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w 1. Introduction 

The purpose of some recent work ([6, 11, 12]) on Markov processes has been 
to obtain intrinsic characterizations of classes of random times having what 
Jacobsen [7] calls operational properties. For  example, a regular birth time R 
is defined by the operational properties of conditional independence of post-R 
and pre-R information, given XR, and the homogeneous Markov  character of 
the post-R process. Regular death times are defined in an analogous oper- 
ational manner,  the pre-R process now being a temporally homogeneous 
Markov process. We defer the precise definitions to Sects. 4 and 5. Jacobsen 
and Pi tman [-6] gave intrinsic characterizations of regular birth times and 
regular death times in the case of discrete time parameter  and countable state 
space. Pittenger [11] extended their characterization of regular birth times to 
general (right) Markov  processes, and Sharpe [12] did the same for regular 
death times. 

Another result of [6] was a characterization of random times which are 
both regular birth and regular death times, in the special case where all states 
of the Markov  chain communicate.  Their result states that such a random time 
in this special case must be either coterminal or terminal, and they gave an 
example showing this is not the case if the communicat ion condition is relaxed. 
The purpose of this note then is to provide a general characterization of times 
which are both regular birth and regular death. Our result is the same as that 
of [6] if the process has no proper absorbing subsets. The statement of the 
main theorem is given in (6.21) and, shorn of technicalities, states that if R is 
both regular birth and regular death, there exists a coterminal time L 0 and a 
terminal time T o such that Lo<=R<To, [[-R~]~[[Lo~]~[[To]], and there 
exists an absorbing set A o such that if L 0 < T o and T O equals the first hit of Ao, 
then R = L o ;  otherwise R =  T o. Moreover,  it turns out that these conditions on 
R are sufficient for R to be both regular birth and regular death. 
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There are two other results which are either new or improvements over 
earlier versions and to which we wish to draw attention. One is (5.12) in which 
we give an alternative definition for regular birth times in a manner which 
emphasizes the Markov properties involved as opposed to the existence of 
entrance laws. The second result is in the Appendix and is an improved 
version of the absolute continuity result on Markovian measures, a result 
which is key to the approach used in [-11], but which is somewhat buried in 
[11] and can be expressed in a more general way. Both results may be useful 
in other investigations. 

w 2. Definitions and Preliminary Results 

The underlying Markov process X=(f2,  5, ~t, Xt, Ot, P~) is assumed to be a 
right process with state space E. Passing to the Ray topology if necessary, it 
may be assumed that the semigroup (P0 of X maps the class b e  of bounded 
Borel functions on E into itself. We use [,13] as a reference for technical facts 
about right processes, but emphasize that X is right continuous, strong Mar- 
kay, and that every point x of E is assumed normal for X - i.e., P x { X o = x  } 
=1.  

As in [,13], we use ~ and !D to denote the a-fields of predictable and 
optional processes respectively: ~3 (resp., 9 )  is the a-field on IR + x f2 generated 
by processes which are evanescent relative to every pu and by processes which 
are adapted to (~)  and are left continuous with right limits (resp., right 
continuous with left limits). 

Given a random time R, ~(R) will be used to denote the a-field defined 
[10,5] as either the a-field on (2 generated by the random variables ZRI{R<~ ~ 
+Fl{R=oo~, with Z ~  and F ~ ,  or equivalently, the a-field generated by 
~(S)[{S<=R ~ as S varies over optional times (i.e., stopping times) and ~(S) has its 
usual meaning in that case. It is immediate from either prescription that 
{R<S}eq~(R) for every optional S. Similarly ~ ( R - )  is defined either as the a- 
field on ~2 generated by ~(S)[~S<R } as S varies over optional times, or equiva- 
lently, as the a-field generated by ZR I(R < ~1 + F I(R= oo/ with Z e~3 and F6 ~ .  

The a-field S5 d (resp., S5 g) of homogeneous processes is defined on IR+x (2 
(resp., IR ++ x~2 where I R + + - ] 0 ,  oo[) as that generated by evanescent pro- 
cesses and those measurable processes Z such that Zt=ZooO t for all t > 0  
(resp., Zs+t=ZsoOt for all s > 0  and t>0)  and which are right continuous with 
left limits (resp., left continuous with right limits). See [-5] or [13] for further 
discussion. Given a random time R, the relatively homogeneous a-fields 
~a([-[0, R[-D, sSg([,[0, R[D are defined in a similar way, the condition on Z 
being restricted to shifts by t < R. 

