(h—2/ﬁ)+, which is X-measurable,
hence invariant. (m>0 is a fixed integer.)

Let n,,n,,...,n, be as above, and n,= Z n,. Define Q=1]]S,, and
1+P . .
U=pmrotm_Q (—%—) . By definition, S,,igP"‘ and SnigP""“, SO

S, (I+P)<P"+14s P<2P"+' Hence

Q(I+P) (HS )(H—P) §1=—”‘[ pri+ 1= prmotm

so U is a positive linear operator. If r=mny+m, then

I+P)

P= U+Q( : —U2+(UQ+0QP) (I;P),
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I+P } ,
and P"=UJ+R, ( 5 ) (with R, ; =U/Q+R,P").
; 1+P
Pi(I—P)=U(I—P)+R, ( 5 ) (I—P)

~Ui(I—P)+27"R; Y. (’:
k=0

,=Uj(I—P)+2‘"‘Rj{k§1 [(Z’)— (k'fl)]PkH—Pm“}.

For || fll,=1, we have (since R;1=2""R(I+P)""1<1),
m+1

PHI-P)fS2U71+27" ) (’Z) B (kT1>

k=0
Now U1<Pr1<1, so U/l decreases, and h=lim U’1 is U-invariant, so P"h>h,
hence P'h=h. Now, by the claim, Ph=h. '~

But Uh=h and Ph=h, so Qh=0 by the definition. Taking limits we have

s

. 2
201 +—.
= W

. — 2
h=lim |Pr(I — P 1 S2h+——.
j Vm

2\t~ —
Hence gz( —~1/:) <2h, and Qg=20h=0. Hence (h—Z/ﬁ)‘*:g:O (since
m

g=%0 implies Qg=*0), yielding th/ﬁ. Since m >0 is arbitrary, h=0.
Corollary 2.3. Let P be a conservative Markov operator, E, and E, as in
Theorem 2.1. Then

(@) 0=ueL,(E) = [[T"I=T)|u], 0.

(b) 0LueL, (E,), ful,=1 = ||T"(I —Dlul, =2 for Vn.

Proof. (a) We restrict ourselves to E,, so we may assume h=0. Then
NT"( = T)ull, =TI = T)|u,1>=<u,|P"(I-P)| 1> —0

by the bounded convergence theorem.

(b) Restricting ourselves to E,, we obtain h=2, or {P*(I-P)|1=2 a.e. Then
for 0SuelL,(E;) with {udm=1 we have

HT*(I =T ully = u, [P(I = P)[1)=2.

Theorem 2.4. Let P have a finite invariant measure u equivalent to m, and let P
be the dual Markov operator. Then P and P have the same decomposition.

Proof We may assume y=m. Since P=T on L o), and P-invariant sets are
P-invariant, lim |[P"(] — P)IlE exists a.e, and is 0 by Corollary 2.3 (a) and
Lebesgues theorem. Also |||P"(J— P)|15J|1—2H(E1) for every n, and since
0PI —-P)|1, ,S21;, ae, itis 2 a.c on E,.
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Remarks. 1. The proof of Theorem 2.1 uses some ideas of G. Greiner and R.
Nagel [§]. However, their Banach lattice approach requires that the norm be
order continuous (which does not apply to L), and the existence of a positive
fixed point (which is not always available for 7, the L, pre-dual of P). Hence
their result implies Theorem 2.1 only for P with an equivalent finite invariant
measure (more or less in the form of Corollary 2.3).

(The extra step involved in our proof is the existence of n,,...,n_ such that
S, ...8, g%0) Convergence in L norm is treated by Foguel [6], [7].

2. The claim in the proof eliminated the need for the assumption that all P*
have the same invariant sets as P, needed in the general set-up in [8].

3. Theorem 2.4 is new even in the ergodic case, and its proof is evident by
the use of the modulus operator. It is not known if it is true if 4 is o-finite (and
P conservative).

