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Summary. Uniform consistency and weak convergence is proved of esti- 
mators of the transition probabilities of an arbitrary finite state space 
Markov renewal process, based on n independent and identically distribut- 
ed "right censored" realizations of the process. The approach uses the 
theory of stochastic integrals and counting processes. It is shown how the 
results may be extended to the non-identically distributed case and to 
general censorship under suitable conditions. 

1. Introduction 

A Markov renewal process can often be used to describe the lengths of time 
spent in consecutive stages (not necessarily following a fixed order) of a 
disease, or in the functioning of a machine. In such a situation one might want 
to estimate the distribution functions (so called transition probabilities) which 
describe the probabilistic behaviour of this phenomenon. Lagakos et al. [9] 
(see this paper and its references for applications) proposed certain estimators 
on the basis of maximum likelihood considerations by maximizing the proba- 
bility of n realizations of the process observed on fixed finite time intervals 
over all discrete transition probabilities; they also derived approximate va- 
riances and covariances of the resulting estimators by looking at the Fisher 
information, again assuming discrete distributions. The present paper gives 
rigorous derivations of consistency and weak convergence of these estimators 
as n, the number of (partial) realizations of the process, tends to infinity. We 
make no assumptions on the transition probabilities and also allow quite 
general types of censoring: that is to say, the mechanism through which only 
incomplete realizations of the Markov renewal process are available. 

Let Jo, J1, ... be the consecutive states of a Markov renewal process and let 
X1,  X2,  ... be the sojourn times in these states (we take our notation from Pyke 
[13] apart from two changes which we mention shortly). So J0, J1,-.. are r.v.'s 
taking values in the finite set of states {1, ...,m} for some m~N and X1,  X2,  ... 
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are r.v.'s taking values in (0, oo] with the interpretation that the process starts 

off at time S O = 0 in state J0, and at time S, = ~ X~, after a stay of length X, in 
i = 1  

state J,_ 1, jumps to state J, (at least, if S, < oo). The joint distribution of J0, 
X1, J1, X2, J2,-.. is built up recursively from an initial state distribution 

~k=P(Jo=k)  k < m  (1) 

and transition probabilities (which we want to estimate) 

Q i j ( t ) = P ( X . < t , d . = j l d . _ l = i ) ,  i , j<m,  te[0,  oo], hEN, (2) 

satisfying Qij(O)= 0 by supposing that for each n e N  

P(X~<t ,J ,=j[Jo ,  X 1 , J 1 , . . . , X , _ > J ~ _ I ) = P ( X , < t ,  Jn=jtJ,,_O a.s. (3) 

We shall also be interested in estimating the (possibly defective) distribution 
functions H~, defined by 

H~(t) = P ( X ,  < t l J,_ ~ = i)= ~ Q~j(t), (4) 
J 

Rather than working with the r.v.'s Jo, X~,J1, .., we step over to counting 
processes ~ j  (Aalen [1]) which register the transitions made from state i to 
state j up to time t: 

l~ i j ( t )=~{n>=l:S ,<=t ,J ,_ l=i ,J ,=j}  i,j<=m, t~[0, oo). (5) 

Because the state space is finite, by Pyke [12, Lemma 4.1] these processes 
have sample paths which (almost surely) are finite for all t, zero at time zero, 
integer valued and right continuous with jumps of size + 1 only, these jumps 
furthermore not occurring simultaneously in different processes. Define also 

J 

No(t)=~N~j(t) (denoted N~(t)in Pyke [-12]) 
i 

N ( t ) = ~ j ( t )  (denoted N(t) in Pyke [1.2]) (6) 
l ,d  

and define 
Z (t) = d~,) 

L(t) = t - Ss(t_). (7) 

Pyke [12] calls the process Z, the state occupied at time t + ,  a semi-Markov 
process, and the multivariate process {N.fij<m} a Markov renewal process. 
L(t) is a left continuous version of what is called the backward recurrence time: 
it is the length of time which at time t -  has elapsed since the last jump of the 
Markov renewal process. It plays an important role in the sequel. 

We shall later use the fact that N(t) has finite moments of all orders. For, 
as m is finite, there exists a distribution function F such that F(0)=0 and 
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Qgj(t)<F(t) for all i, j and t. So _N(t) is stochastically dominated by the 
evaluation at time t of a renewal process having recurrence time distribution 
F; and for this process the result is well known. 

The rest of this paper is organized as follows. We shall conclude this 
section with some more notation and some facts from the theory of stochastic 
integrals and counting processes for use in Sect. 2. There we formally define 
our censoring model, by introducing a process K taking the values 0 and 1, 
with the interpretation that the Markov renewal process is "under  obser- 
vation" at time t if and only if K(t) = 1. We assume that K is predictable which 
loosely speaking means that K(t) does not depend on the development of the 
Markov renewal process in [t, oo). It is easy to construct counter examples 
where K does not have this property and the estimators considered here are 
inconsistent. Some further technical assumptions are made, such as a restric- 
tion to "right censorship". Then we derive some important  equalities involving 
the first and second moments of processes counting sojourn times in the 
various states "observed" to be < t  and to be followed by a transition to a 
particular state, or just "observed" to be >t .  In Sect. 3 we give definitions of 
the estimators of Lagakos et al. [91 based on n independent and identically 
distributed censored observations of the Markov renewal process. The esti- 
mators depend on the data through the processes counting observed sojourn 
times. We now prove three theorems: on consistency of the estimators with 
arbitrary Qifs, on asymptotic normality with discrete Qij's, and on weak 
convergence with arbitrary Q~j's. Theorem 2 with its easy proof  (once Theo- 
rem 1 has been established) is included to illustrate Theorem 3, without the 
latter's technicalities (which are themselves largely postponed to Sect. 5 in the 
form of some lemmas). Section 4 discusses these results and shows how the 
assumptions of right censorship and identical distributions may be relaxed. 

Notation. For  a real valued stochastic process Y={Y(t); t~[O, oo)} whose 
sample paths have left hand limits, Y_ is the process defined by 

Y ( 0 ) = 0  
and 

Y ( t ) =  Y( t - ) .  

In dealing with an indexed family of processes, we write e.g. Y~_ for (Y/)_. We 
define I7+ similarly under the obvious conditions. A Y is the process Y -  I1_ and 
d~Y the function t-~CY(t). By ~XdY we denote (with a single exception in 
Theorem 3) the process with sample paths t~  ~ X(s)dY(s), the latter being 

[0, t] 
interpreted as a pathwise Lebesgue-Stieltjes integral, such an interpretation 
being possible in all the cases considered. We write ~ - X d g  for the process 
(~X d Y)_  with sample paths t~  ~ X(s)dY(s). Some miscellaneous notations 

[o,t) 
are ZA for the indicator function of the set A and [1" Il~ for the supremum norm 
on [0, z], also written I[" [[ if there can be no confusion. Unless otherwise stated, 
time variables s, t, z, etc. are always in [ 0 , ~ )  and state variables i,j in 
{1, ...,m}. The a-algebra generated by a family of r.v.'s is denoted by a{-}, 
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while to indicate that generated by a union of a-algebras we use the symbol v .  
Maximum and minimum are denoted by v and A respectively. 

