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Summary. Let P=T* be a conservative Markov operator on L~(X,Z,m), 
and let h(x)= lira sup {Pn(I-P)f: I[/ll~< 1}. Then h(x) is zero or two a.e. 

n.-.  oo 

The sets E 0 = {h=0} and E 1 = {h=2} are invariant, and we have: 

(a) It IT~(I- T)IulI1 ---~0 for ueLl(Eo), 
(b) II IT"(I-T)lull1 =2 Ilu[I for every n, O<ueLl(E O. 
If X is countably generated and P is given by P(x, A), we have 

(a) tlP"(x,.)-P"+l(x,.)ql~O a.e. on E0, 

(b) IiP"(x,')-P"+i(x,')[I--2 a.e. on El ,  for every n. 

A sufficient (but not necessary) condition for re(E1)=0 is that 
a(P) ~ {I,~l = 1} = {1}. 

If {Pt} is a conservative semi-group given by Pt(x, A) bi-measurable, there 
are invariant sets E o and E 1 such that: 

(a) V e e R ,  lim IIP~(x,')-~+~(x,')l/=0 a.e. on Eo, 

(b) for a.e. ~ER, lim l[~(x, ")-~+~(x,')ll =2  a.e. on E 1. 

1. Introduction 

Let (X, Z) be a measurable space, and let P(x, A) be a transition probability. For 
every bounded measurable function we set Pf(x)=[J(y)P(x, dy), and for a 
finite signed measure # we define #P(A)=SP(x,A)d#(x ). It is well known that 

if mP~m, (m>0) then T (d#~ =d(#P)  defines a positive linear contraction on 
\dm] dm 

L 1 (m), with adjoint T*=P (i.e., Pf is in the class of T'f). For the ergedic 
theory of positive ontractions of Ll(m ) we refer to [43 (see also [71). 

Harris [10] introduced the following recurrence condition: If  re(A) > O, then 

~P(")(x,A)= oo for every xeX.  Jamison and Orey [123 proved that if all pi  
n = O  
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satisfy Harris' condition (aperiodic case), then for any two probabilities #, v we 
have [[(#-v)P"[/~0. This clearly implies ][(cSx-6xP)P"][~O for every x~X .  
Also, the Harris condition implies that P f = f  for f bounded implies 
f = constant. 

By using results of Derriennic [2], it can be shown that for any transition 
probability, the two conditions: 

(i) P f = f  f bounded ~ f_= constant, and 

(ii) lira It(6 x -  dxP)P'fl--0 for every x~X, are equivalent to the convergence 
n - * o o  

(iii) for any two probabilities p and v, kl(#-v)P"H~0. 

Ornstein and Sucheston [15] proved the following "zero-two" theorem: I f  
P f  < f  for O< f bounded implies that f is m-a.e, constant (mP~m), then either, 
1[6x(P"+I-P")[[ , ~ 0  a.e., or for every n, ]/6x(P"+I-P~)]I---2 a.e. (They as- 

sume that s is countably generated.) This yields that ]]T"ul]l~0 for ueLt(m) 
with ~udm=O, if the first alternative holds. They deduced from this the above 
mentioned Jamison-Orey theorem. 

Foguel [5-7] eliminated the separability of the a-algebra, and proved that 
if P is ergodic and conservative on L~(m), then h(x)= lira sup {(P"+a-P ' ) f (x) :  

n ~ o o  

Ikfl]~<l} is constant a.e., the constant being zero or two. (The sup in the 
above limit is the essential sup in L~.) In this context, there is no need to have 
P defined by a transition probability anymore. 

Derriennic [21 looked at the problem of convergence without the ergodicity 

N -  l "- l p pk __, assumption. In that case, one would like to know when ~ 0 
llpP"l] ~ 0 .  His result is: k=0 

sup {lira ]L(#-#P)P'][" 0<#,  #(X)= 1} =sup {lim ][(6x-8~P)P"]L } = t  0 . 
n ~ o G  X L ~ 

For contractions in L l(m), Ornstein and Sucheston [15] had previously proved 
that {0 

sup {lira Ilrn(u-Zu)l[~: O<<_u, Ilullt= }= 
n - ~  - 2 "  

(We note that Derriennic's result can be proved by using the result of Ornstein 
and Sucheston.) Derriennic also studied the relationships of these results with 
the tail o--algebras of the Markov chains associated with P(x, A). 

