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Summary. An asymptotic formula (as t - ~ )  is derived for the density of 
the first-exit time of the Brownian motion over certain upper class func- 
tions. This result is applied to the study of the performance of tests of 
power one as the drift goes to zero. 

1. Introduction 

Let ~(t) be a positive increasing upper class function of the standard Brownian 
motion W(t) at infinity, so that V(W(t)<tp(t) for all large 0 = 1 ,  and let O(t) 
=o(t) as t~oo .  We define the first-exit time of W(t) over ~(t) by 

T=  inf{t > 0l W(t) >= ~(0} (1) 

with T=  oo when the infimum is taken over the empty set. 
We assume that P(T< oo)< 1. The present paper deals with the asymptotic 

form of the density f of T as t--* oo. We show that under certain regularity 
conditions on 

f ( t ) -  P(T= c~) ~(t)-t~'(t) (~(t)~ 

holds as t~oo .  Here q~ denotes the density of the standard normal distribution 
and the symbol _-" means that the ratio of the two expressions converges to 
one. 

The situation considered here, with a fixed boundary curve ~ and t~oo ,  is 
different from that considered in [-8], where one has a family of boundary 
curves Oa; a > 0  receding to infinity. In that case the global factor P (T=oo)  
reduces to 1 and the asymptotic density is purely local (see Theorem 4 in [8]). 

From (2) we derive several consequences for tests of power one. For 
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example, we evaluate the asymptotic moments of the stopping time under the 
alternative hypothesis when the drift tends to zero. 

The assumptions under which (2) holds are similar to those of Strassen's 
Theorem 3.6 in [14], which gives the asymptotic density of the last time of 
Brownian motion above an upper class function. It is possible to prove (2) 
using Strassen's method, as in the proof of Theorem 1 in E8]. Here we take 
another approach based on evaluating asymptotically certain integral equa- 
tions for the first-exit density. To our knowledge this idea was first employed 
by Daniels in [1]. The method is developed further by Ferebee E5, 6] and 
Jennen [9]. 

2. Density Approximations 

We assume for the paper that ~ is increasing and continuously differentiable on 
(0, ~).  Thus according to Strassen (cf. [14]) the stopping time T defined in (1) 
has a continuous density f on (0, oo). Let A(t)=O(t)-tO'(t)  denote the intercept 
of the tangent at t to the curve ~ on the vertical axis. 

Theorem 1. Assume that 

(I) ~,(t)/r is decreasing for some eE(1/2, 1), 
(II) ~,(t)/r is ultimately increasing for some/~e(2c~- 1, ct), 

(III) for every e > 0 there exist 6 > 0 and t 1 > 0 such that Is~t-iI < 6 implies 

IO'(s)/O'(t)- 11 <~ 

(IV) P(T< oo) < 1. 
7hen 

A(t) 
f ( t ) - P ( T =  oo) t ~ -  0 

when t> t l ,  

] as t---,oo. (3) 

The asymptotic density (3) consists of two factors, one global and one local. 
The global factor P(T= oo) depends on the whole course of the boundary 
curve. The local factor is simply the density at t of the first exit-time over the 
tangent to the curve at t. Since P(T>t )~P(T=oo)  statement (3) can be 

rewritten as f ( t ) / P ( T > t ) - ~ q ~ ( ~ ) a s  t ~ ,  which means that the con- 
A l , ' ~  l t ~ , \  - -  

ditional density given that T> t is asymptotically a purely local quantity, the 
tangent approximation. 

The assumption that P (T< oo)< 1 implies that 0 is an upper class function 

and that lim 0( t ) / l / t=  oo. The Kolmogorov-Petrovsky-Erd6s test (cf. [7]) es- 
t ~ o o  

tablishes that a function 0 for which (I') O(t)/t is decreasing and (II') tp(t)/]~ is 
increasing, is an upper class function if and only if 
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The reader should note that assumption (I) of Theorem 1 is stronger than (I') 
and (II) is weaker than (II') at least when e~(1/2, 3/4). 
Proof We need the following integral equations for the first-exit densities. For 
the first equation see Durbin [-2], for the second one Durbin 1-3] add Ferebee 
[5]. Both equations hold when 0 is continuously differentiable on (0, oo) (cf. 
[5]). 

f(t) = ~  

1 (+ ( t ) ]_}  1 (@(t)-+(s) 

<o t f-} +(') o (t_s)312 40 ]/~--s ]f(s) ds. 