Stoehastie Integrals. We collect together here a few results from Meyer [11]. 
Let (~? ,~P)  be a complete probability space and let { 4 ;  tE[0, oo)} be an 
increasing right continuous family of sub a-algebras of (~ such that -~o contains 
all P-null sets of ~ A process X is predictable if as a function of (t, co) it is 
measurable with respect to the a-algebra on [0, oo)x ~? generated by the left 
continuous adapted processes. A process X possesses a property locally if there 
exists a so called localizing sequence of stopping times {Tn}, Tn]'o% such that 
for each n the process t~)~T,>o}X(t A T,) has this property. 

Martingales are always supposed to have right continuous paths with left 
hand limits. Let M and N be local square integrable martingales and let H and 
K be predictable and locally bounded. There exists a unique predictable 
process <M,N) with paths of locally integrable variation such that MN 
- <M, N)  is a local martingale, zero at time zero. A process H o M is uniquely 
defined by requiring that 

(i) it should be a local square integrable martingale, and 
(ii) (HoM, HoM)=SHZd(M,M). 
Almost everywhere where the path-wise Lebesgue-Stieltjes integral ~ H d M 

is well defined, the paths of HoM and ~HdM coincide. Furthermore 
<HoM, KoN)=~HKd<M,N). We actually make most use of the simple 
corollaries of these results, that if the processes ~HdM and ~KdN exist, if all 
the localizing stopping times above can be taken as constants, and if M(0) 
= N(0)= 0, then the following equalities (between functions on [0, oo)) hold: 

E(~ H d M)=E(~ K d N)=O, (8) 

g(~H dM~KdN)=g(~HKd<M,N>). (9) 

If the word "local" can be dropped above, then the same relationships hold on 
[0, ~ 3 .  

Counting Processes. Let {N~; i = 1, ..., k} be an indexed family of processes with 
right continuous paths, which are zero at time zero, nondecreasing and integer 
valued, and have jumps of size + 1 only, no two processes jumping at the same 
time. Suppose that for all t, 

~ = ~  v ~ {N(s);  i =  1, .. . ,  k, s __<t}. 

Define To=0 and T,=inf{t :  ~Ni(t)>n}, n = 1 , 2  . . . .  , i.e. T~ is the time of the 
i 

n-th jump of {Ni; i=1,  ...,k}. For n > l  let J, be the index of the particular 

process which if T,, is finite jumps at time T,, i.e. Nj,(T,)=Nj,(T,-)+I if 
T,<oo. Define Fni(t ) to be a regular version of P(T,<t and J,=i[.TT,_,), 
te l0 ,  oO), i=l,...,k, and n = l , 2 , . . . ,  and 

Ai(t)= ~ i dF"i(s)k (10) 

,=1 o 1 -  ~ F,i,(s-) 
i ' = 1  
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Jacod [8] shows, for i=  1, ..., k, that M i = N i -  A i is a local martingale, zero at 
time zero, while by Gill [6, Propositions 12 and 13], or Liptser and Shiryaev 
[10, Lemma 18.12], the M~'s are local square integrable martingales with 

(M,,M ) ~(1-AA~)dA,  i=j 
�9 b =(_~AAidA  b i:#j. 

(11) 

The localizing stopping times may be taken as T~, but if gNu(t)< oe for all i 
and t also as constants. 

2. Random Right Censorship of a Markov Renewal Process 

We suppose that it is not possible to observe complete realizations of Jo, X1, 
J1 . . . .  but rather that observations consist of the values taken by the processes 
Z_,  L and A~j(i , j<m) on some random subset of the time axis. Letting K be 
the indicator process of this set, then we say that the (Markov renewal) process 
is under observation at time t if K( t )=  1, when the state at t - ,  how long it has 
been occupied, and a possible transition at that time instant and the new state 
can be observed; otherwise K( t )=0 .  Let (f2, o~,P) be a complete probability 
space on which the process K and the r.v.'s J0, X1, Jz, ... are defined. Then the 
following assumptions about K are made, and with the exception of A3* are 
taken to be in force throughout  the rest of the paper, unless explicitly stated 
otherwise: 

A 1. There exist r.v.'s T,, such that almost surely, 

S,,<=T,<=Sn+l gn and K(t)=~Zisn, r~l(t)Vt. 
n 

A2. There exists a sub a-algebra .~ of ~ containing all P-null sets of .~, 
conditionally independent of a { N/; (s); i, j < m, s ~ [0, co)} given Jo, and such that 
for each n T, (see A1) is a stopping time with respect to the family of a-algebras 
{ ~ ;  t e l0 ,  oe)} defined by 

~ = ~ / v  a {Jo, Xlj(S); i,j<=m, s t [0 ,  t]}. 

A 3 . . C ( ~ { n : r , > s , } ) < ~ .  
A3*. g((#~{n: T,>S,})v+~)< oe for some e>0.  
The first assumption limits us to what might be called "right-censorship". 

A2 implies that the process K is predictable and might be interpreted as 
stating that K(t) does not depend on the development of the Markov renewal 
process in [t, oe) given the past at time t. According to A3 or A3* the number 
of at least partially observed sojourn times is certainly almost surely finite. A 3 
is sufficient for proving consistency of our estimators, and weak convergence 
when the Xi's take on values in N;  for general Q~; we need A3* in proving 
weak convergence. It ought to be possible to weaken A 3* by using perhaps a 
different method of proof: however in practical applications A3 and A3* will 
generally hold. For  suppose that for some fixed finite k and t observation 
always stops after at most k transitions after the time instant t; i.e. s>S~(t)+k 
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K(s)=0.  In this case ~ {n' T,>S,} <N(t)+k which has finite moments of all 
orders. 

We mention briefly some special cases. If K(t)=)~to.rl(t) for some r.v. T 
which is conditionally independent of X1, J1 . . . .  given J0, then A1 and A2 
hold. If m = l ,  and K(t)=Z[o,v~l(L(t)) for t~(Sr_l,Sr], r=l , . . . ,n  and zero on 
(S,, oQ) for a fixed n > 1 and positive r.v.'s Ua,..., U, independent of X, ,  X 2 . . . .  
then all the assumptions hold and we have in fact the usual model of n 
censored observations of X~ . . . . .  X,  with censoring variables U~,..., U,. 

