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Summary. Various aspects of the equilibrium M/G/1 queue at large values 
are studied subject to a condition on the service time distribution closely 
related to the tail to decrease exponentially fast. A simple case considered 
is the supplementary variables (age and residual life of the current service 
period), the distribution of which conditioned upon queue length n is 
shown to have a limit as n ~ v o .  Similar results hold when conditioning 
upon large virtual waiting times. More generally, a number of results are 
given which describe the input and output streams prior to large values e.g. 
in the sense of weak convergence of the associated point processes and 
incremental processes. Typically, the behaviour is shown to be that of a 
different transient M/G~1 queueing model with a certain stochastically 
larger service time distribution and a larger arrival intensity. The basis of 
the asymptotic results is a geometrical approximation for the tail of the 
equilibrium queue length distribution, pointed out here for the GI/G/1 
queue as well. 

1. Introduction 

We consider the M/G/1 queue and let ~ denote the arrival intensity, G the 
service time distribution and 

p=o~v (v=vl  = ~ xdG(x)= ] (1 -G(x) )dx)  
o o 

the traffic intensity. We assume throughout p < 1. It is then well-known that a 
number of quantities associated with the queueing process at time t converge 
in distribution as t ~ o o .  E.g. this holds for the queue size Qt, the virtual 
waiting time v t (residual amount  of work in the system), the age A t of the 
present service time and the residual service time B t (the A t, B t are defective, 
being defined on {Qt>0} only). The limiting distributions are the equilibrium 
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distributions (e.d.) or steady states and a standard point of view in queueing 
theory is to measure the characteristics of the system by means of the e.d., cf. 
e.g. Cox and Smith (1961). This motivates a detailed study of the process at 
equilibrium. 

To facilitate notation, we let Pe, Ee refer to the equilibrium case so that e.g. 

nn  =/De (Ot  = n) = lim P (Qs = n). 
s~oo 

It is well-known and easily proved, cf. Miller (1972), that Pe can also be 
interpreted as the probability law governing a strictly stationary process. 

The investigations of the present paper start in Sect. 2 by a discussion of 
the estimate 

To, ~- cc5 -n as n ~ o e  (1.1) 

for the tail of the e.d. of the queue size. This formula should be compared to 
the exact geometric form ~rn=(1-p)p  n in the M/M~1 case and explicit ex- 
pressions for special cases as M/Ek/1 and M/D~1 as given e.g. in Saaty (1961) 
Chap. 6. The conditions for (1.1) are the same as the main ones for the rest of 
the paper, viz. the existence of a solution ? > 0 to the equation 

c~ ~ e~X(1 - G(x)) dx = 1 ( 1 . 2 )  
0 

with the additional property 

~= j xe~'X(1 -G(x ) )dx  < o~. 
0 

The connection between c5, ~, c, ~: is given by 

1 - p  
c~(6-1)=~, c =  

~2K: " 

(1.3) 

(1.4) 

The traditional approach to (1.1) is based upon transform methods (see e.g. 
Gaver (1959), Le Gall (1962)) and requires some additional analyticity con- 
ditions. The proof pointed out here is quite simple and produces also certain 
generalizations, e.g. a GI/G/1 analogue. Condition (1.2) is certainly a restriction 
on G (whereas (1.3) is only slightly stronger). However, it will follow (e.g. from 
the last part of Theorem 3.3) that (1.2) is necessary for main parts of the paper. 
Though not coming up very directly in that form in the present paper, it is of 
some interest to note that (1.2) is equivalent to EeT(S-r)=l (with S, T inde- 
pendent with P(S<s)=G(s), P(T>t)=e-~t) ,  i.e. to the existence of the as- 
sociated distribution in the sense of Feller (1971) pp. 406-407. For  other exam- 
ples of the relevance in queueing theory of this and related conditions see e.g. 
Kingman (1964), Cohen (1968), (1969), (1973b), Iglehart (1972) and Asmussen 
(1980), (1981). 