We begin by rewriting (5) and (6) in 
and A by 

(5) 

(6) 

a more convement form. Let us define h 

f (u) = ~uu CP ( o(u) ] ] 

and 
( 0 ( 0 - ~ , ( u ) )  2 ~ (u )  ~ ~,(t) ~ 

A (t, u) = < t--u u t 

t ( u ) 2  
Completing the square in A we get A(t,U)-u(t_u) ~(t) t-O(u) . 
Eqs. (5) and (6) become 

" - - t ~  ]qo\ ] /~]qo ]ii~ ] h(u)du 

Then the 

(7) 

r(t)=t(t/~s(t)2) ~ with f l - ' < y < ( 2 ~ - l )  -~ 

s(t)=t(1-(t/~s(t)2) ~) with 1 /2<6<1 .  

We choose 

and 

i ] /  h(u) du, 
t 

= 2re u(t-u) e 

h(t)=A(t)_i O(t)-O(u)-(t-u) ~'(t) ~ t -~(t,,)/2 h(u)du. 
t o t - u  2~u(t-u) e 

(s) 

We decompose the integral on the right-hand side of Eq. (8) into three parts" 

t r s t 

0 0 r s 
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Note that r(t)=o(t) and r(t)--+oo, This follows by condition (I) since 
r162  ~ and therefore r(t)=t(t/tp(t)2)~>t(t/r 2 t2~)7=~(1) -2~ t 1-~(2~-1), 
which tends to infinity as t +  m. 

We prove first that T2+ T3=o ( ~ ) a n d  then TI=P(T<oo)~)(I+o(1))__ 

as  t--~ o0. 

To estimate T 3 we show that 

O(O-,l,(u)-(t-u) O'(t) 
- o  (A(t)] uniformly for ue[s,t]. (9) 

t - - U  \ t  / 

From the mean value theorem we get 

~( t ) -  ~(u) -  ( t -  u) r 
t - - u  

=~ ( .)-g"(0 for some {,e[u, t]. 

/ 1 - ~ \  
Since by condition (I) (tp(t)/t=)'< 0 and therefore A(t)> t~'(t) ~2~- )  we obtain 

]r O'(t)l t/A(t) <_ ~"(gu) _ 1 c~ 
- O ' ( t )  1 - c ~  ' 

which tends to zero as s/t-+1 by condition (III). Using (9) and the integral 
equation (7) we get 

' O ( t ) -  ]~-2 IT3]< ! ~(u)--(t--u)~'(t)t -- u rc u(tt _ u) e-a("")/Z h(u)du 

_< o -a(t,.)/2 h(u) du (10) 
- 2n u( t -u)  e 

h 
To estimate T 2 we show that for large t 

exp( - A (t, u)/2) < e x p ( -  (tp(t)/]/7) ~) with 

Since 

u ( t -  u) r - ~,(u) 

I/>0. (11) 

condition (I) yields for u < t ~(u)> tp(t) and therefore 

A(t,u - 1 . 
t t - - u  

(12) 
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For sufficiently large t the right-hand side of (12) assumes its minimum at one 
of the endpoints r(t) or s(t). Since r(t)/t~O for t ~  Go the definition of r yields 

--1 t_ = (t/O(t)2)(2~-a)L (13) 
t--r \r I z 

Since s / t~ l  for t~oo  we obtain for large t 

- 1  > ( l - c 0  2 ( t -s)  ( l - c 0  2 (14) 
t - s  = 2 t 2 " 

Since ( 2 ~ - 1 ) 7 < 1  and 6 < 1  from (12), (13) and (14) for all ue[r,s] and all 
large t we get statement (11). 

We estimate now the other parts of the integrand of (8). Since ~ is 
monotone increasing and O'(t)< aO(t)/t by condition (I) we get 

0(t) - r ( t -  u) ~'(t) ~(t) 
(t-u) <=(l+cO--t_u 

~(1-f-a)@(t)t t--st (l+c0~-t)(t)(@(~)2)~__. 

