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Summary. Kolmogorov's law of the iterated logarithm has been sharpened 
by Strassen who proved a more refined theorem by using tools from 
functional analysis. The present paper gives a "classical" proof of Strassen's 
theorem, using a method along the lines of Kolmogorov's original ap- 
proach. At the same time the result proved here is more general since a) 
the random variables involved need not have the same distributions, b) the 
condition of independence is weakened and c) instead of Kolmogorov's 
growth condition on the random variables, only a mild restriction on their 
moments of order l > 3 is needed. 

1. Introduction 

Kolmogorov's classical law of the iterated logarithm El] states that for any 
sequence ~l, ~e, ... of mutually independent random variables with expectation 
0 and variance 1 + o(1), the sequence 

T,,- S. with S. = ~ ~ 
]/2n log log n i= 1 

satisfies, under certain conditions, the equations 

lim T , = I  and l i m T , = - I  

with probability 1. This theorem has been sharpened by Strassen I-3] who 
investigated the behaviour of the functions q0n(t ) obtained by linear interpo- 
lation of the values 

(pn ( i ] = Tn(i), where Tn(/)= Si 
]/2n log log n (1.1) \h i  

(n fixed, i=1,  . . . ,n;  (p,(0) =0). 
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Strassen showed that under certain restrictions imposed upon the r.v.'s r 
the set of limit functions of the sequence q~3,q%,cps,.., under uniform con- 
vergence is the set ~ of absolutely continuous functions Z on [0, 1] with 
)~(0)=0 whose (almost everywhere existing) derivative Z satisfies 

S 2(t) 2 dr< 1. (1.2) 

The present paper was motivated by the attempt to find a "classical" proof 
of Strassen's theorem (in the sense of avoiding the tools of functional analysis). 
It turned out indeed that the result can be obtained along the lines of 
Kolmogorov's original proof, using as additional idea a decomposition of the 

summation S ,=  ~ ~ into suitable blocks. Furthermore we could weaken 
i = 1  

Kolmogorov's condition 

) I~.1=o o g l o g  n ' 

assuming only that for any given e>0, there exists an n o=no(e ) such that for 
all n > no, 

- ~ E(l~,l,)__<d 1! D(Sj  (/=3,4, .). (1.4) 
l "" 

i= 1 (log log D2(S,))2 - 1 

Assuming (1.3), the condition (1.4) follows by induction. Indeed, for /=3,  
letting e 1 =e  3 and using that D(~i)= 1 + o(1), we have for all sufficiently large n, 

]/(_1 n ~ D2(~i)<e3 D(S,)3 . 
E([~i[3) ~ gl ogi-og n i=1 I/log log D2(S,) i = 1  

If-this implication has been established up to some exponent 1>3, it follows 
that 

n ~1 E(l~ilZ) 
i=1 ~E( i~i i l+ l )<e  loglogn.=  

]~ n D(S . )  l 

log log n (log log D2(S,))~2 - t 

= J + l  D(S.) l+1 
/ + 1  1 '  

(log log D2(S.)) 2 

and thus (1.4) is also true for l+  1. 
Furthermore, our result is more general than Strassen's theorem also in the 

sense that we do not need to assume that the ~i's are identically distributed. 
We shall first prove Strassen's theorem under the condition (1.4), but the 

final form of our result as stated below replaces (1.4) by an even weaker 
condition which is less restrictive than assuming the existence of all "frac- 
tional" moments g(l~il z+~), i > io(e), ~ > 0. 
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2. L e m m a s  

The following lemmas will be needed, maintaining the notation, the definitions 
and the assumptions stated in Sect. 1. Probability will always be denoted by P, 
expectation by E and standard deviation by D. 

L e m m a  1. Let ~1,~2,... be r.v.'s with E(~i)=0 and D2(~i)=l. Suppose that all 
moments E([~i[ t) exist and satisfy the inequalities (1.4). Then 

(12 

E(eaS")< e2--D2(S~)(I+~) , (n= 1,2, ...) (2.1) 

~ loglog D2(S,) 
for all a with 0 < a <  C 2 D(Sn) , where 6 n depends on the sequence 

el, ~2 ....  of (1.4) only and c~n~O. Similarly, we have for the same range of a, 

E(eaSn) > e~-D2~s~)(1 -~,) (n = 1, 2,...). (2.2) 

Proof We shall only prove (2.1), the proof of (2.2) being analogous. 
One has 

- ~  ~ E ( ~ i ) = I +  az l ~D2(~z)+/__~3o~ a l E(g{] 
E(e~r o = l[ .... I 

Therefore, using a well-known inequality, we obtain 

( ~  ~ aZ ~ E([~[~)), (2.3) E(e"Sn)=i=l ~-1 E(e~r  D2(Sn)+t~=3= I.l i=l  

from which the assertion follows by (1.4). 

L e m m a  2 (Bernstein-Kolmogorov Inequality). For any t < C 3 log log D2(S,), one 
has 

P(S, > ]/2t D2(Sn)) < e-t(1 + o(1)). (2.4) 

Proof According to a well-known inequality (see, e.g. Renyi [2], p. 322 (1)) we 
have for any a > 0, 

1 s 
P ( S , > a ( t  + logE(e  ~ "))) <e  -t. (2.5) 

Now let 

Vo% a =  - 25-/ - (2.6) 

Because of t<C31oglogD2(S~) we can apply Lemma 1 with this number a, 
thus obtaining 

a 2 
log E(e ~so) <T D~(S") (1 + o(1)), 

which proves the assertion. 