In Sect. 3, we study the joint e.d. of Qt and A,, B t, i.e. 

v,(4) =Pe(A,_-< ~ [ Q,=n), V;(4)=ee(B,_-_ ~ I O, =n). 
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The interest in these quantities arise largely from the role of either of A,, B t as 
supplementary variables, who in conjunction with Qt form the minimal infor- 
mation needed to make the process Markovian. In fact, the e.d. of any the 
above quantities are derivable from the n,,, U,,. As examples, note the formulae 

1-O(x+~) dV,,(x), (1.5) 
1 - 1 / ; , (~ )  = o 1 - G ( x )  

Pr ~ 7z n V,. G*("-I)(~). (1.6) 
n--1 

However, discussions like those of Gnedenko and Kovalenko (1968) pp. 157- 
160, Cohen (1969) II.6.2 or Hokstad (1975) place little emphasis on the sup- 
plementary variables per se. The main result in that direction seems to be that 
(up to the defect) the marginal e.d. of A t, B t coincide with the common e.d. of 
the backwards and forwards recurrence times in a renewal process with inter- 
arrival distribution G. That is (cf. Cohen (1976) Chap. I and Feller (1971) 
Chap. XI), 

Pe(At<={): rc, U,~(~):Pe(Bt<~): re,, I/~,({) : (1-G(x))dx.  (1.7) 
n = l  n = l  v 0 

Section 3 starts off by computing the Un, V, by means of the embedded Markov 
chain and the basic formula 

1 
g e Wt~-~c C E i Wsds (1.8) 

0 

(with e the busy cycle) for functionals W t of the process which are regenerative 
w.r.t, the renewal process formed by the succesive ends of busy cycles and 
satisfies some path conditions automatic in all cases considered in the present 
paper. Cf. Smith (1955), Feller (1971) Chap. XI, Miller (1972) and Cohen (1976). 
The expressions obtained are explicit, though maybe not as simple as one 
could have hoped from (1.7). However, as one of our main results we show 
that U,,, V, have weak limits as n--* oo. A corollary is a similar behaviour of the 
length C t = A t +B,  of the current service period. 

These results raise the more general question of the behaviour of the 
process prior to the large value Qt = n. This problem is the topic of Sects. 4 and 
5, where we obtain a number of limit results describing the entire past, e.g. in 
terms of the input and output point processes or the incremental processes. In 
addition to the queue length, we also consider the virtual waiting time, mo- 
tivated, of course, from the fact that the virtual waiting time in many appli- 
cations is a more relevant measure of the amount of congestion than the queue 
length. The results obtained seem to be of a genuinely new type (except that in 
the M/M/1 case there is a close relation to the well-known time reversibility) 
and a more detailed statement is deferred to the body of the paper. A typical 
result is, however, that the input and output point processes prior to a large 
virtual waiting time behave like two independent stationary point processes, 
which are, respectively, a Poisson process with intensity ~=~.c~ (rather than c~) 



270 S. Asmussen  

and a renewal process with interarrival distribution dG(x)= 6-~ e ~ dG(x) (rath- 
er than dG(x)). Results of a similar spirit (but rather different framework) are 
further exploited in Asmussen (1980). 

2. The Imbedded Markov Chain and the Queue Length 

Unless when considering the equilibrium situation, we suppose that Qo=0. 
Define "c(0)=0, z(n) as the instant where the n ~h service period is completed. It 
is then well-known, that {X,,} = {Q~(,,)} is a aperiodic positive recurrent Markov 
chain, the e.d. of which coincides with the e.d. {re,} of the queue length Q~. Let 
p,(t) be the probability of n arrivals in an interval of length t, qn=Ep,(S) 
the probability of n arrivals during a service period S, i.e. 

p . ( t )  = e - s '  ( a t ) "  n! ' q = p.(t)dG(t). 
0 

Also let s, = 1 -  q o - . . . - q , -  For future reference, we state 

2.1. Lemma. The expected amount of time during a service period where n 
customers have arrived since the start of the period is 

S co 

E ~ I(n arrivals in [0, t]) dt = ~ pn(t) (1 - G(t)) dt =s,.  (2.1) 
0 0 O~ 

Indeed, the first equality in (2.1) follows immediately and the second upon 
integration by parts, noting that 

d 
dt (1 - P o ( t ) - . . .  -p , ( t ) )= ep,(t). 

Turning next to the discussion of (1.1), various approaches apply. E.g. (1.1) 
could be derived from the well-known relation (e.g. Prabhu (1965) pp. 127) 
between {rcn} and the maximum of the left-continuous random walk with 
generic increments Yk satisfying P(Yk=n-1)=rc , ,  in conjunction with Feller 
(1971) pp. 411. Note in this connection that it is easy to see that (1.2) is 
equivalent to the defining equation EcSr"=l for the corresponding associated 
distribution. However, we shall take the opportunity to point out a GI/G/1 
analogue of (1.1) as well as to sketch certain generalizations. 

