Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete © Springer-Verlag 1981

On Invariance Principles with Limit Processes Satisfying Strong Laws*

Herbert Bauer

DFVLR, Rechenzentrum AMI, D-8031 Weßling, Bundesrepublik Deutschland

1. Introduction

This paper investigates convergence in distribution $U_n \Rightarrow U$ of stochastic processes in D when the limit process U satisfies, e.g., the strong law of large numbers or the law of the iterated logarithm. Usually the linear space $D = D[0, \infty)$ of real-valued functions defined on $[0, \infty)$ that are right-continuous and have left-hand limits, is equipped with one of the Skorohod topologies $S \in \{J_1, J_2, M_1, M_2\}$ [13]. Let D[0, T] be the space of restrictions of functions $x \in D$ to [0, T]. For convenience we write x for both an element of D and its restriction to [0, T]. By this notation $U_n \Rightarrow U$ in (D, S) is equivalent to $U_n \Rightarrow U$ in (D[0, T], S) for all $T \in T_U = \{t > 0: P[U(t-)=U(t)]=1\}$ (Pollard [10], Theorem 6). Hence, from an invariance principle $U_n \Rightarrow U$ in (D, S) we immediately obtain only limit theorems $f(U_n) \Rightarrow f(U)$ for the distributions of functionals $f: D \to \mathbb{R}$ which do not depend essentially on the behaviour of the processes outside a sufficiently large bounded interval [0, T].

To obtain limit theorems for functionals which also relate to the behaviour of the tails of the processes, Müller ($[9], \S1$) introduced a metric

$$e(x, y) := \sup_{t \ge 0} \frac{|x(t) - y(t)|}{\pi(t)}$$

on the subset of continuous functions in $\Lambda(\pi, 0)$, where

$$\Lambda(\pi, a) = \left\{ x \in D : \lim_{t \to \infty} \frac{|x(t)|}{\pi(t)} \leq a \right\}$$

(positive continuous $\pi \in D$, $a \ge 0$). The topology generated by e is finer than that of uniform convergence on compact intervals. A corresponding refinement of the J_1 topology on $\Lambda(\pi, 0)$ is due to Whitt [15, 16]. These topologies are well adapted for the study of processes obeying a strong law of large numbers. To treat processes satisfying the law of the iterated logarithm, one wishes to

^{*} The bulk of this work was done at the Institute of Mathematics, University of Stuttgart

extend the Müller-Whitt topologies to the case a=1 and $\pi(t) \sim (2t \log \log t)^{1/2}$ as $t \to \infty$. But ([9], §3) for a > 0 the metric *e* generates a nonseparable topology on the subset of continuous functions in $\Lambda(\pi, a)$. Borovkov and Sakhanenko [4] pointed out that in this case difficulties arise. If one accepts the continuum hypothesis, then for a wide class of stochastic processes (including the Wiener process) it is impossible to construct the corresponding distributions on the Borel σ -field.

Borovkov [3] and Sakhanenko [12] avoided this difficulty by making no use of metrics on D. They introduced the notion of $(\rho, \Lambda(\pi, a))$ -continuity of functionals (see Sect. 2). A different possibility is to study weak convergence of probability measures on D relative to incompatible topology and σ -field (Miller and Sentilles [8]). The purpose of this paper is to introduce metrics $\hat{\rho}$ on D (Sect. 3) such that the usual theory of convergence in distribution in metric spaces applies. These metrics $\hat{
ho}$ generate separable topologies \hat{S} which are refinements of the various Skorohod topologies and which include extensions of the Müller-Whitt ones to the case a > 0. Further the class of $(\rho, \Lambda(\pi, a))$ continuous functionals coincides with the class of functionals that are continuous on $\Lambda(\pi, a)$ with respect to $\hat{\rho}$. A corresponding metrization problem was solved by Sakhanenko ([12], § 3) for the case of discrete time, i.e. for the space of sequences instead of D. In Sect. 4 we study necessary and sufficient conditions for the validity of invariance principles $U_n \Rightarrow U$ in (D, \hat{S}) with limit processes U in $\Lambda(\pi, a)$. If the processes U_n are in $\Lambda(\pi, a)$ too, we may, as it is done in Sect. 5, restrict our attention to the Polish space $(\Lambda(\pi, a), \hat{S})$. Finally in Sect. 6 we prove a limit theorem for last entrance times. This theorem illustrates the possible applications of the invariance principles treated here.