Next we introduce processes which count observed sojourn times: for u >0  
we define 

N/j(u) = :~ {n>=l:J,_l=i,J,=j,X,<=u,K(S,)= l } 
= number of sojourn times in state i observed to take on a 

value < u and to be followed by a jump to state j 

= ~{t:AIVij(t)=l , Z ( t - ) = i ,  L(t)<=u, K( t )=  1}. 

J 

For u > 0 we define 

(12) 

Yi(u) = @ {n> 1 : J , -1  =i ,  X,>u,  K(S,_ 1 + u ) =  1} 

= number of sojourn times in state i observed to take on a value > u 

= 4t: {t: Z( t - )= i ,  L(t)=u, K( t )=  1}, 

~(0)= ~(0+), 

Y(u) = ~ Yi(u) (also for u = 0). 
i 

(13) 

Note that Y(0)= ~ {n: T,,>S,}. 
By A1 and A3, gYi(u) and CNia(U)<SY(O)<oo for all i, j and u. The 

sample paths of the processes N~j are almost surely zero at time zero, right 
continuous with left hand limits, nondecreasing and integer valued; while the 
sample paths of Y~ are nonincreasing, left continuous with right hand limits, 
and nonnegative integer valued. According to the interpretation of K, these 
processes are observable. 

By the counting process results of Sect. 1 applied to {&j; i,j<m}, if we 
define 

' dQu(L(s)) 
Au(t) = 5 o Z{r (Z (s - )) 1 - Hz(L(s) - ) 

~.-) xr dQ~j(u) L.) dQ.,~(u) 
= 2 Z{,}(Jr-1)s +-Z{O(J~._,) ! (14) 

r=l 1 - H i ( u - )  1 - H i ( u - )  
and 

M u = ~ j -  A~j, (15) 

it follows that with respect to {~}  (defined in A2) the Mu's are local square 
integrable martingales, zero at time zero, with 
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(Mi; , Mij ) =~(1 - A AU) dAij 

(Mij, Mu, )=  -~AAi~dAi],, j4:j' 

( M  u, M~,;,) = 0 i ~ i'. (16) 

Here the localizing stopping times may be taken as constants by finiteness of 
?Nu(t) for all i, j and t. 

Now by A 3, it follows that for all i and j 

oo 
~ K(s) d8j(s) <= ? Y(0) < ~ .  
0 

But because K is predictable, 
integral results of Sect. 1, 

(17) 

nonnegative and bounded, by the stochastic 

t t 
f ~ K(s) d ~ ( s ) =  o~ S K(s) d Aij(s ) 

0 0 

So letting t---~ o% 
oo 

E ~ K(s) dAu(s)< oo. 
0 

Next, since 

for all t<oo.  (18) 

? K(s)dMu(s) =g~K(s )2d(Mu,  Mu)(s) 
0 

t 

= ~'~ K (s) (1 - A A u (s)) d A u (s), 
0 

by letting t T 0% we find 

(19) 

(20) 

t ) )2  
l i ra?  ( !K(s)dMu(s  <oo. (21) 
tSac 

But since ~ K d M  u is a martingale w.r.t. {~} this shows that ~ K d M  u is in fact 
a (zero mean) square integrable martingale, clearly with 

(~ K d M u, ~ K d M i,;,) = ~ K d (Mo., M i,j,). (22) 

Next, as in Gill [6, Lemma 3 and Proposition 4] (where similar results are 
obtained in a rather special case), we find that for any bounded measurable 
functions f and f '  on [0, oo) 

and so defining 

oo 

f(u) dN~;(u)= ~ f(L(t)) d~;(r),  (23) 
0 0 

oo oo 

f(u) Y~(u) dQi;(u) - ~ f(L(O)K(t)dAiflt) ,  
o 1 - H i ( u - )  o 

v dQij(u ) 
zi:(v)= x,j(v)- fo ~(u) 1-Hi(u-) 
zi(v) = Y zMv), 

J 

(24) 

(251 
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we see that 

f(L(s)) K(s) dMij(s ) = S f(u) dZij(u), 
0 0 

(26) 

where f(L) is a bounded predictable process (L is left continuous with right 
hand limits and adapted). So by the theory of stochastic integrals, taking 
expectations in (26), 

O = C ~ f ( u ) d Z ,  j ( u ) = ~ f ( u ) d g N i j ( u  )-  f(u)~Yi(u ) dQij(u) 
1 - H i ( u - )  0 0 0 

and similarly (by (9) and (26)) 

(27) 

g (( i  f(u) dZij(u))(i f '  (u)dZi,j,(u))) 

= g ~ f(L(s)) f '  (L(s)) K(s) d <Mij, Mi, j, (s)) 
0 

f(u)f'(u)gYi(u ) 1 l_Hi(u_) ] l _ H i ( u _ )  , 

I ! 1-A~_ Qij(u) dQij'(u) = -  

t O, 

i=i', j=j' 

�9 t �9 : : ~  , t  i=~,J j 

i+i' 

(28) 

(where the last step follows by similar equalities to (24)). 

3. Estimation of Transition Probabilities Qij 

Suppose we are given n independent identically distributed observations of N~j 
and Y~. Let NTj, Yi', NT, Z~'j, Z~' denote the sums of the n realizations of 
Nq, Yi,-.. (see definitions (12), (13) and (25)). We build up estimators of Qij in 
two steps, first estimating H i by H~', defined by 

A N,"(s)) 
/tT(t) = 1 - I~ 1 Y~"(s) ' (29) 

s<=t 

where by convention (which we adopt from now on) 0/0=0.  An equivalent 
implicit definition is 

t dNi.(s ) 
/ t~'(t)=~o(1-/t~'(s-)) yi,(s) (30) 

Now we can define (2~j by 

Q']j(t) = i (1 - / t ~ ( s  - )) dN~(s) 
o Y , " ( s )  " 

(31) 
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Adding over j we see that H i - ~ , ( ~ j  (cf. (4)). These definitions can be 
J 

motivated by the following facts. Putting in (27) f = ZEo,q we find 

t 

C Nij(t)= ~ E Yi(s) (1 - - H i ( s - - ) )  -1  d Qij(s) 
0 

which implies, adding over j, that 

~ Ni(t) = i $ Yi(s) (1 - H i ( s - ) )  -1 dHi(s ). 
0 

So if t satisfies $ Yi(t)>0, which implies that o ~ Y~(s)>0 and 1 - H i ( s - ) > 0  on 
[0, t], we find 

d g N i (S) 
Hi(t) = io (1 - -  Hi(s --)) ,~ yi(s~ ~-  (32) 

(cf. (30)). We shall see in Lemma 1 that such an expression defines H i uniquely. 
Similarly, also supposing ~ Y~(t)>0, we find 

t dENij(s) 
Qij(t) = 5 (1 - Hi(s - ) )  (33) o ~ r,(s) 

(cf. (31)). Of course we can't expect to be able to estimate Qij outside of 
{t: E ~(t)>0}. 

