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1. Introduction 

Let (X, Y), (X 1, Y,), ..., (X,, Yn) be independent identically distributed Rex [ - c ,  c]- 
valued random vectors, and let m ( x ) = E ( Y l X = x )  be the regression function 
of Y on X that has to be estimated from the data (X1, YI), ..., (X, ,  Y,). The 
nearest neighbor estimate is defined by 

m,(x)= ~, v,,Yi(x), (1) 
i=1 

where (v,1, ..., v,,) is a given probability vector, and (Xt(x),  Yl(x)), ..., 
(X.(x), Y,(x)) is a permutation of (X1, I71) . . . .  , (X, ,  Y,) according to increasing 
values of IlXi-x[I, x e R  a. When [IXi-xll  = H X j - x l [  but i < j , X  i is said to be 
closer to x than X~. The consistency properties of m, for special choices of the 
weight vector (v,,, ..., v,,,) are discussed in Cover (1968), Stone (1977), Devroye 
(1978) and Collomb (1979, 1980). For an analysis of the bias and variance with 
rate of convergence results, see Lai (1977) and Mack (1981). See also the survey 
by Collomb (1981). In this paper we give necessary and sufficient conditions on 
the weight vector for weak, strong and complete pointwise convergence of m, 
to m under no assumptions whatsoever on the probability measure # of X. 

Any Borel measurable function of x and the data will be called a regression 
function estimate. We let d be the collection of all random vectors (X, Y) 
taking values in R a x [ - c ,  c] for some integer d >  1 and some constant c>0.  

Definition. A regression function estimate m. is wpc (weakly pointwise con- 
sistent) if for all (X, Y) in d ,  

m,(x)-+re(x) in probability as n--+m, almost all x(#). (2) 

It is spc (strongly pointwise consistent) if in (2) "in probability" can be 
replaced by "almost surely". It is cpc (completely pointwise consistent) if in (2) 
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"in probability" can be replaced by "completely" (for the definition of com- 
plete convergence, see Stout (1974, pp. 255)). 

From the pointwise convergence of m,, one can often deduce results about 
the convergence of S ]m,(x)-m(x)lqlt(dx) (q > 1) but the inverse deduction is not 
simple. Thus, our results cannot be used directly to obtain necessary and 
sufficient conditions for the integral convergence of mn. 

In Sect. 2, several lemmas of independent interest are stated. The necessary 
and sufficient conditions for the properties "wpc", "spc" and "cpc" of the 
nearest neighbor estimate are given in Sect. 3. 

2. Lemmas 

Lemma 1. (Binomial tail probabilities.) Let pc(O, �89 and n> l be given," p may 

depend upon n. Let b(i,n,p)= (n ) pi(1-p) "-i be the i-th binomial probability, and 
k \ t /  

let B(k,n,p)= ~. b(i,n,p). I f  k, and p vary with n in such a way that k--*o% 
i=0 

kZ/n--* 0 and k/(np)--+0, then 

B(k,  n, p) = o(e -~1 + o(l)),p). 

Also, when (np)/log n ~ 0% then 

• B(k,n,p)<oe. 
n=l  

Proof of Lemma 1. Check that 

/ \ n e p  k 
B ( k , n , p ) - b ( k , n , p ) -  ( ~ )  (1-p)"(2~k) 1/2. 

Lemma 2. I f  O<_a<_ 1 and O<c are constants, then any [O,c]-valued random 
variable X satisfies 

1 - a  
P(X  > aE(X)) > E (X). 

C 

Proof of Lemma 2. When I is the indicator function, then E(X)=E(XILx<~(x) 1 
+ E(XIEx >=aE(x)l < aE(X) + cP(X  > aE(X)). 

Lemma 3. I f  a 1 > ... >=a,>=O and b~ ... .  , b, are real numbers, then 

i=~ albi ~=1 __< a 1 sup bj . 
i~n  j 

Proof of Lemma 3. 
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i aibi=i   (j  jtla  a +lt twhere an+l 0t 
n 

J =~ bj <= ~ (al-ai+l) 
i = 1  

bj ax 

Lemma 4. (The complete convergence of Xk(x ) to x.) Let x~support(#), and let 
Xk(x ) be the k-th nearest neighbor of x among X1 , . . . ,X  .. Then k/n--+O as 
n ~ ~ implies that I[Xk(x ) - x  [] --+ 0 completely as n ~ ~.  