Acknowledgment. I wish to thank Ward Whitt for discussion and his most helpful comments.

2. Preliminaries, $(\rho, \Lambda(\pi, a))$ -continuity

Let \mathfrak{D} be the usual σ -field on D generated by the evaluation maps from D to the real line \mathbb{R} . Let $(\Omega, \mathfrak{A}, P)$ be a probability space. Let random variables always be defined on Ω . By a stochastic process we mean a family $U = \{U(t); t \ge 0\}$ of real-valued random variables.

Throughout this paper $\pi \in D$ is a positive continuous function and $a \ge 0$ is a constant. We put

$$\Lambda_{T,\alpha} = \left\{ x \in D : \sup_{t \ge T} \frac{|x(t)|}{\pi(t)} < \alpha \right\} \in \mathfrak{D},$$

$$\Lambda(\pi, a) = \bigcap_{\alpha > a} \bigcup_{T > 0} \Lambda_{T,\alpha} = \left\{ x \in D : \overline{\lim_{t \to \infty} \frac{|x(t)|}{\pi(t)}} \le a \right\} \in \mathfrak{D}.$$

We assume a metric ρ on D generating one of the Skorohod topologies $S=J_1$ (see [2, 7, 17]), $S=J_2$, $S=M_1$ (see [11, 14, 18]) or $S=M_2$. Let ρ_T be a metric generating the corresponding topology on D[0, T].

On Invariance Principles with Limit Processes Satisfying Strong Laws

Example. For $S = M_2$ we may define $\rho_T(x, y) := H(\Gamma(x, T), \Gamma(y, T))$, where H is the Hausdorff metric in the plane and

$$\Gamma(x, T) := \{(t, s) \in \mathbb{R}^2 : 0 \le t \le T, x(t-) \le s \le x(t)\}$$

is the completed graph of $x \in D[0, T]$ with x(0-) := x(0) (cf. Pomarede [11], p. 83, Theorem 4.2). Further we may set

$$\rho(x, y) := \int_{0}^{\infty} e^{-s} \min(1, \rho_{s}(x, y)) \, ds.$$

Let $f: E \to \mathbb{R}$ be a functional with $E \subset D$. Then f is said to be $(\rho, \Lambda(\pi, a))$ continuous at $x \in E \cap \Lambda(\pi, a)$, if the following relation holds.

(B) For each $\varepsilon > 0$ there exist a continuity point $N = N(x, \varepsilon) > 0$ of $x, \beta = \beta(x, \varepsilon) > 0$ and $\delta = \delta(x, \varepsilon) > 0$ such that $x \in \Lambda_{N, a+\beta}$ and the following condition is satisfied: if $y \in E \cap \Lambda_{N, a+\beta}$ and $\rho_N(x, y) < \delta$, then $|f(x) - f(y)| < \varepsilon$.

Definition (B) is used by Borovkov ([3], p. 68). We slightly modified the definition of $\Lambda_{T,\alpha}$ to obtain equivalence of (B) and the corresponding definition of Sakhanenko ([12], p. 74).

3. Metrization of D

We define

$$f_{s}(x) = \min\left(1, \max\left(0, \sup_{t \ge s} \frac{|x(t)|}{\pi(t)} - a\right)\right) \quad (s \ge 0, \ x \in D)$$

$$d(x, y) = \int_{0}^{\infty} e^{-s} |f_{s}(x) - f_{s}(y)| \, ds \quad (x, y \in D),$$

$$\hat{\rho}(x, y) = \max\left(\rho(x, y), d(x, y)\right) \quad (x, y \in D).$$

The function $\hat{\rho}$ is a metric on *D*. We denote by $\hat{S}_{\pi,a}$ the topology generated by $\hat{\rho}$ on *D* or a subset of *D*. If no confusion may arise, we write \hat{S} instead of $\hat{S}_{\pi,a}$. With the lemma below it is easy to show that the metric space $(D, \hat{\rho})$ is separable (cf. [2], Sect. 14). But $(D, \hat{\rho})$ is not complete (A divergent Cauchy sequence is defined by $x_n(t) = (a+1)\pi(t)$ for $n-1 \leq t < n$ and $x_n(t) = 0$ elsewhere).

