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Summary. The present paper continues the work by Davidson, Krickeberg, 
Papangelou, and the author on proving, under weakest possible assumptions, 
that a stationary random measure t /o r  a simple point process ~ on the space 
of k-flats in R d is a.s. invariant or a Cox process respectively. The problems 
for ~ and t/ are related by the fact that ~ is Cox whenever the Papangelou 
conditional intensity measure ~ of (a thinning of) ~ is a.s. invariant. In 
particular, r/ is shown to be a.s. invariant, whenever it is absolutely con- 
tinuous with respect to some fixed measure # and has no (so called) outer 
degeneracies. When k = d - 2  > 2, no absolute continuity is needed, provided 
that the first moments exist and that r/ has no inner degeneracies either. 
Under a certain regularity condition on 4, it is further shown that ~ and ~ are 
simultaneously non-degenerate in either sense. 

1. Introduction 

The present paper continues the work by Davidson, Krickenberg, Papangelou, 
and myself (see e.g. [-1, 3, 6, 9-11]) on proving, under weakest possible assump- 
tions, that a stationary random measure q or a simple point process ~ on the 
space of k-flats in R d is a.s. invariant or a Cox process (i.e. a mixture of Poisson 
processes) respectively. A k-fiat is a k-dimensional affine subspace of R d, and the 
notions of stationarity and a.s. invariance are defined with respect to the group 
of translations in R d. (Note that stationary refers to the probability distributions 
whereas invariance refers to the sample realizations.) The problems for ~ and t/ 
are related by the fact that ~ is Cox whenever the Papangelou conditional 
intensity measure [-5] of ~ (or of a homogeneous thinning of 4) is a.s. invariant. 

The most complete results so far have been obtained for k = d - 1 .  In this 
case, a stationary first order (i.e. such that first order moments exist) random 
measure t/ is a.s. invariant, provided that it a.s. gives mass zero to all sets of 
parallel flats [1, 3]. It follows that a stationary first order point process ~ is Cox 
whenever it is regular, in the sense that the conditional intensity of a thinning of 

has the above-mentioned property. 

0044-3119/80/0052/0127/$04.20 



128 O. Kallenberg 

For arbitrary k and d, it was shown in [3, 11] that r/ is a.s. invariant, 
provided that (B r / )~- i  4 #  a.s. for all bounded sets B, where # is the homo- 
geneous measure on the space of directions. (Here z denotes projection onto 
that space, whereas B t/means the restriction of t / to  B.) This result was extended 
in [6] to arbitrary locally invariant measures #. Below we prove (in Theo- 
rem 4.3) that # can be taken to be any measure with no outer degeneracies. By 
this we mean that # assigns zero mass to any set of directions lying in a common 
proper subspace of R e. (As in [3], the direction of a flat is identified with the 
parallel flat going through the origin.) We conjecture that it is enough, at least 
under moment restrictions, that all projections (Bt/)rc -1 have this property 
a.s. 

In [-3] it was further shown that a stationary first order random measure t/is 
a.s. invariant, if a.s. the pairs of directions span R d a.e. ~/2. Note that this is only 
possible when k > d/2. In Theorem 5.1 below, this result is used to prove that, for 
k = d - 2 > 2, t/is a.s. invariant whenever its projections (B t/) re- 1 have a.s. neither 
outer nor inner degeneracies. (A measure # on the space of directions has no 
inner degeneracies, if it assigns mass zero to every set of directions containing a 
common line.) 

When results like this are to be applied to point processes ~, via the 
conditional intensity ~ of a thinning of 3, the need arises to state the non- 
degeneracy conditions on ~ directly in terms of 3. This turns out to be easy, since 
by Theorem 3.3 below, ~ and ~ are simultaneously a.s. non-degenerate in either 
sense, provided that ~ is regular. (In the point process case, non-degeneracy 
means by definition that ~rc -~ should a.s. give finite mass to any set of 
directions lying in a common proper subspace or containing a common line, 
respectively.) Thus, in particular, the above conjecture for t/ implies the cor- 
responding statement for all regular 3. A counterexample in I-4] shows that 
regularity is essential here. 

Our main motivation for the present work is the interpretation of the results 
for k = l  in terms of systems of free particles, (cf. [6]). For  almost periodic 
systems, related results were obtained in w of [7] by entirely different methods. 
In w 6 below we treat the intermediate case, when the motion of the particles is 
free in one direction and otherwise almost periodic. Here absolute continuity 
turns out to hold automatically, so the analogue to our conjecture is true in this 
case. 

As explained in w 6 of [6], results in the stationary case may be used to prove 
statements about the asymptotic behavior of free particle systems. Note in 
particular that Theorem 6.1 in [6] extends to measures # with no outer 
degeneracies, and that the conclusion of the corresponding point process version 
can be strengthened to mean convergence, in the sense of [7], (cf. [8]). No 
further remarks will be made on the non-stationary case. 

As for the organization of the paper, our treatment of the main problem, 
that of proving a.s. invariance or Cox nature of a stationary flat process, will be 
postponed to w167 since we shall first need to discuss the notions of de- 
generacies of a fixed measure on the space of flats (w and of a discrete flat 
process and its conditional intensity (w We conclude this introduction by 
introducing some general terminology and notation. 
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Let M~ be the space of k-flats in R e, and let ~ be the subspace of k-flats 
through the origin, (i.e. of directions of k-flats). Write M e = U M~ and ~b e = Q) ~b~. 

k k 
If u~M e with dim u > k (dim being short for dimensionality), let M(k ") and ~") be 
the classes of flats in M~ and ~b~ respectively which lie in u. For any set A c R  e, 
let Lf(A) denote the linear subspace spanned by A. 

Given any ueM d, let ~, and Pu denote the corresponding intersection and 
projection operators. More precisely, let a ,x  be the intersection uc~x, and let 
Pu x be the orthogonal projection of x onto u. It is useful to observe that, when 
UEI~I~d 1 , a u and p, are dual in the following sense. Let 2sq~_ k be the dual to (or 
orthogonal complement of) x~b~, and let (2)u denote duality with respect to u. 
Then (au"~)u = p, 2. To see this, show that p, 2 L a  u x ( •  denoting orthogonality), 
e.g. by noting that p, 2 = a, S (2 ,  fi), and check that dim p, 2 + dim au x = d - 1. As 
in [6], (a,x, rex) is a useful parametrization in R 2(d-1) of lines xEM] with rcxCu. 

In M~ we introduce the natural geometric topology, according to which 
x , ,~x  iff~x~---,~x and moreover a ,x , -~a ,x  for every ueM~_ k intersecting x at 
a point. This clearly makes M~ locally compact and second countable (lcsc). 
(Note in particular that a set B c M S is bounded i.e. has compact closure iff all 
flats in B go through some fixed bounded region of Rd.) Thus the theory [2] of 
random measures on topological spaces applies to M~. 

We shall adhere to the general terminology and notation of [2]. Thus we 
mean by ~(S) the class of bounded Borel sets in S, and by ~ (S )  the class of 
continuous functions S--.R+ with bounded support. By gJl(S) and 9t(S) we 
denote the spaces of R§ and Z+-valued Radon measures on S, being endowed 
with their respective vague topologies. The class of diffuse measures in 93l(S) is 
denoted by 9Jte(S). For measures # and v, # •  means that # and v are mutually 
singular, and i f f  is a function, # fdeno tes  the #-integral o f f  whereas f #  denotes 
the measure ~ p  with #-density f The indicator function of a set B = { . }  is 
denoted by 1B or 1 {'}, and we shall prefer to write B# in place of 1B#. If #B > 0, 
#(A]B) will denote the ratio #(A c~B)/#B. If p and v are purely atomic, we define 
# . v = ~ # { s }  v{s} ~,, where 6 s is the Dirac measure at s, i.e. 6sB=IB(s ). The 
letter 2 is reserved for Lebesgue measure on Euclidean spaces and for uniform 
measures on the spaces q~. 

All random elements are defined on some common measurable space f2 
= {co} with probability measure P and expectation = integration E. In particular, 
random measures and point processes on S are random elements in 991(S) and 
gl(S) respectively. A point process ~ is said to be simple if all its atoms have size 
1. A homogeneous thinning (p-thinning) of ~. is obtained by deleting the atoms 
independently with a fixed probability 1 - p .  For  the definition and basic 
properties of conditional intensities, we refer to [5]. 