In this paper we are interested in the function 

h(x) = lim sup {P"(I-P)f:  Ilfll ~ _-< 1}, 
n ~ o  

for a conservative Markov operator P on Loo(m ). It turns out that h(x) is 0 or 
2 a.e., which yields an interesting decomposition of the space. Though our 
theorem may fail for P non-conservative, we conjecture that ]lh]l~ is zero or 
two in any case. 
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Using the notion of the linear modulus of a bounded linear operator in E 1 
(see [1], [17]), we can obtain that h =l im IPn(I--P)[ 1, and 

IIh[l~:sup{lim II IZ"(I-Z)lull~: O<-_u6L1, Ilulr~:l}. 

Using that approach, our decomposition theorem was proved by Greiner and 
Nagel [8] in the particular case that T has an equivalent invariant probability, 
and PJf=f  ~ P f = f  a.e. 

In Sect. 3 we look at some properties of the peripheral spectrum of a 
conservative P on Loo(m ) (which is extended to the complex Loo(m)). 

Our decomposition theorem is extended to the continuous parameter case 
in Sect. 4, and generalizes Winkler's result [20], by dropping all ergodicity 
assumptions (Winkler needed that each Pt be ergodic, and not only the semi- 
group, which is a stringent condition). (Derriennic's results were extended to 
the continuous parameter case by Revuz [16], while the result of Jamison and 
Orey was extended by Duflo and Revuz [3].) 

2. The "Zero -Two"  Decomposition for a Conservative Operator 

In this section we obtain a "zero-two" theorem for a conservative Markov 
operator without ergodicity assumptions. 

Theorem 2.1. Let P be a conservative Markov operator on Loo(m ). Then 

h = lira IP"(I -P) [  1 = lira ess- sup {P"(I-P)f: IIfHo~ < 1} 
n ~ o o  n ~ o o  

is an invariant function, 0_<h_<2, and m({0<h<2})=0 .  Let E l = { h = 2 } ,  Eo =  
{h=0}. Then IP"(I-P)Ileo~O a.e., and IP"(1-P)llEl=21~l a.e. 

Proof Recall that Ipn(I--P)[ 1E=ess-sup {pn(I--P)f: - 1E<f < 1E}. Let 
hn=lpn(I-P)ll=ess-sup{P"(I-P)f:if]<l}. Then O<hn+l<h,<2, so h,~h. 
Also Phn>h,+l, so Ph=limPh,>limh,=h, and since P is conservative, 
Ph =h. Thus E o and E 1 are invariant sets [4, p. 21]. Let E = E l  = {h < 2}. Then 

IP"(I-P)I 1 = IP"(I- P)I(1E1 + 1E)= IP"(I-P)[ 1E~ + [P"(I-P)I 1~. 

Each term converges a.e. since the restriction of P to each invariant set is also 
conservative. Hence on E I we have I P" ( I -P ) I~2 ,  since the other term is 
zero on E 1. Hence we have (since h,$h) IP"(I-P)I 1 ~ = 2  a.e. on E 1. 

We may and do assume that h < 2  a.e., by restricting ourselves to E. Since { 1} 
Ak= h < 2 - ~  is invariant, and E=~)A k, we may restrict ourselves to Ak, 

1 

and so we assume h__<2-~, and have to s h o w  h=0.  

We need now the following lemma. 
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Lemma 2.2. Let S n = pn ix Pn+ 1. I f  g~ L~ is invariant, then: 

(a) S~(gf)=gSJ for f~Lo~. 
(b) Sng converges to the invariant function Sg =(1- �89  g. 

(c) Sg~O for O<g, with ILg/l~>0, when IIhll~<2. 

Proof. (a) It is well known that p~(gf)=gpnf. Now assume g_>_0, f_>_0. Then 
[7, Def. 4.1] we have 

P~ /x Pn + t (g f)  = inf {Pn qo + Pn +1 (g f _  q~): 0 < ~0 __< g f} 

--inf{P~(~gf)+ p'+ l(gf-~kgf): 0<~<= 1} 

=gin f{P~(~f )+P~+l( f -~ f ) :  0__<~< 1}--gSJ .  

