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1. Introduction 

This paper investigates convergence in distribution U , ~  U of stochastic pro- 
cesses in D when the limit process U satisfies, e.g., the strong law of large 
numbers or the law of the iterated logarithm. Usually the linear space 
D =D [0, oo) of real-valued functions defined on [0, oo) that are right-continuous 
and have left-hand limits, is equipped with one of the Skorohod topologies 
Se{J1,J2, M1,M2} [13]. Let D[0, T] be the space of restrictions of functions 
x eD to [0, T]. For convenience we write x for both an element of D and its 
restriction to [0, T]. By this notation U , ~  U in (D, S) is equivalent to Un~ U 
in (D[0, r ] ,  S) for all re Tv={t>O: P[U(t-)= U(t)] =1} (Pollard [10], Theo- 
rem 6). Hence, from an invariance principle U,,~ U in (D, S) we immediately 
obtain only limit theorems f(Un)~f(U ) for the distributions of functionals 
f :  D ~ I R  which do not depend essentially on the behaviour of the processes 
outside a sufficiently large bounded interval [0, T]. 

To obtain limit theorems for functionals which also relate to the behaviour 
of the tails of the processes, Mfiller ([9], w 1) introduced a metric 

Ix(t)-y(t)l 
e(x, y).- = sup 

t~o ~(t) 

on the subset of continuous functions in A(7c, 0), where 

A(n, a)= {x e D: ~lim Ix(t)]n(t)-<--a[J 

(positive continuous neD,  a>0).  The topology generated by e is finer than 
that of uniform convergence on compact intervals. A corresponding refinement 
of the J1 topology on A(n, 0) is due to Whitt [15, 16]. These topologies are 
well adapted for the study of processes obeying a strong law of large numbers. 
To treat processes satisfying the law of the iterated logarithm, one wishes to 
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extend the Mtiller-Whitt topologies to the case a=l  and z(t)~(2tloglogt) 1/2 
as t ~  oe. But ([9], w 3) for a > 0 the metric e generates a nonseparable topology 
on the subset of continuous functions in A(~, a). Borovkov and Sakhanenko 
[4] pointed out that in this case difficulties arise. If one accepts the continuum 
hypothesis, then for a wide class of stochastic processes (including the Wiener 
process) it is impossible to construct the corresponding distributions on the 
Bore1 a-field. 

Borovkov [3] and Sakhanenko [-12] avoided this difficulty by making no 
use of metrics on D. They introduced the notion of (p, A(7c, a))-continuity of 
functionals (see Sect. 2). A different possibility is to study weak convergence of 
probability measures on D relative to incompatible topology and a-field (Mil- 
ler and Sentilles [-8]). The purpose of this paper is to introduce metrics ~ on D 
(Sect. 3) such that the usual theory of convergence in distribution in metric 
spaces applies. These metrics ~ generate separable topologies S which are 
refinements of the various Skorohod topologies and which include extensions 
of the Mtiller-Whitt ones to the case a > 0 .  Further the class of (p, A(~,a))- 
continuous functionals coincides with the class of functionals that are con- 
tinuous on A(7c, a) with respect to/3. A corresponding metrization problem was 
solved by Sakhanenko ([12], w 3) for the case of discrete time, i.e. for the space 
of sequences instead of D. In Sect. 4 we study necessary and sufficient con- 
ditions for the validity of invariance principles U , ~ U  in (D, S) with limit 
processes U in A(rc, a). If the processes U, are in A(7c, a) too, we may, as it is 
done in Sect. 5, restrict our attention to the Polish space (A(~, a), S). Finally in 
Sect. 6 we prove a limit theorem for last entrance times. This theorem illus- 
trates the possible applications of the invariance principles treated here. 

Acknowledgment. I wish to thank Ward  Whitt  for discussion and his most  helpful comments.  

2. Preliminaries, (p, A (n, a))-continuity 

Let ~ be the usual a-field on D generated by the evaluation maps from D to 
the real line Ill. Let ((2, 9,I, P) be a probability space. Let random variables 
always be defined on f2. By a stochastic process we mean a family U={U(t); 
t > 0} of real-valued random variables. 