Lemma 3.1. Let $x_n, x \in D$. Then $x_n \to x$ in (D, \hat{S}) if and only if $x_n \to x$ in (D, S) and $f_T(x_n) \to f_T(x)$ for all continuity points T > 0 of x.

Convergence to an element $x \in \Lambda(\pi, a)$ is characterized as follows.

Lemma 3.2. Let x_n , $x \in D$. Then $x \in A(\pi, a)$ and $x_n \to x$ in (D, \hat{S}) if and only if $x_n \to x$ in (D, S) and the following condition is satisfied:

$$\lim_{T \to \infty} \overline{\lim_{n}} \sup_{t \ge T} \frac{|x_n(t)|}{\pi(t)} \le a.$$
(1)

Proof of Lemma 3.2. Necessity. We only have to show that (1) is necessary. This follows by Lemma 3.1 from the equivalence of

$$\sup_{t \ge T} \frac{|x(t)|}{\pi(t)} < a + \varepsilon \quad \text{and} \quad f_T(x) < \varepsilon \quad (0 < \varepsilon < 1).$$

Sufficiency. Let T > 0 be a continuity point of x. Given $\varepsilon > 0$, by (1) there exists a continuity point $T_1 > T$ of x such that

$$\overline{\lim_{n}} \sup_{t \ge T_{1}} \frac{|x_{n}(t)|}{\pi(t)} < a + \varepsilon.$$

From $x_n \rightarrow x$ in (D, S) we obtain the relation

$$\sup_{t \ge T_1} \frac{|\mathbf{x}(t)|}{\pi(t)} \le a + \varepsilon.$$
(2)

Hence for *n* sufficiently large, $|f_T(x_n) - f_T(x)| \le \varepsilon$. By Lemma 3.1 it follows that $x_n \to x$ in (D, \hat{S}) , whereas (2) ensures $x \in A(\pi, a)$.

Lemma 3.3. Let $f: E \to \mathbb{R}$ be a functional with $E \subset D$, and let $x \in E \cap \Lambda(\pi, a)$. Then f is $(\rho, \Lambda(\pi, a))$ -continuous at x if and only if f is continuous at x with respect to $\hat{S}_{\pi,a}$.

Proof. 1) Assume that f is continuous at x with respect to \hat{S} . To prove that f is $(\rho, \Lambda(\pi, a))$ -continuous at x we assume the contrary, say, Definition (B) is not satisfied. Now we choose an increasing sequence (N_n) of continuity points of x with $x \in \Lambda_{N_n, a+\frac{1}{n}}$ for all n and $N_n \to \infty$. Then for some $\varepsilon > 0$ and for each sequence (δ_n) of positive numbers there exists a sequence (y_n) such that for all n there holds

$$y_n \in E \cap A_{N_n, a + \frac{1}{n}},\tag{3}$$

$$\rho_{N_n}(x, y_n) < \delta_n, \tag{4}$$

$$|f(x) - f(y_n)| \ge \varepsilon. \tag{5}$$

We can choose a sequence (δ_n) such that from (4) it follows that $\rho(x, y_n) \rightarrow 0$ as $n \rightarrow \infty$. Further the sequence (δ_n) can be choosen such that for $m \leq n$ there holds

$$\left|\sup_{N_m \le t \le N_n} \frac{|y_n(t)|}{\pi(t)} - \sup_{N_m \le t \le N_n} \frac{|x(t)|}{\pi(t)}\right| < \frac{1}{n}.$$

Using (3) it follows that

$$\sup_{t \ge N_m} \frac{|y_n(t)|}{\pi(t)} \le a + \frac{1}{m} + \frac{1}{n}.$$

From Lemma 3.2 we obtain $y_n \rightarrow x$ in (D, \hat{S}) . Hence $f(y_n) \rightarrow f(x)$, in contradiction to (5).

