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In this paper necessary and sufficient conditions are given, so that all the 
martingales attached to a two-parameter filtration are strong. These filtrations 
have the conditional independence property (F4) of Cairoli and Walsh [1]. 
Using a counter-example it is emphasized that if G, and G are separations and 
G,',~ G, it should not necessarily be inferred that ~G "~WG. 

w 1. Preliminaries and General Notations 

Let T=R2+; the points of T are denoted by z,z ' , . . . ,zi , . . ,  or using the coor- 
dinates: z=(s, t), z'=(s', t'), ..., zi=(si, ti) a.s.o. T will be endowed with the trace 
of the usual topology on R 2. If zl, z2eT, we write: z l < z  2 iff sl<=Sz, t1<=t2; 
ZI~.Z 2 i f f  S l < S 2 , t 1 < t 2 ;  ZI'~Z 2 iff S1~$2, t l~_~t 2. I f  ZI<Z2, (Z1,Z2] means the 
set of those z from T such that z l < z < z 2 ;  [zi, z2] is the set {zeT/z1<z<z2};  
Rz is the interval [0, z] and if A c T, R a = ~ Rz. 

zeA 
A set G e T  is called a separation iff G=OR G. The separation OR~ is 

denoted by z. If GI and G 2 are two separations, G~ ~ G  2 m e a n s  that RG1 cRG2 
and G~ < G2 denotes the fact that RG1 c Int(RG2 ). If G, is a decreasing sequence 

of separations, we write G,',~ G iff RG= (~ RG. 
n = l  

Let (~2, X, P) be a complete probability space and W c ~ be a complete a- 
algebra. We shall write f e w  iff f :  ~ R  is a bounded W-measurable function. 
The conditional expectation operator will be denoted sometimes E ~ instead of 
e(./W). 

If A is an arbitrary set belonging to Y and i A" A---,f2 is the canonical 
injection, the a-algebra i~ 1(o ~ )  will be also denoted by ~IA. It is obvious that 
if A ~  then W I A = { C A / C e Y  } (we shall systematically omit the sign of 
intersection " 0 "  between two sets). 

Let I be an arbitrary index set and for every c~eI a W-measurable real- 
valued mapping f~. Then ess sup f~ is a W-measurable function f satisfying the 
following two assumptions: ~d 
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(i) f > s  a.s. for every c~eI and 
(ii) If g>f~ a.s. for every c~eI and g is Y-measurable, then g > f a . s .  
One defines by symmetry ess in f s  For any set A, its indicator function is 

denoted by 1 A. ~s l  

If (A~)~ I are sets belonging to ~ we prefer to write A =ess sup A~ instead 

of 1A=eSSSU p 1A. It is obvious that esssupA;=(essinfA,)  c. It is well known 

that ess sup and essinf can be attained after countable subsets of I (see e.g. 
[4]). 

Throughout the paper, all the relations between random variables and sets 
must be interpreted as occurring almost surely, if not stated otherwise. For 
instance A c B  means that 1A=< 1B a.s. 

A family (Ygt)t~=0 of complete a-algebras included in K is called a standard 
filtration (or, in short, a filtration, because we shall not deal with not-standard 
ones) iff s < t ~ J f  t and 9f~t= ('] ~s. The right side a-algebra will be de- 
noted by ~g'~t +. s>t 

A family (o~)~ r of a-algebras contained in :(4 is called a two-parameter 
standard filtration (or, in short, a filtration if no confusions occur) iff z<z '  
~ = ~ ,  and ~,~=~+ = (~ ~ , .  In this case ~ , ~  means ~ / ~ , t , ,  and ~,t(o~',  

Z'>Z t'~O 

~-~,~) denote the a-algebras ~ / ~ ,  t(~,oovffo~,t, V~,~). We shall suppose in 
the sequel that ~o~,~=~.  ~,__>0 ~ r  

If G is a separation, fig denotes the a-algebra ~/o~ = V ~ .  
zeG ZeRG 

The conditional expectation operators which will appear are: E~, E . . . .  E~, t 
and E; denoting respectively E ~', E ~,  o~, E~=,,, E~ .  

We say that the filtration satisfies the (F4)-hypothesis of Cairoli and Walsh 
[1] iff E~,~E~,t=Eoo,tE~,oo=Ez for every z=(s,  t) from T. In this case we say 
that the filtration has (F4), or merely say (F4). Of course ( F 4 ) ~ f f  z 

As usual, a process x~: ~2--,R is said to be adapted to the filtration (~)~ iff 
x~ is Z-measurable for every z~T. 

A process x such that x~eL~(~) for every z is said to be a martingale 
(respectively 1-martingale, 2-martingale) iff z = z' ~E~(x~,) =x~ (respectively 
Es, oo(Xs+h,t)=Xz, Eoo,t(Xs, t+h)=Xz for every h>0). 

It is obvious that ( F 4 ) ~  every martingale is an/-martingale (i = 1, 2). 
Given a process x, we define a finitely-additive signed measure on rect- 

angles by the equality x(z, z'] =x~.-x~. t -Xs , t ,+x  ~. 
A martingale x is called a strong martingale iff z<z '~E'~(x(z ,  z']) =0. 
The question that prompted this study is: given a filtration ( ~ ) ~ r ,  what 

supplementary conditions should be added in order that every martingale be a 
strong one? For reasons of commodity we shall say that these filtrations have 
the (F5)-property; in short, (F5). 

w 2. Local Comparability 

Proposition 1. Let (f2, ~,  P, (~)z~T) be a standard filtration. Then (F5)<=> (F4) and 
L2 (~ ' )  = L2 (~ ,  oo) + L2 (~o~,,) for every z ~ T. 
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Proof. "~". 