4, In the form of the results of Derriennic [2], Corollary 2.3 can be written
as the following “zero-two” law:

sup {lim |[|T*(I-T)|ull;: 0=ueL,, Jull, =1} =kl {0,2}.

n—-oQ

5. If P is not conservative Theorem 2.1 may fail, even if 4 is invariant. E.g.,
let P be given on {1, 2, 3, 4} by the matrix

SO

= - OO
—

o O OO

(STl

6. The zero alternative (i.e., m(E,)=0) implies that for every ue L, we have
| T"(I—T)ul,—0. However, the next lemma shows that for a Markov opera-
tor Pf(x)=f(0x), obtained from a conservative non-singular transformation 6,
we have m(E,)=0 (unless 6 is the identity). If 6 is exact and conservative, we
see that the zero alternative is a strictly stronger property.

Lemma 2.5. Let 6 be a conservative transformation. If lim(P"**—P")1,=0 a.e.,
then P1,=1,.
Proof. The condition is 1,(0"**x)—1,(0"x)— 0 a.e. Hence either §"xe 4 for all
nxngy(x), or "x¢ A for n=ny(x). Hence B={x: "xeAVn=ny(x)} is an in-
variant set, and contains A. If m(B—A)>0, xeB—A4 = #"'x¢B—A for
nngy(x), contradicting the recurrence. Hence 4 =B is invariant.

We now turn to the probabilistic interpretation of the results.

Lemma 2.6. Let P(x, A) and Q(x, A) be transition probabilities, mP <m, mQ <m.
If X is countably generated, then |P(x,-)—Q(x,*)| is measurable, and |P(x,*)

—Q(x, ") =esssup {(P—Q)f: | fll=1} ae.
Proof. The measurability is from [15]. Let h(x)=esssup {(P—Q) f: | f,=1}.
Then for f bounded measurable with sup|f(x)| <1 we have
(P = fN= P, )= Q(x, ),
hence A(x) = |P(x,*)—Q(x, )|l



On the “Zero-Two” Law for Conservative Markov Processes 519

Let X, be the finite g-algebra generated by the first k generators of Z. Then
L (2)) is finite dimensional (and thus separable), so a.e. we have

h(x)zsup {(P—Q)f(x): |f|=1, fis X,-measurable}
= [P(x,*) = QX Mz =2 1P 06 ) = C0x, ).

(The convergence is proved in [15]).

Remark. Lemma 2.6 shows that [5] is a generalization of [15]. Though implicit
there, it was not proved. Thus, Theorem 2.1 shows that ||§, P"—§_P"*1|—0 for
a.e. xeE,. Since h(x)=lim [[§,P"—5, P""1|| exists everywhere and is measur-

n—00

able, we have that F,={x: h(x)=0} is measurable. (We still assume that 2 is
countably generated.)

Proposition 2.7. Let y be a probability measure. If p(X — Fy)=0, then
lu(1 = P) P*|| —0.

Proof. Let h,(x)=6,.(I—P)P"|, which is measurable by [15]. Since h,(x) | 0 on
F,, by Egorov’s theorem there is a set A with u(4°)<e such that h,(x)—0
uniformly on A. Hence, for n>n,, h,(x)<e on A. For |f|£1 measurable we
have

[T =P) P, £ é/{ |P"(I—P)f(x)| d“+,§c |P"(I-P) f(x)|du

S h,(x)dp+2pu(A%) <3e.
A

Hence ||u(I —P) P"|| <3¢ for n>n,.

Derriennic [2] studied the relationship between the tail o-field and the
convergence |u(I —P)P"—0. Thus, the zero alternative yields that the tail o-
field equals the invariant o-field (for the shift) P, ae., for every p as in
Proposition 2.7. This is stronger then having the equality of these o-fields P, a.e.
(which is equivalent to their equality P, for u<m).

Remark. The proof of proposition 2.7 can be adapted to show that
sup {lim [u(I—P)P*|: p20, |u] =1} =sup {lim [6.(/—P) P"|: xe X}.

(In the case that X is not countably generated, it is necessary, for given p,
to look at the admissible o-algebra 2’ generated by the Hahn sets of
{u(I—P)P"}) This is another proof of the first equality of [2, Th.3]. The
supremum is 0 or 2 by reduction, in L,(£27"~1uP"), to the result of [15].

3. On the Peripheral Spectrum of a Conservative Markov Operator
In this section we give a spectral condition for the zero alternative in Theorem

2.1 to hold, extending the result of [14] to the non-ergodic case. We look at
the connection between ¢ (P) and ¢ (P) when P has a o-finite invariant measure.