As a referee remarked, one might also be interested in the analogue of the 
well known "Nelson plot" (see e.g. Aalen [1, Sect. 6.1]), namely 
t t 

Yi"(s)-ldN~j(s), which estimates the function ~ (1 -Hi ( s - ) ) - l dQi j ( s ) .  Its pro- 
0 0 

perties can be derived in exactly the same way as those of (~ij a n d / t i  (in fact 
many of the arguments become easier). However we shall not go into the 
details here. 

We first prove consistency, for which we need two lemmas. 

Lemma 1. Let A and B be right continuous nondecreasing functions on [0, c~), 
zero at time zero; suppose A A < I  and A B < I  on [0, o~). Then the unique 
solution Z of 

Z ( s -  ) (dA(s)-dB(s)) (34) z(t)= 1-io 1-AB(s) 

which is locally bounded (i.e. bounded on [0, t] for each t < oo) and right 
continuous with left hand limits is given by 

I ]  (1 - AA(s)). exp ( -At ( t ) )  
Z (t) 

(1 - A B (s)). exp ( - Bc (t))' 
s<=t 

where A~( t )=A(t ) -  ~ AA(s), etc. 
s<=t 
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Proof. The proof given by Liptser and Shiryaev [10, Lemma 18.8] for the case 
B = 0  goes through exactly, replacing their a with ( 1 - A B )  -~, A with A - B ,  
Z(0) with 1, and ~ with ~ ( 1 - A B ) - I ( d A + d B ) .  D 

Corollary. For all t such that 1 -Hi ( t )>O 

(1 dill(S) ~ dHi~(s) 
~<=t[I \ l _ H i ( s _ ) / e x p  (-io 1 - H ~ - - ) )  (36) 1 - H i ( t ) =  

and 

1-/t7(t)1 - Hi(t ) - 1 - i 1 - / t 7 ( s - )  (1 Agi(s)  ~-1 (dX2(s) dHi(s) ] . (37) 
- -  o -1 -H~(s -~  1 - H i ( s - ) ]  \ Y~n(s) 1 - H ~ ( s - ) !  

Proof. Since (34) holds with B =- 0, A = ~ (1 - H i_)- 1 dH i and Z = 1 - H i we can 
substitute these quantities in (35) which gives (36). Thus by (22) and (29), (35) 
holds with A=~(Y~n)-~dN~ n, B = ~ ( 1 - H i _ ) - ~ d H i ,  and Z=(1- I~ '~ ) / (1 -H) ;  
substituting them in (34) gives (37). [7 

Note that if gin(t) >0, if 1 - H i ( t - ) > 0  and if 1 - H i ( t ) = 0  then almost surely 
t t~(t)=Hi(t)= 1; also note that 1 - A H i / ( 1 -  H i _ ) = ( 1 - H i ) ~ ( 1 - H i _ ) .  So we can 
rewrite (37) as 

^" dZ'] 
^n _ ( 3 8 )  H i - H i = ( 1 - H i )  ~ 1 - H  i - n 

1 - H i Yi n n 

on {t: gi"(t)>0 and 1 - H i ( t - ) > 0  }, where Z i was defined in (25) and the 
convention 0 / 0 = 0  may have to be invoked. Next we write, also on {t: gin(t)>0 
and 1 - H i ( t - ) > 0  } 

{ ~ J - Q i J = f ( 1 - H i - )  \ V 1 - H i -  - H i -  

n dZ~j S ( F I - n 7  
= ~ ( 1 - / t : ' _ )  gin n i H ~  

n dZTj Qi2~- 1 - H T -  
=J(1- /~L)  gin n 1 - H i  

1-n7_ n dZ7 
+~ Qi~ l - H i  gin n ' 

n dZ'] 
dQij l Yi" n 

n dZ'  i' 
gi n 17 

(39) 

where we have used (31), (37) and integration by parts. (Adding over j and 
integrating by parts gives (38) again of course !) 

The next lemma and its corollary give conditions under which expressions 
such as the right hand sides of (38) and (39) converge uniformly in t to zero, in 
probability: this will be the consistency result of Theorem 1. 

Lemma 2. Suppose H.  and Z n are processes on [0, z] whose sample paths are 
ahnost surely right continuous with left hand limits, of bounded variation, and 
satisfying Zn(O)=O; 11=1,2 . . . . .  Suppose IIZ.ll= sup IZn(t)l-+vo. If  

t~[0,~] 
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IdH.(t)l is bounded in probability as n~oo, then II~H,,_dZ.ll~l,O and 
(0, 0 
[1.~- H, dZ.[[ ~ 0 ;  if ~ [dH.(t)[ is bounded in probability, then [] ~ H.dZ.[I--~pO. 

(0, ~1 

Proof. We can write 

and 

(~H._dZ. ) ( t )= ~ (Z . ( t ) -Z . (s ) )dH.(s)  
(0, t) 

(~H~dZ.)(t)= ~ ( Z . ( t ) - Z . ( s - ) ) d H . ( s ) .  
(o, t] 

So II~H._dZ.II and I[~-H.dZ.ll<=21[Z.II ~. IdHAt)l-~eO as n~c~  and simi- 
(0, ~) 

larly [l~ H, dZ,  I[ ~p  0. D 

Corollary. Suppose Lemma 2 allows us to conclude that II~H~[)dZ, II~pO, i 
=1, . .. , r, and II ~ H~ZL MZnlI ~ ~ O, i = r + l ,  ... , s. Then 

as D----~ O~D. 

Proof. Apply Lemma 2 first to He, *) and Z, ,  then to H~ 2) and ~ H~ *)dZ., etc. D 

Theorem 1. Let vi=sup{t :  $ Y/(t)>0}. Then as n + ~  

sup ]I]~(t)-Hi(t)l~eO 
te[O,~d 

and 
sup ]QTj(t)-Qij(t)[~pO, 

t~[O, zi] 

unless OYi(zi)=O and AHi(zi) or AQi~(zl)>O , in which case [-O,h] must be 
replaced by [0, ~i) in the corresponding supremum. 

Proof. By the weak law of large numbers and monotonicity arguments it is 
easy to show that [In- 1 Nnj__ o~Nij][ oo ----~p 0 and 

[] ~ n -  1 y/n(1 __ H i _ ) - 1  d Q i j  - ~ E Y/(1 - H i _ ) - 1  dQij[[ ~ _+v O. 