Every strong martingale is both a 1- and a 2-martingale (see [5], Proposition 
1.1). Therefore every martingale is an/-martingale (i = 1, 2) and (F4) follows. 

Let now f~L2(~o)  with z o fixed. Let also x~=E~(f). Being a martingale, x 
is a strong one; so that if Z<Zo, we have 

E;o(X~- X~o,~- x~,~o + Xzo)=O. (1) 

Let z~(c~,  oe) and take into account that then x~--,f, X~o,t--*X~o,~ , x~,~o~X~,to 
(all these convergences are in L 2) and that E~o is a continuous operator from L 2 
into L 2. Then we can take limits in (1) and obtain 

E'~o(f - x  . . . .  -x~,to+X~o) = 0  ~ f =Xso,~ + x~,to-X~o (2) 

and (2) implies exactly that the function f belongs to L2(J~o,oo)+L2(~,~o). 
Remark that (2) and (F4) also imply the equalities 

E'~ =E~,~ + E~, t -E~,~  Eo~,t =E~,~ + Eoo,t-E~,tE~,oo. (3) 

The converse inclusion L2(~.oo)+ L2(~-~,~)~ L2(~  ") for every z is trivial. 

In general, if X is a Hilbert space and H, K are two Hilbert subspaces of X 
so that their orthogonal projectors Pn and PK commute ((F4)!) then 

PU + K = Pn + P~ -- PI_I PK . (4) 

Indeed, let Q be the right member of the above equality. It is an easy calculus 
to check that Q ( X ) c H + K .  Conversely, if x belongs to H + K  then there exists 
y~H and z s K  such that x = y + z .  Then 

Q x = P~ x + PK x -- P~ Pt,: x = y + P~ z + z + P~: y--  P~ PK y--  PK P~ z 

= y + z= x=~ x ~ Q ( X ) ~  H + K = Q ( X ) .  

In our case X=LZ(Y) ,  H = U ( ~ , ~ ) ,  K = L 2 ( ~ , , )  and the equality (4) 
reduces to (3) which, corroborated with (F4) put as "every martingale is an i- 
martingale" gives quickly (F5). 

The following proposition has been implicitly used from the very beginning 
of the theory of martingales with two indices. 

Proposition 2. Let ( ~ ) ~ r  be a standard filtration. Then (F4) implies the fact that 
the one-parameter filtrations (~,~)se o and (~o~,t)t>= o are right-continuous. 

Proof For reasons of symmetry it is enough to check only one from the two 
assertions, say the second. One must verify that fe ( -]  ~ , t + l / . ~ f e ~ o o , r  But 

n 

(F4) implies that ~ ~ /~ , t+ l /~ - -  V (~ ~k,~+l/.. To see this take f ~ L 2 ( ~ , t + )  
n_>l k_>l k_>l n>_l  

and set x_.,k=Ek, t+l/.(f) .  Then the following equalities hold because there is 
convergence in one parameter uniformly with respect to the other one (Doob's 
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maximal inequality !): 

f = L  2 - - l imX, ,k=L 2 -- l imx . . . .  = L  2 - lira x_ ~, k 
n , k  n k 

and the last term is measurable with respect to the a-algebra 
kyl ,Q ~,t+ ~/,. QED. 

Proposition 3. Let (f2, ~, P) be a complete probability space and ~ f# be two 
complete a-algebras contained in K. Then the following two assertions are 
equivalent: 

(i) Le(y v~)=LZ(J~)+ L2(~) and E~ Ee=E~e E~ 
(ii) There exists a set A~@ c~ff such that ~la~lA and ~lao~fqlA~. 

Remark. Two a-algebras satisfying (ii) are called locally comparable. It is clear 
that if ~ and fr are comparable (i.e. ~ c f r  or ~-~f#) they are also locally 
comparable. 

Proof (i) =>(ii). 

The equality (4) gives 

E ~ ~ ~ = E ~ + E ~ - E ~ E ~ = E ~ + E ~ - E ~ E ~. (5) 

Let f ~ ,  geff. Then f g e J ~ v ( #  and fg=E~e(fg)=fE~(g)+gEVe(f)  
- E~(g) E~e(f) or 

( f -  E ~ (f)) (g - E ~ (g)) = 0. (6) 

Set ~ = , ~  c~ ft. Since E ~ and E ~ commute, (6) may also be written as 

(f-Ear(f))  (g-Eat (g))=0 for every f e f f ,  geff.  (7) 

Let Dl.=(f+Eae(f)) and F~=(g+Eae(g)). Then (7) implies the fact that that 
DymFg=r for every fe~, ,  gefr From the definition of Dr and Fg it follows 

f 1D~ = (Egef) 1D~ and g lv~ = (E ~e g) lv~. (8) 

Let D=esssupDr  and F=esssupFg; then D~=essinfD} and Fr c. 
f e ~  ge~ fe.~ geC~ 

Since DCcD~, U~F~ for every f e ~  and gel#, (8) implies that for every f e ~  
geff  we have flD~=(E~ef)1D~ and g 1F~=(ECeg)lee. But ] and ff belong even 
to ~ .  (We check the assertion only for D: it is obvious that D e ~  1O~e~ Set 
f =  lo~. Then we have 1D~ = ECe(1D o) 1DO hence P(D ~) =E(1D~ ) =E(E~(1D~) 1D~ ) =< 

<E(Ege(1D~))=P(D c) therefore f=E~( f )~ f=lo~eOf f  ~ D e g f  ). 