520 M. Lin

We are interested in the peripheral spectrum o(P)n {1: |A|=1}. (P is extended
to the complex L_.)

Theorem 3.1. Let P be a conservative Markov operator such that ¢(P)n {|A| =1}
={1}. Then lim sup {P*(I—P)f: |f1£1}=0 ae.

Proof. Clearly P*f=fe L, = Pf=F, since k-th roots of unity are not in a(P).
By Theorem 2.1 for fixed k, there is an invariant set 4, with lim [P™ (I —P%)| 1
=0 on A4,, 2 on X —A,. We restrict ourselves to A,. Let Q=1+P+...+ P,
Q is invertible since k-th roots of unity are not in o(P) (spectral mapping
theorem).

sup {P"(I—P)f: | [l =1} =sup {P"(I-P)QQ '/}
<IQ " lisup {P™“(I—P"g: [gl, <1} —0 ae.

Hence |P"(I—-P)|1, —0 ae. Hence on U A, |[PI-P)}1—-0 ae But X

= U A,, as is proved in [14], because 1 +P is invertible.

Theorem 3.2. Let 0 be a conservative non-singular transformation. Then either OF
= Identity for some k>0, or 6(P)=>{|A]=1}.

Proof. It is shown in Schaefer [17, p. 326] that a(P)n{|A|=1} is cyclic. Hence,
if it is not the full unit circle, it is a discrete subgroup of the circle, so for some
k>0, a(PYyn{|A|=1}={1}. Hence P* satisfiecs the conditions of the previous
theorem, and for every A€, lim P*(I ~ P*)1, =0 a.e. By Lemma 2.5 P*=1.

Remark. For § having a o-finite invariant measure and invertible, a similar
result was obtained by different methods for the L, operator, by A.Bellow
(Ionescu Tulcea) in [11], and (by another method) by R.Sine [18]. However,
for a unitary operator it can be proved easily using the spectral theorem, and if
0 is not invertible, the result for the L, isometry holds by the theorem of B.
Sz.-Nagy and C. Foias [19, p. 85].

We now show that the converse of Theorem 3.1 is false, even if P is also
ergodic. Our example will also show that the spectral assumption of Theorem
3.1 need not hold for a Harris recurrent Markov operator, even if it has a
finite invariant measure (and even if the dual Markov operator is Doeblin).

Example 33. We let X=1{0,1,2,...}, and m{j}=2"7-1. Define (Tu)(j)=
(ug+u;,1)/2. Then T is a contraction of L,(X,m), and since T1=1, it is
conservative, and easily checked to be ergodic, and also aperiodic. P=T* is
the Markov operator on L (m), and, being Harris aperiodic, satisfies the
zero alternative (ie., m(E;)=0). ([12, 15]) To compute o(P) we can compute
o(T). We show that, for [A|=1, AI—-T is not onto L.
@2y .
FIDELD) for k=0. Then k;) vy m{k} < oc0.
We try to solve (AI — T)u=v, with ueL,. We get the equations

Au;—(ugt+u; 4)/2=v; (j=0,1,2,...)

Let v, =
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or

U =200~y —20;.

Thus a finite solution can be obtained, given u,,.
Hence u, =(2A—1)u,—2v,, and by induction we have

j—1 j—1
ujz[zuf— 5 (21)"] ug—2Y N0, 4 ;.
k=0 k=0

To have ue L, we check if ) |u;{/27 < 0.
j=0

-4y izh vy
—2—'17: [/LJ —-—————(1 _21) 2]] MO “‘kzo )Lk 2;'—1{—‘1

B P U PR k-1
‘[ﬂ (1-21)21‘]”0 F7H T vy /22)

1, ey i )
_[A —m]uo BY ui

With our particular choice of v,

N oy L J
v L)y = = .
L= 2 G we ) T
Hence
w —u, 2(1=17) ., g
— = A ;\,‘I “‘}.J 1’—.
YA T2 T
. 2A(1—4 j
Since %:/11‘1( (l_zﬂjuo—j_JH) =; a—m =co for any constant « no

choice of u, will yield ueL,. Hence Aea(T).

Remark. _We  note that the previous example showed o(P)n {|/l
=1}#0(P)n {|A]=1} (even for a finite invariant measure). However, we do
have the following result.