Consider thus the GI/G/1 queue with distribution F of the interarrival time 
T, suppose that F is non-lattice, that E S < E T  and that for some 7>0  

Eel(S- T) = 1, E [ S - T] e ~(s- r) < oc. (2.2) 

Then the e.d. of the actual waiting time W, is well-known to be that of the 
maximum of a random walk with generic increments distributed as S - T  and 
appealing once more to Feller (1971) pp. 411 we may deduce that for some 

P~(W.>w)~de -'w. (2.3) 
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Using the well-known relation between the e.d. of IV, and v t (Cohen (1969) 

pp. 297) it follows easily from (2.3) that, with c5 = ~ ~ e~"dG(u)= e ~UdF(u) , 
0 

pe(G>y)~de-~', d=dp(5-1)/Tv (2.4) 

and relating v t and Qt by means of Cohen (1969) pp. 302 we finally get from 
(2.4) 

Pe(Q~ > n) = ~ Pe(v t > x) dF* ("- 1)(x) ~- d6- ('- 1), (2.5) 
0 

Pr c=d(6-1).  (2.6) 

Feller's expression for d can be rewritten in various ways (alternatively d can 
be computed by applying an Abelian argument to Spitzer's identity). In the 
M/G/1 case one in fact gets d=d=(1-p)/aVtc and Feller (1971) pp. 377-378 
gives here an alternate derivation of (2.4) by means of the renewal equation 
(e.g. Cohen (1976) pp. 35) satisfied by P~(vt<x ). 

If in the G1/G/1 case one replaces (2.2) by conditions on regular variation 
of the tail of G, the expressions in Cohen (1973a) for Pr apply in a 
rather similar manner to produce approximations for P~(vt>x ), P~(Q~>n). We 
omit the details. 

We finally refer to Asmussen (1981) for a non-equilibrium version of (1.1), 
derived in a somewhat more general setting. 

3. The Supplementary Variables 

* -  n > l .  We start off by computing U,, V,. Define 7zT=rCo+U 1, u, -u , ,  

3.1. Proposition. The distributions U 1, U 2 ..... V1, 1/2 .... have densities u,, v, 
given by 

Gu,(~)=~(1-G(~)) ~ rc*p,_,,(~), (3.1) 
r n = l  

7c, v,(~)=:~ ~ ~ re*p,, ,,(x-~)dG(x). (3.2) 

Proof. We let Wt=I(Qt=n,A~<~) in (1.8), recall the imbedded Markov chain 
defined in Sect. 2 and write 

k -  1 "c(k+ l )  

i W~ds= ~ Jk, with Jk= ~ W, ds (3.3) 
0 k = 0 ~(k) 

and k the number of customers served during the busy cycle, i.e. the time of 
the first return of {X,} to 0. Now suppose first k > l .  Then a new service 
period starts at time ~(k) and X k = rn (say) customers are present. Thus in order 
for the event {At<i, Qt=n, z(k)<t<'c(k+l)} to occur, n - m  new customers 
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must have arrived within u = t - r ( k )  time units, the service period must not 
have terminated and we must have u < ~. Conditioning upon ~ (the a-algebra 
containing all relevant information up to time z(k)) shows that 

EJkI(1 < k < k ,  Xk=m)=P(1 =<k<k, X k =m) ~ p._m(u)(1 - a(u)) du. 
0 

For k = 0  an exponentially distributed period elapses before sevice starts and a 
slight modification of the argument yields 

EJo = ~ Pn- 1(u) (1 - G(u)) du. 
0 

Thus, combining these expressions by (l.8), (3.3), E e = l / ~ ( 1 - p )  and the fact 
that the expected number of visits of X n to m before k is nm/n o, it follows that 
Pe(Qt = n, A t < 4) equals 

~ e I(Xk=m)p._ (u ( i -a( . ) )& 
m ~ l  k = l  

( 1 -  G(u))du = ~ ( 1 - p ) !  14-TCl) pn_l(U)+~27~rn 
n o /  = . . o  

=~ ~ (1-G(u)) ~ n*p,_m(u) du 
0 m = l  

and (3.1) follows by differentation. (3.2) could be derived in a similar manner, 
but follows more directly from (3.1), (1.5). We get 

n . ( 1 -  V.(r/)) = n. 
1 -G(u+ t / )  

=c~ ~ ~ n*pn_m(u)(1-G(u+,7))du 
0 m = l  

0 0 m = l  

which is the same as S w.(~)d~, with w, the r.h.s, of (3.2). Hence v.=w.. [] 

