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Introduction 

In  this note the methods of Cuzick (1978) are used to extend the results of 
K6no  (1978) who studied the existence of double points for a special class of 
Gauss ian  fields, and G o l d m a n  (1981) who studied higher order multiplicities 
for this class of processes. Let X(t) be a mean  zero Gauss ian  vector field with 
domain  IR N (or NN+) and taking values in IR d, written briefly as an (N, d) field. 
We say z is a point  of multiplicity n for X on the set B_clR N if there exist 
distinct (random) times t jeB, j =  1 . . . . .  n such that  X ( t l ) = X ( t 2 ) =  ... = X ( t , ) = z .  If 
we let T - - ( t  1 . . . . .  t,) and define Y(T) as the vector  (X( t l ) -X( t2 )  . . . . .  X(t,_~) 
-X( t , ) )  then Y is an (nN,(n-1)d) field and X has points of multiplicity n on 
the set B iff Y hits the origin for some T~B"c~{tj+tk,j+-k }. This latter 
phenomenon  has been studied in [2] and here the results are applied to the 
present problem. For  the cases studied by K 6 n o  (1978) and G o l d m a n  (1981), 
where the coordinate  processes are independent  with incremental  variance 
V a r ( X ( s ) - X ( t ) ) = l t - s t  2~, 0 < c ~ < l ,  it was shown that  X has points of multi- 

11 tl 
plicity n ifdc~< N, but not when d ~ >  N. More  general results require 

n - I  n - 1  
a few definitions. 

Notation, Definitions and Statement of Results 

Let I-I denote Euclidean distance. Denote  the components  of the centred 
Gauss ian  field X by Xi, so that  X( t )=(Xl( t )  . . . .  ,Xd(t)). Although it is not 
essential for many  of the results, to simplify nota t ion  we shall always assume 
that  X has homogeneous increments, i.e. for any k > 2  the distribution of 

(X(t 2 + t) - X(t 1 + t) . . . .  , X(t k + t) - X(t k _ 1 ÷ t)) 

does not depend on t. Denote  the incremental  variances of the coordinate  
processes by ¢~(t-s)=E(Xi(t)-Xi(s)) 2 and let de tCov(Z)  be the determinant  
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of the covariance matrix of the vector of random variables Z. We say that X 
has approximately independent components on B if there exists an e>O such 
that 

det Cov(X(t) - X(s)) > e ~ o-2(t - s) 
i=1 

for all (s,t)~B x B. If B is replaced by some neighbourhood of the diagonal 
{s=t}, then X is said to have locally approximately independent components. 
The coordinate X~ is said to have index c~ i if 

~i =sup{e:  lira sup ]tl-~ai(t) =0} 
[tl--,O 

=inf{c~: lim infltl-~ri(t) = oe}. 
Itl~0 

It is well known that 0 <__ ei--< 1. 
Finally X is locally nondeterministic on B if for each k > 0 there exist e k > 0 

and 6k>0 (depending only on k) such that for any t isB with ]tj--tk[<6k, 
j = 1, ..., k, the conditional vector X(tk) given X(tj), j = 1, ..., k -  1 satisfies 

det Cov(X(tk) IX(t j), j = 1, ..., k - 1) 

> e k det Cov(X(tk) -- X(t~')) (1) 

where t k*--ti, i<ki f l t l - - tk l=inf l t j - - tk[ .  
j<k  

Berman (1973) introduced local nondeterminism for Gaussian processes 
( N = d = l )  and Pitt (1978) extended the definition to include processes with 
multidimensional time parameter ((N, 1) fields). Pitt's condition is equivalent to 
requiring that 

Var(X(tk) -- X(tk _ 1) I X(tj.) - X(tj_ 1), 2 < j  < k) 