Now the above equalities become floo=E~e(flD~), g l~=E~e(glr~) for f ~ ,  
g~N, or, otherwise written 

f e ~  ~ f l o c ~  c ~  ~ YlD~CfYloo, 

Since D~F=O=~DcFC~NIDcYID. Set A=D c and (ii) follows. 

(9) 
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(ii)~(i). 

First check that E~ it would be enough to prove that f ~ -  
implies that E ~ ( f ) e ~  ~ ~. But this is clear: f = f  1A + f  1AC and f 1AeN, hence 

Ee ( f )  = f 1A + E~ ( f )  1Ao ~ E ~ ( f )  1ACe~ 

because NIAc c ~IAc. 
Then it is an easy thing to see that 

E ~ v ~ ( f )  = E ~ ( f )  1A c + E e ( f )  1A 
and (10) 

E ~ e ( f ) = E ~ ( f )  1A+Ee( f )  1Ac for feY{: 

Adding the two equalities we obtain E ~  ~, fact that com- 
pletes the proof. 

Remark. Looking to the proof of the first implication one can observe that 
there is no unicity of the set A. Another set could be F. But A = D  ~ has the 
following maximality property: if B e ~ is another set such that o~lB ~ ~lg, then 
B ~ A .  Indeed, ~ [ B ~ ( C l B ~ o ~ [ B ~ f l  ~. Therefore for every 

f e ~  ~ f l~e2,~ ~ E~e ( f  lB) = f l B ~ ( f  -- E~e ( f ) ) 1 B ~  B ~ D ~ 

~ B ~ e s s  inf D~r ~ B ~ D~ = A. 
f eF  

Remark. We can write the equalities (10) in the form 

~.~V~=~'[AcAV~IA and ~ n ~ = ~ I A + ~ I A ~ .  (11) 

Proposition 4. Let ((2, X,, P) be a complete probability space. 
(i) Let (~ii)i>=o and (~j)j>= o be two discrete filtrations having the property that 

for every i and j, ~ and Ns are locally comparable. Let also 

Ai,j= e s s  i n f ( f  = E~'~es(f)) = ess i n f ( f  = E~s(f)) 
f eFi f eFi 

(the last equality is due to (F4)!). Then the following inclusions hold for every 
i,j__>0: 

Ai+ l , j  ~ A i , j  c A i , j +  1. (12) 

(ii) Let (~)~>=o and ((~t)teo be two standard filtrations. Suppose that ~ and 
(~t are locally comparable for every s, t > O. Set 

A~ = As, t = ess i n f ( f  = E ~" ~ ~ (f)) --- ess i n f ( f=  E e' (f)). 
f ~o~s f e~s 

Then 
Zl'<s CAz~ and A~,t=A~,~+ :=essinfA~, r. (13) 

t' t 

(iii) I f  in addition, (~)s>=O is also left-continuous, then ess infAs,,t=A~, ~ (the 
left-side set is denoted by As_,t ). s, <~ 
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Proof (i) We shall use the first from the above remarks. For every f e ~ ,  we 
have 

f la, , j@ffl  j C ~j+ l  :=~ ~ [ A i , j  C ~j+l  [ai,j :=>Ai,j c A i ,  j+ 1 
and 

Ai+ a,j =ess inf ( f  = E*J(f)) = ess inf ( f  = E*~(f)) =Ai, j. 
f eFi  + t f~Fi  

(ii) The first relation is proved in the same way as (i). Remark that A,,~+ 
= ~ As,r, for every sequence t,',~t and that As, t+ belongs to ~ n f r  t due to the 

n_->l 
right-continuity of the filtrations. We only must check that As,~+ ~As, t, the 
other inclusion being obvious. To this end, let f ~ .  Then 

f lA~.t + =lim f l A . . . .  e ('~ ~tn=~t::::> "~s]as,t+ ~(fltla~,~+ ~ As ,  t+ C A s ,  r 
n n>-_l 

We used once again the first remark made after Proposition 4. 
(iii) Identifying the sets with their indicators and taking a sequence s, T s, 

s n < s, we have 

A~_,t = (~ A~,,t = inf ess i n f ( f =  Eel(f)) 
n > l n f ~,~s n 

=ess inf( f=E*'( f))=A~, t. QED. 

Remark. For two locally comparable standard filtrations one cannot in general 
infere neither that As_t=As, t nor that As+,t=A~,t. Counterexamples are readily 
available. Let, for instance (~2, ~,, P) be a complete probability space. For an 
arbitrary set A, not necessary measurable, denote by X A the a-algebra 
{ C s ~ { ' / C c A  or Cc~A =q)}. Let now As"~O be a right-continuous family of sets 

is a belonging to S .  Set ~=JY#A~ and suppose 0<P(Ao)<I .  Clearly (~'~)~__>o 
standard filtration. Let N~=~o for every t with some fixed s o. Then it is 
obvious that (J~)s~O and (~)~>__o are locally comparable and A~,~ 

=/f2r if s<s o But then A~r t=Aso t=('2 and A~; ,=A~o. 
A~ if s > s  o" ' ' ' t 

Corollary5. Let (~)z~r be a standard filtration. Then (F5),~,-~=~,ooc~go~,, 
and (~,o~)~, (~oo,t)t are locally comparable standard filtrations. Moreover, the sets 
of local comparability A z can be chosen to satisfy the relations (13). 