3.2. Remark. In equilibrium, the rate of upcrossings n ~ n  + 1 is the same as the 
rate of downcrossings n +  1-~n. Hence c~,,=~.+ 1 v.+ 1(0) and it follows that the 
equilibrium equations for {~.}, {V.} as given by Gnedenko and Kovalenko 
(1968) p. 158 can be written as 

~1 v1(x) = ~zc~ (1 - G(x)) - ~nl (1 - VI(x)), (3.4) 

n.v.(x)=c~rc._l(1--V._l(X))--~n.(1--V.(x))+c~Tc.(1 -G(x)). (3.5) 

An alternative verification of (3.2) is possible using (3.4), (3.5) and induction. 
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For  some purposes (3.4), (3.5) are quite convenient. Consider e.g. #~,, the r th 
moment of V,. Then multiplying (3.4), (3.5) by x ~ and integrating yields the set 

vr+ 1 ]i~+ 1 (3.6) 
~1 ~] = :~T r +---~-- e~z r +  1' 

. r +  1 [Am+ i vr+ 1 

,_ ~, 1 c~, r~ i_  + c~z, ~ i - (3.7) 7In~n--O~TCn-1 r + l  

of equations (with v ~ the r th moment of G), which combined with #o=  1 
determines the /z,. E.g. in this manner one can check (after some tedious 
algebra) that 

1 1 2(1 - p )  ~ v 2 
#;=--P Z ~k, #2_ Z (k -- n -- l) ~k ---- L ~k. (3.8) 

(ZT"Cn k = n + l  O(2~n k=n+2 7"On k = n §  

A set of equations similar to (3.4), (3.5) involving the U~ rather than V~ seems 
only to hold if G is absolutely continuous, cf. Cohen (1969) II.6.2 (adapted to 
the equilibrium situation). In any case, moments are available directly from 
(3.1). We omit the details. 

We can now easily prove 

3.3. Theorem. I f  Conditions (1.2), (1.3) hold, the distributions U~, V wi~h 
densities 

u~(~)=c~e~(1-G(~)),  v~(~)=~ ~ e ~(~ ~)dG(x) 

are proper, Uo~(c~)= V~(oo)= 1, and un(~)~u~(~), G(O~v~(~) V~>0. In partic- 
ular (cf. Billingsley (1968) pp. 224), U~ and V, converge weakly and in total 
variation to U~o, resp. V~. Conversely, if U~ has a proper limit as n ~ o% then 
Condition (1.2) holds. 

Proof. That U~ is proper is inherent in (1.2), and that V~ is so follows by the 
obvious integration by parts. Furthermore, from (1.1) it follows that there is a 
constant c 1 such that for all n and k, * < k , TCn_k/TZn~Cl(~, and also that G _ k / G ~ 3 k  
as n--, oo. Hence by dominated convergence 

n i * 

u"(r ~=o/-" cSkPk(~)=U~ 

In a similar manner it follows that G(~)~v~(O.  
Suppose conversely that U, has a proper limit U~. Then, appealing to (1.5), V, 
has a proper limit V~. It can be assumed that the support of G is unbounded 
(since otherwise (1.2) is automatic) and then passing to the limit in (1.5) shows 
that V~ is not degenerate at zero. Let ~ be some continuity point of Vo~ with 
Voo(~ ) < 1. Then integrating (3.5) from 0 to ~ shows that 

7~n--1 (1 g n 1 ) - - ~  (1 V ) +  (l-G) v , , ( x )  d ~ = ~  - -  - _ - 

0 ( Ten 0 0 
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has a limit (viz. Vo~(~)). Since f (1 - V,_ i)-~ ~[ (1 - V~o)#0, ~c,_ 1/re,, must have a 
0 0 

limit, say ~. Let ~>~, 7=c~(6-1), ~=e(c~- l )  and choose K such that 
* ~ ~k ~,_k/~,=K6 for all n, k. Then by (3.1), u,,(~) is dominated by K~(1-G(~))e ~ 

and tends to ~(1-G(())  e ~. Thus for any continuity point x of U~, 

U~(x) = lim i u.({)=e i (1 -G({))e'~d~. 
n ~ c e  0 0 

Letting x ~ oQ shows that Condition (1.2) is satisfied. [] 

One might note as a contrast to (1.7), that in general U~o �9 V~. A marked 
difference is that the tail 1 -  V~(x) tend to decrease more rapidly (always as 
o(e-7")) than 1 -  Uoo(x ). E.g. (1.2), (1.3) suffice for the existence of all moments 
of V~ but only the mean of U~. 