Throughout this paper 7c ~D is a positive continuous function and a >  0 is a 
constant. We put 

Ar ~ = Ix  ~ D: sup [x(t)l < ct[ @ 3 ,  

A(rc, a ) = ~  0 Ar,={x~D'l imlX(t)[<a~eT~" 

We assume a metric p on D generating one of the Skorohod topologies S = J1 
(see [2, 7, 17]), S=J  2, S = M  1 (see [11, 14, 18]) or S = M  a. Let Pr be a metric 
generating the corresponding topology on D [0, T]. 
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Example. For S = M  2 w e  may define pT(X, y): =H(F(x,  T), F(y, T)), where H is 
the Hausdorff metric in the plane and 

r(x,  T):=  {(t, s)~IR2: O < t < T, x ( t -  ) <=s< x(t)} 

is the completed graph of x6D[O, T] with x(0--):--x(0) (cf. Pomarede [11], 
p. 83, Theorem 4.2). Further we may set 

.-~ p(x, y ) . -  e -s min(1, ps(x, y))ds. 
0 

Let f :  E--,IR be a functional with E c D .  Then f is said to be (p, A(7c, a))- 
continuous at x E E c~ A(rc, a), if the following relation holds. 

(B) For each 5>0  there exist a continuity point N=N(x ,~ )>O of x, fi 
=fi(x, e)>0 and cS=b(x, e )>0 such that x~  AN,~+ ~ and the following condition is 
satisfied: if y ~ E r AN, a+~ and pN(x, y) < ~, then I f ( x ) - f ( y ) f  < 5. 

Definition (B) is used by Borovkov ([3], p. 68). We slightly modified the 
definition of AT, ~ to obtain equivalence of (B) and the corresponding definition 
of Sakhanenko ([12], p. 74). 

3. Metrization of D 

We define 

f~(x)--min (1, max (O, suplX(t )J-al~ (s>_O, x~D), 
, ~  ~z(t) ] ]  - 

d(x, y)= S e-~tf~(x)-fs(y)l ds (x, y E D), 
0 

fi (x, y)=  max (p (x, y), d (x, y)) (x, y ~ D). 

The function ~ is a metric on D. We denote by S~,o the topology generated by 
fi on D or a subset of D. If no confusion may arise, we write S instead of S~,a. 
With the lemma below it is easy to show that the metric space (D, fi) is 
separable (cf. [2], Sect. 14). But (D, fi) is not complete (A divergent Cauchy 
sequence is defined by x,( t)=(a+ 1)n(t) for n - 1  < t<n and x~(t)=0 elsewhere). 

Lemma 3.1. Let x,, x 6 D. Then x,,--, x in (D, ~) if and only if x , ~  x in (D, S) and 
fr(x, ,)~fr(x) for all continuity points T > 0  of x. 

Convergence to an element x E A(rc, a) is characterized as follows. 

Lemma3.2.  Let x,,, x~D.  Then x~A(n ,a)  and x , ~ x  in (D,S) if and only if 
x , ,~x  in (D, S) and the following condition is satisfied: 

lim lim sup lxn(t)l < (1) 
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P r o o f  of Lemma 3.2. Necessity. We only have to show that (1) is necessary. 
This follows by Lemma 3.1 from the equivalence of 

sup [x(t)l < a  
L_>r n(O- +e  and f r (x)<e ( 0 < e < l ) .  

Sufficiency. Let T > 0  be a continuity point of x. Given e>0,  by (1) there exists 
a continuity point T 1 > T of x such that 

~x.(t)[ 
lim sup < a  7(tF 

From x,--+x in (D, S) we obtain the relation 

Ix(t)] < a +  
sup e. (2) 
,~r,  7c(t)= 

Hence for n sufficiently large, rfr(X,)- fr(x)[<e.  By Lemma 3.1 it follows that 
x n ~ x  in (D, S), whereas (2) ensures xeA(n ,  a). 

Lemma3.3.  Let f :  E-+IR be a functional with E c D ,  and let x~Ec~A(n,a).  
Then f is (p, A(n, a))-continuous at x if and only if f is continuous at x with 
respect to S~,~. 

Proof. 1) Assume that f is continuous at x with respect to S. To prove that f 
is (p, A(n, a))-continuous at x we assume the contrary, say, Definition (B) is not 
satisfied. Now we choose an increasing sequence (AT,) of continuity points of x 
with x e A  t for all n and N,--+oo. Then for some e > 0  and for each 

Nn,  a +  n 

sequence (6,,) of positive numbers there exists a sequence (y.) such that for all n 
there holds 

yn~Ec~A 1, (3) 
N n ,  a +  n 

pu.(x, y.) < ~5, (4) 

[ f ( x ) - f ( y . ) l  >= e. (5) 

We can choose a sequence (6.) such that from (4) it follows that p(x, y.)~O as 
n--, oe. Further the sequence (&.) can be choosen such that for m<n there holds 

[ [y.(t)l Ix(t)l <1 
sup - -  sup 

Using (3) it follows that 
ly.(t)l ~ 1 1 

sup n ~ )  ~ a + - - + - .  
t > N ~  m n 

From Lemma 3.2 we obtain y,--,x in (D, S). Hence f ( y , )~ f ( x ) ,  in contradiction 
to (5). 