Proof. To use Propositions 1, 2, 3 and 4. 

Examples. If ~ is a one-parameter standard filtration and a, z two stopping 
times, then the a-algebras 9f~ and ~ are locally comparable. (We remind that 
2g~={A~d/g/A(a<t)E~gt~t for every t>0}.) Indeed, it is well-known that A ~  
~ A ( a < z ) ~  and B ~ B ( o - > ~ ) ~ .  Therefore, setting A=(a<z) ,  we have 
the inclusions ~ [A c ~[A and ~[Ao ~ ~[Ac. 

If (a~)s>0 and (zt)t_>_o are two increasing right-continuous families of stop- 
ping-times, then ( ~ , ) ~ 0  and (~)t>_o are two standard locally comparable 
filtrations. To see that fact, remark that s , '~ s~a~"~a  s hence ~ " , ~  (see, 
for instance [-3]). Therefore the filtration ~ = H ~  c~ ~ ,  = ~o . . . .  has "the proper- 
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ty (F5) if we suppose in addition that o-~=%o= oe. The sets A==A~,,=(G<z,)  
satisfy the relations (13). For instance 

As, t+ = (~ (G <'ct,)c(G < inf zt,)=(G < rt)= A,,,. 
n>l n 

A natural problem arises: given two locally comparable standard filtrations 
(~)~__>0 and (~r such that No~=N~, does there exist a standard filtration 
(~t)t=>0 and two increasing right-continuous families of stopping-times with 
respect to (.~t)t denoted by (as) ~ and (%), such that ~ = ~ o ,  and ~r = ~ , ?  The 
answer is affirmative. 

w 3. The Main Result 

We begin with the discrete case. 

Theorem 6. Let (~2, X, P) be a complete probability space and (~,,)m>=l, (Nn)n>_l be 
two locally comparable filtrations having the property that Y ~ = N ~ = ~  Then 
there exists a filtration (;'~k)k>_l and two increasing sequences of stopping times 
with respect to (2/gk)k, a m and rn such that: 

(i) l ima  m = lim % = oe 
m n 

(ii) ~ m  = ~-m, ~ ,  = Nn 

(iii) Am, =(G,__<%) , where Am, ~ are the sets of local comparability of ~,n and 
~r from Proposition 4(i). 

Proof According to Proposition 4(i) the following inclusions hold for every 
integers m, n:Am+l,,cAm, cA,, , ,+l.  We make the convention that Am, n=O for 
17<0 and Az , ,= t?  if m<O,n>=l. Let Ck=Ai, k_i+l--Ai,k_i and Dk=Ak_i,i 
--Ak_~+l, ~. Then it is obvious that ckr and that k Di ~ # k - i +  1 ('5 ~ i  

k k ""~ C k and also that the sets C1, D1, C k, D~, k, Dk form a partition of ~. Set 

k k 

~ =  ~ ~ l c ~ +  ~ ~jID~ (1) 
i=1  j = l  

(this merely means that f Z ~ k ~ f l c f Z ~  and f 1Dyzfq ~ for every i,j <= k). 
We are going to check that ~k is just the filtration that we need. To this 

k 

end, let us define Tk:= E il(v~+cL~§ and 
i=1  

k 

Sk=k+ 1 - ra= ~ ( k - i +  1) l(D~+c~ . . . .  ). 
i=1  

It is not hard to prove that S k is a stopping-time with respect to (~-m)m and that 
T k is a stopping-time with respect to ((r We shall verify that 

2/~k = ~s~ c~ (qr~ (2) 
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and that implies that (~)k  is a filtration because S k and T k are increasing with 
respect to k. 

Indeed, A ~ A D k i e ~ ,  AC~_i+le~k_i+l~ for every i=1,2 ,  ..., k. Using 
the properties of the sets A,,,, and the definition of the sets C k~, D~k it results 
that 

o ~ k _ i +  1 [Ckk . . . .  c~ilc~_i+t and ~ilD~O'~_i+llD~ (3) 

hence 

A ( S k = k _ i + I ) = A ( T k = i ) = A D k + A  Ck_i+le~Z~k_i+lk ~ c~ g ,~Ae~skC~(~r .  

Conversely 

A e~s~ ~ ~ T k  :::::~ A(S k = k - i + 1) = A(T k = i ) e ~ _ i +  ~ ~ gi[(r~= i) 

= ~ - ~ +  ~ ~ (r 
= ~ - i +  ~ Ic~_~+ ~ + ~r 

(for the last equality to use (3)). Therefore AD~eNi and 

A C~_~+ 1 e ~ - ~ +  ~ ~ A e ~ .  

We check that T~<T~+~. Remark that (T~<i)=Ak_i,~ and that for every 
i<k  we have: 

(T~+ ~ <i)(T~=i)=(T~+ ~ <i -1) (T~=i)  

=- A k  + 1 - ( i -  1),i- l ( A k - i , i  - -  A k - i +  1 , i -  1) 

c A k - i + 2 , i - 1  - - a k - i +  1, i -  1 = 0  

hence T~<T~+~. Taking into account that (Sk<i)=A~,k_i one verifies in the 
same way that Sk<=Sk+~ for every k. Thus, (~)~ is a filtration. 