Proof of Lemma 4. Let e > 0  be arbitrary, and let p=P(JpX-x[[ <e). Clearly, 
p > 0. If Z is a binomial (n, p) random variable, then for all n large enough, 

P( HXk(x)- xll > e) < P(Z < k) < P ( Z -  np < - n~ ) < e- 2"(P/2)2= e-"P~-/2. 

Here we used Hoeffding's inequality (Hoeffding, 1963). These probabilities are 
summable in n for all e > 0. 

Lemma 5. (An extension of Kolmogorov's exponential inequalities.) 
Let Y1,..., Y, be i.i.d, nondegenerate random variables. Let a l , . . . ,G be non- 

negative numbers such that 

(i) ~ ai<_<l; 
i = 1  n 

(ii) there exists b > 0 such that a = ~ a 2 >= b sup a~. 
i = 1  i 

Then there exist constants cl, c2, ~r>O independent of al, ...,a, (but possibly 
depending upon the distribution of Y1) such that for all e ~(c I ]l-a, ceb), 

( "aiY~=/-"l >~ ) p V > �89  4e2~ 
= t J ' 

Proof of Lemma 5. Let Y~, ..., Y,' be distributed as and independent of 
Y~,..., Y,. Let ~' and ~ be equal to Y/and Yi truncated at _+ 6 where c5 > 0 is 
chosen such that the variance a 2 of f-1- Y~' is nonzero. Exploiting symmetry, 
we have 

P a i >e  >�89 ai(Y/-Y/) >2e  
i i 

where Zi=ai(Yi-Y/). Note that Var(Zi)=o-2a/2, ~Var (Zi )  2 2 = s , = f f  a, and 
]Zil <cs, where c=26supa]s,.  By Kolmogorov's exponential inequalities (see 
for example Stout (1974, pp. 262)), there exist constants b a , b 2 > 0  such that 
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bl <O<b2/c implies P()"Z i>Osn)~exp( -02) .  Thus, for ee(bls , /2  , 
bzs2,/(46 sup ai)), we have 

i 

) 
~li= 1 1 \ Sn / 

The inequality is valid for all e in the interval (b la]~/2 ,  b2bcr2/(46)). 

Lemma 6. (Exponential inequalities for weighted sums.) Let I71, ..., Y, be inde- 
pendent zero mean random variables satisfying I Yi] < c almost surely. Then 

(i) For all a 1 . . . .  ,a ,>O with sum not exceeding I, and all e>0, 

~2 

P(i~=laiY~ >e)<=2exp ( 2(c2+cs)supai)  ' 

and 

(ii) For fixed a 1 >0, 

n g2 

P (  sup ~ aiY//>el <2exp  ( 2 ( c e n a 2 + c g a l ) ) .  
\a~>a2>='">an>O[i=l ] / 

Proof of Lemma 6. We will use an inequality due to Bennett (1962) and 
Hoeffding (1963): when Y~, ..., Y, are independent random variables with zero 
mean such that I Y~l < c almost surely, then, for all e > 0, 

1 " n s2 {1 + 2eel 

/ Y < 2 e x p ~  2(s2+ce)], (3) 

2 1 n 
where s = -  ~ Var(Y~). In the second step, we used the elementary inequality 

2x ni=a e, 
2 + x  <log(1 +x), x>0 .  To obtain, (i), apply (3) with e replaced by - ,  e replaced 

1 _  2 c2 n 
by csupa i and s z replaced by n)~a  ~ Var (Y/)<~-sup a v 

Next, by Lemma 3, for fixed a~ >0, g>0, 

al>=ae>=...>=an>=O i = 1  \ i < n  a11" (4) 

Bennett's inequality (with ~ instead of e] is applicable to the right-hand side 
\ n a  I / 

of (4) (see for example Steiger (1967); or combine Fuk and Nagaev (1971, 
expression (43)) with Borokov's theorem (Borokov, 1972)). This yields (ii) with- 
out further work. 