The left germ field ~ [ R - ]  at R is defined to be the least a-field on (2 
whose trace on { 0 < R <  oo} contains ZRI~o<R<~ ~ with Z ~ . ~  g. By results 
from [5], ~ [ R - ]  is the a-field on g2 generated by f (Xg)  =-limf(X~) with f 

t~ftR 

an ~-excessive function. In a similar vein, ~ [R]  is generated by Z R with 
Z ~ c ~  d and is equal to that generated by f(XR)I~R < ~ with f e-excessive. 
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Following [5], a random time R is called a Markov time (resp., left Markov 
time) if for every F~b~ ~ there exists G~b3[R] (resp., b ~ [ R - ] )  such that for 
every initial law g, (2.1) (resp., (2.2)) holds: 

(2.1) E" { f  o O R 1~o < R < ~}1 ~ (R)}  = G 1~o < R < o~; 

(2.2) E" {F o O R 1~o < g < ~1 ~(R - ) }  = G 1(o < R < oo~. 

Informally, the requirement is conditional independence of the past (resp., 
strict past) and future given the present (resp., infinitesimal past). 

w 3. T e r m i n a l  and Cotermina l  T i m e s  

In this section we collect the various definitions of the random times with 
which we will be working. For  a more complete exposition the reader should 
consult [13] or [5]. 

Assume that X is a right process as described in w By a right terminal 
time is meant an optional time T such that 

(3.1) for every optional time S, T = S +  ToO s a.s. on {S<T}  

and 

(3.2) reg(T)=-{xsE: P~(T=O)=l} is a nearly optional subset of E. 

(Recall that a function f on E is nearly optional if for every initial law #, f ( X )  
is (P~ indistinguishable from) a process which is optional over (f2, ~ ,  P"), and a 
subset A of E is nearly optional if 1A is nearly optional.) 

Much of our discussion requires the perfection of the various random 
times, and the definition of a right terminal time leads to the following result 
(see [13] or [15]): 

(3.3) if T is a right terminal time then there exists a perfect terminal time T 
such t h a t / ~ =  T a.s. 

A random time R is co-optional if for every stopping time S 

(3.4) R o Os=(R-S )  + a.s. 

If T o is a right terminal time, then following [12] we define R as being co- 
optional for (X, To) if (3.4) is modified to 

(3.5) R o O s = ( R - S )  + a.s. on {S<To} 

for every stopping time S. 
This variant of co-optionality turns out to be a key concept in the charac- 

terization of regular death times as discussed in w below. Moreover, since T o 
may be assumed perfect, the usual proof that co-optional times may be per- 
fected (I-13, 15]) goes over to show that co-optional times for T o may also be 
perfected. Thus, with T o a perfect right terminal time and after modification of 
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R on a null set, one may assume that R o O t = ( R - t )  + for every t<To ,  except 
on a null set independent of t. 

The last type of random time we need is the coterminal time, and since this 
term has been used in several different ways, we will provide some background 
to the definition given in (3.10) below. Moreover, since killing operators are 
used, it is convenient to assume that X is realized as the coordinate process on 
the space f2 E of all Ray-right continuous maps co of IR + into E u  {A} admitting 
A as a trap - i.e., co(t)=A implies co(s)=A for all s > t .  For  later reference we 
observe that if F ~ E  and is nearly optional with respect to X, then the debut 
of F c is a stopping time ([13]) and thus f2F= f2 E belongs to ~. 

The killing operator  k t is defined by 

{A(S) s < t 
k~ co(s) = s >__ t' 

and ([13]) the coordinate realization of a Ray process supports such operators. 
These operators were used in the definition of coterminal times L given in [9] 
as random times satisfying 

(3.6) (i) L is a perfect, co-optional time with L < ~; 

(ii) L o k t = L on  { L  < t } .  

As was pointed out in [10], one needs the following additional hypothesis to 
make things work. 

(3.7) For every t >O, co--*L(ktco ) is ~t measurable. 

The exact  regularization E of  L is defined by 

(3.8) /:(co) = sup L(k, co), 
t 

so tha t /2  < L and E is coterminal. One calls L exact  if L = E. 
One defect with these definitions is that because killing operators k t do not 

respect null sets, it is possible to construct coterminal times L1 ,L  2 such that 
L I = L  2 a.s. but E 1 < E  2 a.s. To avoid such difficulties, we shall use a different 
formulation of the coterminal condition and refer to random times satisfying 
(3.6) and (3.7) as being strict co-terminal times. The first definition comes from 
]-4], although the word "exact"  was not used there. 

(3.9) Definition. A random time L is an exact  coterminal time if  there exists an 
optional random set M ~ I R + +  x f2 which is perfectly homogeneous on R ++ and 
such that L(co) = sup{t: (t, co)eM}. 

