Necessary and Sufficient Conditions for the Pointwise Convergence of Nearest Neighbor Regression Function Estimates

Luc Devroye*
McGill University, School of Computer Science, 805 Sherbrooke Str. West, Montreal, Canada H3A 2K6

1. Introduction

Let $(X, Y),\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ be independent identically distributed $R^{d} x[-c, c]$ valued random vectors, and let $m(x)=E(Y \mid X=x)$ be the regression function of Y on X that has to be estimated from the data $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$. The nearest neighbor estimate is defined by

$$
\begin{equation*}
m_{n}(x)=\sum_{i=1}^{n} v_{n i} Y_{i}(x), \tag{1}
\end{equation*}
$$

where $\left(v_{n 1}, \ldots, v_{n n}\right)$ is a given probability vector, and $\left(X_{1}(x), Y_{1}(x)\right), \ldots$, $\left(X_{n}(x), Y_{n}(x)\right)$ is a permutation of $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ according to increasing values of $\left\|X_{i}-x\right\|, x \in R^{d}$. When $\left\|X_{i}-x\right\|=\left\|X_{j}-x\right\|$ but $i<j, X_{i}$ is said to be closer to x than X_{j}. The consistency properties of m_{n} for special choices of the weight vector ($v_{n 1}, \ldots, v_{n n}$) are discussed in Cover (1968), Stone (1977), Devroye (1978) and Collomb (1979, 1980). For an analysis of the bias and variance with rate of convergence results, see Lai (1977) and Mack (1981). See also the survey by Collomb (1981). In this paper we give necessary and sufficient conditions on the weight vector for weak, strong and complete pointwise convergence of m_{n} to m under no assumptions whatsoever on the probability measure μ of X.

Any Borel measurable function of x and the data will be called a regression function estimate. We let \mathscr{A} be the collection of all random vectors (X, Y) taking values in $R^{d} x[-c, c]$ for some integer $d \geqq 1$ and some constant $c \geqq 0$.

Definition. A regression function estimate m_{n} is $w p c$ (weakly pointwise consistent) if for all (X, Y) in \mathscr{A},

$$
\begin{equation*}
m_{n}(x) \rightarrow m(x) \text { in probability as } n \rightarrow \infty, \text { almost all } x(\mu) . \tag{2}
\end{equation*}
$$

It is $s p c$ (strongly pointwise consistent) if in (2) "in probability" can be replaced by "almost surely". It is $c p c$ (completely pointwise consistent) if in (2)

[^0]"in probability" can be replaced by "completely" (for the definition of complete convergence, see Stout (1974, pp. 255)).

From the pointwise convergence of m_{n}, one can often deduce results about the convergence of $\int\left|m_{n}(x)-m(x)\right|^{q} \mu(d x)(q \geqq 1)$ but the inverse deduction is not simple. Thus, our results cannot be used directly to obtain necessary and sufficient conditions for the integral convergence of m_{n}.

In Sect. 2, several lemmas of independent interest are stated. The necessary and sufficient conditions for the properties "wpc", "spc" and "cpc" of the nearest neighbor estimate are given in Sect. 3 .

2. Lemmas

Lemma 1. (Binomial tail probabilities.) Let $p \in\left(0, \frac{1}{2}\right)$ and $n \geqq 1$ be given; p may depend upon n. Let $b(i, n, p)=\binom{n}{i} p^{i}(1-p)^{n-i}$ be the i-th binomial probability, and let $B(k, n, p)=\sum_{i=0}^{k} b(i, n, p)$. If k, and p vary with n in such a way that $k \rightarrow \infty$, $k^{2} / n \rightarrow 0$ and $k /(n p) \rightarrow 0$, then

$$
B(k, n, p)=o\left(e^{-(1+o(1)) n p}\right) .
$$

Also, when $(n p) / \log n \rightarrow \infty$, then

$$
\sum_{n=1}^{\infty} B(k, n, p)<\infty .
$$

Proof of Lemma 1. Check that

$$
B(k, n, p) \sim b(k, n, p) \sim\left(\frac{n e p}{k(1-p)}\right)^{k}(1-p)^{n}(2 \pi k)^{-1 / 2}
$$

Lemma 2. If $0 \leqq a \leqq 1$ and $0<c$ are constants, then any [$0, c]$-valued random variable X satisfies

$$
P(X \geqq a E(X)) \geqq \frac{1-a}{c} E(X)
$$

Proof of Lemma 2. When I is the indicator function, then $E(X)=E\left(X I_{[X<a E(X)]}\right.$ $+E\left(X I_{[X \geqq a E(X)]} \leqq a E(X)+c P(X \geqq a E(X))\right.$.

Lemma 3. If $a_{1} \geqq \ldots \geqq a_{n} \geqq 0$ and b_{1}, \ldots, b_{n} are real numbers, then

$$
\left|\sum_{i=1}^{n} a_{i} b_{i}\right| \leqq a_{1} \sup _{i \leqq n}\left|\sum_{j=1}^{i} \mathrm{~b}_{j}\right| .
$$

Proof of Lemma 3.

$$
\begin{aligned}
\left|\sum_{i=1}^{n} a_{i} b_{i}\right| & =\left|\sum_{i=1}^{n}\left(\sum_{j=1}^{i} b_{j}\right)\left(a_{i}-a_{i+1}\right)\right| \quad\left(\text { where } a_{n+1}=0\right) \\
& \leqq \sum_{i=1}^{n}\left|\sum_{j=1}^{i} b_{j}\right|\left(a_{i}-a_{i+1}\right) \\
& \leqq \sup _{i \leqq n}\left|\sum_{j=1}^{i} b_{j}\right| a_{1} .
\end{aligned}
$$

Lemma 4. (The complete convergence of $X_{k}(x)$ to $\left.x.\right)$ Let $x \in \operatorname{support}(\mu)$, and let $X_{k}(x)$ be the k-th nearest neighbor of x among X_{1}, \ldots, X_{n}. Then $k / n \rightarrow 0$ as $n \rightarrow \infty$ implies that $\left\|X_{k}(x)-x\right\| \rightarrow 0$ completely as $n \rightarrow \infty$.
Proof of Lemma 4. Let $\varepsilon>0$ be arbitrary, and let $p=P(\|X-x\| \leqq \varepsilon)$. Clearly, $p>0$. If Z is a binomial (n, p) random variable, then for all n large enough,

$$
P\left(\left\|X_{k}(x)-x\right\|>\varepsilon\right) \leqq P(Z<k) \leqq P\left(Z-n p<-\frac{n p}{2}\right) \leqq e^{-2 n(p / 2)^{2}}=e^{-n p^{2} / 2}
$$

Here we used Hoeffding's inequality (Hoeffding, 1963). These probabilities are summable in n for all $\varepsilon>0$.

Lemma 5. (An extension of Kolmogorov's exponential inequalities.)
Let Y_{1}, \ldots, Y_{n} be i.i.d. nondegenerate random variables. Let a_{1}, \ldots, a_{n} be nonnegative numbers such that
(i) $\sum_{i=1}^{n} a_{i} \leqq 1$;
(ii) there exists $b>0$ such that $a=\sum_{i=1}^{n} a_{i}^{2} \geqq b \sup _{i} a_{i}$.