Theorem 3.4. Let P be conservative with o-finite invariant measure, and P its
dual operator. If O0=*feL satisfies Pf=Af, with |A|=1, then Pf=Af (and Pf
=Jf). Hence P and P have the same unimodular eigenvalues.

Proof. Let X, be the o-field of P-invariant sets. These sets are also invariant for
P. Now Pf=Aif = P|f|2|Pf|=|f|. By conservativity P|f|=|f], and |f] is Z;-
measurable. We can therefore restrict ourselves to {|f|>0}. Hence, without
loss of generality we may and do assume | f|>0 a.e. We also assume | f|,=1.

1/1f] is also X ,-measurable (though not necessarily bounded).

If AeZX,, then P(l,g)=1,Pg, as is easily checked. By linearity and con-
tinuity, for each ZX,-measurable f,eL., P(f,8)=/f,Pg for geL . By mo-
notone continuity, also P(g/| f])=(Pg)/|f| for geL_,. The same holds for P.
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Let heL, with 1Zzh>0 a.e. Then

I T e (75 (D) e[ 2 pFamer
IT(m) /] dm‘flflP(|f|)d'” I 7p Bfdm=4[hdm
Hence i
f = m
 ndm ‘IT m i ‘éllfh/|f|lh—fhd.

We must therefore have

f
jT(m) |f|d l j‘T |f| mldm. Hence there ex-

ists a complex o, with |«|=1, such that T If—h) s oc' (lj;h‘) f

1f1

1f1

a.e., and

the first equality we obtained shows that o= /.

T(fRAS)-FAFI=ATRAS) - FAL1= 2T (fRAS.
Clearly |T(fh/|f)| < Th by positivity of T. Since we obtained before that

SIT(fRASD dm=[ hdm={ Thdm,

we obtain now |T(fh/|f|)|=Th, so that T(fh/|f))=A(f]/f) Th. Now (using the
above remark on multiplication by invariant functions), since P=T on
L,nL_, we have

P(fhy=\f1P(fh/|f)=20f1*/ ) Ph=2f Ph.

Taking a sequence 0<h,<1 in L; with h,11, monotone continuity of P yields
Pf=ifP1=1f.

Remark. If P is not conservative, the theorem may fail. Let T on I, be defined
by T(uy,u,,...)=(Uy,us,...). Then T1=1 and |T|,<1. Since T(4, 4% 4% ..))
=AT(A, 2% 43,...), P has all the unit circle in its point spectrum, while T"— 0
strongly in L, shows that P has no unimodular eigenvalues.

4. A “Zero-Two” Decomposition for a Conservative Semi-Group

In this section we treat the continuous time case: We deal with a semi-group
{T} of positive contractions on L, (m), with dual semi-group {F}. We assume
continuity at t>0. It is shown in [13] that if 7; is conservative, so is every T,,
and this is equivalent to having the whole semi-group conservative.

For technical reasons, we assume that the o-algebra X is countably generat-
ed (e.g., X is a separable locally compact metric space). We assume that {P} is
obtained from a transition probability semi-group P(x,4) such that
{ f()P(x,dy) is (t, x) measurable, for each bounded measurable function. This
implies weak-measurability of {T;}, and, since L,(m) is separable, continuity at
t>0.
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Theorem 4.1. Let F(x, A) be a semi-group of transition probabilities on (X, Z), m
a probability on X w1th mP.<m for every t>0. Assume:

(1) Bf(x)=[f(») B(x,dy) is (t, x) measurable.

(2) 2 is countably generated

(3) {B} is conservative on L (m).
Then there exist invariant sets E, and E, =E$, such that:

(i) VoeR, lim |P(x,*)— ,M(x Jf=0ae. on E,

t— 00
(ii) For a.e. aclR, Iim IB(x,*)~P_,(x,*)|=2ae on E,

Proof. Let h(«, x)=FB(x,*)— P, ,(x,)|, for t>0 and t+a>0. Since the underly-
ing g-algebra is countably generated, an inspection of the proof of [15, Theorem
3.1] yields that h,(«, x)—hm 1B, ) =B, (% Mg, Where X, is a finite o-

algebra (generated by the flrst k generators of X). Hence h,(x, x) is measurable
in (o, x), by hypothesis (1).