So [In-lZT/p~-~p0 (using (27) with f=Zro.~j). Suppose z_-<zi is such that 
g(Y/(z))>0. Then ~ ]d(n/Yi~+(t)[<n/Yfl(z), bounded in probability as n - ~ ,  

(0, z) 
and so by the corollary to Lemma 2 and (39) ]] Q~-Qij[]~ ~P 0 as n ~ ~ ;  adding 
over j shows ] ] / ]~-Hi] r~e0 .  If ~ Yi(zi)>0 we are ready. Otherwise monoto- 
nicity arguments show that the required results hold with [0, z~) in place of 
[-0, zi]; if AH~(zz)=O or AQij(zi)=O then adding z i to the range of the 
supremum in the corresponding term changes nothing. 

Actually almost sure convergence in the appropriate set up is also easy to 
derive using the strong law of large numbers and Glivenko-Cantelli type 
arguments, and a suitable modification of Lemma 2. 
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Now we turn to proving weak convergence, giving first a result for the case 
that Qij's give weight only to the positive integers. Again we use the repre- 
sentations (38) and (39), and also need Theorem 1. 

Theorem 2. Suppose X1, X 2 ,  . . .  take values in N. Let zi= sup {te N: g Y/(t)> 0} 
! ^tl ( f ieNd3 {oo}). Then {n2(Qij(t)-Qij(t)), n�89 t e N ,  t <zi, i,j<=m} is 

distributed asymptotically as 

t - 1  1 - H i ( s -  ) ( Q i j ( t ) - - Q i j ( S ) )  1 - H i ( s -  ) g~j(s)- F~ Ui(s), 
s= ~ g Y~(s) s= ~ g Y~(s) 1 - H i ( s  ) 

1 - - H i ( s -  ) 1 } 
(1-Hi(t))  Ui(s); t e N ,  t<zi ,  i , j<m , 

s=l 1 - H  i(s) gYi(s) 

where the Uij(s)'s are multivariate normally distributed r.v.'s with expectations 
zero: Ui(s)= ~ Uij(s); and 

J 
( AQIj(s) ) zlQij(s) 

var(gi~(s))=EYi(s) 1 l _ H i ( s _ )  1 = H i ( s _ ) ,  

~ Qij(s) ~1 (2i~,(s) 4= ' 

cov(Uij(s), Uij , (s))=-gYi(s)  l _ H i ( s _  ) 1 - H i ( s -  ) J J ,  

cov(Uij(s), Ui,j,(s'))=O i# i '  or s4=s'. 

Proof. Multiply (38) and (39) by n ~ and rewrite the integrals in the right hand 
sides as sums over s < t  or s < t  as appropriate, with n-�89 replaced with 
n-~AZ~j(s). By Theorem 1 and convergence in probability of n -1 Yi~(s) the 
coefficients of -~ n n A Zij(s ) all converge in probability, while by the central limit 
theorem and (27) and (28) with f=)~s~, f'=z~s,}, 

{n-~AZ~j(s); i , j<m,  ssN}-- ,~{Uij(s);  i , j<m,  s s N }  

and the theorem is proved. 0 

Apart from the fact that the final theorem on weak convergence with 
arbitrary Qij uses A3*, it includes Theorem 2 as a special case. The method of 
proof is essentially the same, though many more technical details are en- 
countered. 

Theorem 3. Suppose A3* holds, and choose zi, i<m, such that ~ Yi(zi)>0. Then 
considered as a random element of 1-I(D[0, zi]) ~+1 (see Billingsley [3]) {n (Qij 

i 

-- Qij), nr Hi): i, j <= m} is asymptotically distributed as 

1 - H  i 1 
f l - H i -g~ d Wi j - Q i J ~ - ll _ H i -Hi -  E~I d Wi + ~ _ Q i j 1 -Hi -  E yi d Wi ' 

( l _H i )  ~ l - H i _  1 dW~; i,j<=m~, 
1 - H  i d~ ) 
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where the WiSs are jointly zero mean Gaussian processes with independent 
muhivariate increments, the sets {Wij; j<m},  i= 1, ..., m, being independent of 
one another; Wi= ~ Wi j ; and 

J 

var (Wij(t)) = S E Y~(s) 1. AQij(s) dQ'iJ(s) 
o 1 - H i ( s - )  1 -Hi ( s - - ) '  

t AQij(s ) dQi;(s ) 
c~ (Wij(t)' Wij'(t))= - S  0 g Yi(s) 1 - H i ( s - )  1 - H i ( s -  ) " 

The integrals with respect to Wij and W i are stochastic integrals in the sense of 
Meyer [11] (the Wij's are square integrable martingales with respect to the 
natural family of a-algebras) or can equivalently be defined by formal in- 
tegration by parts, the resulting expressions having a pathwise definition. 

Proof. We only sketch the proof  here; details are given as three lemmas in 
Sect. 5. The proof  is again based on the representations (38) and (39). Multiply- 
ing these equations by n ~, we note that the expressions on the right hand sides 
consist of integrals, where the integrands are products of fixed functions and 

A n 

the processes 1 - H  i_ and n/Yi n, which, in probability, converge uniformly on 
[0, zl] to 1 - H i _  and (.E Yi) -1. The integrals are taken with respect to n-+ZTj 
and n-~ZT=~n-~Z~j .  Now these processes have finite dimensional distri- 

J 

butions which converge to those of W~j and W~ by using the central limit 
theorem and (27) and (28) with f=Z[o, tl and f'=ZEo.,q. In Lemma 3 in Sect. 5 
we prove tightness of n-~Z~j in D [0, zi], here A3* is used. Actually we need to 
prove a little more, because in the next step of the proof  we want to apply the 
Skorohod-Dudley theorem (see e.g. Pyke [13]) and consider processes (/~' 
- - H i ) '  , (n-ly/n-~Y/) ', and --~ " '  (n Zij) (i,j<=m, n = l , 2  . . . .  ) defined on a new 
probability space with the same joint distribution for each n as their unprimed 
equivalents, and converging almost surely in the supremum norm to 0, 0, and 
W~ respectively (the W~'s also having the same joint distribution as the W~fs). 
The construction is possible with the supremum norm distance rather than the 
Skorohod distance, if the sample paths of each W~j can be taken to be 
continuous with probability one; i.e. if the Qifs are continuous. However, we 
can get round this problem by inserting a time interval at each jump point t of 

• n !2ij, joining up n-~Zij(t - )  to n--~Z~j(t) with a straight line across this 
interval, and proving joint weak convergence of these new processes on the 
resulting extended time interval to the corresponding objects obtained from 
the W~fs, which can be taken to be continuous. Of course we shall need weak 