Then there exist constants $c_{1}, c_{2}, \sigma>0$ independent of a_{1}, \ldots, a_{n} (but possibly depending upon the distribution of $\left.Y_{1}\right)$ such that for all $\varepsilon \in\left(c_{1} \sqrt{a}, c_{2} b\right)$,

$$
P\left(\left|\sum_{i=1}^{n} a_{i} Y_{i}\right|>\varepsilon\right) \geqq \frac{1}{2} \exp \left(-\frac{4 \varepsilon^{2}}{a \sigma^{2}}\right) .
$$

Proof of Lemma 5. Let $Y_{1}^{\prime}, \ldots, Y_{n}^{\prime}$ be distributed as and independent of Y_{1}, \ldots, Y_{n}. Let \bar{Y}_{i}^{\prime} and \bar{Y}_{i} be equal to Y_{i}^{\prime} and Y_{i} truncated at $\pm \delta$ where $\delta>0$ is chosen such that the variance σ^{2} of $\bar{Y}_{1}-\bar{Y}_{1}^{\prime}$ is nonzero. Exploiting symmetry, we have

$$
\begin{aligned}
& P\left(\left|\sum_{i=1}^{n} a_{i} Y_{i}\right|>\varepsilon\right) \geqq \frac{1}{2} P\left(\left|\sum_{i=1}^{n} a_{i}\left(Y_{i}-Y_{i}^{\prime}\right)\right|>2 \varepsilon\right) \\
& \quad \geqq \frac{1}{4} P\left(\left|\sum_{i=1}^{n} a_{i}\left(\bar{Y}_{i}-\bar{Y}_{i}^{\prime}\right)\right|>2 \varepsilon\right)=\frac{1}{2} P\left(\sum_{i=1}^{n} Z_{i}>2 \varepsilon\right)
\end{aligned}
$$

where $Z_{i}=a_{i}\left(\bar{Y}_{i}-\bar{Y}_{i}^{\prime}\right)$. Note that $\operatorname{Var}\left(Z_{i}\right)=\sigma^{2} a_{i}^{2}, \quad \sum \operatorname{Var}\left(Z_{i}\right)=s_{n}^{2}=\sigma^{2} a$, and $\left|Z_{i}\right| \leqq c s_{n}$ where $c=2 \delta \sup a_{i} / s_{n}$. By Kolmogorov's exponential inequalities (see for example Stout (1974, pp. 262)), there exist constants $b_{1}, b_{2}>0$ such that
$b_{1}<\theta<b_{2} / c \quad$ implies $\quad P\left(\sum Z_{i}>\theta s_{n}\right) \geqq \exp \left(-\theta^{2}\right)$. Thus, for $\varepsilon \in\left(b_{1} s_{n} / 2\right.$, $\left.b_{2} s_{n}^{2} /\left(4 \delta \sup _{i} a_{i}\right)\right)$, we have

$$
P\left(\left|\sum_{i=1}^{n} a_{i} Y_{i}\right|>\varepsilon\right) \geqq \frac{1}{2} \exp \left(\frac{4 \varepsilon^{2}}{s_{n}^{2}}\right)=\frac{1}{2} \exp \left(-\frac{4 \varepsilon^{2}}{a \sigma^{2}}\right)
$$

The inequality is valid for all ε in the interval $\left(b_{1} \sigma \sqrt{a} / 2, b_{2} b \sigma^{2} /(4 \delta)\right.$).
Lemma 6. (Exponential inequalities for weighted sums.) Let Y_{1}, \ldots, Y_{n} be independent zero mean random variables satisfying $\left|Y_{i}\right| \leqq c$ almost surely. Then
(i) For all $a_{1}, \ldots, a_{n} \geqq 0$ with sum not exceeding 1 , and all $\varepsilon>0$,

$$
P\left(\left|\sum_{i=1}^{n} a_{i} Y_{i}\right|>\varepsilon\right) \leqq 2 \exp \left(-\frac{\varepsilon^{2}}{2\left(c^{2}+c \varepsilon\right) \sup a_{i}}\right)
$$

and
(ii) For fixed $a_{1}>0$,

$$
P\left(\sup _{a_{1} \geqq a_{2} \geqq \ldots \geqq a_{n} \geqq 0}\left|\sum_{i=1}^{n} a_{i} Y_{i}\right|>\varepsilon\right) \leqq 2 \exp \left(-\frac{\varepsilon^{2}}{2\left(c^{2} n a_{1}^{2}+c \varepsilon a_{1}\right)}\right) .
$$

Proof of Lemma 6. We will use an inequality due to Bennett (1962) and Hoeffding (1963): when Y_{1}, \ldots, Y_{n} are independent random variables with zero mean such that $\left|Y_{i}\right| \leqq c$ almost surely, then, for all $\varepsilon>0$,

$$
\begin{align*}
P\left(\left|\frac{1}{n} \sum_{i=1}^{n} Y_{i}\right|>\varepsilon\right) & \leqq 2 \exp \left(-\frac{n}{2 c}\left[\left(1+\frac{s^{2}}{2 c \varepsilon}\right) \log \left(1+\frac{2 c \varepsilon}{s^{2}}\right)-1\right]\right) \\
& \leqq 2 \exp \left(-\frac{n \varepsilon^{2}}{2\left(s^{2}+c \varepsilon\right)}\right), \tag{3}
\end{align*}
$$

where $s^{2}=\frac{1}{n} \sum_{i=1}^{n} \operatorname{Var}\left(Y_{i}\right)$. In the second step, we used the elementary inequality $\frac{2 x}{2+x}<\log (1+x), x>0$. To obtain, (i), apply (3) with ε replaced by $\frac{\varepsilon}{n}, c$ replaced by $c \sup a_{i}$ and s^{2} replaced by $\frac{1}{n} \sum a_{i}^{2} \operatorname{Var}\left(Y_{i}\right) \leqq \frac{c^{2}}{n} \sup a_{i}$.

Next, by Lemma 3, for fixed $a_{1}>0, \varepsilon>0$,

$$
\begin{equation*}
P\left(\sup _{a_{1} \geqq a_{2} \geqq \cdots \geqq a_{n} \geqq 0}\left|\sum_{i=1}^{n} a_{i} Y_{i}\right|>\varepsilon\right) \leqq P\left(\sup _{i \leqq n}\left|\sum_{j=1}^{i} Y_{i}\right|>\frac{\varepsilon}{a_{1}}\right) . \tag{4}
\end{equation*}
$$

Bennett's inequality (with $\frac{\varepsilon}{n a_{1}}$ instead of ε) is applicable to the right-hand side of (4) (see for example Steiger (1967); or combine Fuk and Nagaev (1971, expression (43)) with Borokov's theorem (Borokov, 1972)). This yields (ii) without further work.

Lemma 7. Let X_{1}, \ldots, X_{n} be i.i.d. uniform (0,1) random variables, let $a>2$ be a constant, let n_{j} be the largest integer in $\exp (a j \log j)$, and let k_{n} be a sequence of integers such that $k_{n} \leqq M \log \log n, n \geqq 8$, some $M<\infty$. Then, if X_{j}^{*} is the smallest order statistic of $X_{1}, \ldots, X_{n_{j}}$, and X_{j}^{\prime} is the $k_{n_{j}}{ }^{-}$th smallest order statistic of
$X_{1}, \ldots, X_{n_{j}}$, it follows that

$$
X_{j}^{\prime} \geqq X_{j-1}^{*} \text { finitely often with probability one. }
$$

Proof of Lemma 7. It is known that almost surely $X_{j-1}^{*}<1 /\left(n_{j-1} \log ^{2} n_{j-1}\right)$ finitely often (Geffroy (1958); see also Barndorff-Nielsen (1961) or Kiefer (1970)). Thus it suffices to show that

$$
P\left(X_{j}^{\prime} \geqq \frac{1}{n_{j-1}} \log ^{2} n_{j-1} \text { f.o. }\right)=1 .
$$

But

$$
\begin{align*}
& P\left(X_{j}^{\prime} \geqq \frac{1}{n_{j-1} \log ^{2} n_{j-1}}\right) \leqq B\left(k_{n_{j}}-1, n_{j}, \frac{1}{n_{j-1} \log ^{2} n_{j-1}}\right) \\
& \quad \leqq B\left(l_{n_{j}}-1, n_{j}, \frac{1}{n_{j-1} \log ^{2} n_{j-1}}\right) \tag{5}
\end{align*}
$$

where B is the binomial tail defined in Lemma 1 , and $l_{n}=$ largest integer in $M \log \log n$. Lemma 7 now follows from the Borel-Cantelli lemma if we can show that the right-hand side of (5) is summable in j.