Moreover we have the following relations: 

~oolA~, =~lA~,~o=o'~klA~,~ a n d  ~eoIA~,j=~[A~,j=~j]A~,j 

We shall only check the first set of relations. As 

k - - 1  
A~,,.= ~ m.+~- i  c~.+~-~ ~n+i Av ~k-i--l!  

i=0 
and 

k- -1  

~ + ~ _  ~IA~,. = ~ (%+~loz +,~- ~ + ~,.~- - -~ c~_,_"+~-~1. 
i = 0  

(4) 

it follows that ~+k_~la~,n=~J, la~,n. (To see the last inclusion remark that be- 
cause ~ k g ' n + k - l  i - i .  n + i  - 1 - - A k  - i,,+i, we have ~_~lc;+_~-l~%~lc. ~_ ~ ~%1c~_, 

C ~ C A s  Ak, ~ Ak, . for every n it results that ~f,+k_l[a~, ~ , IA~,~ for every k hence 
~4"oola~, = = N, IA~, =" Therefore J/f~lA~, | = ~[a~,  ~ = ~IA~, = ; the other inclusion be- 

obvious it follows that ~o~la~, =~]A~, . On the other hand, ~IA~, ~N,  IA~,= 
for every n. Thus ~,~la~,, =,~]a~,, . 
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Now we shall construct the two sequences of stopping-times ak, z a with 
respect to the filtration (3/fk) k. We define 

ak= )_., (k+n) lG+~ +OOlA~,~ 
.=o (5) 

0 o  

rk = Y, (k+n)  1Dp+~ + O01A~,~ 
n = O  

((,,+k~ and Ak, ~ as well as the sets It is not hard to prove that the sets ~ k  ,,=>0 
(D "+k~ and A~ k form partitions of/2 for every k>  1 and that a k and "c k are k J n > O  , 

indeed stopping times with respect to (~fk)k. Moreover the following relations 
hold for every positive integers k, n" 

(ak <--_k+n)=Ak,~+ 1 and (zk <k+n)=A~,+l,k . (6) 

Therefore we have: 

(ak+ 1 <k+n)  (ak=k+n)=A~,k+l(Ak,~+l --Ak,,)= 0 

which further implies that (ak) k is a strictly increasing sequence of stopping- 
times. The same thing is valid for the sequence (Zk) k. 

It remains only to check that ~ = ~ and Yt~ = Nk' In fact, it results: 

k = O  n = O  

= ~ ~lcPo+~lA~,~=~.  
n = 0  

As about the second equality, the proof is the same. The checking of the point 
(iii) is a matter of easy calculus. 

The proof of the theorem is complete. 
Consider now the continuous case. First establish the following result: 

Lemma 7. Let (f2, • ,  P, (~t)t=>o) be a standard filtration. 
(i) Let (At)t>=o be an adapted family of sets satisfying the assumptions: s <t 

~ A s c A  t (everywhere) and At= ~ A r. Then there exists a stopping-time z such 
that ('c~t)=A t for every t. r>t 

(ii) Let (At)t>__ o be an adapted family of sets satisfying the assumption s <t  
~ A s c A  t (a.s.). Set At+ = e s s i n f A r =  ~ Aq. Then there exists a stopping-time z 

t '> t  Q~q>t 

such that (z<=t)=At+ for every t>=O. 

Proof (i)Define r(co)=fin f{t>=O/c~ if coq~A~' Then z(co)<t~*cosA t, for every t '>t  
k - v  

~(z=<t)= ~ At,=A r 
t" >t 

(ii) The sets At+ satisfy the assumptions from (i). 

Theorem 8. Let (f2, ~ff, P) be a complete probability space. Let (~)~>= o and (Nt)t>= o 
be two locally comparable standard filtrations such that Yo~ = ~ = J~. 
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Then there exists a standard filtration (2/ft)t~ o and two families (as)~>=o and 
("ct)t>=o o f  stopping-times with respect to (~t)t~=o having the properties." 

(i) s < t ~ a s < a t ,  Zs<Z t and a~=zoo=o�9 
(ii) ~ = ~ ,  J f ~  = N,, 

(iii) Set as§ = inf aq, zt§ = inf "c 0. Then a s = a s +, "ct ="ct+ for s, t > 0. 
Q~q>s Q~q>t 

Proof. Let As, t be the sets of local comparabili ty given in Proposition 4(ii). So 
~IA~, ~tL~,~ and ~[Ag, t~ t lAg ,  c Take t > 0  and set Bt(s )=A t . . . .  . Using the 
order properties of the sets As, t and the right continuity of the filtrations it is 

easy to see that Bt(s+)= ~ Bt(s+ 1/n)=A(t_s)_,~e.~t_snN s. Using Lemma 7 we 
n = l  

define a stopping-time T~ with respect to (N~)s such that (T ,<s)=Bt(s  +) for 
0 < s < t ,  (T~=0)=A,_,o and Tt lA;+<=t .  Set also S t = t - T  . Then (St<s) 
= A ~ _ t _ s e ~ f o r  every s<t .  Due to the right-continuity of the filtration (~)s it 
follows that S t is a stopping-time with respect to (~s)s. Set 

~ t  = d'gSt ('~ ~ Tt (7) 
and remark that: 

1. S t<t ,  Tt<t;  

2. tl<=t2~Stl<~St2, Ttl<=rt2; 