(b) S~g=gS~l, and S~I = 1- �89  1-~ 1-�89 
(c) follows immediately from (b). 

We need also the following claim. It can be proved using the result of [-15] 
(as was done in [-14]). The following simpler proof is due to S.R. Foguel. 

Claim. I f  Hhl[~<2, then prg=g ~ pg=g. 

Proof. Since P is conservative, so is pr, so we have to show only P r l a = l  a 
P1~=1 a. Apply Lemma 3.3 of [7] successively and obtain P l a = l  ~. Hence, for 
every integer n we have 

1~-  1A=P1A -- 1A = p~r(p__ i) l a = ~  P1 ~r ( I -  P)(1 _21a) <l=~h~r __.l~h. 

Hence 1 B -  1A_--<�89 which yields B cA ,  and P l a >  1A implies P1A= 1A, 
since P is conservative. 

Proof of the Theorem. Given m>0,  and 0__<g$0 invariant, Smg~0 by the above 
lemma. S is pointwise continuous, so for some n~>0, S, S"-Xg~g0. But 

m - - 1  Sn~S g = l i m  S,S~S'-2g,  so S~S,:Sm-2g+O. Hence we can find 

nl, n2, ..., n m with S, Sn~ ... Sn,,g$O. 
In order to show that h=0,  define g=(h-2/ ] / -m)  +, which is 2;i-measurable, 

hence invariant. (m > 0 is a fixed integer.) 
r n  m 

Let nl, n2, . . . ,n  m be as above, and no= ~ n i. Define Q =  l-I s~, and 
i = 1  i = 1  

u=pmn~ ( I ; P )  - . By definition, Sni~P h i _  and -,,'q =<Pro+l, so 
\ - -  / 

S,,(I + P) < P"~ + ~ + S,,P < 2P"' + 1. Hence 

so U is a positive linear operator. If r=mno+m, then 
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and PJr = UJ + Rj (I2--~-P)m (with Rj+ I= UJQ + RjU). 

PJr(I- P)= UJ(I- P) + Rj (I2~P)m(I- P) 

=uJ(i__p) q_2-mRj ~ (m](pk pk+1) 
k=0 \k ! , - 

-UJ(l-P)+2-"RJ{k~=l [ ( k ) - ( k m _ l ) ] p k + l - p m + ' }  �9 

For [Iflloo<l, we have (since Rjl  =2-mRj(l+P)-ml<l), 

- __<2UJ l+ - -  P'~(I-P)f<2UJI+2-m ~ ~ km_l t~ ~" 

Now UI_-<UI=<I, so UJl decreases, and h =  lim UJl is U-invariant, so Uh>h, 
hence Uh=h. Now, by the claim, Ph=h. j~oo 

But Uh=h and Ph=h, so Q/~=0 by the definition. Taking limits we have 

2 
h=l im IPJ'(I -P)]  1 ~ 2 1 ~ + - -  

l/G" 
Hence g =  (h - -~m)+  <2/~, and Qg<2Q/~=0.  Hence(h-2/1Fm)+=g=O(since 

g ~ 0 implies Q g ~ 0), yielding h < 2/I/re. Since m > 0 is arbitrary, h = 0. 

Corollary 2.3. Let P be a conservative Markov operator, E o and E 1 as in 
Theorem 2.1. Then 

(a) O<u~Ll(Eo)~ I[]T"(I-T)Iu[II-~O. 
(b) O<u~g~(EO, Hul[l=l ~ I l lT"(I -T) lu[ l~=2for  Vn. 

Proof (a) We restrict ourselves to E0, so we may assume h - 0 .  Then 

[I I T " ( I -  T)l Ul[ x = (I T"( I -  r)] u, l )  -- (u, IP"(I-  P)] 1)--+0 

by the bounded convergence theorem. 

(b) Restricting ourselves to El,  we obtain h=2,  or ]P"(I-P)] 1 =2  a.e. Then 
for O<=ueLI(E~) with Sudm= 1 we have 

IF I T " U -  T)[ ul] 1 re(U, Ipn(I -- P)l 1) =2.  

Theorem 2.4. Let P have a finite invariant measure # equivalent to m, and let l 5 
be the dual Markov operator. Then P and _fi have the same decomposition. 