We note first the following facts:

$$
\begin{aligned}
& \frac{n_{j}}{n_{j-1}} \geqq \frac{\exp (a j \log j)-1}{\exp (a(j-1) \log (j-1))} \sim \exp \left[a j \log \frac{j}{j-1}+a \log (j-1)\right] \geqq(j-1)^{a} e^{a} \\
& \log ^{2} n_{j-1} \leqq(a j \log j)^{2} ; \\
& l_{n_{j}} \leqq M \log \log n_{j} \leqq M \log (a j \log j)+o(1) \leqq 2 M \log j \quad \text { for all } j \text { large enough. }
\end{aligned}
$$

Since $l_{n_{j}}^{2} / n_{j} \rightarrow 0, l_{n_{j}} \rightarrow \infty$ as $j \rightarrow \infty$ and $\frac{n_{j}}{\left(n_{j-1} \log ^{2} n_{j-1}\right)\left(l_{n_{j}}-1\right)} \rightarrow \infty$ for all $a>2$, Lemma 1 is applicable to the right-hand side of (5); the j-th term is

$$
\begin{equation*}
o\left(\exp \left(-(1+o(1)) \frac{n_{j}}{n_{j-1} \log ^{2} n_{j-1}}\right)\right) \tag{6}
\end{equation*}
$$

Now, $n_{j} /\left(n_{j-1} \log ^{2} n_{j-1}\right) \geqq(1+o(1))(j-1)^{a} e^{a} /\left(a^{2} j^{2} \log ^{2} j\right)$. For $a>2$, the terms (6) are summable in j, which concludes the proof of Lemma 7.
Definition. A sequence of nonnegative numbers a_{n} is said to be semimonotone if there exists a $c>0$ such that for all $n, m \geqq 1 a_{n+m} \geqq c a_{n}$.

We note here that for any semimonotone sequence, either $\lim \sup a_{n}<\infty$ or $\lim a_{n}=\infty$. Also, if b_{n} is another sequence such that b_{n} / a_{n} stays bounded away from 0 and ∞, and a_{n} is semimonotone, then b_{n} is semimonotone.

We now present a Lemma regarding sequences of probability vectors $\left(v_{n 1}, \ldots, v_{n n}\right)$.
Lemma 8. 1. The following conditions are equivalent:

$$
\begin{equation*}
\sum_{i>\varepsilon n} v_{n i} \rightarrow 0 \quad \text { as } n \rightarrow \infty, \text { all } \varepsilon>0 \tag{A}
\end{equation*}
$$

(B) There exists a sequence of integers k_{n} such that as $n \rightarrow \infty$,

$$
k_{n} \rightarrow \infty, k_{n} / n \rightarrow 0 \text { and } \sum_{k_{n}+1}^{n} v_{n i} \rightarrow 0
$$

2. If there exists a positive constant α such that $\sum_{i>\alpha / s u p v_{n i}} v_{n i} \rightarrow 0$ as $n \rightarrow \infty$, then $\sum_{k_{n}+1}^{n} v_{n i} \rightarrow 0$ as $n \rightarrow \infty$, where $k_{n}=\operatorname{int}\left(\alpha / \sup _{i} v_{n i}\right)$. If in addition (A) holds, then $k_{n} / n \rightarrow 0$ and $n \sup v_{n i} \rightarrow \infty$ as $n \rightarrow \infty$. If $\sup v_{n i}$ is monotone in n, so is k_{n}. Finally, $\sum_{i=1}^{n} v_{n i}^{2} \geqq a \sup _{i} v_{n i}$ for some $a \in(0,1]$ and all n large enough.

Proof of Lemma 8. (B) implies (A) since for each $\varepsilon>0$, and all n large enough, $k_{n}+1<\varepsilon n$. Also, (A) implies (B) by construction: let $n_{j}, j \geqq 1$ be a sequence of integers such that $1=n_{1}<n_{2} \ldots$ and

$$
\sum_{i>n j j} v_{n i}<\frac{1}{j}, \quad \text { all } n \geqq n_{j}
$$

Let $k_{n}=j$ on $\left[n_{j}, n_{j+1}\right.$). Clearly, $k_{n} \rightarrow \infty$ and $k_{n} / n \rightarrow 0$ as $n \rightarrow \infty$. Also, $\sum_{k_{n}+1}^{n} v_{n i} \rightarrow 0$
as $n \rightarrow \infty$. as $n \rightarrow \infty$.

The first statement of part 2 is trivially true. The second statement is valid because for all $\varepsilon>0, \varepsilon n \sup _{i} v_{n i} \geqq \sum_{i \leq \varepsilon n} v_{n i} \rightarrow 1$ as $n \rightarrow \infty$. The last statement of part 2 can be shown by using Schwartz's inequality:

$$
\sum_{i=1}^{n} v_{n i}^{2} \geqq \sum_{i=1}^{k_{n}} v_{n i}^{2} \geqq \frac{1}{k_{n}}\left[\sum_{i=1}^{k_{n}} v_{n i}\right]^{2} \geqq \frac{1}{2 k_{n}} \geqq \frac{1}{2 \alpha} \sup _{i} v_{n i}
$$

valid for all n large enough.

3. Main Results

One or more of the following conditions will be used in this section:

$$
\begin{equation*}
\sum_{i=1}^{n} v_{n i}^{2} \geqq a \sup _{i} v_{n i}, \quad \text { some } a>0, \text { all } n \text { large enough } \tag{7}
\end{equation*}
$$

there exists a positive constant α such that

$$
\begin{gather*}
\sum_{i>\alpha / s_{i} v_{i} v_{n i}} v_{n i} \rightarrow 0 \quad \text { as } n \rightarrow \infty ; \tag{8}\\
\sum_{i>\varepsilon n} v_{n i} \rightarrow 0 \quad \text { as } n \rightarrow \infty, \text { all } \varepsilon>0 ; \tag{9}\\
\sup _{i} v_{n i} \rightarrow 0 \quad \text { as } n \rightarrow \infty . \tag{10}
\end{gather*}
$$

Theorem 1. The nearest neighbor estimate is wpc. when (8)-(10) hold. When the nearest neighbor estimate is wpc., then (9)-(10) must be satisfied.

Theorem 2. The nearest neighbor estimate is cpc. when (8)-(9) and

$$
\begin{equation*}
\sup _{i} v_{n i} \log n \rightarrow 0 \quad \text { as } n \rightarrow \infty \tag{11}
\end{equation*}
$$

hold. When it is $c p c$, then (9)-(10) must be satisfied. Moreover, if $1 /\left(\sup v_{n i} \log n\right)$ is semimonotone and (7) holds, then (11) must be satisfied too.