2) The other direction of the lemma follows straightforward from Definition (B) and Lemma 3.1. On Invariance Principles with Limit Processes Satisfying Strong Laws

4. Convergence in Distribution in (D, S)

Before characterizing convergence in distribution of processes in $(D, \hat{S}_{\pi,a})$ we observe that the Borel σ -field associated with $\hat{S}_{\pi,a}$ is the usual σ -field \mathfrak{D} on D. (Using the definition of $\hat{\rho}$, we easily obtain the \mathfrak{D} -measurability of the open spheres in the separable space $(D, \hat{\rho})$.)

Theorem 4.1. Let U_n , U be stochastic processes with almost all paths in $E \in \mathfrak{D}$. Then propositions (a) and (b) are equivalent.

(a1)
$$U_n \Rightarrow U$$
 in (D, S) ,

- (a2) $\lim_{T \to \infty} \overline{\lim_{n}} P[U_n \notin \Lambda_{T, a+\beta}] = 0 \text{ for each } \beta > 0.$
- (b1) $U \in \Lambda(\pi, a)$ *P*-*a.s.*,
- (b2) $U_n \Rightarrow U$ in $(E, \hat{S}_{\pi, a})$.

Remark 4.2. 1) In view of Lemma 3.3 proposition (b2) in Theorem 4.1 may be replaced by

(b3) $f(U_n) \Rightarrow f(U)$ for all \mathfrak{D} -measurable functionals f on E, which are $(\rho, \Lambda(\pi, a))$ -continuous P_{U} -a.s.

Theorem 1 of Sakhanenko [12] corresponds to the statement: (a) and (b1) imply (b3).

2) Theorem 4.1 remains true for k-tuples of stochastic processes, if we replace sets and spaces by corresponding k-fold products of sets and spaces throughout (cf. Corollary 5.2).

Proof of Theorem 4.1. 1) We assume that (b) holds. From the continuity of the canonical embedding from (D, \hat{S}) to (D, S) we obtain (a1). For $0 < \beta < 1$ and $T \in T_u$ we have

$$\overline{\lim_{n}} P[U_{n} \notin A_{T, a+\beta}] = \overline{\lim_{n}} P[f_{T}(U_{n}) \ge \beta] \le P\left[f_{T}(U) \ge \frac{\beta}{2}\right]$$
$$= P[U \notin A_{T, a+\frac{\beta}{2}}] \to 0 \quad \text{as} \quad T \to \infty.$$

Thus (a2) holds.

2) We assume that (a) holds. Given $\delta > 0$, by (a2) there exists a sequence of points $T_i \in T_U$ (j=0, 1, 2, ...) such that $T_i \uparrow \infty$ as $j \to \infty$ and such that for each j,

$$\overline{\lim_{n}} P\left[h_{j}(U_{n}) \ge a + \frac{1}{j}\right] < \delta 2^{-j},$$

where

$$h_j(x) = \sup_{T_{j-1} \leq t \leq T_j} \frac{|x(t)|}{\pi(t)} \quad (x \in D).$$

By (a1) we have $h_i(U_n) \Rightarrow h_i(U)$ as $n \to \infty$. Hence

$$P[U \notin \Lambda(\pi, a)] \leq \sum_{m=1}^{\infty} P[U \notin \Lambda_{T_m, a+\frac{2}{m}}]$$
$$\leq \sum_{m=1}^{\infty} P\left(\bigcup_{j=m+1}^{\infty} \left[h_j(U) \geq a + \frac{2}{j}\right]\right)$$
$$\leq \sum_{m=1}^{\infty} \sum_{j=m+1}^{\infty} \overline{\lim_{n}} P\left[h_j(U_n) \geq a + \frac{1}{j}\right] < \delta$$

Since $\delta > 0$ is arbitrary, this yields (b1).