2. Degeneracies of Random Flats 

In this section we shall consider the degeneracies of a fixed measure #egJl(M~) 
or #cgJ~(~b~). To simplify notations, let us identify with a flat ueM~ the set of all 
flats of arbitrary dimensionality which lie in u or contain u. We shall say that # 
has a degeneracy of order m, if # u > 0  for some u~M~. The degeneracy is called 
outer if m > k and inner if m < k. 
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Note that outer and inner degeneracies are dual in the following sense. Let 
#sOJl(~), and let /~SgJ~(~-k) be the dual measure induced by the mapping 
x- ,2 .  Then # u > 0  iff/~fi>0, so each outer (inner) degeneracy of ~t corresponds 
uniquely to an inner (outer) degeneracy of/~. 

We shall further use the fact that a measure ~ g J l ( ~ )  may be decomposed 
uniquely according to its outer (or inner) degeneracies. To this aim, let m be the 
minimum order of outer degeneracy, and let ul, u 2 ~  ~ be distinct degeneracy 
flats. Then ulc~u 2 cannot be an outer degeneracy flat because of the minimality 
of m, So the sets Aj= {xeq~: x cuj} are disjoint a.e./~. Thus there can be at most 
countably many degeneracy flats u F ~  ~ with corresponding #-components #j 
=A~t.  Since the degeneracies of #-22#j  have clearly order >m, the argument 
may be continued recursively, leading ultimately to the outer degeneracy decom- 

d 
position #= ~ ~tmj .  Here each #mj is clearly confined to some um~45 ~ and 

m=k j 
has no outer degeneracies of lower order. Note that the #,,j and umj are unique 
apart from their order. We shall refer to the latter as the minimal outer 
degeneracy flats of /1. A similar argument (or duality) leads to the inner 
degenercy decomposition and to the family of maximal inner degeneracy flats. 

In several proofs of the subsequent sections, we shall proceed by a successive 
reduction of dimensionality, where we turn in each step from the original flats to 
their intersections with a suitable fixed flat ueM~_l. A basic role will then be 
played by the following lemma. Here the phrase "almost every u" refers to the 
homogeneous measures on Me e_ 1 and ~e e_ 1. 

Lemma2.1. Let 1 <=k, re<d, and let #egJl(Mak) be such that # v = 0  for all v~M~. 
Then almost every u~M~_ 1 is such that 6uX~Mk_l,(U) xeM~ a.e. #, and moreover 
~cr~-lv=0 for all v~M(~i .  For 2<k, re<d, this remains true with each M 
replaced by ~. 

Proof. Notice first that the M-version of the lemma for some triple (d, k, m) 
follows from the ~-version for ( d + l ,  k + l ,  re+l) .  To see this, imbed R e into 
R d+l as a flat w e M e e + l \ ~  +1, and make the corresponding imbedding of M d 
into M e+t. Then the operator ~ in R d+l defines a 1 - 1  correspondence 
between M e and ~d+ ~\~(~,~ (the inverse of ~ being aw), and it is easily verified 
that both the hypothesis and the conclusion of the lemma are simultaneously 
fulfilled for a measure #eOY~(M~) and its image -1 ~+ / I S  EOJI(~+~). It is enough to 
consider the case #~9)1(~). 

In the case m<k, let v0, v~, ... be the maximal degeneracy flats of ~t, and let 
#o, ~h, ..- be the corresponding components of #. By assumption, dim v~<m for 
all j, and we may assume that dim vj> 1 i f f j>  1. Since for any u ~ _ ~  and ve~  ~, 
dimp, v=dimv iff fiSv, we get d i m p , ~ j = d i m f ~ > d - m  for almost every u and 
for j > 1. Now/~  is non-degenerate on ~ by definition, so it follows tha t /~  p~- ~ is 
non-degenerate on p, ~ for any such u and j. Letting ~_,~_,,=',("~ ~ be arbitrary and 
noting that dim (~),-  d -  m, we thus obtain 

#j O'u- 1V = (#j O'u- 1)u (~))u=~jpul(~))u-~-O, j > l ,  

and this remains true for j = 0 since ~o cry- ~ is non-degenerate on u. 
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In the case k<=m<d (the case m=d is trivial), a probabilistic argument is 
convenient, so assume without loss that # is a probability measure, and let ~ be 
a random flat with distribution/~. Further suppose that ~ is a random line in ~ at 
unit distance from the origin but otherwise uniformly distributed. Writing ~ for 
the point where ~ touches the unit sphere, it is seen from the hypothesis that 

P{~cv}<P{7~v}=EP[Tevl~]=P{~cv}=O, veqs~. (~) 

We further introduce an independent and uniformly distributed random flat 
r/in ~ _ ~ ,  and put c~--~c~q. Then ~ is a.s. a point. To see this, let t /be generated 
by d -  1 independent and uniformly distributed random lines te~, ..., te e_ t in ~b~, 
and note that ~ ,  tet, ..., tee- t are a.s. linearly independent. It follows in particu- 
lar that ~r  and hence that d im(~c~t / )=k-1  a.s. 

Now suppose that (~ ,  ~t), ( ~ ,  ~2),--. are independent duplicates of (~, ~), 
independent of r/, and put ~j= ~jc~t/. We shall prove by induction in n = 1, ..., m 
that dims . . . .  , a , )=n  a.s. For n=m, it will then follow by Fubini's theorem 
that, for almost every ueq~_a, 

dim 5#(a= ~,, ..., % {m)> dim 2,r ~D ...,%{m)=m a.s., 

and this will clearly imply that a, ~ r v a.s. for every v e ~ )  ,, as asserted. 
The induction hypothesis is automatically true for n = l  since el=t=0. It 

remains to prove it for arbitrary fixed ne{2, ..., m}, given that it is true for n -  1. 
Under this assumption, ~1, ..., % are a.s. points satisfying 

dim ~(~1 , - . . ,  c~,_ 0 =  dim s . . . .  , ~n-2, O ~ . ) = H -  1. (2) 

By Fubini's theorem, almost all t/, ~,, ..., ~,_ 1 are such that (2) holds a.s. for ~,. 
Fix r/, ~1, ..., ~_~ accordingly, and let fi denote the orthogonal complement of 
s ..., a ,_ l )  in t/. Since ~,_, Cr/, almost every a',_le~n_l\{a~_~} is such that 
q ' = S ( a  1 , . . . , a ._2 ,a ' . _ l , f l )  has dimension d - 1  and intersects ~a . . . .  , ~,-1 at 
unique points cq, ..., c~,_2, a' , and ~, at an a.s. unique point ~',. By the choice 
of a',_ 1, we get from (2) 

so by (1) we have a.s. 

dim ~ca(e 1 . . . .  , ~,_, ,  e~_l)=n <m, (3) 

_~, r ~ (cq ,  ..., c~,_ 1, r (4) 

Fix ~ accordingly, and such that moreover ~, intersects t /and t/' uniquely at a n 
and c(~ respectively. 

Assume that ~t, .-., ~, have linearly dependent intersections with both q and 
~f. Then by (3) 

%es "-., % - i )  and 0{'n~'%~ " " ,  an- -2 ,  ~'n--1)' (5) 

If ~, = c(,, we get by (5) and (3) 

O{n~(O~ 1 . . . .  , O~n_ 1) (-'5 o~((X 1 . . . .  , OCn-2, ~'n_ I)-~- ,~((Xl  . . . .  , O~n--2), 
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which is excluded by (2). On the other hand, c~, + a', implies by (5) that 

$ ~ 2,e(c~,, :~',)~ 2#(~1, ..., ~,-1, c~',_ 0, 

contrary to (4). This contradiction implies by Fubini's theorem that, for almost 
every choice of {,, . . . ,~, ,  there is at least one flat u e ~ _ ,  such that the 
intersections % {~, ..., % ~, are unique and linearly independent. 