Theorem 3. When the nearest neighbor estimate is spc, then (9)-(10) must be satisfied. Moreover, if (8) holds, and $1 /\left(\sup _{i} v_{n i} \log \log n\right)$ is semimonotone, then

$$
\begin{equation*}
\sup _{i} v_{n i} \log \log n \rightarrow 0 \quad \text { as } n \rightarrow \infty \tag{12}
\end{equation*}
$$

Conversely, the nearest neighbor estimate is spc. when (8)-(10) hold, the convergence in (10) is monotone, (12) is satisfied,

$$
\begin{equation*}
v_{n 1} \geqq v_{n 2} \geqq \ldots \geqq v_{n n}, \quad \text { all } n, \tag{13}
\end{equation*}
$$

and

$$
\begin{align*}
& \sup _{i} v_{n i} \text { is dominatedly varying (i.e., there exists a finite } \\
& \text { constant } \beta \text { such that for all } n, \sup _{i} v_{n \mid 2 i} \leqq \beta \sup _{i} v_{n i} \text {). } \tag{14}
\end{align*}
$$

Remark 1. (The k_{n}-nearest neighbor estimate.)
When $v_{n i}=1 / k_{n}, 1 \leqq i \leqq k_{n}$, and $v_{n i}=0, i>k_{n}$, where k_{n} is an integer not exceeding n, then (7), (8) and (13) are satisfied. The theorems given above can be summarized as follows:

1. The estimate is $w p c$ if and only if $k_{n} \rightarrow \infty$ and $k_{n} / n \rightarrow 0$ as $n \rightarrow \infty$.
2. The estimate is $c p c$ if and only if $k_{n} / \log n \rightarrow \infty$ and $k_{n} / n \rightarrow 0$ as $n \rightarrow \infty$. For the necessity, we also require that $k_{n} / \log n$ be semimonotone.
3. The estimate is $s p c$ if and only if $k_{n} / \log \log n \rightarrow \infty$ and $k_{n} / n \rightarrow 0$ as $n \rightarrow \infty$. For the necessity, we also require that $k_{n} / \log \log n$ be semimonotone. For the sufficiency, we need the additional conditions that k_{n} is monotone and that there exists a finite constant β such that $k_{n} \leqq \beta k_{n / 2}$, all n.

Proof of Theorems 1 and 2
The sufficiency.
Note that $\left|m_{n}(x)-m(x)\right| \leqq U_{n}(x)+V_{n}(x)$ where $U_{n}(x)=\left|\sum_{i=1}^{n} v_{n i}\left(Y_{i}(x)-m\left(X_{i}(x)\right)\right)\right|$ and $V_{n}(x)=\left|\sum_{i=1}^{n} v_{n i}\left(m\left(X_{i}(x)\right)-m(x)\right)\right|$.

For all x, given $X_{1}(x), \ldots, X_{n}(x)$, the random variables $Y_{i}(x)-m\left(X_{i}(x)\right)$ are independent zero mean and bounded random variables. Thus, by Lemma 6, for
all $\varepsilon>0$,

$$
\begin{equation*}
P\left(U_{n}(x)>\varepsilon\right) \leqq 2 \exp \left(-\delta / \sup _{i} v_{n i}\right) \tag{15}
\end{equation*}
$$

where $\delta>0$ does not depend upon n or x. The right-hand-side of (15) tends to 0 when (10) is valid. The terms on the right-hand-side of (15) are summable in n when (11) holds.

It is known that for almost all $x(\mu)$

$$
\begin{equation*}
\lim _{r \downarrow 0} \int_{\|y-x\| \leqq r}|m(y)-m(x)| \mu(d y) / \int_{\|y-x\| \leqq r} \mu(d y)=0 \tag{16}
\end{equation*}
$$

(see, e.g., Wheeden and Zygmund (1977, pp. 189)). For a given version of m, let us call the set on which (16) holds A. Define further $k_{n}=\operatorname{int}\left(\alpha / \sup v_{n i}\right)$ where α is the constant in (8). For arbitrary $\delta>0$,

$$
\begin{equation*}
V_{n}(x) \leqq 2 c \sum_{i=k_{n}+1}^{n} v_{n i}+2 c I_{\left[\left\|x_{k_{n}+1}(x)-x\right\|>\delta\right]}+V_{n}^{\prime}(x) \tag{17}
\end{equation*}
$$

where c is the uniform bound on $|m|, I$ is the indicator function of an event, and

$$
\begin{align*}
V_{n}^{\prime}(x) & =\sum_{i=1}^{k_{n}} v_{n i}\left|m\left(X_{i}(x)\right)-m(x)\right| I_{\mathrm{I} \| X_{k_{n}}+1}(x)-x \| \leqq \delta \mathrm{l} \\
& \left.\leqq V_{n}^{\prime \prime}(x)=\frac{\alpha}{k_{n}} \sum_{i=1}^{k_{n}}\left|m\left(X_{i}(x)\right)-m(x)\right| I_{\left[\| X_{k_{n}}+1\right.}(x)-x \| \leqq \delta\right] \tag{18}
\end{align*}
$$

By (8)-(9), Lemma 8 and Lemma 4, the first two terms of (17) tend to 0 completely for all $x \in \operatorname{support}(\mu)$. Consider now $V_{n}^{\prime \prime}(x)$ for $x \in A \cap \operatorname{support}(\mu)$. If μ were absolutely continuous with respect to Lebesgue measure, this random variable would be easy to deal with. However, when $\left\|X_{i}-x\right\|=\left\|X_{j}-x\right\|$ with positive probability, we must be a bit more careful. Let us artificially attach independent uniform $(0,1)$ random variables W_{1}, \ldots, W_{n} to $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$, and break ties $\left\|X_{i}-x\right\|=\left\|X_{j}-x\right\|$ by comparing the values of W_{i} and W_{j}. Clearly, the distribution of $V_{n}^{\prime}(x)$ is not affected by this new method of breaking ties. Also, by the probability integral transform,

$$
\int_{\|y-x\|<\left\|X_{1}-x\right\|} \mu(d y)+W_{1} \int_{\|y-x\|=\left\|X_{1}-x\right\|} \mu(d y)
$$

is uniformly distributed on $(0,1)$. Let $\left(x_{0}, w_{0}\right) \in R^{d} x[0,1]$, and let S be the open sphere centered at x with radius $\left\|x-x_{0}\right\|$. Let C be shell of this open sphere (closure $(S)-S$). By choice of δ,

$$
\begin{align*}
& \sup _{\substack{x_{0}-w_{\|} \leq \delta \leq \\
0 \leqq w_{0} \leq 1}}\left[\int_{S}|m(y)-m(x)| \mu(d y)+w_{0} \int_{C}|m(y)-m(x)| \mu(d y)\right] /\left[\mu(S)+w_{0} \mu(C)\right] \\
& \quad=\sup _{\left\|x_{0}-x\right\| \leqq \delta} \max \left[\frac{\left[\int_{S}|m(y)-m(x)| \mu(d y)\right.}{\mu(S)}, \frac{\int_{S U C}|m(y)-m(x)| \mu(d y)}{\mu(S U C)}\right] \\
& \quad \leqq \frac{\varepsilon}{2 \alpha}, \quad \text { where } \varepsilon>0 \text { is a given number. } \tag{19}
\end{align*}
$$