As an obvious application of 3.3, consider the length Ct=At+Bt of the 
current service period: 

3.4. Corollary. Conditions (1.2), (1.3)  imply the existence of W~(~) 
= lim P~(Ct<=~]Qt=n ). W~ is larger than G in the stochastical ordering and is 

absolutely continuous w.r.t. G with density 

dW~(~) _c~ {e,~_ 1}. (3.9) 
dG(~) 

Proof. Since ~ fd  U, ~ ~ f d  U~ if f is bounded and a.e. continuous, 

1-a(~) 
P~(C,>~ lQt=n)= 1 - U,(~)+ ! l_ -Z~dU, (u)  

1-G(~) dUo~(u ) --,1- u.(r ! 
oo 

=~ ~ e ' " (1 -G(u) )du+~(1-G(~) )  ~ eT"du 
o 

=~ ~ (e~"-l)dG(u). 
7~ 

Since the r.h.s, of (3.9) has G-integral one according to (1.2), it follows that 
indeed W~ exists and has the form (3.9). The stochastical domination follows 
from the fact that (3.9) is non-decreasing in 4. Indeed, if W~o(~)>G(~) for some 

c~ {e~_  1 } > 1 so that a contradiction results from 4, then necessarily 

l=Woo(i)+ - { e ' " - l } d G ( u ) > G ( ~ ) + ~ d G ( u ) = l .  [] 
e 7  



Equilibrium Properties of the M/G/1 Queue 275 

4. The Growth to Large Values 

The main result of the present section (and one of the main ones of the whole 
paper) could informally be described by the statement that (in equilibrium and 
subject to the limit n ~ o e )  prior to the large value Qt=n, the process has 
behaved as if the arrival intensity were ~= ~ and the service time distribution 

1 , 
were the distribution G with density ~ e r w.r.t.G. Note that G is stochastically 

larger than G, cf. the proof of 3.4, and that the M/G/1 model specified by ~, 
is transient since 

oo 

=o: ~ xdG(x)=c~S xe~dG(x)  
0 0 

=c~ ~ {e~X + Txe ~} (1 -G(x))  dx = 1 + ~7~c> 1. 
0 

Various formal statements of this result is possible. We start off in 4.1 with the 
version readily provided by means of regenerative processes and reformulate 
two corollaries 4.2, 4.3 in more abstract terms. 

In order to be able to describe the whole past prior to t, it will be 
convenient to take t = 0  and assume the equilibrium queue length process 
represented as a stationary process {Qt}-~<~< oo with doubly infinite time scale 
(cf. Breiman (1968) Prop. 6.5) and left-continuous path with right-hand limits. 
Then the growth prior to 0 is described by means of the random element (Q0 
-Q-t)t_>_o of D[0, oo). Let 0 > - Y o  > - Y o - Y I > . . . > - Y o - . . . - Y j > . . .  be the 
instants in ( - o e ,  0] where service is completed, T o, Tj the number of arrivals 
in (-11o, 0], resp. ( - I 1 0 -  . - - -  Yj, Y0- .-.-Y~ 1], let the arrival instants be of 
the form - Y o - . . . - Y j  1 -Z~ with 0 < Z { < . . . < Z ~ r j < ~  and let finally ~j 

=(Yj, Z~ . . . .  , ZJr ). Then 4~j is a random element of ~2= U (0, oo) k+l, ~b; taking 
0 

its value in the k th component on {Tj=k}, and equipping (~ with the obvious 
topology, we have 

4.1. Theorem. Suppose that Conditions (1.2), (1.3) hold. Then for any r, the e.d. of 
4)o . . . . .  q), given Qo=n  has a limit as n ~  ~ ,  which can be described as follows: 
(i) ~o . . . .  , ~b~ are independent," (ii) the distribution of Yj is U~ for j = 0  and G for 
j > 0 ;  (iii) given Y~=y, Tj is Poisson distributed with mean 5:y; and (iv) given Yj 
=y, Tj=k, the distribution function of Z{ . . . .  , Z~ is Fy, k, the k-variate dr. of the 
order statistics corresponding to k drawings from a uniform distribution on (0, y). 