Lemma 7. Let X~, . . . ,X ,  be i.i.d, uniform (0, 1) random variables, let a > 2  be a 
constant, let nj be the largest integer in exp(ajlogj), and let k, be a sequence of 
integers such that k ,< M log log n, n > 8, some M < c~. Then, if X* is the smallest 
order statistic of X 1 ... .  ,X , j ,  and Xj is the k,j-th smallest order statistic of 
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X1, ..., X,,:, it follows that 

t , X~> Xj_ 1 finitely often with probability one. 

Proof of Lemma 7. It is known that almost surely X j*_ 1 < 1/(nj_ 1 l~ 2 nj_ 1) 
finitely often (Geffroy (1958); see also Barndorff-Nielsen (1961) or Kiefer 
(1970)). Thus it suffices to show that 

P f.o.) =1. 
\ =nj_  1log nj_ 1 

But 

P XJ>nj_ilog2nj_ 1 <B , j - l ,  nj,- 
h i -  1 log 2 n j _  1 

1 
<=B(l . -1 ,  n~, ) (5) 

n j _  1 log 2 n j _  1 

where B is the binomial tail defined in Lemma 1, and / ,=largest  integer in 
M loglogn. Lemma 7 now follows from the Borel-Cantelli lemma if we can 
show that the right-hand side of (5) is summable in j. 

We note first the following facts: 

nj > exp(ajlogj)--I  ~exp [ a j l o g j ~ + a l o g ( j _ l ) ] > ( j _ l ) a e a ;  
nj_ 1 = exp (a(j -- 1) log (j-- 1)) ' -  

log 2 n j_ 1 <(ajlogj)2; 

I , j<_Mloglognj<Mlog(aj logj)+o(1)<2Mlogj  for a l l j  large enough. 

Since 12jnj--O, 1.j ~ oe as j---, oo and nj . (nj_llog2nj_l)(l . j_l)  ~ov for all a>2 ,  

Lemma 1 is applicable to the right-hand side of (5); the j-th term is 

o (exp 1 log2nJ nj )) 
Now, nj/(nj_ 1 l~ 2 n j_ i) > (1 + o(1))( j -  1) a ea/(aZj 2 logZj). For a > 2, the terms (6) 
are summable in j, which concludes the proof of Lemma 7. 

Definition. A sequence of nonnegative numbers a. is said to be semimonotone if 
there exists a e > 0  such that for all n,m> 1 a.+m>_ca .. 

We note here that for any semimonotone sequence, either lim sup a. < oo or 
lira a. = oe. Also, if b. is another sequence such that b./a. stays bounded away 
from 0 and 0% and a. is semimonotone, then b. is semimonotone. 

We now present a Lemma regarding sequences of probability vectors 

%1 . . . .  ,v . . ) .  

Lemma 8. 1. The following conditions are equivalent: 

(A) ~ v.i~O as n~o~,  all e>0.  
i>en 
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(B) There exists a sequence of integers k. such that as n ~ o% 

k,--* o% k,/n--+ 0 and ~ v,i ~ O. 
k~ + I 

2. I f  there exists a positive constant ct such that ~ v.i--+O as n-+ o% 
i > e / sup  Vni 

n 

then ~ v . i~O as n ~  o% where k .=int(e/supv. i  ). I f  in addition (A) holds, then 
k n +  1 i 

k,/n ~ 0 and n sup v~i ~ oo as n -+ co. I f  sup v.i is monotone in n, so is k,. Finally, 
i i 

~ v21>asup v,i for some ae(O, 1] and all n large enough. 
i = 1  i 

Proof of Lemma 8. (B) implies (A) since for each e> 0, and all n large enough, 
k ,+  1 <en.  Also, (A) implies (B) by construction: let nj, j >  1 be a sequence of 
integers such that 1 = n 1 < n2... and 

1 
v~i<_, all n>nj. 

i > n/ j  J 

Let k. = j  on [nj, nj+ 1). Clearly, k. ~ oo and k./n--* 0 as n ~ oo. Also, ~ v.i ~ 0 
as n ~  oo. kn+l 

The first statement of part 2 is trivially true. The second statement is valid 
because for all e>0,  ensupv, i>  ~ v , ~ l  as n--+ oo. The last statement of part 

i i<en 

2 can be shown by using Schwartz's inequality: 

2 v., >_- = > ~ s  v2f >= 2 v . ,=k.  2k. upv"i' 
i = 1  i = 1  i =  

valid for all n large enough. 