Conditional on $\left(X_{k_{n}+1}(x), \quad W_{k_{n}+1}(x)\right)=\left(x_{0}, w_{0}\right)$, we can consider $\left(X_{1}(x)\right.$, $\left.W_{1}(x)\right), \ldots,\left(X_{k_{n}}(x), W_{k_{n}}(x)\right)$ as an ordered sample from the distribution of $\left(X_{1}, W_{1}\right)$ restricted to $\left\|X_{1}-x\right\|<\left\|x_{0}-x\right\|$ or $\left\|X_{1}-x\right\|=\left\|x_{0}-x\right\|, W_{1}<w_{0}$. Let $\left(X_{1}^{\prime}, W_{1}^{\prime}\right), \ldots$ be i.i.d. random variables from this distribution truncated at (x_{0}, w_{0}) in the said manner. For arbitrary $\varepsilon>0$, we have

$$
\begin{aligned}
P\left(V_{n}^{\prime \prime}(x)\right. & \left.>\varepsilon \mid\left(X_{k_{n}+1}(x), W_{k_{n}+1}(x)\right)=\left(x_{0}, w_{0}\right)\right) \\
& \leqq I_{\left[\left\|x_{0}-x\right\|<\delta\right]} P\left(\frac{1}{k_{n}} \sum_{i=1}^{k_{n}}\left|m\left(X_{i}^{\prime}\right)-m(x)\right|>\frac{\varepsilon}{\alpha}\right) .
\end{aligned}
$$

By (19) and Lemma 6, the last expression is not greater than $2 \exp \left(-\gamma k_{n}\right)$ where $\gamma>0$ is a constant depending upon ε, c and α only. Taking expectations yields

$$
\begin{equation*}
P\left(V_{n}^{\prime \prime}(x)>\varepsilon\right) \leqq 2 e^{-\gamma k_{n}} \leqq 2 e^{-\gamma \alpha} / \sup _{i} v_{n i} e^{\gamma} \tag{20}
\end{equation*}
$$

The terms in (20) tend to 0 as $n \rightarrow \infty$ when (10) holds. They are summable in n (for all $\varepsilon>0$) when (11) holds. This concludes the sufficiency part of Theorems 1 and 2.

The Necessity. Consider first the necessity of (10) in Theorem 1: let X_{1} have a uniform distribution on $[0,1]$, and let Y_{1} be a bounded zero mean random variable independent of X_{1}. Assume that its variance σ^{2} is nonzero. For any $x \in R, m_{n}(x)$ is distributed as $\sum_{i=1}^{n} v_{n i} Y_{i}$, a random variable with zero mean and variance $\sum_{i=1}^{n} \sigma^{2} v_{n i}^{2}$. This random variable is also uniformly bounded in n. Therefore, $m_{n}(x) \rightarrow 0$ in probability only if $\operatorname{Var}\left(m_{n}(x)\right) \rightarrow 0$ as $n \rightarrow \infty$. But this is equivalent to (10).

We now prove the necessity of (9). Let X_{1} be uniform on [0,1], and let Y_{1} $=X_{1}^{2}$. Take $0<x<\frac{1}{2}$, and define $Z_{n}=\sum_{i=1}^{n} v_{n i}\left(X_{i}^{2}(x)-x^{2}\right)$. Let W_{1}, \ldots, W_{n} be i.i.d. random variables, independent of the X_{i} 's, such that $P\left(W_{1}=1\right)=P\left(W_{1}=-1\right)$ $=\frac{1}{2}$. Now,

$$
\begin{aligned}
E\left(Z_{n}\right) & =E\left(\sum_{i=1}^{n} v_{n i}\left(X_{i}^{2}(x)-x^{2}\right)\right) \\
& \geqq E\left(\sum_{i=1}^{n} v_{n i}\left(X_{i}^{2}(x)-x^{2}\right) I_{\left[\left|X_{i}(x)-x\right|<x\right]}\right) \\
& =E\left(\sum_{i=1}^{n} v_{n i}\left(\left(X_{i}(0) W_{i}+x\right)^{2}-x^{2}\right) I_{\left[X_{i}(0)<2 x\right]}\right) \\
& =E\left(\sum_{i=1}^{n} v_{n i}\left(X_{i}^{2}(0) W_{i}^{2}+2 X_{i}(0) W_{i}\right) I_{\left[X_{i}(0)<2 x\right]}\right) \\
& =E\left(\sum_{i=1}^{n} v_{n i} X_{i}^{2}(0) I_{\left[X_{i}(0)<2 x\right]}\right) \\
& \geqq \sum_{i=1}^{n} v_{n i}\left(2 x \frac{i}{n+1}\right)^{2}
\end{aligned}
$$

where we used Jensen's inequality. It suffices now to show that $Z_{n^{\prime}}$ cannot converge to 0 in probability along a subsequence n^{\prime} of n when for some $\varepsilon>0$, $\delta>0$,

$$
\sum_{i>e n^{\prime}} v_{n^{\prime} i} \geqq \delta>0
$$

along this subsequence. Indeed,

$$
\sum_{i=1}^{n^{\prime}} i^{2} v_{n^{\prime} i} \geqq \sum_{i \geqq s n^{\prime}+1} i^{2} v_{n^{\prime} i} \geqq\left(\varepsilon n^{\prime}+1\right)^{2}
$$

So, for $\varepsilon \leqq 1$,

$$
E\left(Z_{n^{\prime}}\right) \geqq \frac{4 x^{2}}{\left(n^{\prime}+1\right)^{2}}\left(\varepsilon n^{\prime}+1\right)^{2} \delta \geqq 4 x^{2} \varepsilon^{2} \delta
$$

Also,

$$
P\left(Z_{n^{\prime}}>2 x^{2} \varepsilon^{2} \delta\right) \geqq P\left(Z_{n^{\prime}}>E\left(Z_{n^{\prime}}\right) / 2\right) \geqq E\left(Z_{n^{\prime}}\right) / 2 \geqq 2 x^{2} \varepsilon^{2} \delta>0
$$

Therefore, for all $\varepsilon>0, \sum_{i>\varepsilon n}^{n} v_{n i} \rightarrow 0$ as $n \rightarrow \infty$.
To establish the necessity of (11), let X_{1} and Y_{1} be as in the first example. Let $v_{n}=\sum_{i=1}^{n} v_{n i}^{2}$. By Lemma 5, we know that there exist constants $c_{1}, c_{2}>0$ such that for all $\varepsilon \in\left(c_{1} \sqrt{v_{n}}, c_{2}\right)$, all $x \in[0,1]$,

$$
\begin{equation*}
P\left(\left|m_{n}(x)\right|>\varepsilon\right) \geqq \frac{1}{2} \exp \left(-\frac{4 \varepsilon^{2}}{v_{n} \sigma^{2}}\right) \tag{21}
\end{equation*}
$$

Here the assumption (7) is required. This lower bound is at least equal to $\frac{1}{2} \exp \left(-c_{3} / \sup v_{n i}\right)$ where $c_{3}>0$ is a constant. We know also that $\sup v_{n i} \log n$ tends to 0 with n, or stays bounded away from 0 as $n \rightarrow \infty$. In the latter case, assuming that $\delta \leqq \sup _{i} v_{n i} \log n$, all n, we see that $\exp \left(-c_{3} / \sup _{i} v_{n i}\right) \geqq n^{-c_{3} / \delta}$. The terms in the lower bound are not summable in n when $c_{3} \leqq \delta$, and this leads to a contradiction: indeed, since c_{3} is proportional to ε^{2}, we can make it as small as desired.