By Lemma 1 h(u)<u -a ~(u) but ~(u)<O(t) and thus for ue[r,s] 

h(u)<_~t(t)/u< ~(t) = {O(t)~ a+~ 1 
- - V r u  

Now (11), (I5) and (16) yield for large t 

~,'(t) ]/ IT2I<= ~ ~(t)-~(u)--( t -u)  t _~(t,u)/2 h(u)d u 
t - u  2~ u(t-u) e 

<~,(t) 1+~  {~(t)~ a+~+, 
= t ~ \ ~ 1  e-(C'(Olgt)" y, u-1 du. 

(15) 

(16) 

As 
r 

enough 

,T <t)(t) ex " (~t~).  2 = ~ -  Pt-(~(t)/]/t)"')=o (17) 

It remains to estimate T a. Assumption (II), the monotonicity of ~ and the fact 
that r ~  imply that for ue(O, r) 

i u - l  du=~;log (~h({ )2) - -  we get for an appropriate r/ '>0 and for t large 

~(u)<6(r)<~(t) (t)  ~. 

As r/t~O we get for u~(0, r) 

~(t)--t)(u)--(t--u)t)'(t) A(t) 
- (1 + o(1)) .  (18)  

( t - u )  t 
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Thus 

We prove now 

For this we show 

uniformly on [0, r]. 

Tl =~-~(l +o(1)) i G e - ~ ( t ' u ) / 2  h(u)du 

_A(t) 
t 

- - -  (1 + o ( 1 ) )  P ( T <  r[ W(t) = tp(t)). 

P(T< r(t) l W(t) = @(t)) = P(T< r(t)) (1 + o(1)). 

](i)(t) - O(u))2/(t - u) - O(t) 2/tl 

- -  t t 

< _ _  
= t 

(19) 

(20) 

(21) 

(22) 

for large t. The first line follows because t /( t-u)~l and the second because 
tp(u) < O(t)(u/t) ~. Thus 7 > fi-1 implies (21). From (19) and (20) we get 

T 1 =A~(tt)- P(T< r) (1 + o(1)). (23) 

Since P(T<r)~P(T< oo) the theorem follows from (10), (17) and (23). 

L e m m a  1.  

I qlitl) for all t~(O, oo). f(t)<=~ 3/~(p \ ]/~ 

Proof. This follows from Lemma 3.1 of [14]. Consider the functions Ol(s)=0(s) 
and tP2(s)=tp(t ) for a fixed t. Then Ol<lp2 for s<t and ~pl_>~p2 for s>=t. Thus 

the related first-exit densities satisfy fol(t)<-_f,~(t)=-~o (tp(t)~ 

Theorem 1 can also be proved by the method used in [8] and conversely 
the results in [8] can be proved by the present method. 

Because of the absolute continuity of Brownian motion with drift with 
respect to Brownian motion without drift, Theorem 1 can be restated in the 
following form, which will be used in the next section. Let fo(t) denote the first- 
exit density of T (defined in (1)) for Brownian motion with drift 0. Then fo(t) 
=exp(Ip(t)O'tO2/2)f(t). Thus multiplying both sides of (3) by the factor 
exp(0(0 0-t02/2) yields an analogous asymptotic formula for Brownian mo- 
tion with drift. 
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Theorem 2. Let the conditions (I)-(IV) hold. Then 

A(t) 
fo ( t ) -Po( r=  oo) t~TY~o ~ - - ]  

uniformly in 0 as t-->oo. 

(24) 

3. Conclusions for Tests of Power One 

We now discuss the implications of Theorem 2 for tests of power one for the 
drift 0 of a Brownian motion. 

Let P0 denote the measure of Brownian motion with drift 0. A level-~ test of 
power one for the one-sided testing problem Ho: 0__<0 against H i :  0>0  is 
given by a stopping time R of Brownian motion which satisfies 

(i) P0(R<oo)=<c~ for 0=<0, 
(ii) P0(R<oo)=l  for 0>0. 
Stopping means rejection of the null hypothesis. The stopping times consid- 

ered in Theorem 1 define tests of power one. We now apply Theorem 2 to 
study the behaviour of the distribution Yo(T) as 0 tends to zero. This situation 
has already been studied by several authors. See for instance [4, 10, 12] and 
[13]. All these results deal only with the asymptotic behaviour of the expected 
sample size. 