3. Main Results 

One or more of the following conditions will be used in this section: 

i v2i>=asupv.i, some a>0 ,  all n large enough; 
i = 1  i 

there exists a positive constant c~ such that 

Vni---~O a s  n---~ 0 o  ; 

i > e / sup  v.~ 

(7) 

(8) 

vni~O as n-~oo, all e>0;  
i>en 

s u p  Vni -'~ 0 a s  n -..* 0 0 .  
i 

(9) 

(10) 
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Theorem 1. The nearest neighbor estimate is wpc. when (8)-(10) hold. When the 
nearest neighbor estimate is wpc., then (9)-(10) must be satisfied. 

Theorem 2. The nearest neighbor estimate is cpc. when (8)-(9) and 

sup vnilog n ~ 0  as n ~  (11) 
i 

hold. When it is cpc, then (9)-(10) must be satisfied. Moreover, if 1/(sup v.ilog n) 
is semimonotone and (7) holds, then (11) must be satisfied too. i 

Theorem 3. When the nearest neighbor estimate is spc, then (9)-(10) must be 
satisfied. Moreover, if (8) holds, and 1/(sup vni log log n) is semimonotone, then 

i 

supvni log logn~0  as n ~  oo. (12) 
i 

Conversely, the nearest neighbor estimate is spc. when (8)-(10) hold, the con- 
vergence in (10) is monotone, (12) is satisfied, 

and 
v,l>_v,2>=...>v,,, all n, (13) 

sup v,i is dominatedly varying (i.e., there exists a finite 
i 

constant fl such that for all n, sup v,,/2.i < fl sup v,i ). (14) 
i 

Remark 1. (The kn-nearest neighbor estimate.) 

When v , i=l /k , ,  l < i < k , ,  and v,~=0, i>k, ,  where k, is an integer not 
exceeding n, then (7), (8) and (13) are satisfied. The theorems given above can 
be summarized as follows: 

1. The estimate is wpc if and only if k, ~ oo and k,/n ~ 0 as n--, ~ .  

2. The estimate is cpe if and only if k,/log n --+ oo and kn/n ---, 0 as n ~ oo. For 
the necessity, we also require that k,/log n be semimonotone. 

3, The estimate is spc if and only if k,/log log n-~ oo and k,/n--, 0 as n ~ oo. 
For the necessity, we also require that k,/ loglogn be semimonotone. For the 
sufficiency, we need the additional conditions that k, is monotone and that 
there exists a finite constant fl such that k,<fik,/2,, all n. 

Proof of Theorems I and 2 

The sufficiency. 

Im.(x)-m(x)[ < U.(x) + V.(x) where U.(x)= i~  ,-=. Vni(Yi(x)-m(Xi(x))) I Note that 

V. (x) = i=~1 v.i (m (X,(x))  - m (x)) . and 

For all x, given Xl (x ) , . . . ,X , ( x ) ,  the random variables Yi(x)-m(Xi(x)) are 
independent zero mean and bounded random variables. Thus, by Lemma 6, for 
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all e>0,  
P(U, (x) > e) < 2 exp ( -  g/sup v,i ) (15) 

i 

where ~>0  does not depend upon n or x. The right-hand-side of (15) tends to 
0 when (10) is valid. The terms on the right-hand-side of (15) are summable in 
n when (11) holds. 

It is known that for almost all x(#) 

lim ~ Im(y) - m(x)l #(dy)/ ~ #(dy) = 0 (16) 
r$0 I ly-xl[  __<r Ily-xl/_-<r 

(see, e.g., Wheeden and Zygmund (1977, pp. 189)). For a given version of m, let 
us call the set on which (16) holds A. Define further k,=int(e/supv,i  ) where e 
is the constant in (8). For arbitrary 6>0,  i 

V,,(x)<2c i v,,i+2cltlhXk,~+l(x)-xll>6]+V,'(x) (17) 
i= kn+ 1 

where c is the uniform bound on Irni, I is the indicator function of an event, 
and k~ 

v.'(x) = ~ v.ilm(Xi(x))-m(x)l I~llxko + ,(~)_~11 ~61 
i= ,  (18) 

O~ k~ 
<= v"(x)=F, i=1 y" I m ( X i ( x ) ) - m ( x ) l  IEL, x~. + l (~-~l l  ~61. 