Proof of Theorem 3

The Necessity. In view of Theorem 1, it suffices to show the necessity of (12). Let X_{1} be uniformly distributed on [0,1] and let Y_{1} be independent of X_{1}, bounded $\left(\left|Y_{1}\right| \leqq 1\right)$ and nondegenerate $\left(P\left(Y_{1}=0\right)<1\right)$. Also, $E\left(Y_{1}\right)=0$. Let $x=0$ without loss of generality. Define $Z_{n}=m_{n}(0)-m(0)=m_{n}(0)$. Since $a \geqq \sup v_{n i} / v_{n} \geqq 1$, the semimonotonicity of $\left(\sup v_{n i} \log \log n\right)^{-1}$ and that of $\left(v_{n} \log \log n\right)^{-1}$ are equivalent. Thus, either (12) holds, or there exists a $\delta>0$ such that $v_{n} \geqq \delta / \log \log n$ for all n large enough.

We will show that under the latter assumption. $\left|Z_{n}\right|>\varepsilon$ i.o. with probability one for all ε small enough. By condition (8) and the boundedness of $\left|Y_{1}\right|$, it
suffices to prove that for all ε small enough, $\left|Z_{n}^{\prime}\right|>\varepsilon$ i.o. with probability one, where

$$
Z_{n}^{\prime}=\sum_{j=1}^{k_{n}} v_{n j} Y_{j}(0)
$$

and $k_{n}=\operatorname{int}\left(\alpha / \sup v_{n i}\right)$. Let us now inherit the notation of the proof of Theorems 1 and 2 , and let n be so large that $\sum_{i=1}^{k_{n}} v_{n i} \geqq \frac{1}{2}$. Then, as in (21), for some $c_{1}, c_{2}, b, \sigma>0$, and for all $\varepsilon \in\left(c_{1} \sqrt{v_{n}^{\prime}}, c_{2} b\right)$,

$$
P\left(\left|Z_{n}^{\prime}\right|>\varepsilon\right) \geqq \frac{1}{2} \exp \left(-\frac{4 \varepsilon^{2}}{v_{n}^{\prime} \sigma^{2}}\right)
$$

where $\quad v_{n}^{\prime}=\sum_{j=1}^{k_{n}} v_{n j}^{2}, \quad b \leqq \inf _{n}\left(v_{n}^{\prime} / \sup _{i} v_{n i}\right) . \quad$ Now, $\quad v_{n} \geqq v_{n}^{\prime}=v_{n}-\sum_{j>k_{n}} v_{n j}^{2} \geqq v_{n}(1-o(1))$ $\geqq v_{n} / 2$, all n large enough; and $v_{n}^{\prime} / \sup v_{n i} \geqq c_{3}>0$ for all n large enough. Thus, taking $b=c_{3}$, we have for all $\varepsilon \in\left(c_{1} \sqrt{v_{n}}, c_{2} c_{3}\right)$ and all n large,

$$
\begin{aligned}
P\left(\left|Z_{n}^{\prime}\right|>\varepsilon\right) & \geqq \frac{1}{2} \exp \left(-\frac{8 \varepsilon^{2}}{v_{n} \sigma^{2}}\right) \geqq \frac{1}{2} \exp \left(-\frac{8 \varepsilon^{2}}{\delta \sigma^{2}} \log \log n\right) \\
& =\frac{1}{2}(\log n)^{-8 \varepsilon^{2} /\left(\delta \sigma^{2}\right)} .
\end{aligned}
$$

In particular, if n_{j} is the largest integer in $\exp (a j \log j)$, where $a>2$ is a constant, then

$$
\sum_{j=1}^{\infty} P\left(\left|Z_{n_{j}}^{\prime}\right|>\varepsilon\right)=\infty, \quad \text { all } \varepsilon>0 \text { small enough. }
$$

We will now show that for such $\varepsilon>0$ and for all $N, P\left(\bigcup_{j \geqq N}\left[\left|Z_{n_{j}}^{\prime}\right|>\varepsilon\right]\right)=1$, which implies that $\left|Z_{n}^{\prime}\right|>\varepsilon$ i.o. a.s. Let B_{N} be the event $\bigcap_{j \geqq N}\left[X_{j}^{\prime \geqq N} \leqq X_{j-1}^{*}\right]$ where $X_{j}^{*}\left(X_{j}^{\prime}\right)$ is the distance of x to its nearest neighbor ($k_{n_{j}}$-th nearest neighbor) among $X_{1}, \ldots, X_{n_{j}}$. Since (8) implies that $k_{n} \leqq M \log \log n$ for some $M<\infty$, the conditions of Lemma 7 are satisfied. Thus, $X_{j}^{\prime} \geqq X_{j-1}^{*}$ f.o. a.s. In other words, $P\left(B_{N}\right) \rightarrow 1$ as $N \rightarrow \infty$. On B_{N}, the random variables $Z_{n_{j}}^{\prime}, j \geqq N$, are independent. Because B_{N} is independent of each individual $Z_{n_{j}}^{\prime}$, we have

$$
\begin{align*}
P\left(\bigcup_{j \geqq N}\left[\left|Z_{n_{j}}^{\prime}\right|>\varepsilon\right]\right) & \geqq P\left(\bigcup_{j \geqq N}\left[\left|Z_{n_{j}}^{\prime}\right|>\varepsilon\right], B_{N}\right) \\
& =P\left(B_{N}\right)-P\left(\bigcap_{j \geqq N}\left[\left|Z_{n_{j}}^{\prime}\right| \leqq \varepsilon\right], B_{N}\right) \\
& =P\left(B_{N}\right)-P\left(B_{N}\right) \prod_{j=N}^{\infty} P\left(\left|Z_{n_{j}}^{\prime}\right|>\varepsilon\right) \\
& \geqq P\left(B_{N}\right)-P\left(B_{N}\right) \exp \left(-\sum_{j=N}^{\infty} P\left(\left|Z_{n_{j}}^{\prime}\right|>\varepsilon\right)\right) \\
& =P\left(B_{N}\right) \rightarrow 1 \text { as } N \rightarrow \infty . \tag{22}
\end{align*}
$$

Since the left-hand-side of (22) is nonincreasing in N, each of its terms must be 1. We have thus obtained a contradiction. Hence, (12) must hold.

The Sufficiency. Let $B \subseteq R^{d}$ be the set of $x \in \operatorname{support}(\mu)$ for which (16) holds. We recall that $\mu(B)=1$.