Proof. Let 4~(t)=(Yj(t),Z~(t) . . . . .  Z~(t)) be defined relative to time t rather 
than time 0, let F(t) be the event that at time t the server is busy and the 
r preceding service periods fall within the present busy period and define 

E'(t)=I(Yj(t)<=yj, Tj(t)= kj, Zi<_z~; j = 0  . . . . .  r, i=  1 . . . . .  kj), 
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E"(t) =E'(t)I(F(t)). Then the assertion amounts to 

lira E e(E' (O) ] Qo = n) 
n ~ o o  

YO 

= ~ Pko(6Uo) Vko, ,o(Z ~ . . . .  , Zg ~ dU~(uo) 
0 

g y j  

H ~ Pk~(6uJ) Fkj, ,j(z~ . . . .  , z J j) dG(u3). (4.1) 
j = l O  

Now E"( t ) I (Q,=n)  is regenerative and hence E~(E'(0); Q o = n) computable by 
means of (1.8). We use the imbedded Markov chain in a similar manner as in 
the proof of 3.1. In order for E"( t ) I (Q t=n  ) to equal one, X k = n - k o - . . . - k  r 
+ r  customers must have been present at the start r(k) of the r th among the 
preceding service periods and we must have all n - k  o - . . . - k j + j > = l  (since 
otherwise the queue is empty between r(k) and t). The latter requirement is 
satisfied if n is sufficiently large, say n>= k o + ... + kj and similar arguments as in 
the proof of 3.1 then yield the expression 

Yo 

~(1-p)  ~,-go . . . . .  kr+r yPko(UolFgo, Z o Z o "o( 1 . . . . .  k0)( 1 -G(uo))  duo 
7~0 0 

j = l o  

for E~(E'(O), Qo =n). Dividing by G and using (1.1) shows that 

Yo 

lim Ee(E" (O) l QO=n)= ~ Pko(UO) (~k~ l~ko, ,o(Z~ ".., Z~ C~( 1 -G(uo))  duo 
n ~  oO 0 

- 5 kj Fkj ' ,j(z~ . . . . .  z~j) 3 d G (u j) = r.h.s, o f (4.1), 
j = l O  

using 

pk(u ) 6k = e - a .  (c~u6) ~ k~-. = e~" Pk(U 6). 

(4.2) 

Thus (4.1) will follow if lim Pe(F(O)[Qo=n)= 1. But summing (4.2) shows that 
n ~ o o  

Ko Kr 

limP~(F(O)lQo=n)>= ~ ... ~ r.h.s, of(4.1) 
n ~ c e  k o - O  k r = 0  

which can be taken arbitrarity close to 1 upon choosing Yo, ..., Yr, Ko, ..-, Kr 
large enough. [] 

Let Nt', N/' be the number of departures, resp. arrivals in [ - t ,  0] and N', 
N" the corresponding point processes, i.e. random elements of the space gt of 
counting measures on [0, oe). The vague topology on fit defines the concept of 
weak convergence of point processes in the usual manner, cf. e.g. Neveu (1977). 
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4.2. Corollary. As n ~ m ,  the e.d. of (N',N") given Qo=n converges weakly to 
the distribution of (K', K") where: K', K" are independent; K' is a renewal process 
with delay distribution U~ and interarrival distribution G; K" is a stationary 
Poisson process with intensity ~. 

Note that (except for special cases like G exponential) u~(~) is not pro- 
portional to 1 -  G({) and hence K' not stationary. This irregularity is shown to 
vanish in the set-up of Sect. 5. 

Proof. The statement of 4.2 is almost obvious from 4.1, but a formal proof may 
proceed along the following lines. The statement of 4.1 may be reformulated 
that the e.d. of the sequence {~bj}j~ given {Qo=n} converges weakly in ~ to 
the product probability measure # described in 4.1, weak convergence in (2 N 
meaning just weak convergence of coordinates 0 . . . . .  r for any r. For  
~bo, q51 . . . .  c~2, writes S=S(q~ 0, q~l . . . .  )=Yo+Yl + .... and consider the mapping 
A': ~2a-~9l which takes {~bj} into the counting measure placing unit weights at 
the points Yo+...+yr with (say) yo+.. .+yr<S/2 (i.e. all yo+.. .+yr if S = m ) .  
It is then a matter of routine to check that A' is continuous at every {qSj} with 
S = m  and Iz being concentrated on {S=m},  it follows that the departure 
process N'=A'(4~o,~ 1 . . . .  ) indeed converges weakly to K'. A mapping 
A": ~2~+9~ constructed in a similar spirit produces the arrival process and 
since clearly (A', A"): ~ __>~)~2 maps /~ into the distribution of (K', K"), the proof 
is complete. []  

4.3. Corollary. As n ~ ,  the e.d. of {Qo-Q t}~o={N~'-Nt"}t~o given {Qo 
=n} converges weakly in D[O, ~)  (cf. Lindvall (1973)) to the distribution of {K~ 
- K'~'}t=> 0 . 