By (8)-(9), Lemma 8 and Lemma 4, the first two terms of (17) tend to 0 
completely for all x~support(#). Consider now V/,'(x) for x ~ A  c~ support(p). If 
# were absolutely continuous with respect to Lebesgue measure, this random 
variable would be easy to deal with. However, when HXi-x[] = [LXj-x][ with 
positive probability, we must be a bit more careful. Let us artificially attach 
independent uniform (0, 1) random variables W 1, ..., W, to (X 1, I11) .. . .  ,(X,, Y,), 
and break ties IIX~-xll=liXj-xll by comparing the values of W i and Wj. 
Clearly, the distribution of V'(x) is not affected by this new method of break- 
ing ties. Also, by the probability integral transform, 

f #(dy) + W~ ~ #(dy) 
[ ly-xl l  < II/1-xll [ ly -x [ ]=  HXl-x l l  

is uniformly distributed on (0, 1). Let (xo,wo)~Rex[O, 1], and let S be the open 
sphere centered at x with radius []X-Xo[[. Let C be shell of this open sphere 
(closure (S)-S). By choice of g, 

sup [~ ]m(y) - m(x)[ #(dy) + w o ~ [re(y) - m(x)l ,u(dy)-l/[t~(S) + Wo #(C)] 
Ilxo-xll_<6 s c 
O=<wo__<l [ ~ Ira(y)- m(x)l #(dy) ~ [m(y)-m(x)[ #(dy)- 

S SUC 
= sup max 

H~o-~I~ <=~ #(S) # (SUC) 

< ~  where e > 0  is a given number. (19) 
=2cd 
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Conditional on (Xk,+I(X), Wk,+l(x))=(Xo, Wo), we can consider (XI(X), 
Wl(x)),..., (Xk,(X), Wk,(x)) as an ordered sample from the distribution of 
(X1, W1) restricted to IIXi-xll < I[Xo-xll or IlXl -xll = ILXo-xll, W1 <w0. Let 
(X'~, W;),... be i.i.d, random variables from this distribution truncated at 
(Xo, Wo) in the said manner. For  arbitrary e>0,  we have 

P(V/,' (x) > g ] (Xk~ +1 (x), Wk.+l (x)) = (Xo, Wo) ) 

< I[Hxo- xEl <,~l P (~  i~ 1 ]m(X'i)- m(x)[ > ~) . 

By (19) and Lemma 6, the last expression is not greater than 2 e x p ( - T k , )  
where 7 >0  is a constant depending upon e, c and a only. Taking expectations 
yields 

P ( V," (x) > e) _-< 2 e - ~k, __< 2 e - W/sup v,i e v. (20) 
i 

The terms in (20) tend to 0 as n ~  oo when (10) holds. They are summable in n 
(for all e>0)  when (11) holds. This concludes the sufficiency part of Theorems 
1 and 2. 

The Necessity. Consider first the necessity of (10) in Theorem 1 : let X1 have a 
uniform distribution on [0, 1], and let I11 be a bounded zero mean random 
variable independent of X 1. Assume that its variance cr 2 is nonzero. For  any 

x ~R, m,(x) is distributed as ~, v,i Y/, a random variable with zero mean and 
t l  

i i=1 
variance e2 v,i.2 This random variable is also uniformly bounded in n. 

i=1 
Therefore, m,(x)~O in probability only if Var (m,(x) )~0  as n--. o0. But this is 
equivalent to (10). 

We now prove the necessity of (9). Let X 1 be uniform on [0, 1], and let Y1 

= X  2. Take 0 < x < � 8 9  and define Zn= ~, v,i(X2(x)-x2). Let W1, ..., W~ be i.i.d. 
i=1 

random variables, independent of the Xi's, such that P(WI=I )=P(WI=-1 )  
=�89 Now, (n t E(Z.)=E ~1 v.~(X~(x)-x ~) 

~ E (i~= l Vni(X2(x)-- X2) I[,xi(x,- xl <x]) 

=E (,=~ v.i((X~(O) W~+x)2-x2)lEx,(o)~2~j) 

= E (i~= l vni(X2(O) Wi2 + 2Xi(O) Wi) I[x~(o,<zxl) 

=E (i~__ l VniXZ(O) I[x~(o,<zxl ) 

i=1 
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where we used Jensen's inequality. It suffices now to show that Z,, cannot 
converge to 0 in probability along a subsequence n' of n when for some e > 0, 
6>0,  

v.,~__>6>0 
i>en'  

along this subsequence. Indeed, 

So, for e ~ l ,  

Also, 

n" 

~ i2V,u>= ~ izvn,i>(r 2. 
i = 1  i>en'  + l 

4x 2 
E(Z,,) >- (n' + 1) 2 (en' + 1) 2 c] ~ 4x 2 g2 ~. 