We denote by \overline{A} respectively \overline{A} the closure of a set $A \subset E$ in (D, S) respectively (E, \hat{S}) . Let F be a closed subset of (E, \hat{S}) and let $\eta > 0$ be arbitrary. By (a2) we can choose a sequence (t_m) in $(0, \infty)$ such that

$$\overline{\lim_{n}} P[U_{n} \notin A_{t_{m}, a+\frac{1}{m}}] < \eta 2^{-n}$$

for each m. If we put

$$B_j = \bigcap_{m=1}^{j} \Lambda_{t_m, a+\frac{1}{m}},$$

then we obtain for each j the relation $\overline{\lim} P[U_n \notin B_j] < \eta$. By (a1) it follows that

$$\overline{\lim_{n}} P[U_{n} \in F] \leq \overline{\lim_{n}} P[U_{n} \in \overline{F \cap B_{j}}] + \eta$$
$$\leq P[U \in \overline{F \cap B_{j}}] + \eta = P[U \in E \cap \overline{F \cap B_{j}}] + \eta$$

for all j. As $j \rightarrow \infty$, $F \cap B_j$ is nonincreasing. Hence

$$\overline{\lim_{n}} P[U_{n} \in F] \leq P\left[U \in E \cap \bigcap_{j=1}^{\infty} \overline{F \cap B_{j}}\right] + \eta \leq P[U \in F] + \eta.$$

(The last inequality follows from Lemma 3.2 and $\overline{F} = F$.) Since $\eta > 0$ is arbitrary, the portmanteau theorem yields (b2).

5. The Subspace $\Lambda(\pi, a)$

Let $x_n, x \in D$. Then from Lemma 3.2 it follows that $x_n, x \in \Lambda(\pi, a)$ and $x_n \to x$ in $(\Lambda(\pi, a), \hat{S})$ if and only if the following conditions are satisfied:

$$x_n \to x$$
 in (D, S) , $\overline{\lim_{t\to\infty}} \sup_n \frac{|x_n(t)|}{\pi(t)} \leq a$.

The subspace $\Lambda(\pi, a)$ with the metric $\hat{\rho}$ is not complete (see counterexample in Sect. 3). But by introducing a modified metric $\hat{\rho}_1$ on $\Lambda(\pi, a)$, which was suggested by Ward Whitt for this purpose, we obtain

On Invariance Principles with Limit Processes Satisfying Strong Laws

Lemma 5.1. The space $(\Lambda(\pi, a), \hat{S})$ is Polish.

Proof. Let $x \in \Lambda(\pi, a)$. Then M_x defined by

$$M_{x}(s) = \begin{cases} 0 & \text{for } s < 0\\ 1 - f_{s}(x) & \text{for } s \ge 0 \end{cases}$$

is a distribution function of a probability measure on \mathbb{R} . We set

$$\hat{\rho}_1(x, y) = \max(\rho(x, y), L(M_x, M_y))$$
 (x, $y \in \Lambda(\pi, a)$),

where L is the Lévy metric ([6], p. 33). In view of Lemma 3.1 and [6], p. 33, Theorem 1, the metrics $\hat{\rho}$ and $\hat{\rho}_1$ are equivalent on $\Lambda(\pi, a)$. From Lemma 3.2 it follows easily that $(\Lambda(\pi, a), \hat{\rho}_1)$ is complete, if (D, ρ) is complete.

From Theorem 4.1 with Remark 4.2.2 we obtain

Corollary 5.2. Let U_n^i , U^i be stochastic processes with paths in D. If we put $U_n = (U_n^1, ..., U_n^k)$ and $U = (U^1, ..., U^k)$, then propositions (α) and (β) are equivalent.

- $(\alpha 1) \quad U_n \Rightarrow U \quad in \ (D, S)^k,$
- (\alpha 2) $\lim_{T \to \infty} \sup_{n} P[U_n^i \notin A_{T,a+\beta}] = 0 \text{ for } i=1, \dots, k \text{ and each } \beta > 0.$
- (β 1) $U_n \in \Lambda(\pi, a)^k$ P-a.s. for all $n, U \in \Lambda(\pi, a)^k$ P-a.s.,
- $(\beta 2)$ $U_n \Rightarrow U$ in $(\Lambda(\pi, a), \hat{S})^k$.