> ~k Var(X(tk) -- X(tk- 1)) 

where t 1 . . . . .  t k are ordered such that I t j - t j _ l l < l t j - t i l ,  for l < i < j < k .  In this 
case our definition differs slightly from his in that we do not preorder the 
{t j} and our conditioning set has been augmented by X(tl). However Pitt was 
interested primarily in fields with X(0)=0,  where this last alteration is of no 
consequence. In the case of Gaussian processes, our concept reduces to a 2- 
sided local nondeterminism, as the conditioning set is not restricted to times 
either strictly larger or, smaller than t k. (See Cuzick and Du Preez (1982) for 
more details.) However, this change does not invalidate the spectral methods 
used by Berman (1973) and Cuzick (1978a) for determining when processes are 
locally nondeterministic (2-sided). Pitt (1978) has shown how these methods 
can be adapted for use in the case of fields and further modification when 
considering vector fields is straightforward. In particular for isotropic vector 
fields with independent components, the radial spectral measure for each 
component can be studied in the same manner as for Gaussian processes (see 
Cuzick (1978) for an example). 
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Theorem 1. Let X(t) be an (N, d) field. Assume that X has locally approximately 
independent coordinates which have index ~ >  O, i= 1,..., d and that X is locally 
nondeterministic. Then for any open set B ~IR N, X has a point of multiplicity n 
on B with positive probability if 

d n - - 1  
N >  ~ ~. 

n i=1 

1 
A 

I f  N < n -  ~ ~,  there are no points of multiplicity n with probability one. 
n i=1 

(2) 

Remarks. (i) When all ei--c~, then X has points of multiplicity n when 
n - 1  

N >  c~d. When N>c~d, X has points of arbitrarily high multiplicity, which 
n 

agrees with the known result [2] that in this case X hits any fixed point 
uncountably often with positive probability. 

(ii) In the cases considered by K6no, when (2)holds with n=2,  X was 
shown to have double points with probability one. When X is homogeneous 
and ergodic and B=IRU+, the results of Theorem 1 can also be strengthened to 
hold with probability 1. 

(iii) When (2) holds, the results of Cuzick (1980) show that with positive 
probability the Hausdorff dimension of 

A={( t l , . . . , t , ) :  X( t l )= . . .=X( tn) , t i# t j  for i # j }  

= {Y-~(0)} ~ {t i#t j  for i # j }  

d 
is given by d i m A = N n - ( n - 1 )  ~ cq. However these methods do not appear 

to be adequate to determine the dimension of the set B of points of multiplicity 
n or the set X I(B) of times associated with such points. However for the 
special case of planar Brownian motion, Taylor (1966) has shown that dimB 
= 2 for all n. 

The critical case of equality in (2) can be resolved somewhat more finely as 
follows. We say that X is nearly isotropic if there exist functions c~* and 
positive constants K1 and K 2 such that 

K1 a * ( I t - s l ) < a i ( t - s ) < K 2 c r * ( l t - s l ) ,  i :  1 . . . .  ,d 

for t - s  in some neighbourhood of the origin. 

Theorem 2. Let X(t) be a nearly isotropic, locally nondeterministic (N,d) field 
with locally approximately independent coordinates. Then X has points of multi- 
plicity n with positive probability if, for some ~ > O, 

cr*(s) ds dt < oo. 
0 i 

Recall that o)(h) is a local modulus for a scalar field Xi(t ) if for each t there 
exists a finite random constant C and a neighbourhood of the origin A such 
that 

I X i ( t  + s )  - X i ( t ) ]  ~ Co)(]s]), for all seA. 
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Remark. Yadrenko (1971) has shown that when X~ has index el, then h B is a 
local modulus for all fl<~i- Dudley (1973) has shown that when Xi is nearly 
isotropic and certain other weak conditions are satisfied, then a*(h)]loga*(h)[ + 
is a uniform modulus and thus a fortiori it is a local modulus. When N = 1, it 
is well known that ]log a*(h~] ~ i ,  i can be replaced by (log Jloga*(h)J) ~ under weak 
conditions (Sirao and Watanabe, 1970). 

Theorem 3. Let X(t) be an (N, d) field and assume co i is a local modulus for X~, 
i= l , . . . , d .  I f  

lira h -"N coi(h ) =0, 
hJ, O k i =  1 

then X does not have a point of multiplicity n with probability one. 

3. Proofs 

We shall only give a proof of Theorem 1. The arguments are easily adapted to 
establish Theorems 2 and 3 also. 

Proof of Theorem 1. Given any open set B~_]R. N, let A be a ball in B"___IR ~r of 
radius ~ and centre chosen so that for all T=( t l , . . . , tn )~A.  ]tk--tj[>2C5 for 
j~=k, j ,k- -1 , . . . ,n  and (1) holds. 