Fix ~l . . . .  , ~, with this property, and choose a ~ R  e and b~Ra\{0} such that 
~ - { a i +  tb~; teR}. Let further reRe\{0} be arbitrary. If rb~ 4= 0 for all i, then the 
{~ will intersect the flat u = {xeRe; rx = 0} uniquely at the points a i -  b~(rai)/(rb~), 
so there are unique linearly independent intersections whenever the (d x n)- 
matrix 

(rbi)(a~(rbi)-bi(ral) ), i= 1, ..., n, (6) 

has rank n, i.e. when at least one of the (dn)(n x n)-determinants of (6)is non- 

zero. Now this has just been shown to occur for at least one r, and since a 
polynomial in the components of r is a.e. non-zero unless it vanishes identically, 
the intersections are indeed unique and linearly independent for almost every u. 
By Fubini's theorem, this completes the induction step, and hence concludes the 
proof. [] 

2. Degeneracies of Flat Processes 

In this section we consider the degeneracies in the space of directions of 
stationary random measures ~/on M~, and in the particular case of simple point 
processes ~, we discuss the relationship between the degeneracies of ~ and those 
of the conditional intensity of a homogeneous thinning of 4. Our key result is 
the following 0 - ~  law for the case when r/ a.s. gives mass zero to any set of 
parallel flats. 

Theorem 3.1. Let t l be a stationary first order random measure on M~ such that a.s. 
q~-a v=0,  vs~ek. Then a . s .  ~]7~ - 1  U=0 or ~ for all u~q~]., m<d. 

Proof. We shall only consider the case re>k, the argument for m < k  being 
similar. Let C1, C2, ...e~(Mek) be a disjoint partition of M~, and define the 
random measure C1 on r by 

~ 1 = y 2 - .  (c ,~)  ~-1 
. 1 +17 C, 

Next choose a measurable mapping g,: ~ x ~ ] - ~  such that gl(v, ,) is an 
isomorphism of ~] onto ~]~) for each v e ~ .  Letting )~ be an invariant measure 
on ~], it follows that {2=(~1 x2)gT* is a random measure on (b{, and hence 
that ((z) m is a random measure on (~)~. 

For fixed coeQ, let m be the smallest integer > k  such that ~ /~-*u+0 for 
some uE(b~. Then x 1 . . . .  , x=e(b~ are clearly linearly independent a.e. ((2)", and 
in that case they span a flat ue(b~ which is a measurable function g2 of 
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(xl, ..., Xm). Thus ~3 = ( ~ 2 ) m g 2  -1 is a random measure on ~b~, and it is easily seen 
that (3{u}>0 iff qrc -~ u#0 .  By Lemma 2.3 in [2], it follows in particular that 
the integer m above as well as the corresponding sequence of degeneracy flats 
u ~  are measurable. We may therefore redefine m to be the smallest integer 
>k  such that, with positive probability, t/~r -~ u ~ 0  for some ue~em . 

For x~M~ and u~b~, put g3(x, u)=x if ~ x c u  and let g3 remain undefined 
otherwise. Note that both g3 itself and the induced mapping g~-l: 9)l(M~ 

d d x ~m)--+ TJI(Mk) are measurable. Applying g~ 1 to the pairs (t/, 6~.), where {O,} is 
a measurable enumeration of the atom positions of ~3 (cf. Lemma 2.3 in 1-21), we 
obtain a sequence {t/,} of random measures on M~, representing the restrictions 
of t/ to the re-inverses of the degeneracy flats in ~ .  Note that the t/, are a.s. 
mutually singular by the choice of m, and hence that ~ t/,<r/. From {t/,} we 
further define the random measures t/', on M~ by t/' = r/, if t/, M~ < ~ ,  and r/' = 0 
otherwise. 

By Lemma 2.1 and Fubini's theorem, we may fix a flat v~M~_k+ ~ such that 
a.s., a~u=_u~WM~l ") for u~M~ a.e. t/, and such that moreover ~a~ -1 rc-~{x}=0 
for all x ~ ]  ~). The mapping a~ being measurable, we may define random 
measures ~', on M] ~) by ~',=t/',o-s -~. Then ~',2 will automatically be random 
measures o n  (M~lV)) 2. For each pair Xa, xz~M] ~ with ~x~ #~x2 ,  there is clearly a 
unique point g4(x~, x2) at equal minimum distance from x I and x2, and since g4 

~t2 --1 is measurable, we may define random measures Z, on v by Z, = , g4 �9 To every 
bounded measure # on v we may next associate measurably a point g~(#)~v, 
such that translations of # yield the corresponding translations of gs(#), and 
then define the random elements 7, in v by 7,=gs(z,) .  (There are many ways to 
define gs, one being based on the medians in d - k +  1 directions.) 

For each x~M] ~ and yev, let g6(x, y) be the point on x which is closest to y, 
and note that g6 is measurable. Then so is gT(x, y)=(r~x, g6(x, y)). Moreover, ~', 
x 6~, is for each n a random measure on M(~~ v, so we may define a random 
measure ~ on q~]o x v by ~ = ~ (~, x 6 )  g7 ~. Let us further put [ ' =  ~ ~', and note 

that ( , = ~ g g l  where gs(x, y)=x+y,  xEq~] ~), 
since our construction doesn't depend on 
system, and that [' is of first order, since 
bounded and moreover ~ t/', < t/. 

y6v. Note also that ( is v-stationary, 
any particular choice of coordinate 
the av-inverses of bounded sets are 

Let weq~)_k be arbitrary, and divide v into congruent slices S j, j~Z, parallel 
to w. Let ~cj be the restriction of ~ to ~(~)xSj, and note that each ~cj is w- 
stationary, and further that the tcj have the same distribution for all j apart from 
a translation. These properties will clearly be carried over to the random 
measures ~cjg~ 1, and so it follows by Lemma 2.2 in [3] that the latter have the 
same intensity measure. Hence E ( ' B = ~  E~cjg~lB is ei ther  0 or oo for e v e r y  
B~N(M]~ and since the latter possibility is excluded, we have in fact ~ '=0 a.s. 
By the definition of ~', this means that rl', = 0 a.s. for all n, i.e. that tl,, M~ = 0 or oo 
a.s. This proves the assertion for degeneracy flats of dimension =<m. Since r/ 
- ~ q ,  is stationary, and since a.s. ( t / - ~ t / , ) r c - l u = 0  for all ue0~ ,  we may 
proceed recursively to complete the proof. (In fact, we have proved the slightly 
stronger assertion that the degeneracy components of t /are  a.s. infinite.) [] 
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Our next aim is to analyse the degeneracies of point processes 4 on M~. Note 
that Theorem 3.1 doesn't apply directly, since ~ is degenerate in the sense of that 
theorem at all flats containing or contained in the directions at the atoms of 4. 
Instead, we shall apply the theorem to the conditional intensity ~ of ~ (or of a 
thinning of ~.). This requires 4 to be regular, in the sense that the hypothesis of 
the theorem is fulfilled for ~, i.e. that a.s. ~ - ~ v = 0  for all v~O~. In order to 
check this condition, it is enough to look at the conditional behavior of ~ at the 
directions of its atoms. The precise statement is given by the following lemma by 
taking S = M~, S' = O~, and f = 7z. 

Lemma 3.2. Let S and S' be lcsc, let f:  S--~S' be measurable, and let B s ~ ( S )  be 
fixed. Suppose that 4 and ~ '= (B~) f  -1 are simple point processes on S and S', and 
let ~ and ~' be the conditional intensities o]" 4 and (K 4, 4') respectively. Then 
(B~)f  -1 is a.s. diffuse iff 4' _1_~' a.s. 

As in [5], we define for any simple point process ~ on some lcsc S the 
condition (S): P [-~B = 0 1 K  ~] > 0 a.s. on {~B = 1}, Be~(S).  

Proof. Assume without loss that B = S. Since (Z) is violated simultaneously for 
and ~', and since neither condition is true in that case, we may assume that (Z) is 
fulfilled. Let us first consider the case when f is the identity mapping on S. If 
P {~r >0,  there exists by Theorem 2.1 in [5] some fixed set I~N  such that 

P {E[I~; 41 = 11 I ~ ] r  > 0. 

By Lemma 2.3 in [2], there is then some IC4-measurable random element ~r in i 
such that 

P{P[~{c~}=41=l  IIC~]>0} >0. 