It was shown in [-4] that if L is a strict exact coterminal time, then L is an 
exact coterminal time in the above sense. Using [8, p. 185] it is not difficult to 
show that if L is exact coterminal, there exists a strict exact coterminal time L 
such that L = L  a.s. 

Throughout  this paper we will use the following formulation: 

(3.10) Definition. A random time L is coterminal if  there exists an exact  
coterminal time [_, such that 
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(i) L = L  if L < oo 

(ii) the set A = { L =  oo} is perfectly invariant, (i.e., outside some null set, 
A =AoO~ for all t>O). 

It is a relatively routine matter (see [13], for example) to show the follow- 
ing facts: 

(3.11) I f  L is coterminal then there exists a strict coterminal time L ~ such that 
L =  L ~ a.s. 

(3.12) I f  L is coterminal, then one may choose the exact coterminal rime [~ in 
(3.10) so that PX(f ,<L)< 1 for all xeE.  I f  L is so chosen, it is essentially unique 
and is called the exact regularization of L. 

w 4. Regular Death Times 

Assume X is a right process as defined in w Then we have from [12] 

(4.1) Definition. A random time R is a regular death time if 

(i) R is a left Markov time; 

(ii) cR(x)=PX(R>O) is a nearly optional function on E; 

(iii) the process X killed at R is (temporally homogeneous) strong Markov on 
the state space C = { x :  cR(x)>0 } with respect to the family of probability laws 
Px[.]=P~[.]R>O]. 

As one would expect, a right terminal time T is a regular death time. This 
follows from 

(4.2) the Markov property and the left Markov property hold at T, 

a result established in [5], and 

(4.3) the process (X, T) obtained by killing X at T is a right process on the 
state space E - r e g ( T ) ,  

which was shown in [13], for example. 
The general characterization of regular death times was given in [12]: 

(4.4) Theorem. A random time R is a regular death time if and only if there 
exists a right terminal time T o >= R such that R is co-optional for (X, To). 

We will make use of the existence of such a T O in w 6. In addition to that we 
need some observations which were not explicit in [12]. It was shown there 
that if R is a regular death time and c(x)=PX(R>O), then there exists a right 
continuous supermartingale (Mr) which is also a multiplicative functional and 
such that for every stopping time S 

(4.5) px [ e  > S I ~ ( S ) ]  = c(Xo) Ms. 

In addition if S o denotes inf{t: X t e E - C } ,  then Mt=O for all t > S  o. The 
terminal time 7 o of (4.4) was defined as inf{t: M r = 0  }. Consequently, if S is 
optional and S > R  a.s., (4.5) implies that c(Xo)M s = 0. This proves 
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(4.6) Proposition. The terminal time T o is the smallest optional time dominating R. 

Moreover, the form of (Mr) may be computed explicitly. 

(4.7) Proposition. The multiplicative functional (Mr) is indistinguishable from 
(c(Xt)/c(Xo)) leo , roE(t). In particular, t ~ c(Xt) is a.s. right continuous on [0, To[. 

Proof. Because of the section theorem, it sufficies to show that for every 
stopping time S 

EX [Ms l(s < ~]  = EX [(c(Xs)/c(Xo)) l(s < To}]" 

AS we observed following (3.7), T o < S o a.s., and so it is enough to show 

c(x) EX[Ms �9 l{s < ~}] = EX[c(Xs) l{s< Toil" 

However, (4.5) shows that 

c(x) E~EMs �9 l~s < ~]  = px [R > S] 

= W [ R >  S, T0>S]. 

Since R is co-optional for (X, To), R > S and T o > S if and only if R o 0 s > 0 and 
T o > S. Therefore, by the strong Markov property 

c(x) EX[Ms l(s ~ oo~] = Ex[pX~s)( R < oo); S < T o] 

= E x [ c ( X s ) ;  S < To], 
completing the proof. 

w 5. Regular Birth Times 

In [11] the definition of a regular birth time R and a characterization of such 
times was given. This characterization involves finding a coterminal time L 
preceding R and then showing R is optional for the post-L process. In fact a 
detailed description of R - L  is given in [11], but for our purposes we need 
only the existence of such an L and certain measurability properties of R with 
respect to a-algebras related to L. In addition we provide an alternate for- 
mulation of the definition of regular birth times, a formulation which emphas- 
izes the various Markov properties and permits the derivation of the entrance 
laws used in (5.3) below. 