The asymptotic behaviour of the distribution Yo(T) is based on the fact, 
first noticed by T.L. Lai and Lerche, that as 0",~0 the distribution Aeo(T ) splits 
up into two parts. One part of the mass consists of paths which still cross the 
curve when 0=0. The other part of the mass flows out to infinity as 0"-~0 and 
vanishes when 0 =0. More precisely, let a o be the time when the ray from the 
origin with slope 0 crosses the curve, i.e. the solution of the equation O(ao) 
=Oa o. By condition (I) a o exists and is unique for every 0>0. When 0 is small 
the distribution Yo(TlT>to)  (with t o large but to~ao) is very heavily con- 
centrated around a o. The portion of the mass of ~o(T) which flows out to 
infinity as 0",~0 is asymptotically Po(T= oo) (see Theorem 3). The concentration 
of 2~o(Tl T> to) around a o is so strong that the moments of T also degenerate 
(Theorem 4). The distribution ~o(TjT>to)  rescaled in the right way becomes 
asymptotically normal (Theorem 7). In the case of Brownian motion consid- 
ered here, all these results are derived from Theorem 2, which contains much 
detailed information. There are more general situations in which Theorems 3-6 
still hold, for instance they are true for exponential families. But the proofs are 
different since a result similar to Theorem 2 is not known. This will be 
discussed in a paper which will appear elsewhere. 

For all the subsequent theorems we assume the conditions of Sect. 2 and of 
Theorem 1. 

Theorem 3. Let {So} be a sequence of real numbers which tends to infinity and 
satisfies So=O(ao) as 0",~0. Then 

limA~ ( ~  ~ T>so)=61, (25) 
0'-~0 

where 61 is the point mass in the point 1. 
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For every ~ > 0 

lira P0 {(1 - ~) a o < T <  (1 + e) ao} = P0(T= oo). (26) 
0',.0 

The statements (25) and (26) are equivalent since l im Po(T>so)=Po(T= oo). 
0"-~0 

The proof of the last equation is a by-product of the proof of Theorem 4. 
The following result states the asymptotic degeneracy of the moments. 

Theorem 4. Let •>0. As 0"~0 

E o T ~ - Po(T= oo) a~. (27) 

The special cases ~c = 1, O(t)-  ~ t and O(t)-  ] /2t  log log t are contained 
in the literature [12]. A minimal asymptotic growth rate for the limes superior 
of the expected sample size as 0",~0 was found by Farrell in [4] for exponential 
families. We state an analogue in our context. 

Theorem 5. Let rc > O. 

l imsup E o T ~ log log > Po(T= m). 

I f  additionally O(t)/]/~ is ultimately non-decreasing the statement also holds for 
the limes inferior. 

In [13], p. 425 an example is given which shows that the limes inferior and 
the limes superior can differ. 

For the central part of the mass near a o we get an approximation result 
and a local central limit theorem. 

. . A(ao) (~(ao)+(t-ao) tP' (ao)-Ot  ) 
Let go(t)=--tX7~- q) ]//~ . This is the first-exit density 

for the tangent of ~ at a o. Let us denote by Ix +a]  the interval I x - a ,  x+a] .  

Theorem 6. For every b > 0 

lira sup f~ -Po(T= oo) =0. 
0 , o  go(t) 

Theorem 7. Assume that lim O'(ao)/O = 7. Then for every b > 0 
0 ~ 0  

lira sup fo(t) q) - =0. 

We now prove Theorem 4. The proof of Theorem 3 is essentially a by- 
product. We leave the details to the reader. 