By another application of Theorem 2.1 in [5], we then obtain 

P{r r  r  P [ r 1 6 2  [ P 4 ] > 0 }  

= E [ P [ ~ { a } = ~ I = l  [ I ~ ] ;  P [ ~ { a } = 4 I = 1 1 1 ~ ] > 0 3 > 0 ,  

as desired. For general f, we may apply this result to both ~ and 3' and use 
Theorem 3.3 in [5] to see that 4 ' / ~ '  a.s. iff ~'~gJle, i.e. iff ~/f- ~ =~/'~gJ~ e a.s., and 
finally iff ~f-~eg) l  d a.s., where ~/ and t/' are related to ~ and ~' as in w of 
[5]. [ ]  

Since a point process on M~ is always degenerate in the sense of Theorem 
3.1, we shall modify the definition in this case and allow a small number of flats 
with directions in (or through) a common linear subspace of R d. More precisely, 
when 1 <m<_d-1,  we allow at most Lm-kL + 1 flats with directions in/through a 
subspace of dimension m. (For k = d - 1  and r e = l ,  this coincides with 
Krickeberg's definition of degeneracy in [9].) Note that, in case of more than 
[ m - k l +  1 flats with this property, one of the directions must lie in the proper 
subspace spanned by the others, or must contain the intersection of the others, 
respectively. With this modified definition of degeneracy, we get for regular 
point processes ~ a direct counterpart to Theorem 3.1. Moreover, ~ and the 
conditional intensity of a homogeneous thinning [2] of 4 are simultaneously a.s. 
degenerate. 
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Theorem 3.3. Fix pG(O, 1). Let ~ be a simple stationary first order point process on 
Mdk, and let r 1 be the conditional intensity of a p-thinning ~' of ~. Suppose that 
q~z-av=0, vGcb d, a.s. Then a.s., for every ug ly ,  m<__d, ~ z - l u < o o  implies 
~r:-:u<=lm-k[+ l and r/7c-1 u=0.  Conversely, for fixed m<=d, ~7c-:u=O for all 
uGq~ a.s. implies s  u < oo for all uGq~ a.s. 

Proof. Assume throughout that re>k,  the case m < k  being similar. Our proof 
will proceed in four steps. For  the needs in steps 2 and 3, introduce a countable 
DC-ring [2] q_/c~(M~), and note that all a.s. relations in [5] may be assumed 
to hold simultaneously for sets in ql. 

1. We shall first prove that, with probability one, ~lTr-: u =  o0 for a minimal 
flat u E ~ ,  k<_m<d, implies that ~ - 1  u = 0  or oo. For this purpose, divide ~/as 
above into outer degeneracy components rh, t/2, ..., and for each nGN, put r/', 
= G  if 0 < ( r c - a u < o o  for the corresponding degeneracy fiat u E ~ ,  and other- 
wise q', = 0. Let 4, be the corresponding restriction of ~. Next choose a fixed flat 
vcm~_k+ 1 such that a.s. ~u=uc~vGM~ ~) for uGM~ a.e. ~+q,  and moreover 
r/or; -I ~r-~ {x} = 0  for all xG~b((), (cf. Lemma 2.1). Put ~,= ~ , ~ '  - :  and ( ,=r / ,  c % '  ' -~ 

For  any/~= ~. 6~ e~II(M] ~)) with reN and any xeM] ~) with ~rx+~ya, ..., ~ry~, 
j = l  

let z: . . . .  , z~ be the points on x which are closest to Yl, ..., Y~, and let g:(x, p) be 
the mean value of z~, ..., z~. Note that g~ is jointly measurable. Thus t/, x 6~. is a 
random measure on the subset of M(a ~) x gt(M] ")) where gl is defined, and we may 
further define a random measure ( on ~ x v by ( = ~  (G x 6~.)g2 ~ where 

g2 (x, p) ~ (1:x, g a (x, p)). As in the proof of Theorem 3.1, ~' =- ~ ~', = ~ g~-: where 
g~(x, y)=x+y,  xe~]  ~), y~v, and moreover ( is v-stationary whereas ~' is of first 
order. Arguing as before, we may conclude that ( ' = 0  a.s. Hence r / rc - lu=oo  
with u minimal implies that ~?z-au=0 or oo, which in turn trivially implies 
~ ' r c - l u = 0  or oo. 

2. Next we show that, if there exists with positive probability some flat 
u~cb~, re>k, with rp : - :  u=  oo but ~'rc -1 u=0,  there is with positive probability 
some flat u~q~ with the same m such that r-~lm-k[+l<~'~r-au<oo.  To see 
this, fix coef2 and a u with t / r~- :u=oo and ~ ' ~ - : u = 0 ,  and choose B ~  with 
~ 'B=0  and q(Bc~z-~u)>q -r-a, where q = l - p .  Using Theorem 3.1 in [5] and 
the fact that B~' remains a p-thinning of B~ even after conditioning on B ~ ~', we 
obtain 

P[~B<_rIB~']<q -~ E[q~BIB~']=q -~ P[~'B=OlBC~']<=q-~(rlB)-~<q + 2. 

and moreover 
P [ ~ ' B > r  I ~B>r, BC ~']>=p r+:, 

SO 

P[~'B>rIBC~']=P[~B>rlBC~ ']p[~'B>rl~B>r,Bc~']>=(1-q)pr+l=p ~ (1) 

For  given BC~ ', we may consider u as fixed, and we may choose a sequence 
B1,  B 2 . . . .  Go-//' such that B~B.J.(Bc~rc-lu). Using the consistency relation (6) in 
w 2 of [-5] and noting that (1) remains valid with B replaced by B., we get 

P[~'Bn>r[BC~']>=P[-~'B=~'Bn>r[BC~ '] 
=P[~'B,>rJB~ ~'] P[~'(B\B,)=O[BC~']>p ~+ 2 P[-('B=OIBC~']. 
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Letting n---, oo and using the thinning nature of 4', we hence obtain 

P[r<~'n-lu< oQ IBC4']=P[~_'(Bc~n-lu)>rlBC~']>p r+2 P[4'B=OIBC~']>O. 

But ~//being countable, there is then some fixed Bed//with 

P{P[ U {r<~'~-lu<cc}lBC4']>O} >0, 
k..~ 

so 

P ~ { r < 4 ' ~ - l u < c ~ } > 0 ,  (2) 

as asserted. 
3. Our next aim is to show that, if (2) holds for some m > k, there exists with 

positive probabili ty some us(b~ with r/~z -1 u =  oo and ~ '~-1 u=0 .  To see this, fix 
co and u such that r < 4' ~ -  ~ u < o% and let x~, ..., xr, be the a tom positions of 4' 
in ~ - l u .  Assume without loss that u=Lf(~xz .... ,~zx/). Since r'>r, already 
r ' - I  of the flats xj, say x2, . . . ,xr , ,  have this property, which means that ~zx 1 
c ~ ( ~ x  2 . . . .  , rcxr,). Since 4' is simple, there exists some set Bs~ such that x ~ B  
and 4 ' B =  1. The class ~//being countable, there must exist some fixed set B ~  
such that, if u~, u z, ... denote the random flats in (b~ which are spanned by at 
most  finitely many flats rex with xr and 4'{x} = 1, we have 

P ~ {~ 'B= 4'(Br-~u -1 u,)-- 1} >0.  
n 

(The measurability of this set may be established as in the proof  of Theorem 3.1.) 
Since there are at most  countably many fiats u,, we get the corresponding 
relation for one of them, say for u, i.e. 

P {~ 'B = 4'(B c~ ~ -1  . ) =  1} > 0. O) 

(If {u,} = ~, take u to be a fixed fiat with r u -  1 u < oo.) 
By  the definition of conditional probabilities, the event in (3) implies a.s. that 

P[4'B=4'(B~zc-lu)=IIBC4']>O, and hence by (22) that P [ 4 ' B = 0 1 B ~ ' ] > 0 .  
Thus by (3) 

P{PE4 'B=O]  W~']  >0,  PE4'B=4'(B~rc-lu)=l I BC4'] >0} >0,  

so by Theorem 3.1 above and Theorem 3.1 in [51, 

P {~/7:- 1 u = oe} > P {r/(B c~ ~ -  1 u) >0} 

> P { ~ ' B = 0 ,  P E4 ' B = 0IB r  >0,  PE~'B=4'(B~rc-lu)=l I B ~ ' ]  >0} 

= E [ P [ r  P[4'B=4'(Br-~u-lu)=l[BC~']>O]>O. 