L e m m a  3. For any t satisfying C 4 < t <  C a log log D2(Sn), one has 

P(S, > ]/2t D2(Sn)) > e -t(1 + o(1)) (2.7) 
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Proof See Kolmogorov [1]. 

Lemma 4. For any c > 1 and ~>0 there is an n o =no(C , e) such that, for all y 

satisfying C, < ]Yl < ]/C5 log log Da(S,), the inequality 

e -~'~(~ +~)< P(S,a(yD(S,), cyD(S,))) (n = 1, 2,...) (2.8) 

holds. In other words, the probability that S~(yD(S,) ,  cyD(S,)) "dominates" in 
the term P(yD(S,) < Sn). 

Proof The assertion follows by combining Lemmas 2 and 3; we only have to 
choose n so large that 

c2(1 - e ) >  1 +2~, 

where e is the larger of the two o(1)-terms in (2.4) and (2.7). 

3. Main Result 

Theorem. Let ~ 1 , ~ 2 , " "  be mutually independent r.v.'s with 
D2(~n)~l as n~oo,  satisfying the following condition for 

1 
e ,>  1 + logn ;  e,-~0: 

P( ~i > eil/~) < 0% (3.1) 
i=1 

lim f x 2 dF~(x)=0. (3.2) 

Then the set of limit functions of the sequence (pa,(p4,(ps, . . .  under uniform 
convergence is almost certainly the set ~. 

Proof 1) First we assume that all moments E(l~il t) exist and satisfy the con- 
dition (1.4). Let X(t) be any function of the class ~. Then we shall show that 
there exists a sequence n~, n: , . . ,  such that almost ceriainly 

lira q0~,(t) = X(t), 
l~oo 

uniformly in [0, 1]. 
Let k be a sufficiently large natural number. We restrict our attention to 

indices n which are divisible by k, and we split the sum S, = ~1 + . . .  + ~, into k 

sums of n terms each, letting 
K 

E(~,)=0 and 
some sequence 

r + ... +~_, ~2 = ~,_+ 1 + ... +~2, ,  .... 
k k k 

Then ~1 ... .  , (k are independent r.v.'s. 

Let tEE0, 1] and 6 > 0  be given. Lemma 4 with ~, ~z, +0(1) instead of 
S,, D(Sn) and with y -= t~ ] / ~  log log n yields 

n~ 
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P =e( ~' ~(t,,ct,)) 
1/5-  

~. e-k  log logn(1 +~) tt 2 

(3.3) 

Because of mutual independence of the ff~'s, the probability that these con- 
ditions are satisfied simultaneously is greater than the product of the right- 
hand sides of (3.3), i.e. greater than 

(log n) ,-, 

Now we choose 

t z = z ( l ~ l ) - z ( ~ )  (/=0, 1 , . . . , k -  1). 

1 

Let g >  0 be given. Then, writing ~ )~(t) 2 dt =1, we have 
0 

for all sufficiently large k. If I < 1, the series 

• (log q") -(1 +a/, q >  1, 
r n = l  

diverges for sufficiently small e, and hence the proof can be finished by 
applying the Borel-Cantelli Lemma, repeating the argument of Kolmogorov 
[1]. If 1=  1, we apply this argument to some function X*e~ whose correspond- 
ing integral is I * <  1 and which is sufficiently close to ;~ under the metric of 
uniform convergence. This finishes the proof of the theorem under the ad- 
ditional assumption made above. 

2) In order to prove the general version of the theorem we apply the 
following truncation procedure: Let 

~o ={~0~ if ]~] <e~ ~/, 
otherwise 

and define ~*=~~ (i=1,2,. . .) .  Then it can be shown that the r.v.'s 4" 
satisfy all conditions of Step 1): they are mutually independent, E(~*)= 0 and 

2 ~ __ D (~i)-D2(~i)+~ = 1 +o(1) 

as an immediate application of Chebyshev's inequality shows, using (3.2). 
It remains to show that condition (1.4) is also satisfied. Obviously, one has 

l 1 

E(~* ~) = 0(~ i ~) < c~ l! ig(l = 3, 4,...), (3.4) 
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where lim c i = 0. Letting S* = ~ ~*, we have 
i~r162 i= 1 

D(S*) = D(S,)  (1 + o(1)) = ]~(1  + o(1)), 

and thus (3.4) implies (1.4) for the sequence ~*. Hence the assertion holds for 
these r.v.'s as shown in Step 1). But then it is also valid for the initial sequence 
~i in as much as 

P ( l ~ *  - ( i l  > E(C,) )  = P(lCi[ > 'f'i ]//i)' 
and therefore the Borel-Cantelli Lemma implies, because of (3.1), that the 
relation '~*-~i[<E(~i)=o(~)=o(l) 
holds almost certainly. 

Remark .  It may be shown by a "shortening" technique, omitting certain terms 
at the end of each block ~1, ~2 etc., that the theorem remains true if the 
condition of mutual independence of the ~'s is replaced by a special form of 
weak dependence. 
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