Since [|B| <1, h, is decreasing, and lim h,(e, x)=h(x, x) is measurable in
(e, ). =00

Now h(x, x) is defined for every acR, xeX, and we have [20] h(—a, x)
=h(a, x), h(oe+ f, x)<h(x, x)+h(B, x), for every xeX. By Lemma 2.1 for fixed
o>0 we have a.e.

h(o, x)=lim ||B,,(x, ) =B, ,(x, )

= lim sup {F;(I = F) S [ f |0 =13

Since P, is conservative, h(a, x) is 0 or 2 for a.e. x, by Theorem 2.1. For ¢ <0
use h(o, x)=h(—o, x) to obtain h(a, x) is 0 or 2 a.e.

Let u be a probability measure on R, equivalent to Lebesgue’s measure.

Let A={(x, x): 0<h(x, x)<2}, and let 4, ={x: 0<h(x, x)<2}. We have just
seen that m(A4,)=0 for every o, and uxm(4)={m(4,)du=0.

Let B={(o, x): h{x, x)=0}, and B,={a: h(e, x)=0}. The properties h(o, x)
=h(—a, x) and h(x+f, x) <h(a, x)+h(f, x) imply that B, is a subgroup of R.

B is measurable in R x X, so [ 1,(e, x) u(de) is measurable on X, and

E,={x: ] 1,(s, x)dp(z)=0} = {x: u(B,) =0}

is measurable in X. Let E,=E.

Since B, is a subgroup of R, u(B,)>0 implies [9, p. 68] that B, contains an
interval around the origin, and therefore B, =RR.

Now xeE, < u(B,)>0< B, =R < h(z, x)=0Vo<>u(b,)=1, and

i1 ko, x)d(px m)y= j [f h(er, x)d (o) ] dm(x)=0.

R xEg

Since Ao, x) is 0 or 2 u x m-a.e., we have

2m(E)Zz [ h(e,x)d(uxm)= {{ hx,x)d(uxm)=2(ux m)(B)

Rx 1 RxX

=2-2(uxm)(B)=2—2{ u(B,)dm=2—2m(E;)=2m(E,).
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(We used the fact that u(B,) is 0 or 1.) Now equality in the previous inequality
means h(x, x)=2 a.e. on Rx E,, and for p a.e. o, h(a, x)=2 a.c. on E.

It remains to prove the invariance (in L (m)) of the sets E, and E,. Take
«>0 such that h(x, x)=2 a.e. on E;. Then h(x, x)=21, a.e., so (by Lemma 4.1)
E, and E, are the decomposition sets for P,, given by Theorem 2.1. Hence

1g,=1g,. Weak-* continuity of the semigroup yields the required result.

Remarks. 1. We may probably drop the assumptions that X is countably
generated, and that {P} is given by transition probabilities. We will need still a
bi-measurable g(f,x) such that Bf(x)=g(t,x)pxm ae, (g depends on
feL.(m)), in order to get [20, Lemma 3] h{a, x)} measurable such that h(e, x)
=lim |B(P,—D| 1(x)ux m a.e. The limit is to be taken in L sense, or (equiva-
t— o0

lently) as lim |PB,,(P,—I)| 1(x) (since |B{P,—I)|1 is decreasing, in L ). Lemma 2
of [20] needs the (simple) proof without transition probabilities, and then the
version h(x, x) will have to satisfy everywhere h(o, x)=h(—a,x); h(a+ 8, x)
<h(e, x) +h(B, x) so that our proof will apply.

2. Winkler's proof [20] made use of the fact that for (almost) every «,
h(e, x) is a.e. constant, which is not necessarily true without ergodicity of
(almost) every P,.

3. Revuz’ remarks in [16] indicate that Theorem 4.1 (ii) cannot be im-
proved to obtain |E(x,*)—F, (x, *)[|=2 ae. on E,, for every o, t>0. Let E f(x)
= f(e*™*x) on the unit circle, and let m be Lebesgue’s measure. Using Lemma
2.5 for P, (o not an integer), we obtain m(E,)=0. But B, =P.

Acknowledgements. 1 am grateful to R. Nagel for sending me a preprint of [8], and to L. Sucheston
for some helpful comments.
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