P(Z,, > 2x 2 ~2 6) ~ P(Z,, > E (Z,,)/2) > E(Z,,)/2 > 2x z e z 6 > O. 

Therefore, for all e > 0, ~ v,i--* 0 as n ~ oe. 
i>en 

To establish the necessity of (11), let X 1 and I11 be as in the first example. 

~, By Lemma 5, we know that there exist constants cl,  c2>0  such Let v, = v,i.2 
i = 1  

that for all e e(c 1 l/~,, c2), all x e [0, 1], 

P(Im,(x)l>e)>�89 ( v,~2 ]. (21) 

Here the assumption (7) is required. This lower bound is at least equal to 
�89 ) where ca>0  is a constant. We know also that supv,~logn 

i i 

tends to 0 with n, or stays bounded away from 0 as n ~  oe. In the latter case, 
assuming that 6<supv,ilogn , all n, we see that exp(-ca/supv,i)>n -c3/~. The 

i 

terms in the lower bound are not summable in n when c a <6, and this leads t 0 a  
contradiction: indeed, since c a is proportional to e 2, we can make it as small as 
desired. 

Proof of Theorem 3 

The Necessity. In view of Theorem 1, it suffices to show the necessity of (12). 
Let X 1 be uniformly distributed on [0, 1] and let Yi be independent of X1, 
bounded ([Yl]<l) and nondegenerate (P(YI=0)<I ) .  Also, E(Yi)=0. Let x = 0  
without loss of generality. Define Z,  = m, (0) -  m(0) = m,(0). Since 
a > s u p  vn]v n> 1, the semimonotonicity of (sup v,iloglog n)- i  and that of 

i i 

(vnloglogn) -1 are equivalent. Thus, either (12) holds, or there exists a 6 > 0  
such that v, > 6/log log n for all n large enough. 

We will show that under the latter assumption. [Z,[>e i.o. with probability 
one for all e small enough. By condition (8) and the boundedness of [Y l[ , it 
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suffices to prove that for all e small enough, [Z'.[>8 i.o. with probability one, 
where k. 

z;= Z 
j = l  

and k.=int(e/supv.z). Let us now inherit the notation of the proof of Theo- 

rems 1 and 2, and let n be so large that ~ v.i> �89 Then, as in (21), for some 
i=1 

ca, c2, b, a>0 ,  and for all e~(c 1 ]f~., c2b), 

P(IZI,] >8)~�89 \ - ~ ]  

kn 

, 2 b<=inf(v'./supvni ). NOW, Dn~1)n~"Un - 2 2 where Vn = 2 Vnj, ' v.j>v.(1 - o(1)) 
j=  1 n i j > k .  

>= v./2, all n large enough; and v'./sup v.z>c 3 > 0  for all n large enough. Thus, 
i 

taking b=c 3, we have for all 8~(c I ]/~.,  c2c3) and all n large, 

P(lZ',l > 0 >�89 e x p =  (-.8~_22 t > �89 ex p ( - ~-a2882 log log hi/\ 
\ VnG / 

- - -  �89 ( l og  n) - s ~2/ (~)  

In particular, if nj is the largest integer in exp(ajlogj), where a > 2  is a 
constant, then 

• P(IZ',~I>0--o% all e > 0  small enough. 
j = l  

We will now show that for such 8>0  and for all N, P( U [IZ'.~l >8])= 1, which 
j>=N 

implies that ]Z',]>e i.o.a.s. Let B N be the event ~ [X~<=XT_I] where X*(Xj) 
j>N 

is the distance of x to its nearest neighbor (k,j-th nearest neighbor) among 
X1, ..., X,j. Since (8) implies that k,__<Mlog log n for some M < 0% the con- 
ditions of Lemma7 are satisfied. Thus, Xj>X*_I f.o.a.s.  In other words, 
P(BN)--* 1 as N ~oe .  On BN, the random variables Z',s, j>N,  are independent. 
Because B N is independent of each individual Z',j, we have 