Let $k_{n}=\operatorname{int}\left(\alpha / \sup v_{n i}\right)$, let $\varepsilon>0$ be arbitrary, and define $v=n / 2$. We remark, as in the proof of Theorem 1, that $\left|m_{n}(x)-m(x)\right| \leqq U_{n}(x)+V_{n}(x)$. Furthermore, let $Z_{n i}=Y_{i}(x)-m\left(X_{i}(x)\right)$ where $x \in B$ is fixed. Also, let $Z_{i}=Y_{i}-m\left(X_{i}\right)$, and note that $E\left(Z_{i} \mid X_{i}\right)=0$ a.s., and that $\left|Z_{i}\right| \leqq c<\infty$ a.s.
Consider first $U_{n}(x)$. Since $\left|\sum_{i=k_{n}+1}^{n} v_{n i} Z_{n i}\right| \leqq \frac{\varepsilon}{2}$ for all n large enough, it suf-
fices to show that

$$
\begin{equation*}
T_{n}=\sum_{i=1}^{k_{n}} v_{n i} Z_{n i} \rightarrow 0 \text { a.s. } \tag{23}
\end{equation*}
$$

We let

$$
W_{n}=\sup _{v \leqq j \leqq n}\left|\sum_{i=1}^{k_{j}} v_{j i} Z_{n i}\right|,
$$

and define the events

$$
\begin{aligned}
E_{n}= & {\left[\left\|X_{n}-x\right\| \quad \text { is among the } k_{n}\right. \text { smallest order statistics of }} \\
& \left\|X_{1}-x\right\|, \ldots,\left\|X_{n}-x\right\| \quad \text { (where we use our tie-breaking } \\
& \text { rule that depends upon the indices) }], \\
A_{n}= & {\left[\left|W_{n}\right|>\varepsilon\right] \cap E_{n}, } \\
B_{n}= & {\left[\left|W_{n}\right|>\varepsilon\right] \cap\left[k_{n} \neq k_{n-1}\right], } \\
C_{N}= & \bigcup_{i=0}^{\infty}\left[\left|W_{N 2 i}\right|>\varepsilon\right] .
\end{aligned}
$$

The basic observation is that for N large enough,

$$
\begin{equation*}
\bigcup_{n \geqq N}\left[\left|T_{n}\right|>\varepsilon\right] \subseteq \bigcup_{n \geqq N}\left(A_{n} \cup B_{n}\right) \cup C_{N} . \tag{24}
\end{equation*}
$$

We will show that $P\left(A_{n}\right)+P\left(B_{n}\right)$ is summable in n and $\lim _{N \rightarrow \infty} P\left(C_{N}\right)=0$.
By Lemma 6, the monotonicity of $v_{n 1}$, condition (13), $k_{n} \leqq \alpha / v_{n 1}, v_{v 1} \leqq c^{\prime \prime} v_{n 1}$ (condition (14); $c^{\prime \prime}>0$ is a constant), we have

$$
\begin{equation*}
P\left(\left|W_{n}\right|>\varepsilon\right) \leqq 2 \exp \left(-\frac{\varepsilon^{2}}{2\left(c^{2} k_{n} v_{v 1}^{2}+c \varepsilon v_{v 1}\right)}\right) \leqq 2 \exp \left(-c^{*} / v_{n 1}\right) \tag{25}
\end{equation*}
$$

where

$$
c^{*}=\varepsilon^{2} /\left(2\left(c^{2} \alpha c^{\prime \prime}+c \varepsilon c^{\prime \prime}\right)\right)>0
$$

By (25) and the definition of A_{n},

$$
P\left(A_{n}\right) \leqq \frac{k_{n}}{n} 2 \exp \left(-\frac{c^{*}}{v_{n 1}}\right) \leqq \frac{2 \alpha}{n v_{n 1}} \exp \left(-\frac{c^{*}}{v_{n 1}}\right)
$$

The last expression is a unimodal function of $v_{n 1}$ with peak at $v_{n 1}=\tilde{c}$. For n so large that $v_{n 1}<\tilde{c}, v_{n 1} \leqq \delta / \log \log n$ (where $\delta>0$ is to be chosen), we have

$$
P\left(A_{n}\right) \leqq \frac{2 \alpha \log \log n}{\delta n} \exp \left(-\frac{c^{*}}{\delta} \log \log n\right)=\frac{2}{\delta} \frac{\log \log n}{n(\log n)^{* / \delta}},
$$

which is summable in n when we choose $\delta<c^{*}$.
Again by Lemma 6 and the argument given above,

$$
\begin{aligned}
\sum_{n \geqq N} P\left(B_{n}\right) & \leqq \sum_{n \geqq N: k_{n} \neq k_{n}-1} 2 \exp \left(-\frac{c^{*}}{v_{n 1}}\right) \leqq \sum_{n \geqq N: k_{n} \neq k_{n-1}} 2 \exp \left(-\frac{c^{*}}{\alpha} k_{n}\right) \\
& \leqq \sum_{j=k_{N}}^{\infty} 2 \exp \left(-c^{*} j / \alpha\right) \rightarrow 0 \quad \text { as } N \rightarrow \infty .
\end{aligned}
$$

Finally, by the monotonicity of $v_{n 1}$, for N so large that $v_{n 1}<\delta / \log \log n$, all $n>N / 2$, where $0<\delta<c^{*}$, we have

$$
\begin{aligned}
& \sum_{i=0}^{\infty} P\left(\left|W_{N 2 i}\right|>\varepsilon\right) \leqq \sum_{i=0}^{\infty} 2 \exp \left(-c^{*} / v_{N 2^{i}, 1}\right) \\
& \leqq \sum_{i=0}^{\infty} 2\left(N 2^{i-1}\right)^{-1} \sum_{n=N 2^{i-1}+1}^{N 2^{i}} \exp \left(-c^{*} / v_{n 1}\right) \\
& \leqq \sum_{n=\frac{N / 2}{\infty}+1}^{\infty} \frac{4}{n} \exp \left(-c^{*} / v_{n 1}\right) \\
& \leqq \sum_{n=N / 2+1}^{\infty} \frac{4}{n(\log n)^{k^{* / \delta}}} \\
& \rightarrow 0 \text { as } N \rightarrow \infty \text {. }
\end{aligned}
$$

Hence $P\left(C_{N}\right) \rightarrow 0$ as $N \rightarrow \infty$.
Let us now consider $V_{n}(x)$, and apply the inequalities (17)-(18). In the argument given above for $U_{n}(x)$, we can replace Z_{i} by $m\left(X_{i}\right)-m(x)$ and $Z_{n i}$ by $m\left(X_{i}(x)\right)-m(x)$. If c_{1}, \ldots, c_{5} are positive constants, then we can also replace W_{n} by $c I_{F_{n}^{c}}$ plus

$$
\sup _{\nu \leqq j \leqq n} \frac{c_{1}}{k_{j}} \sum_{i=1}^{k_{j}}\left|m\left(X_{i}(x)\right)-m(x)\right| I_{F_{n}} \leqq \frac{c_{2}}{k_{n}} \sum_{i=1}^{k_{n}}\left|m\left(X_{i}(x)\right)-m(x)\right| I_{F_{n}}=c_{3} V_{n}^{\prime \prime}(x) I_{F_{n}}
$$

where

$$
F_{n}=\left[\left\|X_{k_{v}}(x)-x\right\| \leqq \delta\right]
$$

and $\delta>0$ is to be chosen. By a slight modification of (20), we see that

$$
P\left(c_{3} V_{n}^{\prime \prime}(x) I_{F_{n}}>\varepsilon\right) \leqq c_{4} \exp \left(-c_{5} / v_{n 1}\right)
$$

The events A_{n}, B_{n}, C_{N} and E_{n} are defined as above with the replaced W_{n}, and the remainder of the argument given above for $U_{n}(x)$ can be inherited. This concludes the proof of Theorem 3.
Remark 2. (Related work.) Our theorems are valid with no conditions on (X, Y) other than the a.s. boundedness of Y. Assuming only the finiteness of $E\left(|Y|^{q}\right)(q \geqq 1)$, Stone (1977) has shown that (9), (10) and (13) are sufficient for
the weak convergence to 0 of $\int\left|m_{n}(x)-m(x)\right|^{q} \mu(d x)$. This is not a pointwise result. Devroye (1981) has shown that $m_{n}(x) \rightarrow m(x)$ in probability as $n \rightarrow \infty$, almost all $x(\mu)$, when $E(|Y|)<\infty, k_{n} / n \rightarrow 0, k_{n} \rightarrow \infty$ and $\sup v_{n i} \leqq M / k_{n}$ for some $M<\infty$, where

$$
k_{n}=\max \left\{j: v_{n j}>0, v_{n i}=0, \text { all } i>j\right\} .
$$

Also, when Y is a.s. bounded, and (8)-(9), (11) hold, then $m_{n}(x) \rightarrow m(x)$ completely as $n \rightarrow \infty$, almost all $x(\mu)$. This corresponds to the sufficiency part of Theorem 2. For further discussions and generalizations of the latter result, see Gyorfi (1981).