3. h > O ~ ( T t  <s)c(Tt+h <S+h)  and (S t<s )c (S t+h<S+h) ;  

4. T t+h-T t<h ,  S t + h - S t < h  for every h>O; 

The proof is easy. We check only 3. which, in fact, is the key of the sequel: 

and 

(Tt+h <=S-t-h)=A(t+h_s_h)-,s+h=A(t_s)- s+h ~A(t_s)-,s=(Tt<=s) 

(St+h<S+h)=A~s+h) ,t-s As-, t  s - ( S t < s )  �9 

Now we shall define three families of stopping-times with respect to (~ft)t 
! 

denoted by a t, a t, z t as follows" 

(a;  < t + s) = ( r ,+ s  ---- s) = (St§ --> t) = At , segSt+s  ~ ~ r t + s  = N §  

(a ;= t )=At - , o ,  (a ;= oo)=ACt- ~. 

Then cr' t is an increasing family of stopping times with respect to (~ ) t  and 
! 

a t > t. Further set 

a t = ess inf a;, = inf a;+ 1/~ = a't+ 
t '  > t  n 

and define z t by the relations 

(z t < t + s) = (Tt+ s > t) = (St+ s < s) = A;- ,  te~f~t+s 

(z t = oo)=A~,  t and (z t = t) =Xo, t. 

(The last definition is good due to the fact that the family of sets ACs_,t is left- 
continuous in s. 
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First check that 

(s) 

Let A e ~ ; .  Then A(a' t <= t + s ) e ~ +  s for every non-negative s. Therefore 

A(a't<=t + s ) (a't> t + s - h ) =  A ( A t - , s -  At- s_h)~Y~t+sc~+s  

and, moreover, taking into account the remark 3. it follows that 

A(a't<=t + s ) ( ~ > t  + s-h)=A(St+s>=t)(St+s_h <t)  (St+s <t  + h ) ~ t + h  . 

On the other hand A ( a ~ = t ) = A A t _ , o ~ C ~  t and 

A(a' t = oo) = A A~-, o~ ~ ~[A~_ ~ ~ ~tlA",-, 

due to local comparability. Now partition the set A as follows: 

A = A A r - , o  + ~ A(At- ,q+ ~)/n-A t ,z/,)+ AA~ , ooZe#t+ 1/n " 
i = 0  

As n is arbitrary and (~*~)s is right continuous the first inclusion from (8) 
follows. As about the second, one  must check that A ~ , ~ -  ~A(cr't<=t+s)e~f~t+~ 
for every s > 0 ;  or, otherwise written, that A(Tt§ C~NT~+ . But the last 
relation means that A ( S s + t > t ) ( S ~ + ~ < u ) ~  for every nonnegative u and 
A(Tt+~<=s)(Tt+~<=v)~N ~ for every v>0 .  Only the second statement needs a 
proof. If s__< v the second set becomes 

A (T~ +s ~ s) = A(S t+  s ~ t) c ~ t - [ A t - , s  ~ ~slAt-,s ~ ~vlAt- ,s  

(here we used the local comparability). If  s > v then t < t + s - v  and 

A(Tt+ , < s) (Tt+ ~ < v) = A(Tt+ , <= v) = AA(t+, ~) .~ 

and the last set belongs to ~(_~+,_,)-[A(,+s_.)_ cN,[A,+,_~)_ . Now (8) follows. 

An immediate consequence of (8) is that S ~ =  J~. 
Moreover, we claim that 

~ = f f , .  (9) 

The proof  follows the same way; we shall only sketch it. 
" c " :  A ~ A ( % < t + s ) ( r ~ > t + s - h ) e N ~ +  h for every h > 0  and 

then partition the set A in a similar manner  as above. 
" ~ " :  Let A~fr t. The problem is if A ( * t < t + s ) ~ + , = J ~ s ~ + n ~ r ~ + ,  for s>O. 

But 

A(St+,<s)(St+s<U) 

A A ,  ,, for S<=UeffftlA~s_,t~YslAg_, ~ulAg_t 
AA~-  ~§ for S>UeN~§ . . . . .  C ~ [ A _  . . . . . .  

and A(Tt+~>t)(T~+s<U)~(~ ~ for every u. 
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As for the right-continuity of z t it is enough to remark that 

(zt+ < t + s ) = ( i n f z t + l / ~ < t + s ) = ~  (z~+l/.<t+s) 
n n 

= U A ; - , t + l / n  :-  0 (As - , t+ l /n )c  =ACs-,t-=('ct < t + S )  
ii n 

for every s; hence rt=rr+ and we are done. QED 

Corollary 9. Let (0, ~f~, P, ( '~)~r)  be a standard filtration. Then 
There exists a standard filtration (iF,),_> 0 and two families (G)s and (vt) t 

(F5)e., of stopping-times with respect to (~)~ which are right-continuous such 
that ~ = ~ ^  ~ for every z = (s, t). 