As in w we now assume the process is realized as a coordinate process. 
Then, given a coterminal time L, we set 

Xt=  { XL +t ifif L=oeL<~ 

and call J( the post-L process. Let (~t=~((L+t)+) and E={xeE"  PX(L 
=0)>0}.  (Recall that if S is a random time ~(S+)=--~[~(S+r);  r>0] .  See 
[10]). If one defines kernels ~ on Ew{A} by 

(5.1) ~ f (x) = EX[f  (Xt)l g = 0], 
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where f e b  ~*, the trace of ~* on /~, then it is easy to check that (~) is a right 

semigroup on /~{A} .  In [-9] it is shown that for any initial law # such that 
P"(L < oo) > 0, the process (J~t)t > o is Markov relative to (~,, W(" [L < oo)) and has 
transition semigroup (~). Actually they prove this assuming L is exact (and 
strict) but their proof is easily modified to give the above statement. 

Given a right semigroup ((2,) defined on a subset F of E with Fa  ~* one 
calls a family (th) of measures on (E, ~*) an entrance law if t/,(2s=t/t+s for every 
t > 0, s > 0. Evidently t/t(E - F) = 0 for all t > 0. If sup t/t(F) < oo one may con- 
struct a measure (2" on the space Y2(F) of right continuous maps of 30, oo[ into 
Fu{A} making the coordinate process (X,)t> o Markovian with transition 
semigroup (Qt) and entrance law t/. We may consider (2" as defined on Y2(E), 
passing to its image under the injection map. 

Following [113 a random time will be called a regular birth time if: 

(5.2) R has the Markov property (2.1); 

(5.3) there exists a right semigroup ((2t) on a subset F of E and a family 
{t/x, x~E} of probability entrance laws relative to (Qt) such that 

(i) for every t>O and f~b~ ,  x-+t/~(f) lv(x ) is nearly optional relative to X;  

(ii) for every initial law I~ and every H ~ b ~  ~ 
glnx~R)(~l~ 1 (5.4) E"[Ho ORI{R < ~I~(R)] = ~  t~',*~R< ~o}. 

If the conditions of (5.2) and (5.3) are met, then the post-R process (3~,)~> o 
defined above is, under W(-IR<oo), ~ t = ~ ( ( R + t ) + ) ,  t>0 ,  and ~o=~(R) ,  a 
Markov process with entrance law t/X(R) and semigroup ((2,) on F. Every 
coterminal time is a regular birth time. The exact case was proved in [10], and 
the general case is easily deduced from the exact case. 

This definition of a regular birth time differs slightly from that given in 
[11]. First of all, the semigroup ((2~) of (5.3) was not explicitly assumed to be a 
right semigroup of [10]. However, it was assumed there that ((2~) had a right 
continuous strong Markov realization and mapped Borel functions into nearly 
Borel functions. These conditions imply, however, that ((2,) is a right semi- 
group. (See [13, (7.6)] for example.) Second, the change in (5.3)(i) from nearly 
Borel to nearly optional necessitates a change in the proof of the fundamental 
absolute continuity lemma of [11]. This change is straight-forward, and a 
complete proof is presented in the appendix to this paper. 

Suppose now that R is a regular birth time for X. The arguments in [11] 
produce a coterminal time L < R such that 

(5.5) for every t>0 ,  {R<t} belongs to the trace of Jr on {L<t}. 

Then (5.5) leads to the following result. 

(5.6) Proposition. For every t > O, {R < L + t} ~ ~(L + t). 

Proof. 

{R < L  + t } = l i m U { R  <t  + k 2 - " } c ~ { k 2 - ~ < L  <( k + l ) 2 - ' }  �9 
n k 
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Using (5.5), there exists A(k, n, t )e~( t+k2-")  so that 

{R < t + k 2  -n} =a (k ,  n, t)c~{L<t+k2-"}.  
Therefore 

{R <L +t} =l im Q) A(k, n, t)c~{L <t +k2-"}c~{k2-"<L <(k + 1)2-"}. 
n k 

If n is so large that t > 2 - " ,  then each term on the right will be in ~ (L+ t ) :  

A(k, n, t)c~{L <t + k2-"}~  {k2-"< L <(k + 1)2-"} 

=A(k, n, t)c~{k2-"<=L < ( k +  1) 2-"} 

=A(k,n , t )~{ t  + k 2 - " < t  + L <t +(k + l)2-"} 

E~(L+t ) ,  

completing the proof. 
As noted above a detailed description of R - L  was given in [11]. For  our 

purposes (5.5) and (5.6) together with their consequences below will suffice for 
the proof of our main theorem. 

(5.7) Proposition. There exists an (~t) optional time p with p = R  on {L=0}. 