Since 4' ~z- ~ u < o~ holds by construction, this yields the desired result. 
4. The degeneracy flat u for t] constructed above cannot be minimal, since 

the relations 0 < 4' 7~- t u < ~ would then contradict the first part  of the proof, so 
there must exist with positive probabili ty some flat u s ~ ,  with k=<m' < m  such 
that ~7: -~u=o~ and ~ '7 : -~u=0 .  We may thus apply the second part  of the 
proof  to show that (2) remains true with m replaced by some smaller number. 
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Continuing recursively, we ultimately get a contradiction to the hypothesis on t/. 
This disproves (2) and shows at the same time that r l~- lu  = 0o and ~'7c-lu = 0 
are incompatible. Combining this with the first part of the proof, it is seen that 
t / r c - l u=oe  a.s. implies ~ - l u > ~ ' ~ - l u = ~ .  Since (2) is equivalent to the 
corresponding relation for ~, the proof of the first assertion is hence complete. 
To establish the second assertion, we may proceed as in the third part of the 
proof, except that ~'rc-~u is now allowed to be infinite. [] 

Just as in the diffuse case, we get unique degeneracy decompositions of ~: 

Corollary 3.4. Let ~ be such as in Theorem 3.2. Then every ~-atom belongs to 
unique minimal outer and maximal inner degeneracy flats. 

Proof Suppose that ~ has with positive probability some atom position x such 
that nx belongs to two different minimal outer degeneracy flats. Then the same 
thing is true for ~'. Arguing as in the third part of the preceding proof, it follows 
that, with positive probability, ~' has two different degeneracy flats such that 
their intersection u satisfies r / rc - lu=  c~ and ('~z -~ u <  oo. But this contradicts 
Theorem 3.3. The proof for inner degeneracies is similar. [] 

4. The Absolutely Continuous Case 

From here on, we shall mainly be concerned with the basic problem of proving 
a.s. invariance or Cox structure of a stationary diffuse random measure r/ or 
simple point process ~ respectively on M~. By Theorem 5.1 in [5], every result of 
this type for t/will immediately yield a corresponding result for ~. For  the sake 
of brevity, we shall usually omit the latter. 

The present section is devoted to the case when the projections of t /onto  ~ 
are a.s. absolutely continuous with respect to some fixed measure #. A basic role 
is then played by the following lemma, which shows that diffuseness alone of # 
implies a certain weak invariance property. Note that, when M~ +1 is identified 
with R 2e, the first component q~R e is the point of intersection with a fixed flat 
ueMee+ 1, while the second component peR d is the slope, measured as the rate at 
which the projection on u changes relative to a change in (the signed) distance 
from u for a point moving along the line, (cf. [6]). 

Lemma 4.1. Let #e92~d(Rd), and let tl be a stationary random measure on M~ +1 
such that rl(B x . )~  # a.s. for all BeN(Re). Then there exists a measurable mapping 
q): Re-* r such that tl(" x dp)/#(dp) a.s. has a version tlp which is (p(p)-invariant 

for all p6R d. 

Proof Let qp be a stationary and measurable measure valued version of 
t1(. x dp)/#(dp), (cf. the proof of Theorem 3.1 in [3] for the existence). Choose a 
measure determining sequence {fk} c J~(Rd), and define Ya(q, p) =- (tl~ d * 3q) fk. Let 
us further introduce a net {I,j} (in the sense of [12], p. 208) in (R, #), and for 
p6R e and n~N, write I(, p) for the unique set I,i  containing p. Define #~P) 
=I~P)#/#I~ p) whenever #I(,P)>0. Writing g ( x ) - 1 - e  -I~I, we get by Theorem 5 in 
[12], p. 220, for every tong2 and k~N 

j g(~(o,  p ) -  v~(o, x)) ~(#)(dx) 
< .[ ] Yk(O, p) -- Yk(O, X)I p~P)(dx)~ O, p e R  a a.e. ,u. 
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By Fubini's theorem and dominated convergence, we hence obtain for pER d a.e. 

.( Z E g(Y (O, p) -  Y (O, O. (1) 
k 

Fix an arbitrary p~R a satisfying (1). Since (1) may be interpreted as convergence 
in Ll(I]l~v)), we may conclude that the integrand converges along some fixed 

?l 

subsequence for almost every point in that space. The coordinates of the point 
being a.s. non-zero, we may hence fix hi, hz, ... eRd\{0} such that 

2 -k Eg(Yk(0 , p)-- Yk(O, p+h,))--*O, 
k 

and therefore 

Yk(O,p+h.) P , Yk(O,p), keN. (2) 

Assume without loss that h./lh.l---,some q~Re\{0}, fix a t>0 ,  and put 
r . -  t/[ h~]. Write 

L Yk(tq, p)-- Yk(O, P)[ 

<= [ Yk(t q, P) -- Yk(r , h,, P)I + ] Yk(r,, h,, P) -- Yk(r , h,, p + h,)[ 

+]Yk(r,h,, p+h , ) -  Yk(O, P)L--~01 § § 

Here 0 1 ~ 0  since r,h,--.tq while Yk(', P) is continuous. Using (2) and the space 
and time stationarity of Yk, it is further seen that 

02~]Ya(O,p)-Y~(O,p+h,)l P ,0, 

03 e iyk(_r,p,p+h,)_yk(_r,p,p)[  e= iYk(0, p + h , ) _  Yg(0, p)] P ,0. 

Hence Yk(tq, p)= Yk(O, p) a.s., and since the fk are measure determining while t 
was arbitrary, it follows that t/v is a.s. ~(q)-invariant. 

Next we define 

1 

f(q, p)= ~ ~ 2 -k gg(Yk(tq, p ) -  Yk(O, p)) dt, q, p~R d, 
0 k 

and note that t/v is a.s. ~(q)-invariant ifff(q, p)= 0. For fixed p~R d, the set of all 
such q is clearly a linear subspace A v of R d, and we have just shown that 
dim A v > l  a.e. /1. Since f(q,p) is clearly continuous in q for fixed p and 
measurable in p for fixed q, the set {peRd: Apc~F=r is measurable for every 
closed set FcRd. In fact, choosing compact sets C, with union F and letting 
{q,j} be dense in C, for each n, it is seen that 

{p: Avc~f =O } = {p: f (q, p)>O, q~V} = ~ {p: f (q, p)>O, q~C.} 
n { 1} 

=(~{p: in f f (q . j , p )>O}=~ ? ~ p:f(q. j ,p)>~ . 
. j J 
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Writing S for the unit sphere in R a, we may hence define a measurable mapping 
k: Re-+ N by 

k(p) =min  {k: dim AS~(Rk  x {0} e-k) = 1} =rain {k: A / ~ S ~ ( R  k x {0} e-k) =~}, 

p e R  e. 

We finally put 
(p(p) = A j ~  (R k(p) x {0}a-k(P)), p e R  e, 

and note that q~ is measurable since, whenever F is a closed subset of some fixed 
M~_ 1-flat, ~o(p) intersects F iff p belongs to 

{p: ApC~(R k(p) x {0}a-k(P))c~F,0} = U {P: k(p)=k,  Apc~(R k x {0}a-~)c~f,0}. 
k 

Moreover, t/p is clearly a.s. (p(p)-invariant for pER e a.e. #, and since the (~2 x Re)_ 
set where r/p is (p(p)-invariant is measurable (cf. Exercise 10.10 in [2]), Fubini's 
theorem ensures the existence of a (possibly different) version of t/p with the 
desired property. [] 

In the case of an absolutely continuous conditional intensity (possibly after 
thinning), regularity of a point process ~ on M~ is enough to ensure Cox 
structure. Note, however, that the directing random measure of ~ will not be 
invariant in general. 

Theorem 4.2. Let I~e?Ola(~), and let ~ be a stationary simple point process on M~ 
whose conditional intensity tl satisfies (Brl)~-1 ~l~ a.s.for every BE~(M~).  Then 
is a Cox process directed by tl. 