Remark. There exist examples that point out that there is no unicity in 
choosing the filtration ( ~ ) ,  and the two families of stopping-times. Anyhow, 
the set (G<zt)  is included in A~, r The ones just constructed above satisfy the 
relations: 

(G =< s + t) = (r t > s + t) = (G < z~) = (G =< zt) = As +,t' (11) 

w 4. Some Regularity Properties of the Filtrations Having (F5) 

Let (O, X, P,(~,)u~0) be a standard filtration, (G)s and (zt) t be two increasing 
right-continuous families of stopping-times such that (too =Go = oo. The right- 
continuity will be supposed to occur everywhere (if not, it is a matter of 
routine to find such good versions for the two families of increasing stopping- 
times). Set 

T~(o))=G(co)Azdco ) and ~=~Tz" (1) 

If G is a separation, let T G = sup T~-- sup T~. Let Z denote the set of integer 
z~G Z~RG 

numbers. We say that G is a simple separation iff there exists an interval I c Z 
(i.e. l = I ' n Z ,  I' being an interval of real numbers) and there exist some points 
(zi)i~ x satisfying the asumptions that i < j ~ z i > z j  and G = k / z l .  Admit the 

i~I 
convention that if sr i (i.e. zi stays above the bisector of T), then i<0;  
otherwise i > 0. 

It is obvious that for every separation G there exists at least a sequence G, 
of simple separations such that G,"~G. 

If G is an arbitrary separation, we shall also denote by ess T G the stopping- 
time ess sup T~ = ess sup T~. 

z~G z~RG 

Proposition 10. 1. G < G' ~ T~ < TG,. 
2. I f  G is a simple separation, G= ~/ z~ then T~=ess TG=su p T~. 

ieI i~l 
3. Set A(co)={zeT/~,(co)<zdco)}. Then ~A(co) is an increasing path with 

respect to the order "-<". 
4. Let z(co) = sup(OA(co) c~ G). Then To(co ) = T~(,o)(co ). 
5. G,"~ G o  TG "N To; it follows that T G is a stopping-time. 
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6. I f  G is a simple separation, then J:T~ = ~ "  
7. For an arbitrary separation G, the following relations hold: 

~ = < s . ~ o = ~ o  = (~ ~ , =  ~ :~,=&+. 
G ' > G  G ' > G  

G'simple 

Proof 2. If zi>-z>zi+ 1 and zeG, then T=<T~ v T~,+ . 
3. aA(:o) is a totally ordered set. Indeed, suppose ad absurdum that there 

exist two points z,z'  belonging to 0A(o~) and s<s', t>t'. Take an h small 
enough and Zl,Z'~eA(oo), z2, z'~A(coy such that [z,-zl<h, Iz2-zl<h, Iz'~ 
-z ' l<h, Iz'z-z'l<h, t2>t'l, $ 2 < S '  1 . Then a~=(o))>~(co)>z~,(co)>a4(co ) con- 
tradicts the fact that o-(co) is increasing. 

On the other hand, 8A(co) is connected. Otherwise there exists a positive 
integer n such that 3A(co)c~R,,, be not connected. It follows that 3A(co)nR,,,  
=K~ voK 2 with K , ,  K 2 two disjoint compact sets. Then there exist two points 
ZlEK1,  ZzEK 2 such that [za-Zzl=inf{lz-z'[/zeK,,z 'eK 2. Choose Z I ~ Z  2, 
Then the rectangle [z~,z2] also contains other points ze~?A(co) which cannot 
belong neither to K ,  nor to K 2. But a connected totally ordered set is a path. 

4. Remark that zec~A(co)~(s-1/n, t + l/n)eA(og, (s+ l/n, t-1/n)eA(oJ) ~ 
hence 

and 
O's (oo) __< ~,+ (co) ='c,(~o) 

,~(~) > ~,_ (~o) ~ ~-,- (m) v -c,_ (og =< T=(o~). (2) 

Let z 0 = inf(G c~ ~A(co)) and z(co) = sup(G n 0A(co)). Then 

Ta(co) = sup T~(co) v sup T~(o~) v sup T~((o) 
zeA(co) c~G z~A(a) )c~G zEGn(A--(~) ~ 

= % (09) V :rz(MO~ ) v % (09) = Tz(M~o ) 

due to (2). (Here some conventions are obvious: Gna(co)=r 
and s(co) or t(co)= oo ~ T~(o,)(co ) = oo for reasons of right-continuity of o-(co) and 
~(o))). 

5. G,"~G*>R~=(-]RG ~ R ~ # A ( c o ) = ( ~  (R~ ~A(eo))~supR~ ~QA(oo) 
n n 

converges to sup RGc~SA(co ) due to the compacity and the total ordering of 
~?A(co). Thus TG',, T G. If G, are simple separations, then T~, are indeed stop- 
ping-times due to the point 2. Every separation can be approximated from 
above with simple ones and it follows that Ta is a stopping-time being limit of 
stopping-times. 

6. If r,  are stopping-times and -c = sup z, has the property that for every o0 
oo 

there exists an n(oJ) such that z(oJ)=%~)(0)), then ~ = V 3r (this is obvious: 
n=l 

A ~ A =  @ A(~=%)eVJt~,). In our case G is simple: G = V  z i~TG=V T,, 
n= 1 n i e l  I i e l  

because of the point 2. and using the step 4. the supremum is attained for 
every co. This fact implies the equalities 

~ o = H v , ~ , =  V ~-~, = V ~ , =  V ~ = & .  
iE1 i~ I i ~ l  zEG 
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7. Because Tz <ess TG, the first two inclusions are obvious. The first equa- 
lity results from the fact that for a simple separation G' the equality ~TG, = YG' 
holds and from the remark that if % , ,  are stopping-times and %Nz, then 3r 
" , ~ .  

As for the second equality, we must only see that for every two separations 
G, <G2, there exists a simple one, G', having the property that G~ < G ' < G  2. 