Proof We may assume #=m.  Since / 3=T  on Loo(#), and P-invariant sets are 
ff-invariant, l im]ff ' ( I -P)] leo exists a.e., and is 0 by Corollary 2.3 (a) and 
Lebesgue's theorem. Also [][P"(I-P)[I~I]I=2#(E1) for every n, and since 
0<[ff"(I-ff)]  1~ <21~1 a.e., it is 2 a.e. on E 1. 
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Remarks. 1. The proof of Theorem 2.1 uses some ideas of G. Greiner and R. 
Nagel [8]. However, their Banach lattice approach requires that the norm be 
order continuous (which does not apply to Loo), and the existence of a positive 
fixed point (which is not always available for T, the L 1 pre-dual of P). Hence 
their result implies Theorem 2.1 only for P with an equivalent finite invariant 
measure (more or less in the form of Corollary 2.3). 

(The extra step involved in our proof is the existence of na .. . .  , n m such that 
S,1 ... S,,,g~0.) Convergence in Loo norm is treated by Foguel [6], [7]. 

2, The claim in the proof eliminated the need for the assumption that all pk 
have the same invariant sets as P, needed in the general set-up in [8]. 

3. Theorem 2.4 is new even in the ergodic case, and its proof is evident by 
the use of the modulus operator. It is not known if it is true if # is o--finite (and 
P conservative). 

4. In the form of the results of Derriennic [2], Corollary 2.3 can be written 
as the following "zero-two" law: 

sup { lim I[ ]T"(I - T)[ u[[ 1 : 0 _<_u ~L1, []u[[ 1 = 1} = jlhl[ ~o~ {0, 2}. 
n ~ o o  

5. If P is not conservative Theorem 2.1 may fail, even if h is invariant. E.g., 
let P be given on {1, 2, 3, 4} by the matrix ( 000 :) 

1 0 

6. The zero alternative (i.e., m(Ex)=0) implies that for every ueL~ we have 
I IT" ( I -T )u l I I~O.  However, the next lemma shows that for a Markov opera- 
tor Pf(x)=f(Ox),  obtained from a conservative non-singular transformation 0, 
we have m(Eo)=0 (unless 0 is the identity). If 0 is exact and conservative, we 
see that the zero alternative is a strictly stronger property. 

Lemma 2.5. Let 0 be a conservative transformation. I f  l im(P "+1 --P")IA=0 a.e., 
then P1A = 1A. 

Proof The condition is la(O"+~x)-lA(Onx)--,O a.e. Hence either O"xeA for all 
n>no(X), or O"xq~A for n>no(X ). Hence B={x:  O"xeAVn>no(X)  } is an in- 
variant set, and contains A. If m ( B - A ) > O ,  x ~ B - A  ~ O"xgAB-A for 
n > no(X), contradicting the recurrence. Hence A = B is invariant. 

We now turn to the probabilistic interpretation of the results. 

Lemma 2.6. Let P(x, A) and Q(x,A) be transition probabilities, mP ~ m, mQ ~m. 
I f  Y, is countably generated, then [IP(x, ')-Q(x, ')[I  is measurable, and liP(x,') 

- Q(x,.)l[ = ess sup { (P-  Q)f: ]kfl[ ~--< 1} a.e. 

Proof The measurability is from [15]. Let h(x) = ess sup { (P-  Q) f: [[ f~  < 1}. 
Then for f bounded measurable with sup [f(x)[ < 1 we have 

I(P - (2)f(x)] < h l P (x,.) - Q (x,.)l I, 

hence h(x)< [[P(x," ) - Q ( x , "  )l[. 
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Let S k be the finite a-algebra generated by the first k generators of S. Then 
L~(Sk) is finite dimensional (and thus separable), so a.e. we have 

h(x) > sup {(P - Q)f(x): If] < 1, f is Zk-measurable } 

= l iP(x,"  ) - Q(x,')llM<Z~) ~----g l IP(x,"  ) - Q(x ,  ")ll. 

(The convergence is proved in [-15]). 