If Y(T)=(X(t2) -X( t l )  , . . . , x ( t . ) - x ( t . _ 0 )  , then to show that X has a point 
of multiplicity n on B, it is enough to show that u hits the origin for some 
TeA. It follows from Theorem 3 of [2] tha t  Y hits zero with positive probabili- 
ty for some TeA if 

~ det Cov(Y(T)-Y(S)) - ~  dT dS < ~ .  
A x A  

(3) 

Now if T = ( t l ,  . . . ,tn) , S = ( s l ,  ...,Sn) , Zk :X( tk ) - -X(Sk)  , k :  1, ... n then 

det Cov(Y(T) - Y(S)) 

= det Cov(Z k - Z k_ 1, k = 2, ..., n) 

= I ]  det Cov(Zk--Zk_ 1 1 Z j - Z j _ I ,  2 < j < k )  (4) 
k=2  

where the last equality follows from repeated use of the fact that for any 
Gaussian vectors X, Y, 

det Cov(X, Y) = det Cov(XlY) det Cov(Y). 

Adding further conditioning variables only reduces the magnitude of the terms 
in (4), so that (4) is greater than or equal to 

i ] d e t  Cov(Z k - Z k_ 1 I Zj - Z j_ 1 ,J + k). (5) 
k ~ 2  
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By adding X(s k_ 1), X(tk 1) and X(Sk) to the condit ioning set it follows that  

det Cov(Z k - Z k_ 1 ]Zj - Z j_ 1 ,J 4 = k) (6) 

> det Cov(X(tk) ] X(tj), j * k, X(sl) , 1 = 1, ..., n). 

Now, because s k is the point  closest to t k among those in the condit ioning set, 
and X is locally nondeterministic,  we can use (1) to see that (6) is bounded  
below by a constant  times 

det Cov(X(tk) -- X(sk) ). 

By adding X(sk_l) , X(sk) , and X(tk) to the condit ioning set instead of X(s k_l), 
X(tk-1), and X(Sk) and repeating the argument,  it follows that the left hand  side 
of (6) is greater than a constant  times 

max {det Cov(X( tk) -  X(Sk)), det Cov(X(t k_ 1 ) -  X(Sk-1))}- 

Since, for x k > O, i = 1 , . . . ,  n 

I~I max(xk, xk 1) > 
k =  1 

k = 2  -- -rain{x1, ...,x,} 

it follows that  (4) is bounded  below by a constant  times 

[ l  det Cov(X(tk)-X(sk) ) 
k = l  

rain det Cov(X(tk)-X(Sk) )" 
k =  J., . . . , n  

Since X has locally approximately  independent  coordinates of index e~, 
i =  1 . . . .  , d, it follows that for Irk--Ski sufficiently small and any/3i > e~, there exist 
positive constants K 1 and K 2 such that 

d 

det Cov(X(tk) - X(Sk) ) > K1 I-[ a{(t k -- Sk) 
i = 1  

> K  2 Itk--Skl 2~ 

d 
w h e r e / 3 =  ~ /3~. Thus the left hand side of (3) is bounded  above by a constant  
times ~= 1 

~ Irk-ski -~ 

A • min(ltk-ski-a) d t l '  " ' "  dt ,  dsl  ... ds,.  (7) 
k 

As the integrand is a function only of the increments t k - - S  k and is also 
homogeneous  in these increments, it is enough to consider the set on which 
I t z - s ~ [ <  rain Itk--Skl, and after a polar  change of coordinates it follows that  

2<_k<<n 

(7) is finite if 



436 J. Cuziek 

i n-1 ~t N-1 S - ~ s N - l d s  dt<oo, 
o 

which is true when N + ( n - 1 ) ( N - f i ) > O .  Since fii can be any value less than 
~,, the first part of the theorem is proven. 

To prove the second part (and also Theorem 3) let co~ be a local modulus 
for X~(t). Then the proof of Theorem 2 in [2] is easily adapted to show that 
Y(T) does not hit any fixed point with probability one if 

lim h -"N (~i(h) =0. 
h ~ O  i = 1  

Since t ~' is a local modulus for X~ for all fl~ > ~i, this part of the theorem is also 
established. 
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