2) The other direction of the lemma follows straightforward from De- 
finition (B) and Lemma 3.1. 
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4. Convergence in Distribution in (D, S) 

Before characterizing convergence in distribution of processes in (D, S~,a) we 
observe that the Borel a-field associated with S~,~ is the usual C-field D on D. 
(Using the definition of f3, we easily obtain the D-measurability of the open 
spheres in the separable space (D, fi).) 

Theorem 4.1. Let U n, U be stochastic processes with almost all paths in E ~ D. 
Then propositions (a) and (b) are equivalent. 

(al) Un~U in (D,S), 

(a2) lira l imP[Unr a+~J=O for each fl>0. 
T ~ o o  n 

(bl) U~A(~z, a) P-a.s., 

(b2) U,, ~ U in (E, S~, ~). 

Remark 4.2. 1) In view of Lemma 3.3 proposition (b2) in Theorem 4.1 may be 
replaced by 

(b3) f (Un)~f (U)  for all D-measurable functionals f on E, which are 
(p, A(~z, a))-continuous Pv-a.s. 

Theorem 1 of Sakhanenko [12] corresponds to the statement: (a) and (bl)  
imply (b 3). 

2) Theorem 4.1 remains true for k-tuples of stochastic processes, if we 
replace sets and spaces by corresponding k-fold products of sets and spaces 
throughout (cf. Corollary 5.2). 

Proof of Theorem 4.1. 1) We assume that (b) holds. From the continuity of the 
canonical embedding from (D,S) to (D,S) we obtain (al), For 0 < f l < l  and 
T~T, we have 

lira P[U,r a+p] =l im P [fr(Un)> ~] < P  (U)> 
n n 

=P[U(-AT,,+s as r--+ or 

Thus (a2) holds. 
2) We assume that (a) holds. Given c~>0, by (a2) there exists a sequence of 

points Tje T v (j =0, 1, 2 . . . .  ) such that Tj{ oo as j--+ oe and such that for each j, 

lim P [hj(U,)> a +~] < ~ J, 

where 
Ix(t)l 

hj (x) = sup (x ~ D). 
rj-i <t~rj ~c(t) 
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By (al) we have hj(U,)~hj(U) as n~oo.  Hence 

P[VCA(~,a)]<= ~ P[CCA r o+~] 
m =  l m ,  

~, ( ~ [h(U)  2] )  < P ->a+ = j 
m = l  j =  1 [ - -  J J  

m = l  j = m + l  

Since 6 > 0 is arbitrary, this yields (b 1).. 
We denote by A respectively A the closure of a set A c E  in (D,S) 

respectively (E, S). Let F be a closed subset of (E, S) and let t/> 0 be arbitrary. 
By (a2) we can choose a sequence (tin) in (0, oo) such that 

for each m. If we put 

lira P[U,(~At,,,~+I ] <t/2 -m 
n 

) 
N At o4.' 

m =  1 m ,  - -  

then we obtain for each j the relation lira P[Un~Bj] <~/. By (al) it follows that 
n 

lira P[Un ~ F] ~l im PEUn ~F c~Bj] + ~l 
n n 

~P[U ~F c~Bj] +tl=P[U EEc~F c~Bj] +~l 

for all j. As j - ~ ,  Fc~Bj is nonincreasing. Hence 

l i m P [ U ~ F ] < P  U F n B  +tl<=P[U~F]+~. 
n 

(The last inequality follows from Lemma 3.2 and ff*=F.) Since ~/>0 is arbi- 
trary, the portmanteau theorem yields (b2). 

5. The Subspace A (lr, a) 

Let xn, x~D. Then from Lemma 3.2 it follows that x., x~A(~, a) and xn-~x in 
(A(Tr, a), S) if and only if the following conditions are satisfied: 

x , ~ x  in (D, S), lira sup [x~(t)] _<a. 

The subspace A(~, a) with the metric fi is not complete (see counterexample in 
Sect. 3). But by introducing a modified metric Pl on A(~z,a), which was 
suggested by Ward Whirr for this purpose, we obtain 
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Lemma 5.1. The space (A(n, a), S) is Polish. 

Proof. Let x e A(n, a). Then M x defined by 

{01 for s < 0  
Mx(s)= - fs (x)  for s > 0  

is a distribution function of a probability measure on IR. We set 

ill(x, y)=max(p(x,  y), L(M x, My)) (x, yeA(n ,  a)), 

where L is the L6vy metric ([6], p. 33). In view of Lemma 3.1 and [6], p. 33, 
Theorem 1, the metrics fi and fit are equivalent on A(n, a). From Lemma 3.2 it 
follows easily that (A(n, a), Pl) is complete, if (D, p) is complete. 