Remark. Lemma 2.6 shows that 1-5] is a generalization of [15]. Though implicit 
there, it was not proved. Thus, Theorem 2.1 shows that/ l~SxP"-~xP"+l[]~0 for 
a.e. x~Eo. Since h(x)= lim I[cSxP"-6~P "+111 exists everywhere and is measur- 

n ~ o o  

able, we have that F o = {x' h(x)=O} is measurable. (We still assume that 2; is 
countably generated.) 

Proposition 2.7. Let # be a probability measure. I f  #(X-Fo)=0, then 

I I ~ ( / - P ) P " I t  - , o .  

Proof Let h,(x)= IIg~(I-P)P"ll,  which is measurable by 1-15]. Since h,(x)$ 0 on 
F 0, by Egorov's theorem there is a set A with #(AC)<e such that h,(x)~O 
uniformly on A. Hence, for n>no, h,(x)<e on A. For I f l < l  measurable we 
have 

I (#(I-e)  P",f)l < ~ IP"(I-P)f(x)l d#+ ~ IP"(I-P)f(x)ld# 
A A ~ 

< ~ h,(x) dl~+2#(X)<3e. 
A 

H e n c e  II~(I-P)P~II < 3 ~  for  n > n  o. 
Derriennic [2] studied the relationship between the tail a-field and the 

convergence I[#(I-P)P"---,O. Thus, the zero alternative yields that the tail a- 
field equals the invariant a-field (for the shift) Pu a.e., for every /~ as in 
Proposition 2.7. This is stronger then having the equality of these o--fields P,, a.e. 
(which is equivalent to their equality P,, for/~ ~ m). 

Remark. The proof of proposition 2.7 can be adapted to show that 

sup {lim I[/~(I-P)P"ll: #>0,  II#[I-- 1} =sup {lim ][6~(1-P)P"II" xeX}.  
n ~ o o  n ~ ( N 3  

(In the case that 2; is not countably generated, it is necessary, for given ~, 
to look at the admissible a-algebra 2;' generated by the Hahn sets of 
{#(I-P)W}.) This is another proof of the first equality of [2, Th. 3]. The 
supremum is 0 or 2 by reduction, in Ll(2 ;2-"- l#W),  to the result of [-15]. 

3. On the Peripheral Spectrum of a Conservative Markov Operator 

In this section we give a spectral condition for the zero alternative in Theorem 
2.l to hold, extending the result of 1-14] to the non-ergodic case. We look at 
the connection between a(P) and a (P) when P has a a-finite invariant measure. 
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We are interested in the peripheral spectrum a(P)c~ {,t: [21 = 1}. (P is extended 
to the complex Loo. ) 

Theorem 3.1. Let P be a conservative Markov operator such that ~(P) ~ {121 -- 1} 
= {1}. Then lira sup {P" ( I -P ) f :  Ifl < 1} =0  a.e. 

Proof. Clearly P k f = f e  L~ ~ P f = f  since k-th roots of unity are not in a(P). 
By Theorem 2.1 for fixed k, there is an invariant set A k with limlp"k(I--pk)l 1 
=0 on Ak, 2 on X - A  k. We restrict ourselves to A k. Let Q = I + P + . . . + P k - 1 .  
Q is invertible since k-th roots of unity are not in a(P) (spectral mapping 
theorem). 

sup {P"k(I-P)f: ]lf]L~ < 1} =sup {P"k(I--P)QQ-lf}  

--< LIQ -1 I1 sup {P"k(I--pk)g: []gll~ < 1} --~0 a.e. 

Hence IP"(I-P)[1Ak--,0 a.e. Hence on ~J Ak, IP"(I-P)11-- '0 a.e. But X 
o o  k = l  

= U Ak, as is proved in [-14], because I + P  is invertible. 
k = l  

Theorem 3.2. Let 0 be a conservative non-singular transformation. Then either O k 
=Identity for some k>0,  or a(P)= {121--1}. 

Proof. It is shown in Schaefer [,-17, p. 326] that a(P)c~{[2[=l} is cyclic. Hence, 
if it is not the full unit circle, it is a discrete subgroup of the circle, so for some 
k>0,  a(Pk)c~ {121 = 1} ={1}. Hence pk satisfies the conditions of the previous 
theorem, and for every A ~s limp"k(I--pk)lA =0 a.e. By Lemma 2.5 pk=I. 