Remark 5.3. 1) We consider the special case a=0, $S=J_1$. As usual we denote by Λ the class of all strictly increasing, continuous mappings of $[0, \infty)$ onto itself. Let $x_n, x \in \Lambda(\pi, 0)$. Then $x_n \to x$ in $(\Lambda(\pi, 0), \hat{J}_1)$ if and only if there exists a sequence (λ_n) in Λ such that

$$\sup_{t\geq 0} |\lambda_n t - t| \to 0 \quad \text{and} \quad \sup_{t\geq 0} \left| \frac{x_n(t)}{\pi(t)} - \frac{x(\lambda_n t)}{\pi(\lambda_n t)} \right| \to 0.$$

If $\pi(t) = 1 + t^{\gamma}$ for some $\gamma > 0$, then $(\Lambda(\pi, 0), \hat{J}_1)$ is the metrizable space used by Whitt ([15], Sect. 3). An error in the definition in [15] was noted in [16].

2) We denote by $C = C[0, \infty)$ the subset of continuous functions in *D*. Let $S = M_2$. Then *S* relativized to *C* coincides with the topology of uniform convergence on compact intervals ([13], p. 264). Hence $(C \cap \Lambda(\pi, a), \hat{S}_{\pi,a})$ is a metrizable space suitable for §1 $(\pi(t) = t \vee 1, a = 0)$ and §3 $(\pi(t) = (2(t \vee 3) \log \log (t \vee 3))^{1/2}, a = 1)$ of Müller [9]. Corollary 5.2 remains true, if we replace *D* by *C* and $\Lambda(\pi, a)$ by $C \cap \Lambda(\pi, a)$.

6. Last Entrance Times

Let $\psi \in D$ be a continuous function with the properties $\psi(t) > 0$ for t > 0 and

$$\lim_{t \to \infty} \frac{\psi(t)}{\pi(t)} > a.$$
(6)

Then we define a *last entrance time functional* g_{ψ} : $\Lambda(\pi, a) \to \mathbb{R}$ by

$$g_{\psi}(x) = \sup \{t > 0: x(t) > \psi(t)\}$$
 $(x \in \Lambda(\pi, a)).$

where $\sup \emptyset = 0$.

Theorem 6.1. Let U_n , U be stochastic processes with almost all paths in $\Lambda(\pi, a)$. Assume that $U_n \Rightarrow U$ in $(\Lambda(\pi, a), \hat{M}_2)$ and

if
$$0 , then $P\left[\sup_{p \le t \le q} \frac{U(t)}{\psi(t)} = 1\right] = 0.$ (7)$$

Then it follows that $g_{\psi}(U_n) \Rightarrow g_{\psi}(U)$.

Remark 6.2. If U is a stable process with exponent α ($0 < \alpha \leq 2$), then (7) follows in a similar way as in the proof of Theorem 8.1 of Dudley [5] from the fact that the distribution of $\sup_{p \leq t \leq q} (U(t) - \psi(t))$ has a density.

Example. Let (T_n) be a sequence of independent identically distributed real random variables and assume that $0 < V(T_1) < \infty$. Put

$$Y_n(t) = (n V(T_1))^{-1/2} \sum_{i=1}^{[nt]} (T_i - E T_1) \quad ([nt] \text{ integer part of } nt).$$

Let W be the standard Wiener process and

 $\pi(t) := (2 \max(t, 3) \log \log \max(t, 3))^{1/2}.$

From Theorem 2 of Müller [9] and Corollary 5.2 we obtain

 $Y_n \Rightarrow W$ in $(\Lambda(\pi, 1), \hat{J}_1)$.

Hence by Theorem 6.1 it follows that

$$g_{\psi}(Y_n) \Rightarrow g_{\psi}(W),$$

where $\psi(t) = c \pi(t)$ with c > 1 or $\psi(t) = c t^{\gamma}$ with c > 0, $\gamma > \frac{1}{2}$. Corresponding results are valid if the distribution of T_1 belongs to the domain of attraction of a stable distribution with exponent $\alpha < 2$ (see [1], p. 292 f).