- -  - - ~  n . convergence of the finite dimensional distributions of n ~ZTj_ and n Z~j, 
which again follows from the central limit theorem and (27) and (28). In 
Lemma 4 we show that the above programme can indeed be carried out. Now 
we are at liberty to apply the Skorohod-Dudley theorem (after which we 
remove the extra intervals again). Finally the corollary to Lemma 5 shows that 
the suprema over [0, z] of the absolute difference between the primed versions 
of n ~ times (38) and (39) and their "obvious"  limits (given in the statement of 
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the theorem above) converge almost surely to zero, where some care is needed 
because these obvious limits cannot be defined directly as pathwise integrals if 
the Q~j's have continuous components. This problem is also resolved in 
Lemma 5. D 

4. Remarks and Generalizations 

Though the limiting covariances of n~((~'i'j - Qij) can be consistently estimated, 
it seems difficult to use them to construct confidence bands. At least this is not 
the case for n~(tl~-Hi); e.g. Gill [6 or 7]. An advantage of the Nelson plot 
mentioned earlier (immediately before Lemma 1) is that confidence bands for 
them are easy to construct, because the corresponding asymptotic process will 
have independent increments; i.e. we will obtain a deterministically time 
transformed Brownian motion. Also Theorem 3 does not give us in general a 
limiting distribution of the estimators of the transition probabilities Qij(oe) of 
the Markov chain Jo,J1 .... associated with the Markov renewal process, 
supposing that estimation should be possible (Theorem 1 gives conditions for 
consistent estimation). 

Theorem 3 specialized to the case m = 1 and assuming a rather special form 
for the censoring process K gives us a weak convergence theorem for the so- 
called product  limit estimator. This result generalizes that obtained by Breslow 
and Crowley [4], for which continuous distributions of both censoring vari- 
ables and the variables of interest were assumed. In Gill [-7] we derive this 
result in a more direct fashion and in more generality. 

We next discuss possible generalizations of our results. Firstly, can we drop 
the restriction A1 to right censorship? In the discrete case this gives no 
problems: we must assume that do Yi(s)< oe for all i and s =  1, 2, ... and realize 
that we can only estimate A Qij(s)/(1- Hi(s-)) for s such that do Yi(s)> 0 (where 
Y~ is still defined by (13)). However  in the general case we have made strong 
use of many of the properties of the processes Y~ as the following list of 
"correct ions"  shows: replace A1 with the assumption that the sample paths of 
Y~ are left continuous with right hand limits; in A2 instead of the stopping 
time condition assume that K is predictable with respect to the given a- 
algebras; and in A3 and A3* replace #{n :  Tn>S,, } with #{n :  K ( s ) = l  for 
some sE(S,, S,+1] }. Theorem 1 then remains true if we replace zi with z i 
=sup{ t :do  ~ IdYi+(s)l<oQ and domins~co,~lYi(s)>O } and modify the con- 

(o,t) 
dition "unless do Yi(zi)=0" accordingly. Theorem 3 remains valid if we choose 
~i such that g ~ IdYi+(t)l<oD, d o min Yi(s)>O, I [n- lYi"-doYi[ l~pO and 

(0. ~) se(O, ~d 

Idg Y/+(t)l<oe, where actually the last two properties are a consequence 
(0, ~) 
of the first one. 

Alternatively, what happens when we drop the assumption of identically 
distributed observations of {N~, Y~}? Consider a triangular array {N~], y k,,; 
i , j<m}, k = l ,  ..., n; n=  1,2, ..., for each (k, n) defined as in Sects. 1 and 2 with 
fixed Q~Ss, but possibly differing initial distributions and "censoring distri- 
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butions",  and independent over k for each n. Define 

k = l  

and 

k=l 

and proceed as in Sect. 3. It is not too difficult to see that if we replace A3 with 
the assumption that  for some fixed C, ~ Ykn(0)< C <  oo for all k and n and 
similarly modify A3*, and define ~ Y~ to be lim n - ~  y n which we assume to 

n ~ o o  

exist and to be left continuous with right hand limits, then Theorems 1 to 3 
still hold. Impor tan t  for applications to medical trials is the fact that even if for 
some states i the transition probabilities vary with n and k, for the other states 
all our results go through. 

Finally, instead of looking at n independent observations, suppose that a 
single Markov  renewal process is, with censoring, observed over an expanding 
sequence of time intervals. As a specific example, consider the model of Sects. 
1 and 2 where we drop assumptions A1 and A3 but do suppose that the Xi's 
take values in N.  In A2 we assume that K is predictable instead of making the 
stopping times assumption. Defining 

Yin(u) = ~ {t <= n: Z ( t - )  = i, L(t) = u, K( t )  = 1} 

and 

A N[}(u) = #e {t <= n: A Nij(t) = 1, Z ( t - )  = i, L(t)  = u, K( t )  = 1} 

(cf. (12) and (13)) it is possible, as in Bather [-2, Lemma  1], to apply Chow [-5, 
Theorem 5] to show that on the set of co for which Y~"(u)~oe as n ~ o o  (for 
fixed i and u), A N~j(u)/Yin(u)~A Q i j ( u ) / ( 1 - H i ( u - ) )  a.s. It is not yet clear to the 
author what can be done for general Q~/s, nor indeed in this special case how 
weak convergence can be proved. 

It should be pointed out that we could not apply the general theory of 
Aalen [1] to derive our results, despite the strong similarity of models. This is 
because of the occurrence of the process L in formula (14), whose saw-tooth 
paths prevent the t ransformation (26) from M i j  to Zij (defined in (15) and (25)) 
from preserving the martingale property of Mij. However,  it preserves enough 
of it (the properties of first and second moments)  for our asymptot ic  results. 

5. Technical Lemmas  Needed for Proof  of  Theorem 3 

-�89 n Lemma 3. For each i, j and z such that E Yi(z)> O, n Z i j  is tight in D [0, z] as 
n ~  oo /f A3* holds. 