Z r P( U [I ,jl>e])_->P( 0 [IZ,~I>eJ, BN) 
j > N  j > N  

=P(BN)--P( EIZ'.jl BN) 
j>N 

= P(BN) - P (BN) f l  P(IZ'.~ I > 8) 
j=N 

>=P(BN)-P(BN) exp - ~ P(IZ;j[>e) 
\ j = N  / 

=P(BN)~I as N ~ o g .  (22) 

Since the left-hand-side of (22) is nonincreasing in N, each of its terms must be 
1. We have thus obtained a contradiction. Hence, (12) must hold. 
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The Sufficiency. Let B~_R a be the set of xEsupport(#) for which (16) holds. We 
recall that #(B)= 1. 

Let k,=int(e/supvnl), let e > 0  be arbitrary, and define v=n/2. We remark, 
i 

as in the proof of Theorem 1, that [mn(x )-re(x)[ < U,(x) + Vn(x ). Furthermore, 
let Zni= Yi(x)-m(Xi(x)) where xeB is fixed. Also, let Zi= Yi-m(X~), and note 
that E(Z~IX~)=O a.s., and that [Zi[ < c <  oo a.s. 

ricesC~ show firstthat Un(x)" Since i=k,+l~ vniZ"i =2<e for all n large enough,�9 it suf- 

We let 

and define the events 

kn 
Tn= 2 VniZni--.+0 a . s .  (23) 

i = 1  

W n= sup ~=~ vj iZni  , 
v<j<n i 

E , =  [] lX,-xl[  is among the k, smallest order statistics of 

[ [X  1 - - x I ]  . . . .  , ][X,-x[] (where we use our tie-breaking 
rule that depends upon the indices)], 

Ao= [IW, I >e] c~E., 
B,,=[IWni>8]~[k.+-k._l], 

CN= @ EIWN2,I>~]. 
i = 0  

The basic observation is that for N large enough, 

[9 [IZ, l>e]--- [_) (A, uB,)~C N. (24) 
n>N n>N 

We will show that P(A.)+P(B.) is summable in n and lira P(CN)=O. 
N~oo 

By Lemma 6, the monotonicity of V~l, condition (13), k.<oc/v.t, v~l <c"v., 
(condition (14); c">  0 is a constant), we have 

8 2 

P(IW.l>e)<2exp (-2(c2knv21 +cevvij)<2exp(-c*/v,,1) (25) 

where 
c* = ~2/(2(c2 o~c" + c~c")) > O. 

By (25) and the definition of An, 

( )  c* < 2e exp -v-~[ " 
P(A.)=n<k" 2 exp -v-~- 1 =nvn, 

The last expression is a unimodal function of v,l with peak at v,1 =5, For n so 
large that Vnl <5, v,t <=h/log log n (where c5 > 0  is to be chosen), we have 
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P(A")<2c~l~176 l c* \ 2 n - ~ - l o g  log n) =~  log log 
- n ( l o g  n) c*/~' 

which is summable in n when we choose 6 < c*. 
Again by Lemma 6 and the argument given above, 

2 P(B,)< ~, 2exp - < ~, 2exp - ~ - k ,  
n > N  n > N : k ~ * k n - 1  n > N : k . * k ~  1 

< ~ 2 exp ( - c*j/~) -~ 0 as N -~ ~ .  
j =  kN 

Finally, by the monotonicity of v.1, for N so large that V. l<J/ log log n, all 
n >,N/2,, where 0 < 6 < c*, we have 

i=O i=0 
N 2  i 

< 2(N2i- 1) -1 ~ exp ( -c* /v ,O  
i= 0 n=rN2i - lr+ I 

4 
< - exp ( -  c*/v,O 

n=,N/2~+ 1 H 
09 

< E 4 
,=,u/z,+ 1 n(log n) c*/a 
-+0 as N --~ oo. 