Proof By Lemma 2.1 and an obvious approximation argument based on Exercise 
4.5 in [2], it is enough to consider the case k=  1, so we may assume that ~ is 
a point process on Me + 1. Let qo and t/p be such as in Lemma 4.1, and fix u~cbe e_ 1 
such that q)(p)r p e R  e a.e./~. (Cf. Lemma 2,1. Only p e R  e with q0(p)r will be 
considered below.) Choose a unit vector e in R e with e_Lu, and write ap 
--- (e + u) c~ ~o (p). Define 

h(q ,p)=( fp(q) ,p)=(q+(eq)(e-ap) ,p) ,  q, p e R  e, (3) 

and note that h is measurable and has the unique measurable inverse 

h - l ( q , p ) = ( q - ( e q ) ( e - a p ) , p ) ,  q ,p~R e. (4) 

From (3) and the disintegration rl =~ (tlp x 6p)I~(dp)we get 

rl h -  ~ -= ~ (rlp x 6p) h - ~ #(dp) = y (rlp fp-1 X (~ p) ,u(dp). (5) 

Writing S~ for a shift in R e by the vector x, we further obtain for any t s R  and 
q ,p~R e 

fp o St~ ~ (q) = q + tap + [e(q + t ap)] (e - ap) = q + (e q) (e - ap) + t e = St~ o fp(q), (6) 

so by the ~o(p)-invariance of ~/p, 

r lpfp- lS~l=rlpSt: l  f p - l = t l p f f  1, teR,  p6R  e a.e. #, 
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outside a fixed P-null set. Hence by (5), t /h-  1 is a.s. f (e) - invar iant .  Now t/h - i  is 
the conditional intensity of ~ h -  1 (cf. [5], p. 216), so by Theorem 5.1 in [5], ~ h -  1 
is a Cox process directed by t /h-1.  Applying the inverse mapping (4) to both 

h -  ~ and tl h-z ,  it follows easily (e.g. by using Laplace transforms [2]) that ~ is 
a Cox process directed by 0. [] 

Diffuseness of the projections of ~ is not enough to guarantee a.s. invariance 
in all directions. In fact, the counterexamples of Papangelou [11] show that we 
must also exclude the possibility of outer degeneracies. The following theorem 
implies that the resulting assertion is true at least in the absolutely continuous 
case. 

Theorem 4.3. Let #egJl(q)~) and y ~ .  Then every stationary random measure t 1 on 
M~ satisfying ( B q ) ~ - l ~ #  a.s. for all BeN(M~) is a.s. y-invariant, iff y lies in 
every v ~ a  l with #v>O. 

Proof. Let y be such as stated. The outer degeneracy decomposition of # induces 
a corresponding decomposit ion of 0, and it is clearly enough to prove the y- 
invariance of each component.  We may therefore assume that # is supported by 
the set of flats in some v e ~  with y~v ,  and that v contains no proper 
degeneracy subspaces. But in that case it sufficies to prove the invariance of the 
projections onto v of the restrictions of t / t o  any v-parallel slices. Thus we may 
assume without loss that v = R  d, i.e. that # has no outer degeneracies of order 
< d, and prove that ~ is then a.s. invariant in all directions. 

According to Lemma  2.1 applied recursively k - 1  times, we may choose a 
flat u e ~ _ k +  ~ with o', x~ 45(1 u) for x e ~b~ a.e. #, and such that moreover  # o-2~v = 0 
for every Ver . Since clearly a,  x e r  ") implies %yeM~ ") for every yeMak with 
~zy=x, rl is a.s. such that a, yeM} ") a.e. t/. Thus the function y ~ ( e , y ,  roy) maps 
into a random measure 0' on (M} ") x r whereas a,  maps # into some measure 
# , _ # ~ 1  on ~b] ") with # ' v = 0  for all veq)~)k. Moreover, tl' is clearly u-stationary, 
and we liave tf(B x �9 x q~)<# '  a.s. for all BeY)(M[")/~")). If the theorem is true 
for k = 1, we may conclude that (M~ ") x A) t/' is a.s. invariant for every Ae~(r 
and hence that t/' itself is a.s. invariant. By Lemma  2.2 in [3], this yields the a.s. 
invariance of 0- We may thus assume from now on that k = 1. 

We now proceed by induction in d. For d=2 ,  the statement follows from 
Lemma4.1  above and Lemma2 .2  in [3], or from Theorem 3.2 in [3]. Next 
assume that the statement is true for a certain d > 2, and let t/ and # fulfill the 
hypothesis for d +  1 in place of d. Let us identify M1 a+~ with R 2e, and note that 
# R e < oo. We may assume that t/~)oe x #, since we may otherwise consider t / �9 v 
in place of ~7 for an arbitrary probabili ty measure v with bounded support  on R e, 
and then truncate the density at a fixed level, (cf. Lemma  2.5 in [6]). Let (p and 
t7p be such as in Lemma  4.1. Defining #'eg)l(M~ a) by #'B=-p{p: p+cp(p)eB}, we 
get by the assumption 

# ' v < # v = O ,  veMd ~, 

so by Lemma 2.1 we may choose a flat ueMaa_ ~ such that 

#{p: (p+p(p))c~uev}=#'{x:  x ~ u c v } _ =  0, vEM(dU)_2 . (7) 
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Write u = z r u + c e ,  where e a r  e with ] e l = l  and eA_u while caR, put ae=(rru 
+e)c~o(p), and define 

f ( q , p ) = ( f p ( q ) , g ( p ) ) = ( q + ( e q ) ( e - a p ) , p + ( e p - c ) ( e - a p ) - C e ) ,  q, paR  a. 

Note  that t / f  -~ is a.s. locally finite, since clearly 2 f p - 1 = 2  for all p a r  d, and 
therefore 

(2 x #) f - ~ = S ()~ x 3p) f - ~ #(alp) 

= S ()~fp- 1 • (8) 

Defining {T,} and {S~} by T,(q ,p)=(q+tp,  p) and S~(q,p)=(q+x,p) ,  we further 
obtain 

Tt o f (q, p) = (q + (e q) (e - ap) + t p + t(e p - c) (e - ap) - t c e, g(p)) 

= (q + t ( p  - c e) + [ e ( q  + t ( p  - c e ) ) ]  (e  - av)  , g ( p ) )  

= f (q + t(p - c e), p) = f oS_ tceo Tt(q, p), 

since the shifts in M, a+~ correspond to arbi t rary combinat ions of the and 
t ransformations T, and S~ in R TM (cf. [63), we get by the stat ionary of t/ 

i ~ f -1  Tt-I  y/Tt-1 -1 - l d y ]  - S ~ f  f - 1  taR. 

Next  we obtain for arbi t rary xartu  

(9) 

S x o f (q, p) = (q + x + (e q) (e - ap), g (p)) = (q + x [e (q + x)] (e - ap), g (p)) = f  o S x (q, p), 

so 
r l f - 1 S 2 ~ = r l S 2 1 f - l  a=~lf-1 , x~rru. (10) 

Finally it may  be  seen as in (6) that 

foStav(q,p)=Steo f (q,p) ,  t~R, q, pGR a, 
so 

( r l p x c ~ p ) f - l S ~ e l = ( t l p X ~ v ) S ~ l J ' - l = ( q p x 6 p ) f  - I ,  t~R, paR d, a.s., 

and hence 

r l f - I s 2 a = r l f  -1, xA_u, a.s. (11) 

By (11) there exists a r andom measure ( on u x R  ~ such that r l f - l = 2 1  x (  
a.s. Lett ing r denote  project ion onto u in the p-component ,  we get by (8) 

( r - * ~ ( ) . d _ l  x p g - 1 ) r - l = 2 d _ a  x # g - a r  -1. 

Now 

ro g (p )=p+(ep- -c )  (e --ap)-- c e - ( e p - c )  e = p - ( e p - c )  ap--ce 

= ( p + o ( p ) ) c ~ u - c e ,  

so by (7) we obtain # g - l r - l v = 0  for all vaM(aU_)2. Moreover ,  it is seen from (9) 
and (10) that ( r - 1  is stat ionary when considered as a r andom measure on M e. 
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Thus it follows from the induction hypothesis that ~ r -  ~ is a.s. invariant, and this 
implies in turn the a.s. invariance of 

t / h - l (  �9 x R e ) = t / f - l (  �9 x Rd)=(21 X ~)(" xRe), 

where h is given by (3). Applying this result to (R e x B) t / in  place of t/, it is seen 
that ~ h - l ( . x B ) = [ ( R d x B ) ~ ] h - l ( . x R  d) is a.s. invariant for arbitrary 
B ~ ( R d ) ,  and since t/h-1 is determined by countably many such projections, it 
must be a.s. invariant itself. We may finally apply the inverse mapping h-1 in (4) 
and proceed as in (8) to conclude that t/is a.s. invariant. 