The theorem is completely proved. 
In the study of two-parameter filtrations, the following question is of 

interest: If ( ~ ) ~ r  is a standard filtration, and G~, G are separations satisfying 
the assumption G, NG, does it result that J~G ",~G? It is known that, in 
general, the answer is negative. But if we suppose that the filtration has (F4), 
we saw that the marginal filtrations (J~,oo), (Noo,,), remain right-continuous. 
Nevertheless, (F4) is not enough to assure the right-continuity of the filtration 
YG considered upon all the separations of T. In fact, the answer to the question 
is negative even if the filtration has (F5). Indeed, all we can say is that ~G, 
"~G+ which has no reasons to be the same with ~-~. (If G is a simple 
separation, Proposition 10,7., points out that in this case J~G=YG+). 

Counter-Example 11. Let f2=[0,  112; the points of ~ will be denoted by x 
=(Xl,X;). Let N be the a-algebra of the Borel sets on [0, 1] and P be the 
Lebesgue measure on f2. Let (Wt'),=> 0 be a filtration on [0, 1] so that a4z~ ~= W,' 
and set Wtt =N|  ' completed with respect to P. Let 

and 

a*(x)={~ ~ ifif s__>lS<l 

zt(x) = {~,_, , , j (x , )  if t < l  
if t > l '  

One checks immediately that % and ~ are stopping-times (in fact they are 
Jfo-measurable) and that they are increasing in s (respectively in t) and also 
that they are right-continuous. Besides 

lrl _,,,j(xl) if s < l , t < l  

Tz=T,t= a S if s < l , t _ > l  
' z ,  if s > l , t < l  

0o if s>l,t>=l 

and T~, 1 -s = lrsj(xl)= 0(rood P). 
Then the filtration ~ = Jt~T~ has (F 5) (hence it has (F4)). Let 

G = {(s, 1 -s)/O<=s<= 1}. 

As ff,,l_~=JEo for energy 0_<s_<l it results that ~a=~gfo. But TG=I implies 
that ~a+ = J4~TG = ~ "  

Remark. This example points out that if one wants to have good continuity 
properties for the filtration (~a)a, ~ must be replaced with ~'~G+. See [2] in 
this respect. 
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w 5. Properties of Martingales with Respect to Filtrations Having (F5) 

Let (~'~t)t>=o be a standard filtration and o-~, r~ be two increasing right-con- 
tinuous families of stopping-times with respect to it, satisfying the assumptions 
0-0o=%o--o9. Let (~)z~r be the two-parameter filtration given by the relation 

= ~ s  r~ ~ = Jt'~ . . . .  . We know now that all the filtrations having (F 5) can be 
represented in this manner. 

Let (xz, ~)z~r be a Ll-bounded martingale (hence a strong one) and x 
=xoo,~. Let y~ be a right-continuous left-limited version for the martingale 
E(x/Ht). Then, using the optional sampling theorem, we have the represen- 
tation 

xz=E(x/,~)=y .. . . .  =y~ l(os<~0+y~ 1 ( . . . . .  ). 

Therefore xz is a right-continuous left-limited version of the above mar- 
tingale. Walsh proved in [-5] the existence of such a version in the general 
case; but in our case the fact is obvious. 

A process x~ is called a weak martingale if it is adapted and E~(x(z, z']) is 
equal to zero for every z<z'. An adapted process A~ is called increasing if 
A((z, z ' ] )>0 for every z<z'. 

Cairoli and Walsh proved in [1] that for every U-bounded martingale 
there exists an increasing process A'~ such that (x 2 -A~, F~)~ be a null-meaned 
weak martingale; moreover, if xz is a strong martingale, there exists another 
increasing process A~ having the property that it is previsible and (xZ-A~, ~ )  
is a null-meaned martingale (in our case even a strong one). 

In the case when the filtration has (F5) an example of A may be easy 
computed. It is not necessary previsible, but it has a good property also 
posessed by the martingale x~ itself: namely, the measure A~o(dz ) is con- 
centrated on a totally ordered set. 

The process refered to is A~=(y) . . . . .  , where (y )  signifies the natural 
increasing process attached to the martingale y. It is easy to check that A is 
indeed an increasing process and that it is concentrated on the intersection of 
the borders of the sets (o-~__< %) and (a~ > rt). 

Finally we want to give an example which points out that, unlike the 
situation in the one-parameter case, a martingale may have the property that 
A' is equal to zero. Or, otherwise speaking, that it is possible to exist mar- 
tingales x~ with the property that x~ is a weak martingale. 

Example. Let ((2, Jr, P) be a complete probability space and ~ ,  ~ be two 
standard filtrations such that ~ = ~ = 244. Let A be a set belonging to ~o r~ H 0 
chosen to satisfy 0 < P ( A ) < I .  Let B be Aq Set ~ = ~ s l A + ~ t l e .  Now (~)~ has 
of course (F5) and E~(f)=E(f/G~)IA+E(f/I-I~)I B. Every Ll-bounded mar- 
tingale xz=E~(f) has the form x~=YslA+U~I ~ with y~=E(f/~q~) and u t 

2 21A+U{I B has the property the x2((z,z'])=O for every =E(f /~) ;  hence x~ =y~ 
z<z'. In other words, x 2 is a weak martingale and so, A'--0; the strong 
natural process is A~ = (y)~ 1 a + (u)t 1B. 
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