Remark. For 0 having a o--finite invariant measure and invertible, a similar 
result was obtained by different methods for the L z operator, by A. Bellow 
(Ionescu Tulcea) in [11], and (by another method) by R. Sine [-18]. However, 
for a unitary operator it can be proved easily using the spectral theorem, and if 
0 is not invertible, the result for the L 2 isometry holds by the theorem of B. 
Sz.-Nagy and C. Foias [-19, p. 85]. 

We now show that the converse of Theorem 3.1 is false, even if P is also 
ergodic. Our example will also show that the spectral assumption of Theorem 
3.1 need not hold for a Harris recurrent Markov operator, even if it has a 
finite invariant measure (and even if the dual Markov operator is Doeblin). 

Example 3.3. We let X =  {0,1, 2, ...}, and re{j}=2 -j-1.  Define (Tu)(j)= 
(Uo+U~+O/2. Then T is a contraction of LI(X,m), and since T I = I ,  it is 
conservative, and easily checked to be ergodic, and also aperiodic. P = T *  is 
the Markov operator on Loo(m), and, being Harris aperiodic, satisfies the 
zero alternative (i.e., re (E0=0 ). ([12, 15]) To compute a(P) we can compute 
or(T). We show that, for 121 = 1, 2 I -  T is not onto L 1. 

(2;0 k 
for k>0.  Then ~ Ivklm{k}<oo. Let Vk--(k + 1)(k+2) k=o 

We try to solve ( 2 I - T ) u = v ,  with u~L  1. We get the equations 

2u~-(Uo+Uj+l)/2=v j (j=O, 1, 2, ...) 
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o r  

u j+ ~ = 2 2 u j - u  0 -2vj .  

Thus a finite solution can be obtained, given u 0. 
Hence u 1 = ( 2 2 - l ) u  o - 2 v o ,  and by induction we have 

j - 1  

U o - 2  ~ (22)kvi-k-a . 
k=O 

To have u e L  1 we check if ~ l@/2J< oo. 
j=0  

Uj __ ,~k V j - - k - -  1 ~ 7 -  [;~J 1 - (22) i ] J ~  

o 

= [2 i 1 - ( 2 2 )  ~ ] ~ i j-x 
( 1 ~ - 2 ~  i j  u~ - 2 ~ -  k=OZ Vi-k-~/(Zs 

1--(22) j ] ~-1 
= 2J ( 1 ~ 2 i ]  u ~  k=0Z Vk/(221 k" 

With our particular choice of Vk, 

j-1 j-1 1 j 
k~=o v j(22) k = k~=O (k + 1) (k + 2) - j  + 1" 

Hence 

u j - u  o 2 (1 -2 )  j j 
2 J - ( 1 " 2 2 ) 2  J ~ 1-~Z2~ 2 u ~  

Since Z --; for any constant no 
J 

choice of u 0 will yield u e L  I. Hence 2ca(T) .  

Remark. We note that the previous example showed a(P) ~ {121 
=l}~ea(fi)c~ {]2]=1} (even for a finite invariant measure). However, we do 
have the following result. 

Theorem 3.4. Let P be conservative with a-finite invariant measure, and P its 
dual operator. I f  O=t=feL~ satisfies P f=2f ,  with I;~1=~, then P f = 2 f  (and P f  
= 2f). Hence P and P have the same unimodular eigenvalues. 

Proof Let Z i be the a-field of P-invariant sets. These sets are also invariant for 
ft. Now P f = 2 f ~ P [ f [ > l P f [ = l f l .  By conservativity e l f  ]=If[, and ]fl is Z i- 
measurable. We can therefore restrict ourselves to {If[>0}. Hence, without 
loss of generality we may and do assume ]fl >0  a.e. We also assume IPf[l~ = 1. 

1/]fl is also Z~-measurable (though not necessarily bounded). 
If AeZ~, then P(1Ag)=IAPg, as is easily checked. By linearity and con- 

tinuity, for each Zi-measurable foeL~,  P(fog)=foPg for geLoo. B y  mo- 
notone continuity, also P(g/[ f [ )=(Pg) / l f l  for geLoo. The same holds for P. 
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Let heL 1 with 1 > h > 0  a.e. Then 

ST(~-i) . l f f~ 'm ~ f h n  f ) d m :  - - a : J  i ~ r  (1~ ~[--~-12Pfdm=2~hdm. 
Hence 

f dm <: Ilfh/Ifl Ill =[. hdm. 