To prove the assertion in the converse direction, let #ETA(~) and v~q~_ 1 be 
such that # v > 0 .  Choose a unit vector e~R d with e Iv .  Let c~ be a uniformly 
distributed random variable on (0,2rt), and define the stationary random 
process Y on M d by 

Y ( x ) = s i n 2 ( a + ( e x ) e ) . l { r c x c v } ,  x~M~, 

where e x denotes the projection of x onto the e-axis, (which is clearly unique 
l[/f d / t ~ d  ]~ d - k when n x c v). Writ ing 2 for Lebesgue measure on ~,, kJ--k ~ ~" , we next define t/ 

= Y(2 x #) and note that t/is stationary but a.s. not y-invariant. [] 

We finally remark that the usefulness of the above results depends on the 
possibility of proving that a given random measure, such as the conditional 
intensity of a simple point process, is a.s. absolutely continuous. Thus Problem 6 
of Papangelou [10], p. 630, gains in importance. Some sufficient conditions for 
absolute continuity are given in [8]. 

5. Processes of  ( d -  2)-flats in R a 

According to Theorem 3.2 in [3], a stationary first order random measure t / on  
M~ is a.s. invariant, provided that 

I a {~f'(rc x, rcy)=R d, (x, y)e(Md) 2 a.e. t/2} = 1. (1) 

Conversely, (1) clearly implies that k >= d/2 and that the projections of t /on to  ~ 
have a.s. no outer degeneracies. When k = d - 1 ,  the latter condition is also 
sufficient, but for general k it may be hard to see whether (1) is fullfilled. In this 
section we shall consider the case when k = d - 2 > 2 ,  and show that (1) is then 
equivalent to the absence of degeneracies of order >_ d -  3. 

Theorem 5.1. Let d >=4, and let tl be a stationary first order random measure on 
M~_ 2 such that a.s. r /Tz- lv=0 for all w ~ _ l ~ _  3. Then tl is a.s. invariant. 

Proof. By Lemma 2.1 and Fubini's theorem, almost every flat ueM~ is such that 
the hypothesis is fulfilled (with d = 4) for the random measure t/' = t/a~- 1 on M(2 "). 
If the theorem is true for d =4, we may conclude that t/' is a.s. u-invariant, and 
it will follow from Lemma 2.2 in [3] that t/ is a.s. invariant. We may thus 
assume that d = 4. 

Write ~ = ~, and define 
S=  {(x, y ) ~ 2 :  ~SF(x, y)~=R~}. (2) 
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Let AeN(M~)  be arbitrary, and put ~=(A ~I)re-1. For fixed cocO, there exists by 
Lemma2.1 some wM~\~b~ with avxeM~ (~, xe~b a.e. (. Consider distinct flats 
x, y, zE~ such that avx, a~y, a~zeM~ ~, and note that (x, y)ES iff a~x and a~y 
lie in a common 2-flat, i.e. iff they intersect or are parallel. Thus, if x, y, z are 
such that all three pairs belong to S, then the lines a~x, a~y, a~z must either lie 
in a common 2-flat, go through a common point, or be parallel. This means that 
x, y, z must either lie in a common 3-flat or go through a common line. But 
according to our hypothesis and Fubini's theorem, both possibilities are a.s. 
excluded almost everywhere with respect to (3. Therefore (x, y)~S implies that 
either (x, z ) sS  ~ or (y, z ) sS  ~ a.e. (a, a.s.P.This shows in particular that 

((B) 2 ~ 3 (2(B2\S) a.s., Be~(~ ) .  (3) 

In fact, if instead ~2(S]B2)>3/2, the above result would a.s. yield the con- 
tradiction 

2< ~2(3 [B 2) ~ 2 ~e(S~IB z) = 2(1 -- ~ (S / B2)) <2. 

Assuming without loss that r/ is ergodic, it may be seen from the proof of 
Theorem 3.2 in [3] that E ~2 =(E ~)2 on S c. Combining this with (3), we get for 
any BeN(~)  

E((B)2__<3 E (2(BZyS)= 3(E O2 (B~\S) <=3(E ()2 B2= 3(E ( B) 2. 

Letting {Bj} c~(~b) be an arbitrary partition of ~, it follows that 

J J 

and since this bound is independent of {B;}, we may conclude from Theorem 1 
in [8] that ~ E ~  a.e. Thus Theorem 4.3 applies, showing that r/ is a.s. 
invariant. [] 

The last theorem combines with Theorem 3.3 above and Theorem 5.1 in [5] 
to yield the 

Corollary 5.2. Let d> 4, and let ~ be a stationary first  order simple and regular 
point process on M~_ 2 such that a.s. ~ ~-  1 v < oo for all v~ Obad_ 1 u ~ _  s" Then ~ is 
a Cox process directed by some a.s. invariant random measure. 

Theorem 5.1 suggests that any measure /~e~l.R(cb2 4) with neither inner nor 
outer degeneracies might satisfy 5q(x, y ) = R  4 a.e. #2, but the following example 
shows that this is false. Let v be the uniform probability measure on the set of 
lines 

x =  cos ~o + z  sin ~o, y = s i n  ~0-T-z cos q~, (pe [0, 2 re), 

in R 3, imbed R 3 into R 4 as a flat u e m ~ \ ~  4, and define/teg)l(~b~) b y / ~ = v 2  ' - I .  
Then /~ is clearly non-degenerate, and still/~z S =  1/2, S being defined by (2). In 
this case, however,/.z can be decomposed into two measures which both have the 
stated property. This reflects the general situation: 
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TheoremS.3. Let g~gJl(r satisfy /~v=0, v ~ u r  Then # is the sum of 
measures !~1, #2 .... such that 5f (x, y ) = R  4 a.e. ~ #2. 

Pro@ Write q~ = ~4, and put 

A l = { x e ~ :  Y ( x , y ) = R % y e ~  a.e. #}. 

By Fubini's theorem, we may take Alff as our /~1, and so we may henceforth 
assume that p is supported by A~, i.e. that 

f(x)=_ff{y~@: ~(x,y)=~R4}>O, x e r  a.e. #. 

Clearly # ~ v -=f#. For  any finite measurable partition J of q~, let U be a best 
possible approximation in Ll(g  2) of S in (2) by a union of rectangles I x j e j 2 .  
By a monotone class argument, the error can be made smaller than any 
prescribed ~ > 0, provided that J is fine enough. Letting B be the projection of U 
onto one of the component spaces q~, we then get 

vBC= ~ #(dx) ~ ls(x , y) p(dy)=#2(Sa(B~ x @))=<p2(Sc~ U 0 <e, 
B~ 

and since # ~ v, we have #B~< 1/2 for sufficiently small 5. Repeat this procedure 
on (B~) 2 with a remainder of #-measure <1/4, and continue recursively to 
produce a countable partition of almost all @ into sets Bj, each being such that 
there exists a set Cj with #2(Bj x Cj)>0 and t~2(SIBj x C))>= 1/2. 

Fix j, and put B 3 = B, Cj = C. Let e > 0 be arbitrary, and write 

C~={y6C: ,u2(SIB x y )> �89  (3) 

#2(SIB x . )  being defined in the obvious way as a Radon-Nikodym derivative. 
By Fubini's theorem, 

�89 #2 (B x C) <= #2 (S ~ (B x C)) = ~ #z (SIB x y) #2 (B x dy) 
C 

SO 

<._ (�89 - -  ,s) #2 (B x 

= (�89 ,u2(B x 
C;)+ pZ(B x C~) 

C)+(�89 + ~) t~=(B x C~), 

28 
ff2(B x C~IB x C)>- 1+ 25>0. 