Proof.  Let 11 and 12 be the intervals (tl, t] and (t, t2] for some time instants 
0 < t I < t < t 2 < z. Write A k X for ~ dX ,  k = 1 or 2, for a process or function X of 

Ik  
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bounded variation. We show that we can find C > 0 and e e (�89 1) such that 

n - 2 ~ (A 1 z n j  " A 2 z n j )  2 ~ C (A 1 Q i j "  A 2 Q ij) ~, (40) 

which proves tightness in view of Billingsley [-3, Theorem 15.6 and the remarks 
on p. 133]. Now (A~ZTj, AzZnj) is a sum of n independent random variables 
with zero means (by (27) with f = Zi~) each distributed as (A 1 Zij, A2 Zij). So 

FI-2 g(A1znj  �9 A n 2 --i 2 Z i j )  --Yl g ( A 1 Z i j .  A 2 Z i j )  2 

+ ((,,- 1)/~) g(4~ z~j) ~ e ( 4  ~ z, jy  
+2((n-1)/n)(g(A~Z~j. AzZIj)) 2 . (41) 

Replacing f with :g~ and f '  with )Q~ in (28) shows that 

N(A 1 Z~j. A 2 Zu) = 0, (42) 

while replacing f and f '  by )/x~ shows 

'~(AkZij)2=s E Yi (1 

<CAkQij 
< C(AkQuY' 

0u ~ dQu 
12~_  ] 1-Hi_ 

because (1-- Hi_) -1 

for any e ~ (0, 1). 

is bounded on [0, , ]  

(43) 

Note that in the sequel the constant C may be different on each appearance; 
however, it can always be chosen not to depend on I 1 and 12 though it will 
often depend on c~. Substituting (42) and (43) back in (41), we see that to 
establish (40) it remains to suitably bound g(AxZ u �9 AzZu) 2. Now since AkZ~j 
=-AkNij- ~ Y/(1-Hi_)  ldQij, 

Ik 

[AxZij" A2Zi j I<A1N U " A2Nij+(~ Yi(1 - H i _ ) - l  dOij)(~ Y~(1 - H i _ ) - X  dQij) 

+ A1N~j(~ Y~(1-Hi_)-~ dQ~j)+ AENu(~ Y~(1-H~_)-~ dQ,j) 
I2 11 

< C Y(0) 2, (44) 

while expanding (42) we find that for % = 1 - f ix  s(0, 1) 

o~(At N/j. A2 N/j)-t- g(( ~ Y//(1 - H i _ )  -1 dQij). (I Y//(1 - H i _ )  -1 dQij) ) 
11 I2 

= g(A1N~j.( S ~ ( 1 -  H,_)- 1 d Q~j))+ g(42 N~j. (~ Y~(1-/-/i_)-x d Q0) 
I2 I1 

< C. r N~j-Y(0)). A z Ou + C. g (A 2 N u - Y(0)). d x O/j 

C -  r g ( ( A  X N/j) al"  Y(0) 1 +/h). (A 2 Qij) ~' 

+ ~o((A 2 N0~" Y(0y +e~). (A ~ Qo) ~'] 

=< C [(C(A x No))~ (g Y(0) ~ + ~/p,)/~l (A a Q,j)~ 
+ (6 (A ~ Nj))~, (~ y(0) ~ § ~/~)~' (A 1Q0~q 

< C(A1 Qu 42 Qu) ~q (45) 
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if 
g(y(0))x + a/~,) < 0% (46) 

where we have used H61der's inequality and the fact that 

~ AkN~j= ~ g Y~(1-H~_) -1 dQfj. 
Ik  

T h e r e f o r e  f o r  o~ 2 = 1 - ] ~ 2 E ( 0 ,  1), 

(A 1 Zij" A 2 Zij)2 = ~ (] A 1 Zij" A 2 Zij[ ct2" [ A 1 Zij"  A 2 Zij] 1 + f12) 

< C. g([ A 1 Zo.. A 2 Z~j[~'- Y(0) 2+ 2~) (by (44)) 

<=C(g[A~Z~j. A2Z~j[):~(EY(O)2+2/~) ~ (47) 

(by H/51der's inequality) 

C(A1 Qij" A2 Qij) . . . .  

by (44) and (45) if (46) holds and if 

N(y(0)2 + 2/~) < oQ. (48) 

Now by A3* we can choose f l t < ~  such that (46) holds and f i2<~ such that 
(48) holds. For  such a choice cq ~2 = ( 1 -  f l 0 ( 1 -  fiE)>5, g=53 1 and therefore, by 
(47), for sufficiently small c~ > �89 we can find a C < oo such that 

o~(AtZij. AzZij)2<=C(A1Qij'A2Qij) ~ for all tl, t, t2, (49) 

which completes the proof. 

We have now shown that for zi satisfying gY~(zl)>0, 

m 
,~n-~Z?. "̀J, i,j<=m}o~{Wij; i , j<m} on I~D[O, zl] m 

i = 1  

where the limit has been defined in the statement of Theorem 3, while jointly 
A n 

H i - Hi----~O and ^" Q i j - Q i j ~ O  each on D[O, zi]. The next l emma on the 
Skorohod-Dudley construction is only stated and proved for a single process 
n-~Zi~., but the required simultaneous result can obviously be proved in the 
same way. 

- � 8 9  n L e m m a  4. A Skorohod-Dudley construction is possible for n Z~j, n= 1,2, ... 
with respect to the supremum norm on D [-0, zi] where ri satisfies ~ Yi(zl)> O. 

Proof. Write Wn= ~ " n Z~j, n = l , 2  . . . .  ; W=W~j; and z = z  i. Let tl, t2,.., be an 
enumerat ion of the jump points of Q~j in [0, z] and let 6k= A Qij(tk)> 0 for all k, 
~ 6 k < l .  Define v( t )=t+ ~ 6 k and 6 ( t ) = v ( t ) - v ( t - ) = 6  k if t = t  k for some k 
k tk~t 
= 1 , 2  . . . .  and = 0  otherwise. By the comments  above, W ~ - ~ W  as n - ~  in 
D [0, ~3 where W is a zero mean Gaussian process with independent increments 

t 

and variance function var(W(t))=~f(s)dQij(s)=A(t  ) say, for some bounded 
0 

non-negative measurable function f on [0, z]. Let W* be the zero mean 
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Gauss ian  process on [0, v(z)] with independent  increments  and a lmost  surely 
con t inuous  sample paths, such that  var  ( W* (u)) = A (t - ) + f (t) (u - v (t - )) where 
t is the unique solut ion of  v ( t - ) < u < v ( t ) .  (W* exists with these propert ies  
because var(W*(u))  is a con t inuous  nondecreas ing  funct ion of  u.) 

N o w  define, for ue[O,v(z)], n = l ,  2 . . . .  and m = 1 , 2 ,  ..., 0% 

W,(t) if u=v(t) for some t e [0 ,  z] 

W,(tk-- ) if V(tk--)<u<v(tk) for some k > m  

w.*m(u) = u -  v ( t k -  ) 
w . ( t k -  ) �9 ( w . ( t k ) -  )) 

6k 
if V(tk--)<U<V(tk) for some k < m  

and define, also for u~[0,  v(z)] and m-= 1, 2, ..., 0% 

W*(v(t)) if u=v(t) for some t~[0 ,  z] 

W*(V(tk-- ) if V(tk--)<U<V(tk) for some k > m  

Wg,,,(u)=, 
W*(v(tk--))+ u - v ( t k - )  (W*(v(tk)) -- W*(v(tk--))  

5k 

if V(tk--)<U<V(tk) for some k<=m. 