Hence P(CN)--,0 as N ~ o o .  
Let us now consider V,(x), and apply the inequalities (17)-(18). In the 

argument given above for U,(x), we can replace Zi by m(Xi) -m(x)  and Z,i by 
m(Xi(x))-m(x).  If q ,  ..., c 5 are positive constants, then we can also replace W, 
by clv~ plus 

sup C 1 k__~l k=~ 1 Im(Xi(x)) - m(x)l I x < c2 Im(Xi(x)) - re(x)[ IF. = C 3 V,['(x)I•. 
v < j < n  k j j  "= "= t n =  kn  t 

where 
gn=[[lXkv(x)-x]l<6] 

and 6 > 0 is to be chosen, By a slight modification of (20), we see that 

P(c 3 V2'(x)Ir > e) < c 4 exp ( - Cs/V,1 ). 

The events A,, B,, C N and E, are defined as above with the replaced IV,, and 
the remainder of the argument given above for U,(x) can be inherited. This 
concludes the proof of Theorem 3. 

Remark 2. (Related work.) Our theorems are valid with no conditions on 
(X, Y) other than the a.s. boundedness of Y. Assuming only the finiteness of 
E([Y] q) (q>l ) ,  Stone (1977) has shown that (9), (10) and (13) are sufficient for 
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the weak convergence to 0 of ~lm,(x)-m(x)lq#(dx). This is not a pointwise 
result. Devroye (1981) has shown that mn(x)~m(x ) in probability as n ~o o ,  
almost all x(#), when E( IYI )<~ ,  k,/n~O, k ~ o v  and sup v,i<M/k . for some 
M < o% where i 

k , = m a x  {j: v,j > 0, v , i=0  , all i>j}. 

Also, when Y is a.s. bounded, and (8)-(9), (11) hold, then m,(x)~m(x) com- 
pletely as n~ oo ,  almost all x(#). This corresponds to the sufficiency part of 
Theorem 2. For  further discussions and generalizations of the latter result, see 
Gyorfi (1981). 

Remark 3. (Global convergence.) Beck (1979) has shown that when X has a 
density, m has a continuous version and Y is a.s. bounded, then the k,-nearest 
neighbor estimate satisfies S Im,(x)-m(x)l#(dx)40 completely as n--.oo, when 
only k,/n--* 0 and k, ~ or. This result is profound. It cannot be obtained from 
our theorems for pointwise convergence. It is also not known at this moment 
whether Beck's conditions on k, are sufficient for the global convergence 
result given above when one just assumes that Y is a.s. bounded. 

Remark 4. (Discrimination.) Let the data sequences (X1, Y1), .--, (Xn, I1,) be i.i.d. 
R d x {1, ..., M}-valued random vectors, distributed as and independent of (X, Y). 
In discrimination, one estimates Y by Y, a Borel measurable function of X and 
the data sequence. Define rh(x)=P(Y=iIX=x ), l< i<M,  x~R d, and the local 
Bayes risk r*(x)= 1 - m a x t h ( x  ). Assume that all the regression functions t/i are 

i 
estimated from the data sequence, and that these estimates are q~. The obvious 
discrimination method would take I~=s, where s is one of the indices for 
which max q~(X) is achieved. (How a tie is broken is irrelevant in the present 

context.) The local probability of error is r,(x)= 1 -  t/t(x). It is clear that 

0 < r,(x) - r* (x) = max t h (x) - max qi(x) + qt(x) - tl~,(x) 
i i 

< 2 max [t/i(x ) - qi(x)l. (26) 
i 

Assume now that we use nearest neighbor estimates r~i that are obtained by 
using (1) on the data (Xl, IEy,=0,. . . , (X,,Iry,=ij) , . . . .  Then, by (26), all that 
is said in Theorems 1-3 about the convergence of m, to m carries over to the 
convergence of r, to r*. Furthermore, since the probability of error is 

L,= P(Y * YIX1, Y1, ..., X,, I1,)= ~ r,(x) #(dx) 

and the Bayes probability of error is 

L* = inf P(g(X) + Y) = ~ r* (x) #(dx), 
g:Ra~{1,...,M} 

we have by a generalization of the Lebesgue dominated convergence theorem 
(Devroye and Wagner, 1980), that L , -*L* in probability under the conditions 
of Theorem 1, and L,~L* a.s. under the conditions of Theorem 3. The latter 
result improves another result of the author (Devroye, 1981). 
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