Thus the properties of C carry over to 
As before, we may approximate S c~ 

C~. 
(B x C,) in LI(//2) by a finite union U' of 

rectangles B' i x C), B'~cB, Cj ~ C, such that the relative error on B x C~ is < 8. 
Then the relative error on B x Cj is also < 8 for at least one j. Writing U'c~ (B 
x C}) = B" x C", we hence get by (3) for any 8 < 1/12 

g(B"IB)= ffZ(U'[B x C))> I12(SIB x C))-8>=�89189 

and moreover 
8 #Z(SClB"x C") ='u2(~S2~,,~I-B x,- C-~) < 1~3-= 3 8. 

ff (U IB x Cj) 
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Continuing recursively, we may construct sequences B~,' c B with B'2+A, say, and 
/~ (S lB. x C.) --~ 1, and there- C " c C  with # C ; ' > 0 ,  such that #(B'. ' IB)>I/3 and 2 . . . .  

fore 

p(A[B)>= 1, 1~2(S[A x C~)-~ 1. (4) 

In this way we have obtained a countable collection of disjoint sets A c O  as 
above with total mass =>/z 0/3, and we may clearly continue the construction 
recursively to cover almost all of �9 by such sets Aa, A2, ... Put i~j=-Afl~. 

It remains to prove that /~2S~0. To see this, note as in the proof  of 
Theorem 5.1 that (x ,y )~S  implies (x, z)~S ~ or (y, z)~S ~ a.e. y3, and use (4) to 
conclude that for any A = Aj 

i t  2 t /  I~z(SIA2)=t~3(S • C, IA • C; ' )<2#a(A x S~[A 2 x C')=21~2(S~OA x C , ) ~ O .  [] 

Note that Theorem 5.1 can not be proved directly from Theorem 5.3, since 
the N-components provided by the latter result will not be stationary in 
general. 

6. Free  Part ic les  in R x [0 ,  1) a 

As in [6], a line process in R e+~ may be interpreted as describing, in a space- 
time diagram, the motion of a system of free particles (i.e. of non-interacting 
particles moving with constant velocities) in R e . In this setting, one of our basic 
problems becomes that of finding conditions which ensure a space and time 
stationary particle system to be a Cox process. A complete solution of the 
corresponding (but much more elementary) problem for free particles on the 
torus K e = [ 0 ,  1) d is implicit in w of [7]. In the present section, we treat the 
intermediate case of free particles in K e x R. 

Formally, we introduce the (one particle) phase space S = ( K e x R ) x R  ~+~ 
with elements 

(q, P) = (q', q", P', P") = (qa, . . . ,  qe, q", Pl ,  . - . ,  Pd, P"), 

and define the flow 3 - =  {T~} on S by Tt(q, p)= (q + t p, p), where addition in K is 
modulo 1. Let 5 P and 5 ~'' denote the groups of shifts in q and q" respectively. Let 
7r(q, p)_=p, and write ~xY = x  y for the inner product of x and y. 

Theorem 6.1. Let  q be a 3-- and 5P"-stationary f irst  order random measure on S 
such that a.s. rl re- 17z21 {r} = 0, x ~ Z  e x R\{0},  r~R. Then q is a.s. 5P-invariant. 

Proof  1. Assume without loss that ~/ is ergodic. Projecting t/ onto the (q", p")- 
plane yields a random measure 7' on R 2 which is again stationary in q" as well 
as under the induced flow. Moreover, the hypothesis on 17 implies that 0' ~-1 is 
a.s. diffuse. By Theorem 3.2 in [3], 7' is then a.s. invariant, and t/' being ergodic, 
it may a.s. be written in the form 2 x # ' ,  where 2 is Lebesgue measure on R while 
#"eg)~(R). Applying this result to (Kex R x A)q for arbitrary A E ~ ( R  e+l) shows 
that r /has a.s. the projection 2 x # on R e+2 for some/~e~J~(Rd+ t). 

2. Let us now assume that d =  1. Construct a random measure ~ on R 4 by 
continuing q periodically outside S, and note that, as far as ~ is concerned, the 
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periodic continuation of ~-- is equivalent to the flow of free motion of particles 
in R 2. Translating ~ randomly in the K-direction according to the uniform 
distribution on K, we next obtain a random measure ~' on R 4 which is 
stationary in both space components. The first part of the proof now implies 
that ~'(B x . ) ~ #  a.s. for all B ~ ( R 2 ) ,  and by the hypothesis on t/ it is further 
seen t ha t /~v=0  for all w M  2. We may thus conclude from Theorem 4.3 that ~' is 
a.s. invariant, and this yields the asserted invariance of t/. 

3. Turning to the case d > 1, let the vector z s Z a \ { O }  be arbitrary, and let n be 
the greatest common divisor of its components. Then there exists a matrix 
M e Z  a~ with determinant 1 and with z/n as its first row. Define a mapping of S 
onto itself by the matrix 

L =  1 M , 

0 

the K-components being reduced modulo 1, and use the same notation for the 
induced mappings on the spaces of p ~ R  e § 1 and (q", p)ER a§ 2. It is easily verified 
that L commutes with the T t and with all q"-shifts, and hence that the random 
measure r/"= r/L- 1 is again 3-- and 5e"-stationary. Noting that L r (the transpose 
of L) maps Z a x R\{0} onto itself, we further obtain 

t l ' T c - l z c ~ l { r } = ~ z c - 1 7 z ~ { r } = O ,  x ~ Z a x R \ { O } ,  r~R,  

so the non-degeneracy condition on t/ is fulfilled by rf' also. We may thus 
conclude from the second part of the proof that the projection of ( K a x  A ) i f '  
onto the first component space K is a.s. invariant for any A ~ ( R a + 2 ) .  For any 
such A, we hence obtain 

e2"~r  ~ e2'~i"q~rl"(dqdp)=O a.s. 
K a x A K a x L ( A )  

Since this is true for every z~Za\{O} ,  tl(" x A) must be a.s. invariant, and A 
being arbitrary, it follows that t/ is a.s. invariant under any rotations of K a. 
According to the first part of the proof, it is then a.s. invariant under 5 p'' 
also. [] 

The corresponding (and best possible) result for the phase S ' = K  a x R a with 
the induced flow 3-' follows easily: 

Corollary 6.2. Let  t 1 be a J- ' -stat ionary random measure on S' such that a.s. 
t /Tc- lnx l{r}=0 ,  xEZa\{O} ,  reR .  Then tl is a.s. invariant. 

Proof. Apply Theorem 6.1 to 77 x 2 x I~/tlS' for arbitrary tz6gJ~a(R), or use Theo- 
rem 4.1 in [7]. [] 

For  point processes on S we get in analogy with our results on M~ the 

Corollary 6.3. Let  ~ be a J -  and 6~'-stationary Jlrst order simple and regular 
point process on S such that a.s. ~ 7r-17c 2 1 {r}< ~ ,  x 6 Za x R\{0}, r~R. Then ~ is a 
Cox process directed by some a.s. 6~ random measure. 
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Proof Imi ta t e  the proofs  of  Theorems  3.1 and 3.3, or p roceed  as follows. Since 
the cond i t iona l  in tensi ty  t / o f  some p- th inning  ~' of ~ is a.s. diffuse by assump-  
tion, it satisfies the in tegral  equa t ion  in w of  [5] with 4' in p lace  of ~, and  
invar ian t  ~'-events being tails  events, it follows that  t/ a.s. r emains  the con- 
d i t iona l  in tensi ty  of 4', even after cond i t ion ing  on the (7-field of  such events. 
When  discussing pa i r  (4', t/), we m a y  thus assume that  4' is ergodic.  

In  tha t  case r / i s  e rgodic  also (cf. w 3 in [8]), and  by the first par t  of the p r o o f  
of  T h e o r e m  6.1 it is seen tha t  the p ro jec t ion  of  r / o n t o  R a+2 a.s. equals  2 x # for 
some /~egJ~(Ra+l). If  the non-degene racy  as sumpt ion  in T h e o r e m 6 . l  were 
violated,  it wou ld  fol low by Theorem 4.2 in [5]  that  

E ~'TE- t ~x t {r} = Et/re-  t g f  l{r} =~0 

for some xeZex R \ { 0 }  and rcR. By F a t o u ' s  l e m m a  and  the s t a t ionar i ty  of 4', 
this would  imply  P {~' ~ -  ~ rc 2 1 {r} = oo } > 0, con t rad ic t ing  the hypothes is  on ~. 
Thus Theo rem 6.1 applies,  showing tha t  t / i s  a.s. 5~-invariant ,  and  our  asser t ion 
follows f rom Theo rem 5.1 in [5] and  the fact that  ~ and ~' are s imul taneous ly  
Cox. [ ]  
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