We must therefore have S T ( ~ ; i ) . l f d m = S  T(~;i).S--f[dm. Hence there ex- 

ists a complex e, with Ictl=l, such that T _f(i~) f.[f[=e T ( ~ I )  .1~ a.e., and 

the first equality we obtained shows that ct = 2. 

T(fh/Ifl). f /[fl = ~1T(fh/Ifl). f /[fl l = XI T(fh/lfl)l. 

Clearly I T(fh/Ifl)[ < Th by positivity of T. Since we obtained before that 

[. I T(fh/lfl)l dm= [. h dm= ~ Th din, 

we obtain now I r(fh/lfl)l = rh, so that T(fh/Ifl)=J.(Ifl/f)rh. Now (using the 
above remark on multiplication by invariant functions), since 16=T on 
L 1 ~ L ~ ,  we have 

16(fh) = If116(fh/lfl) = 741flZ/ f )  16h = Xf16h. 

Taking a sequence 0 < h , <  1 in L 1 with h,T 1, monotone continuity of t 6 yields 
16f =2f161=2f. 
Remark. If P is not conservative, the theorem may fail. Let T on ll be defined 
by T(uDUa,...)=(u2, u3,... ). Then T 1 = 1  and [ITlll<l. Since T(2,22,23,...) 
=2T(2,  22, 23, ...), 16 has all the unit circle in its point spectrum, while T " ~ 0  
strongly in L 1 shows that P has no unimodular eigenvalues. 

4. A "Zero-Two" Decomposition for a Conservative Semi-Group 

In this section we treat the continuous time case: We deal with a semi-group 
{Tr} of positive contractions on Ll(m), with dual semi-group {Pt}- We assume 
continuity at t>0 .  It is shown in [-13] that if Tto is conservative, so is every Tt, 
and this is equivalent to having the whole semi-group conservative. 

For technical reasons, we assume that the a-algebra S is countably generat- 
ed (e.g., X is a separable locally compact metric space). We assume that {P~} is 
obtained from a transition probability semi-group Pt(x, A) such that 
~f(y)Pt(x, dy) is (t, x) measurable, for each bounded measurable function. This 
implies weak-measurability of {Tt}, and, since Ll(m ) is separable, continuity at 
t>0.  
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Theorem 4.1. Let Pt(x, A) be a semi-group of transition probabilities on (X, Z), m 
a probability on ~ with mP t ~ m for every t > O. Assume: 

(1) Ptf(x) = ~ f (y )  Pdx, dy) is (t, x) measurable. 
(2) Z is countably generated. 
(3) {Pt} is conservative on L~o(m ). 

_ c Then there exist invariant sets E o and E a - E o ,  such that." 
(i) VeeR,  lira ][Pt(x, ")-P~+~(x, ")]1 =0  a.e. on E o 

t ~ o o  

(ii) For a.e. c~MR, lira []Pt(x, .)-Pt+~(x, .)[[ =2  a.e. on E 1 
t~Oo 

Proof Let hr(e , x)=Pdx , .)-Pt+~(x, ")[I, for t > 0  and t + e > 0 .  Since the underly- 
ing o--algebra is countably generated, an inspection of the proof of [15, Theorem 
3.1] yields that ht(e,x)= lira [[P~(x,.)-P~+,(x,.)[lu(z~) where 17 k is a finite a- 

k ~ o o  

algebra (generated by the first k generators of X). Hence h~(e, x) is measurable 
in (e, x), by hypothesis (1). 

Since [[Pt[l<l, h t is decreasing, and lim h,(e ,x)=h(e,x)  is measurable in 

Now h(e,x) is defined for every eMR, xeX ,  and we have [20] h ( - e , x )  
=h(e,x), h(c~+fi, x )<h(e ,x)+h(f i ,  x), for every xeX .  By Lemma2.1 for fixed 
e > 0 we have a.e. 

h(e, x)= lira ]lPn~(x, . ) -  Pn~+~(x, ")[I 

= lim sup {P~(I-P~)f:  Ilfl[| 1}. 
n~oo  

Since P~ is conservative, h(e,x) is 0 or 2 for a.e. x, by Theorem2.1. For e < 0  
use h ( ~ , x ) = h ( - e , x )  to obtain h(e,x) is 0 or 2 a.e. 