The proof is an similar obvious application of the continuous mapping 
theorem. 

It is instructive to review the above results in the M/M/1 case, where 
l-G(x)=e - ~  with p=c~/a. Straightforward calculations then show that ~ = ~  
and that 1 - U ~ ( x ) = l - G ( x ) - - e - ~ L  Hence by 4.2, 4.3 in the limit, {Qo 
-Q-t}t>_0 is the difference between two independent stationary Poisson pro- 
cesses with intensities cq respectively o-. However, it is well-known (Reich 
(1957)) that {Qt} ~<t<oo is time-reversible at equilibrium. Thus N', N" are the 
arrival, resp. departure, processes of the time-reversed process. In particular N' 
is stationary Poisson with intensity ~. Now conditioning {Qt} on the final 
value Qo=n amounts to starting the time reversed process at n. But the 
departure process of a M/M/1 queue started at n is readily verified to ap- 
proach a Poisson process with intensity cr as n ~  ~ .  Hence the results of 4.2, 
4.3 are exactly the ones implied by the time reversibility. 

5. The Virtual Waiting Time 

The notation and main results of Sects. 3-4 are used without further reference. 
Our first objective is to reformulate the results of Sect. 4 in terms of large 
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virtual waiting times. That is, rather than l imP~( ' fQ0=n ) 
n ~ o o  

lira P~(.]Vo>X ). Let ~ denote the mean of G. 
x ~ o o  

5.1. Theorem. Suppose that Conditions (1.2), (1.3) hold. Then." 
(i) For all ~, 

we consider 

lim P~(At<{rv,> x)= lim Pe(Bt<~lv,> x)=~ !(1 -G(y))dy.  
x ~ o o  x ~ c x 3  

(5.1) 

(ii) The e.d. given v, >x  of (N', N") converges weakly as x--* oo to the distri- 
bution of (L',L') where: L',L" are independent," L' is a stationary renewal 
process with interarrival distribution G; L" is a stationary Poisson process with 
intensity ~. 

5.2. Remark. Of course, the r.h.s, of (5.1) represents the stationary wait and 
delay in a renewal process with interarrival distribution G. 

Proof We first note the estimate 

P~(v,>xJQ,=n)=o(e-~X)=o(P~(v~>x)) as x--. oo (5.2) 

valid for any fixed n. In view of (1.6) it suffices to show 1-G*("- l ) (x)=o(e-YO. 
But, using induction and dominated convergence, 

x 

e~(1 - G*"(x)) = j" eTtX-Y)(1 - G *~"- 1)(X - -  y ) )  e yy dGO, ) + e~(1 - G(x)) --+ O. 
0 

Now let the arrivals prior to 0 take place at times 0 > - D I > - D 1 - D 2 > . . .  
and define 

F={Y~<=y i i=1,  ...,r, Dj>tlj j = l ,  ..., s}, 

f =  lim Pe(F I Qo = n)= G(Yl)... G(Yr) e-~("' +'+"~) 
n ~ c o  

Then, in view of (1.1), (2.4) and (5.2), 

P~(F, Yo <Yo, Bo>blvo> X) 

~. 7c, P~(F, Yo <=Yo, Bo>b , Vo> X[Qt=n) 
n = l  

(Vo > x) 

,o 1 I (1-G*~"-'(x-v+z))dG(~) ~d- l e rX  .=~ c3-"ffu~~ 1 -  G(z~-~  2+b 

=?f}o dz ~ e 7(x-v+~) ~ 3 - " ( 1 - G g ( n - 1 ) ( x - v  ~-Z))e ~v dG(v). 
0 z + b  n - 1  

(5.3) 
oo 

Now consider the transient renewal function U = ~ F * "  where F = a - 1  G. Since 
oo 0 

S e~x dF(x)= 1, it follows from Feller (1971) pp. 374-377 that 
0 
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Thus 

e -  yX e -  yX 
u(oo)-U(x)= 

7 ~ xe~dF(x )  ? f  
0 

f yo ~ f Yo(1 
r.h.s, o f ( 5 . 3 ) ~ d z  ~ e '~dG(v)=_ ! -G(z+b) )dz .  