From Theorem 4.1 with Remark 4.2.2 we obtain 

Corollary 5.2. Let U~, U i be stochastic processes with paths in D. I f  we put U n 
=(U2, ..., U2) and U = ( U  1 . . . .  , Uk), then propositions (~) and (/3) are equivalent. 

(~1) U n ~ U  in (D,S) k, 

(~2) lim supP[U~(~Ar,a+~]=O for i=1 . . . . .  k and each/3>0. 
T ~ o o  n 

(/31) U, sA(n,  a)kP-a.s, for all n, g~A(n,a)kP-a.s. ,  

(/32) U , ~  U in (A(n, a), ~)k. 

Remark 5.3. 1) We consider the special case a=0 ,  S = J  1. As usual we denote 
by A the class of all strictly increasing, continuous mappings of [0, oo) onto 
itself. Let x,, x~A(n ,  0). Then x,--.x in (A(n, 0), i t )  if and only if there exists a 
sequence (2,) in A such that 

sup lL, t - t l - * 0  and sup x,(t) x ( 2 , t ~ 0 .  
~>__o ~>_o n(t) ~('L 

If n ( t ) = l + t  ~ for some 7>0, then (A(x, 0), J 0 is the metrizable space used by 
Whitt ([15], Sect. 3). An error in the definition in [15] was noted in [16]. 

2) We denote by C =  C[0, ~ )  the subset of continuous functions in D. Let 
S = M  2. Then S relativized to C coincides with the topology of uniform 
convergence on compact intervals ([13], p. 264). Hence (Cc~A(n,a), S~,a) is a 
metrizable space suitable for w (n ( t ) - - tv l ,  a=0)  and w (n(t) 
=(2(t v 3)loglog(t v 3)) 1/2, a =  1) of Mi.iller [91. Corollary 5.2 remains true, if 
we replace D by C and A(n, a) by Cc~A(n, a). 

6. Last Entrance Times 

Let 0 ~ D  be a continuous function with the properties 0 ( t )>0  for t > 0  and 

g,(t) 
li___~m n ~ > a .  (6) 
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Then we define a last entrance time functional go: A(z, a)~lR by 

go(x)=sup {t>0:  x(t)>r (x~A(n, a)), 

where sup 0 = 0. 

Theorem 6.1. Let U,, U be stochastic processes with almost all paths in A(n, a). 
Assume that U , ~  U in (A(n, a), M2) and 

/f 0 < p < q ,  then P [ s u p  U(t) ] Lp<=t<-q ~ =  1 =0.  (7) 

Then it follows that go(U,,)~go(U). 

Remark 6.2. If U is a stable process with exponent ~ (0< ~<2), then (7) follows 
in a similar way as in the proof of Theorem 8.1 of Dudley [5] from the fact 
that the distribution of sup (U(t)-O(t)) has a density. 

p < t < q  

Example. Let (Tn) be a sequence of independent identically distributed real 
random variables and assume that 0 < V(TI)< ~ .  Put 

[nt] 

Y (t)=(nV(TO) -1/2 ~ (Ti-ET1) ([nt] integer part ofnt) .  
i = 1  

Let W be the standard Wiener process and 

~(t): = (2 max (t, 3) log log max (t, 3)) 1/2. 

From Theorem 2 of Mfiller [9] and Corollary 5.2 we obtain 

Y , ~ W  in (A(x, 1), fl). 

Hence by Theorem 6.1 it follows that 

go(Y.)~go(w), 
where O(t)=c~(t) with c>1 or O(t)=ct ~ with c>0,  7>�89 Corresponding 
results are valid if the distribution of T 1 belongs to the domain of attraction of 
a stable distribution with exponent ~ < 2 (see [1], p. 2920. 

Proof of Theorem 6.1. It suffices to show 

P [ s u p U " ( t ) < l ] ~ P [ s u p U ( t ) < l ]  (8) 
,_,as r . , ~  4,(0= J 

for all s ~ T v. Now let s e T v. By (6) there exist fl > 0 and T > s such that 

7c(t) 1 - f i  
snp 
t ~ T  

x(t)~ 
We put f (x) . '=max 1 - f l ,  sup (x~A(rc, a)). Assume that x , ~ x  in 

(A(Tc, a), 2~2). If x is continuous at s, we easily see that f(x,)-~f(x). Hence f is 
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Pv-a.s. c o n t i n u o u s  o n  (A(~,  a ) , ) ~ 2 ) .  By  (6) a n d  (7) i t  fo l lows  t h a t  1 is a 

c o n t i n u i t y  p o i n t  o f  t h e  d i s t r i b u t i o n  f u n c t i o n  of  f(U). T h e r e f o r e  

P [ f ( U , )  < 1] ~ P  I f ( U )  < 1] as n ~  oo, w h i c h  p r o v e s  (8). 
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