Let p be a probability measure on IR, equivalent to Lebesgue's measure. 
Let A = {(e, x): 0 < h(~, x) < 2}, and let A~ = {x: 0 < h(e, x) < 2}. We have just 

seen that m(A~)=0 for every e, and # x m(A)=~ m(A~)dg=O. 
Let B =  {(e, x): h(e, x)=0}, and Bx={e: h(e, x)=0}. The properties h(e, x) 

= h ( - e ,  x) and h(e+fl, x)<h(e,  x)+h(fi, x) imply that Bx is a subgroup of IR. 
B is measurable in IR x X, so ~ l~(e, x) #(de) is measurable on X, and 

E 1 = {x: S 1,(e, x)d#(~)=0} = {x: #(B~)=0} 

is measurable in X. Let E 0 = E~. 
Since B x is a subgroup of IR, g(Bx)>0 implies [9, p. 68] that B~ contains an 

interval around the origin, and therefore B~ = IR. 
Now x e E o ~ # ( B ~ ) > O ~ * B = l R , ~ h ( e  , x ) = 0 V e ~ p ( b x ) =  1, and 

~ h(e, x)d(# x m)= ~ [y h(e, x)dp(e)] dm(x)=O. 
R xEo Go R 

Since h(a, x) is 0 or 2 # x m-a.e., we have 

2m(E~)_> yy h ( e , x ) d ( p x m ) =  yy h ( e , x ) d ( p x m ) = 2 ( # x m ) ( B  ~) 
Rx,Et R x X  

= 2 -  2(# x m)(B) = 2 -  2 ~ #(B~) dm = 2 -  2m(Eo) = 2m(E1). 
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(We used the fact that/z(Bx) is 0 or  1.) N o w  equality in the previous inequality 
means h(c~, x ) = 2  a.e. on RxE1, and for # a.e. c~, h(~, x ) = 2  a.e. on  E 1. 

It remains to prove the invariance (in Lob(m)) of  the sets E 0 and E 1. Take 
c~>0 such that  h(c~, x ) = 2  a.e. on  E 1. Then  h(e, x)=21E1 a.e., so (by L e m m a  4.1) 
E o and E 1 are the decomposi t ion  sets for P~, given by Theorem 2.1. Hence 
P~ le, = 1E. W e a k - ,  continuity of  the semigroup yields the required result. 

Remarks. 1. We may probably  drop the assumptions that  2; is countably  
generated, and that  {Pt} is given by transit ion probabilities. We will need still a 
bi-measurable g(t ,x) such that  Ptf(x)=g(t,x)lzxm a.e., (g depends on 
feLl(m)), in order to get [20, L e m m a  3] h(e, x) measurable such that  h(e, x) 
= l i m  [Pt(P~-I)[ l (x )#  x m a.e. The limit is to be taken in L ~  sense, or  (equiva- 

t ~ O O  

lently) as lim IPn~(P.-I)I l(x)(since IP~(P~-I)I 1 is decreasing, in L~). L e m m a 2  
n~cN?  

of [20] needs the (simple) p roof  wi thout  transit ion probabilities, and then the 
version h(7, x) will have to satisfy everywhere h(e,x)=h(-~,x); h(e+~,x) 
<h(~, x ) +  h(/~, x) so that  our p roof  will apply. 

2. Winkler 's  p roof  [20] made use of  the fact that  for (almost) every c~, 
h(c~,x) is a.e. Constant, which is not  necessarily true without  ergodicity of  
(almost) every P~. 

3. Revuz '  remarks in 1-16] indicate that  Theorem 4.1 (ii) cannot  be im- 
proved to obtain ][Pt(x, . ) -Pt+~(x,  ")11 = 2  a.e. on El,  for every c~, t > 0 .  Let Ptf(x) 
=f(e2~x) on the unit circle, and let m be Lebesgue's measure. Using L e m m a  
2.5 for P~ (c~ not  an integer), we obtain re(E0)=0. But P~+k =P~. 

Acknowledgements. I am grateful to R. Nagel for sending me a preprint of [8], and to L. Sucheston 
for some helpful comments. 
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