0 z+b 
(5.4) 

Taking first b = 0, it follows that the limiting distribution of 
Y0 . . . . .  Yr, D1 . . . . .  D S is as asserted in Part (ii) and Part (ii) follows easily. For 
Part  (i), take first y o = y l = . . . = y r = ~ ,  r / l = . . . = r /  = 0  so that f = l  and (5.4) 
reads 

1 o~ 

~(1 - d(z))  dz P ~ ( B ~ 1 7 6  b 

which is equivalent to the assertion on B t. 
For the one on A t, let again t=0 ,  let F(0) be as in the proof  of 4.1 with r 

= 0  and recall that Pe(f(O) lQo:n)-- ,1 as n ~ c .  Hence Pe(F(O) lvt>x)-- ' l  as 
x --, oo in view of (5.2). But A o = Yo on F(0) so that Part  (ii) applies. []  

The results of Sect. 4 and 5.1 describe the behaviour of the increments of 
the queue length process. We next turn to the increments of the virtual waiting 
time process, which are shown to behave as the difference between a linear 
function and a compound Poisson process. Let as before the paths of 
{vt} o~<t<o~ be normalized to be left-continuous at the jump points (i.e. times 
of arrivals). 

5.3. Theorem. Suppose that Conditions (1.2), (1.3) hold. Then as n ~  o% the e.d. 
given Qo=n of {Vo-V t}~>=o converges weakly in D[0, oo) to the distribution of 

t ~  Z j - - t t  where M is a stationary Poisson process with intensity ~ and Z1, 
~>0'  

Z 2 . . . .  are independent of M and i.i.d, with distribution G. I f  rather than 
iim Pc(" ] QO = n) one considers lim Pc(" I Vo > x), the same conclusion holds except 

that the common distribution of the Zj is now G. 

Proof. Let Zj  be the service time of the j th c u s t o m e r  arriving before 0 and 
M t the number of arrivals in I - t ,  0]. Then the paths of {vo-vt}t>_o and 
(Mr 
I ~ Z j - t t  coincide on [-0, r], w i t h - - c  the last time before 0 where the 

- i  

t 1 / t>O 

queue has been empty. It  follows from the above results and proofs that, 
subject to the limits considered, r ~ oo in distribution and that the distribution 
of M is as claimed. Hence the theorem follows in a routine manner  once the 
Zj in the limit are shown to have the distributional properties asserted. 

Now let F be any measurable subset of gt and f the probability assigned to 
F by the Poisson process with intensity ~. Fix r, zl, ..., z~ and let H be the 
event that the r th customer arriving before 0 starts his service after 0. It then 
follows easily from Sect. 4 that Pe(HIQo=n)~I  as n--~ ~ .  Hence 
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P~(M~F, Zj<=zj j =  1 . . . . .  r lQ o = n )  

~Pe(MEF,  Z j < z j  j = 1 . . . . .  r, H IQ o = n )  

= G(za).. .  G(zr) P~(M~F, H JQ o = n) 

~- G(zO.. .  G(zr) P~ ( M 6 F  ] Qo = n) ~ G(zO.. .  G(zr) f 

(condi t ioning  u p o n  the past prior to 0 to ob ta in  the equali ty sign) and  the 
claim follows subject to the conditioning upon Q0. For the one upon v 0, we 
get as in the proof  of 5.1 

P ~ ( M ~ F ,  Z j ~ z j  j =  1, ..., Fly o > x )  

~ Tz~P~(M~F, Z j < z j j = I  . . . . .  r, Vo>x,  H I Q o = n )  
= 

~ d - l e  'x ~ ccS-"f  ~dVo~(b)~dG(y , ) . . .  
n = r + l  0 0 

zr 

... ~ dG(y~)(1 - G *~"- t - ~ ) ( x - b - Y t  - . - .  -Y~)) 
0 

= - -  dYe(b)  ~ dG(y~).. .  
o o 

...~ dG(y, )g)-~-r  e 'x ( ~ - k ( 1 - G * k ( x - b - y l - . . . - y ~ ) )  
0 k=O 

~ ~ f  0o z 1 z~ eY(b+yl+...+yr) 
= - -  ~ dYe(b)  ~ dG(y , ) . . .  ~ dG(y~) c~ -~-~ 

o o o 7~ 
C~3 

_ f O ( z l ) . . . d ( z )  ~ eTbdVo~(b) 

~ L  G(zl) . . .  e(z~) ~ e )'b db ~ e ''~-b) dG(~) 
~v o b 

f ( ~ ( Z 1 ) . . . G ( z r )  ~ ~ d G ( ~ ) = f G ( z l ) . .  d(z~). [ ]  
"9 0 
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