Proof of Theorem 6.1. It suffices to show

$$P\left[\sup_{t \ge s} \frac{U_n(t)}{\psi(t)} \le 1\right] \to P\left[\sup_{t \ge s} \frac{U(t)}{\psi(t)} \le 1\right]$$
(8)

for all $s \in T_{U}$. Now let $s \in T_{U}$. By (6) there exist $\beta > 0$ and $T \ge s$ such that

$$\sup_{t \ge T} \frac{\pi(t)}{\psi(t)} < \frac{1-\beta}{a+\beta}.$$

We put $f(x) := \max\left(1 - \beta, \sup_{t \ge s} \frac{x(t)}{\psi(t)}\right)$ $(x \in \Lambda(\pi, a))$. Assume that $x_n \to x$ in $(\Lambda(\pi, a), \hat{M}_2)$. If x is continuous at s, we easily see that $f(x_n) \to f(x)$. Hence f is

264

 P_U -a.s. continuous on $(\Lambda(\pi, a), \hat{M}_2)$. By (6) and (7) it follows that 1 is a continuity point of the distribution function of f(U). Therefore $P[f(U_n) \leq 1] \rightarrow P[f(U) \leq 1]$ as $n \rightarrow \infty$, which proves (8).

References

- Bauer, H.: Some invariance principles for stochastic processes and their inverse and supremum processes. Math. Z. 175, 283–297 (1980)
- 2. Billingsley, P.: Convergence of probability measures. New York: Wiley 1968
- 3. Borovkov, A.A.: Convergence of distributions of functionals of random sequences and processes defined on the real line. Proc. Steklov Inst. Math. 128, 43-72 (1972)
- 4. Borovkov, A.A., Sakhanenko, A.I.: Remarks on convergence of random processes in nonseparable metric spaces and on the non-existence of a Borel measure for processes in $C(0, \infty)$. Theor. Probability Appl. 18, 774-777 (1973)
- 5. Dudley, R.M.: Sample functions of the Gaussian process. Ann. Probability 1, 66-103 (1973)
- 6. Gnedenko, B.V., Kolmogorov, A.N.: Limit distributions for sums of independent random variables. Cambridge, Mass.: Addison-Wesley 1954
- 7. Lindvall, T.: Weak convergence of probability measures and random functions in the function space $D[0, \infty)$. J. Appl. Probability 10, 109-121 (1973)
- 8. Miller, D.R., Sentilles, D.: Weak convergence of probability measures relative to incompatible topology and σ -field with applications to renewal theory. Z. Wahrscheinlichkeitstheorie verw. Gebiete **45**, 239-256 (1978)
- Müller, D.W.: Verteilungsinvarianzprinzipien f
 ür das starke Gesetz der großen Zahl. Z. Wahrscheinlichkeitstheorie verw. Gebiete 10, 173-192 (1968)
- Pollard, D.: Induced weak convergence and random measures. Z. Wahrscheinlichkeitstheorie verw. Gebiete 37, 321-328 (1977)
- 11. Pomarede, J.L.: A unified approach via graphs to Skorohod's topologies on the function space *D*. Ph. D. Dissertation, Department of Statistics, Yale University, 1976
- 12. Sakhanenko, A.I.: The convergence of the distributions of functionals of processes that are defined on the whole axis. Siberian Math. J. 15, 73-85 (1974)
- Skorohod, A.V.: Limit theorems for stochastic processes. Theor. Probability Appl. 1, 261-290 (1956)
- 14. Whitt, W.: Weak convergence of first passage time processes. J. Appl. Probability 8, 417-422 (1971)
- Whitt, W.: Stochastic Abelian and Tauberian theorems. Z. Wahrscheinlichkeitstheorie verw. Gebiete 22, 251-267 (1972)
- Whitt, W.: Constructing metrics on function spaces for weak convergence of stochastic processes. Technical report, Yale University, 1972
- 17. Whitt, W.: Some useful functions for functional limit theorems. Math. Oper. Res. 5, 67-85 (1980)
- Wichura, M.J.: Functional laws of the iterated logarithm for the partial sums of iid random variables in the domain of attraction of a completely asymmetric stable law. Ann. Probability 2, 1108-1138 (1974)

Received January 7, 1980; in revised form May 6, 1981