Proof  of  Theorem 4. The assumptions imply that O ( t ) / l / ~ o o  and thus OZao 
=~(ao)Z/ao--~oo. Let 1 / 2 < # < 1  and let ro=ao/(OZao) u-l/2. Then ro=O(ao) and 
r0~oo when 0~0.  Thus 

Eo T~ = Eo T~ I{T > ro/-}- o(a~). 
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By (24) 

Eo T~ l~T>ro}--Po(T= oo) S t~-3/2 A(t)q) dt (28) 
rO 

as 0-*0. Thus we have only to evaluate the right-hand side of (28). We split up 
the integral into three parts: 

rO rO bo co 

where bo=ao-OZ(U-1)a~ and co=ao+O2(U-1)ag. The estimates for T 1 and T 3 
are very similar. Therefore we give only that for T~. First we bound the 
exponential term in T1. Using assumption (I) and that ~(t)/t is decreasing we 
get 

(O(t)--Ot)2/t=t (~/:t~)--O) 2 

_ (t#(bo) 
>__t 2 

> t  (o(a~ (b~  
= \ bo \ao! 

\ \bo ] 

> rltOZ(O2 ao)2(u - I) 

=~ (02ao) 2~-1 

with r]<(1--0r 2. The last inequality follows from Oeao--*oo. We have further 
A(t) < O(t) < O(ao) = Oa o. Thus 

r l =  ~ o2 dt 
~o l i t  

= I/ 2re ~o \ao! ao 

with 7 = 2 # - 1 .  Changing variables we get 

i --(02ao) " -  1 
I S k _ 3 / 2  --~(02ao)Vs . / -  ~ e 2 as 

(ro ] K-i!2 =< -- ] 0 ~ 0  ~VK--3/2 e-"-(~176 av 
\ao! V 2~z 1 

= O(e-~176176 ~/~) 

with 0<6<t / /2 .  This shows that Tl=o(1). In the same way we get 7"3=o(1 ). 
Now we show that T 2 = 1 +o(1). We first estimate the exponential part of T 2. 
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The assumption (I) yields r and thus O = O - r  ). By com- 
putation we get 

O'(ao)]] 

where t o and t are elements of [bo, Col. 

By assumption (III) and the fact that bo/co~l  , 

hence (O(t)- 002 = (a o -  02 02(1 + eo(t)) 2 where sup 

1 -  O'(v) sup ~0 ,  and 
~rb .... 1 tP'(ao) 

I~o(t)l---,O as 0--,0. 
r e [bo, col 

We give an upper bound for T2; the lower bound can be derived similarly. 
Let e > 0. For 0 sufficiently small 

bo \ 1/7 I dt  

<__ t A(t) 
bo ~ e  2t 

(O~ao)~- ' A(ao(1 + u)) 
<_ ( l + u) 
- -  _ (~2  ao)~'- ~ 2 ] / ~ 0  

dt 

~2 ao(1 - -g) t t  2 

e 2(~ +,) du 

where we substituted 
_ (02 a o ) . -  1 < u < (02 ao)U-1 

This yields 

u = t/a o - 1. By computation we get for 

A(ao(1 + u)) <= Oao(1 + ~). 

T2<(1 + 2 e )  ~ 0 2 a ~  (~.o).-'~e 
__ ( ~ 2  a O ) b r  - 1 

- -  ~ e - - -  

< (1 + 2e) ~ -(0~ 0o)~- ~/: 

Proof  of  Theorem 5. From 
sequence {t,} exists with 

(1 --r.)OZaou 2 
2(~ +~) du 

(x-~)~: ~ / ~ + ~  
2(1 +~) dr<(1  +2e) _ .  

condition (IV) we deduce that for every e>0  a 

for every e > 0. This proves the first part of the theorem. 

ao, = tn--> 2 log log (1 + o(1)) 
-- On 

and thus by (27) 

E o T ~ - - P o ( T = o o ) a ~ > P o ( T = o o ) ( ~ l o g l o g ( ~ ) ) ~ ( l + o ( 1 ) )  

for otherwise Po(T < oo) = 1. For the sequence O, = r we get 

lira t = o o  and r  l og log t , ,  
n ~ o o  
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The assumption that ~(t)/l/t is finally non-decreasing together with the 
other assumptions yields according to statement (4) 

1 t37gP ~]d t<oo .  

Thus O(t)>l/2tloglogt at least for large t by the argument given in [11] p. 
1421. This implies the second half of the theorem. 

The proofs of Theorem 6 and 7 are obtained by straightforward calculation. 
We omit the details. 
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