Remark 3. (Global convergence.) Beck (1979) has shown that when X has a density, m has a continuous version and Y is a.s. bounded, then the k_{n}-nearest neighbor estimate satisfies $\int\left|m_{n}(x)-m(x)\right| \mu(d x) \rightarrow 0$ completely as $n \rightarrow \infty$, when only $k_{n} / n \rightarrow 0$ and $k_{n} \rightarrow \infty$. This result is profound. It cannot be obtained from our theorems for pointwise convergence. It is also not known at this moment whether Beck's conditions on k_{n} are sufficient for the global convergence result given above when one just assumes that Y is a.s. bounded.
Remark 4. (Discrimination.) Let the data sequences $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ be i.i.d. $R^{d} \times\{1, \ldots, M\}$-valued random vectors, distributed as and independent of (X, Y). In discrimination, one estimates Y by \hat{Y}, a Borel measurable function of X and the data sequence. Define $\eta_{i}(x)=P(Y=i \mid X=x), 1 \leqq i \leqq M, x \in R^{d}$, and the local Bayes risk $r^{*}(x)=1-\max _{i} \eta_{i}(x)$. Assume that all the regression functions η_{i} are estimated from the data sequence, and that these estimates are $\hat{\eta}_{i}$. The obvious discrimination method would take $\hat{Y}=s$, where s is one of the indices for which $\max \hat{\eta}_{i}(X)$ is achieved. (How a tie is broken is irrelevant in the present context.) The local probability of error is $r_{n}(x)=1-\eta_{\hat{Y}}(x)$. It is clear that

$$
\begin{align*}
0 \leqq r_{n}(x)-r^{*}(x) & =\max _{i} \eta_{i}(x)-\max _{i} \hat{\eta}_{i}(x)+\hat{\eta}_{\hat{Y}}(x)-\eta_{\hat{Y}}(x) \\
& \leqq 2 \max _{i}\left|\eta_{i}(x)-\hat{\eta}_{i}(x)\right| . \tag{26}
\end{align*}
$$

Assume now that we use nearest neighbor estimates $\hat{\eta}_{i}$ that are obtained by using (1) on the data $\left(X_{1}, I_{\left[Y_{1}=i\right]}\right), \ldots,\left(X_{n}, I_{\left[Y_{n}=i\right]}\right), \ldots$ Then, by (26), all that is said in Theorems 1-3 about the convergence of m_{n} to m carries over to the convergence of r_{n} to r^{*}. Furthermore, since the probability of error is

$$
L_{n}=P\left(\hat{Y} \neq Y \mid X_{1}, Y_{1}, \ldots, X_{n}, Y_{n}\right)=\int r_{n}(x) \mu(d x)
$$

and the Bayes probability of error is

$$
L^{*}=\inf _{g: \mathbb{R}^{d} \rightarrow\{1, \ldots, M\}} P(g(X) \neq Y)=\int r^{*}(x) \mu(d x)
$$

we have by a generalization of the Lebesgue dominated convergence theorem (Devroye and Wagner, 1980), that $L_{n} \rightarrow L^{*}$ in probability under the conditions of Theorem 1, and $L_{n} \rightarrow L^{*}$ a.s. under the conditions of Theorem 3. The latter result improves another result of the author (Devroye, 1981).

Acknowledgement. The author wishes to thank Gérard Collomb and Laszlo Györfi for many useful discussions, and an anonymous referee for pointing out improvements in the paper.

References

1. Barndorff-Nielsen, O.: On the rate of growth of the partial maxima of a sequence of independent identically distributed random variables. Math. Scand. 9, 383-394 (1961)
2. Beck, J.: The exponential rate of convergence of error for $k_{n} N N$ nonparametric regression and decision. Problems of Control and Information Theory 8, 303-311 (1979)
3. Bennett, G.: Probability inequalities for the sum of independent random variables. J. Amer. Statist. Assoc. 57, 33-45 (1962)
4. Borovkov, A.A.: Notes on inequalities for sums of independent variables. Theory of Probability and its Applications 17, 556-557 (1972)
5. Chow, Y.S., Teicher, H.: Probability Theory: Independence. Interchangeability, Martingales. New York: Springer 1978
6. Collomb, G.: Estimation de la regression par la méthode des k points les plus proches: propriétés de convergence ponctuelle. Comptes Rendus de l'Academie des Sciences de Paris 289, 245-247 (1979)
7. Collomb, G.: Estimation de la regression par la méthode des k points les plus proches avec noyau. Lecture Notes in Mathematics \#821, 159-175. Berlin-Heidelberg-New York: Springer 1980
8. Collomb, G.: Estimation non paramétrique de la regression: revue bibliographique. International Statistical Review 49, 75-93 (1981)
9. Cover, T.M.: Estimation by the nearest neighbor rule. IEEE Transactions of Information Theory 14, 50-55 (1968)
10. Devroye, L.: The uniform convergence of nearest neighbor regression function estimators and their application in optimization. IEEE Transactions on Information Theory 24, 142-151 (1978)
11. Devroye, L.: On the almost everywhere convergence of nonparametric regression function estimators. Ann. Statist. 9, 1310-1319 (1981)
12. Devroye, L., Wagner, T.J.: On the $L 1$ convergence of kernel estimators of regression functions with applications in discrimination. Z. Wahrscheinlichkeitstheorie verw. Gebiete 51, 15-25 (1980)
13. Fuk, D.K., Nagaev, S.V.: Probability inequalities for sums of independent random variables. Theory of Probability and its Applications 16, 643-660 (1971)
14. Geffroy, J.: Contribution à la théorie des valeurs extrêmes. Publications de l'Institut de Statistique des Universités de Paris 7, 37-121 (1958)
15. Györfi, L.: Recent results on nonparametric regression estimate and multiple classification. Problems of Control and Information Theory 10, 43-52 (1981)
16. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58, 13-30 (1963)
17. Kiefer, J.: Iterated logarithm analogues for sample quantiles when $p_{n} \downarrow 0$. Proceedings Sixth Berkeley Symposium on Mathematical Statistics and Probability 1, 227-244, University of California Press, 1970
18. Lai, S.L.: Large sample properties of k-nearest neighbor procedures. Ph.D. Dissertation, UCLA, 1977
19. Mack, Y.P.: Local properties of $k-N N$ regression estimates. Manuscript, Department of Statistics, University of Rochester, Rochester, New York, 1981
20. Steiger, W.L.: Some Kolmogoroff-type inequalities for bounded random variables. Biometrika 54, 641-647 (1967)
21. Stone, C.J.: Consistent nonparametric regression. Ann. Statist. 5, 595-645 (1977)
22. Stout, W.F.: Almost Sure Convergence. New York: Academic Press 1974
23. Wheeden, R.L., Zygmund, A.: Measure and Integral. New York: Marcel Dekker 1977

[^0]: * This research was sponsored by National Research Council of Canada Grant No. A 3456