In  words,  for n = 1, 2, W.* is ob ta ined  f rom W, by inserting t ime intervals of  
�9 " � 9  n , m  

length 5 k at t k and jo in ing W,(tk-- ) to Wn(tk) by a s traight  line across this 
interval  if k<m,  but  cont inuing  a hor izon ta l  line f rom Wn(tk-- ) if k>m;  while 
W~, m is ob ta ined  f rom W* in a similar way except tha t  W* has already been 
defined on the extended time interval. We see f rom this cons t ruc t ion  that  * W~,m 
is a r a n d o m  element of  D [0, v(z)] for m < ov while * W~.~ is a r a n d o m  element 
of c [0, 

N o w  fixing m <  Go for the momen t ,  we can prove that  W,.m~eW~,  m *  * as 
n--+ oo in D [0, v(,)].  Fo r  the convergence  of  the finite d imensional  distr ibutions 
is again s t raightforward.  Tightness is p roved  by proving  t ightness on each of  
the 2 m + 1 intervals [0, v(s 1 - ) ] ,  [v(s, - ) ,  v(sl)],  ... , [v(s,,), v(z)] where sl, ..., sm 
is tl . . . .  , t,, put  into increasing order. Tightness on an interval of the form 
[V(Sk-- ), V(Sk) ] follows from convergence in distr ibution of  (W,(s k -  ), W,(Sk) ) as 

n--+ 0% while t ightness on [V(Sk_~) , V(Sk--)] follows f rom tightness of  W, (rede- 
fined in the points  s k as W,(s k- ) )  on [Sk_,,Sk] and the observa t ion  that  the 
modu lus  of  cont inui ty  w'(6) is smaller for W_* on [v(s k ~), V(Sk--)] than  it is n,t~l 

for W,,, on  Is k_ 1, Ski. 
Next  we show that  # I IW, ,* , . -W* 2 ,. , . .~ ~(,)~u as m--+oo uniformly in n 

= 1, 2 . . . .  , oo. For  any n 

II Wn*,m --  Wo*o~ II ~(~)= sup (w,*oo (v (tk)) -- W.*oo (v (t k - )))2 
k>m 

2 (Wn*cw(V(tk))-- W.* ( V ( t k - - ) ) )  2, , n ,  o o  

k>m 

which implies that  

# 1 ] ~ * - V < *  2 < , . . . . . . .  (o=  ~, f(tk) bk --+0 
k>m 
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as m~oo  uniformly in n = l , 2 , . . . , o o .  Since the Skorohod do-distance on 
D [0, v(z)] is smaller than the supremum norm distance, we have now shown 
that in D [0, v(z)] 

W.*,,,--'~W*,. as n--+oo f o r m = l , 2 , . . .  

and W*,m--,~W*,o o as m~oo 

lim limsupP(do(W,*m, W,*oo)>e)=0 for all e>0.  

So by Billingsley [3, Theorem 4.2] 

W,%--,~W*~ as n--oo. 

Since W*,~ has almost surely continuous sample paths we can apply the 
Skorohod-Dudley theorem; and going back to the interval [0, z] we have 
finally constructed W', n=  1,2,... and W' having the same marginal distri- 
butions as W, and W but now defined on a single probability space and 
satisfying I[W'-W'[]~--,0 almost surely as n~oo.  [3 

Lemma 5. Let H,, and Zn, n= 1,2,... and Z be random elements of D[0, z] 
defined on a single probability space (f2, ~, P) and such that with probability 1, 
H, and Z n have paths of bounded variation and Z,(0)--0 for each n = 1, 2,..., (*) 
limsup ~ IdHn(s) l<~.  [ IZ . -Z] l~0 .  and IIH.-hll-- '0 where h is a fixed 

n~o~ (0,~1 

function of bounded variation on [0, z]. Then ]IJH, d Z , - j t l _ d Z I l ~ O  and 
II~U.dZ,-ffhdZi140 almost surely, where j h d Z  is defined as h Z - J Z _  dh and 
jh dZ as h Z - j Z d h  (because Z does not necessarily have paths of bounded 
variation). In fact to conclude II~U,_dZ,-jh_dZll~O or II~-g, dZ, 

- J'- h dZll ~ 0  almost surely we can weaken (*) to limsup j I d H.(s) l < ~ .  
n~oo (0,T) 

I f  furthermore stochastic integrals h_ o Z and h o Z (Meyer [11, definition 
18]) can be defined, then these coincide with jh_ dZ and jhdZ,  respectively. 

Proof. Fix an co~f2 not in the exceptional event of probability zero specified 
above, and denote by H,, Z ,  and Z the functions on [0, v]: H,(co), Z,(co) and 
Z(co). Choose an e>0.  Then there exists a Z* (=Z*(co, e)) such that Z*(0)~-0, 
Z* is of bounded variation, and ]IZ-Z*]I <e. Next we write 

IIj'U,_ dZn-~h  dZll < IIj'H,_ d Z , - ~ U , _  dZ*ll 

+ IljU,_ d Z * - f h _  d/*ll  + IISh_ d Z * - j h _  dZll 

= A n + B , +  C (say). 

Now using the formula ~ X ( s - ) d Y ( s ) =  ~ (Y(t)-Y(s))dX(s)  for functions 
(o.t] (o,t) 

X, Y in D[0, r] of bounded variation and with Y(0)=0, and the fact that 
limsup ~ IdH,(s)]<oo it is easy to show that 

n ~ m  (0,z) 

l imsupAn= ~(1 ) as e$0 
n ~ o o  

and that 
C=~(1)  as s+O. 
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Finally B , <  IlH,-h][ S ]dZ*(s)[~O as n--.oo, so combining these relationships 
10, t] 

we have the required result. Similar arguments establish the other assertions of 
almost sure convergence in norm. 

Now we look at the second part  of the lemma. By Meyer [11, IV n ~ 23], if 
h oZ and hoZ can be defined, hZ=h  oZ+Zoh;  by [11, IV n~ Zoh 
=~Zdh. So h Z - ~ Z d h = h o Z .  Again by [11, IV n~ h Z = h o Z + Z o h  
where according t o l - l l ,  I V n  ~ 29] Z oh=~Z dh. S o h Z - ~ Z  dh=hoZ.  [3 

Corollary. Suppose Lemma 5 allows us to conclude that almost surely 

II~H~OdZn-Sh(OdZII--,O, i=1 ,  . . . , r  
and 

I[H~~ i = r + l ,  . . . ,s.  

f i  [[ h") d Z --*0 ") _ almost surely. f i  H,,_ d Z, , -  ~ h ") 
i = r + l  l[ 

Y 

Then S ~= i H")'. 
i i = r + l  i = 1  

Proof Apply Lemma 5 first to H (1~ and Z,,  then to H(, a) and fH(1)dZn, etc. - - n  j ?1 
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