Proof Because of (5.5), there exists At6~t such that {R<t}=Atc~{L<t  }. Thus 
{R <t}c~{L=O}=Atc~{L=O }. Then define 

p(co) = inf{r > 0: r rational, co,At} 

SO that for any t > 0 

{p<t}  = ~) {At: 0 < r < t ,  r rational}. 

Consequently, 

{p < t} c~ {L = 0} = ~) {At ~ {L = 0} : 0 < r < t, r rational} 

= U { {R < r} c~ {L = 0} : 0 < r < t, r rational} 

=(R <t}c~{L=O}. 

It follows immediately that p = R  on {L = 0}. 

(5;8) Corollary. I f  W ( L = 0 ) > 0 ,  then PX{R=OIL=O} is equal to either 0 or 1. 

As a final topic in our summary of properties of regular birth times, we 
give an alternate definition of regular birth times which emphasizes the various 
Markov properties and permits the derivation of the entrance laws of (5.3). To 
do this we need a mild measurability condition on the process: 

(5.9) The measurable space (0, 5 ~ is (measurably) isomorphic to a U-space. 

We then prescribe: 

(5.10) for every F~b~ ~ there exists a nearly optional function f on E such that 

E ~ I f  o O R I{R < oo}l ~(R)] =f(XR) I{R < ~} 

for every initial law #; 
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(5.11) there exists a right semigroup (Qt) on a subset F c E  such that for every 
initial law t~ carried by {x: PX(R < oo)>0} and every set A ~ j ( R )  with W(A)>0, 
the post-R process (Xt)t> o is Markovian in F with semigroup (Qt) relative to 
P"E" lAc~ {e  < oo}]. 

The measurability condition (5.9) is satisfied if, for example, f2 = f2(E) and E 
is Lusinian. See [2, p. 1471. Note that (5.10) is a slightly stronger form of the 
Markov property (2.1) at R, with universal measurability of f replaced by 
nearly optionality. However, both (5.10) and (5.11) are satisfied if R is a regular 
birth time, and we prove the converse next. 

(5.12) Theorem. Suppose (5.9) holds. Then R is a regular birth time if and only 
if (5.10) and (5.11) hold. 

Proof. All that is needed is to construct a family of entrance laws, assuming 
(5.10) and (5.11). Using standard methods for the construction of kernels [31, 
one may define a probability kernel K(x, dco) on E x 3 ~ such that for every 
Feb~j ~ K(. ,  F) is nearly optional and such that 

E~EF o O R I~R < o~l~(R)] = K(X(R),  F) I{R < co}. 

Here the hypotheses (5.9) and (5.10) are invoked. 
We now wish to regularize K so that for every xeE,  K(x, .) is a measure on 

(f2, 3 ~ making (X),>0 Markovian with semigroup (Q,). To this end, let (2 x 
denote the law of (X)teo starting at x with transitions (Q~). If F =  
f~ (X~l)..... f,(X~,) with 0 < t 1 < . . .  < t, and the f~ uniformly continuous on E, then 
for every t>0,  AeFj(R) and/~ as in (5.11): 

(5.13) E~ [F  o G +, 1A I{R < .~1 ~(R)1 
= E" [Qx(R +,)(F) 1~ I~R < oo}1 ~(R)]. 

Since (5.13) is trivially valid for ft carried by {x: PX(R<oo)=0}, it is valid for 
arbitrary #. It follows that 

K(X(R),  F o Or) = K(X(R),  Qx(t)(F)) 
a.s. on {R < oo}. 

Let ff be a countable dense set of uniformly continuous functions on E and 
let .~= {Fo 0~: O<t, t rational, F as above with fieff  and the t i rational}. Define 
B = { x e E :  K(x, FoOt)~K(x ,  QX(t)(F)) for some F o O t ~  }. Then P"[XReB , 
R < oo] =0  for every # and, by hypothesis, B is nearly optional. Define then 

K (x ,  . ) = K (x ,  .)  l~o(x) + 0~(-) l~(x). 

Obvious ly / (  is a probability kernel on E x 3 ~ and since ~ is a multiplicative 
class generating 3 ~ a monotone class argument shows that for every xeE,  
Feb~j ~ and t > 0  

I((x, F o Or) = I((x, ox(t)(F)). 

It then follows that if one defines the measures r/7 on E by t/7(f) 
=I. ( (x , f (X)) ,  then every t/~ is a (Q~) entrance law having the properties 
described in (5.3). 
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w 6. Times of Regular Birth and Death 

It is assumed throughout this section that R is both a regular birth time and a 
regular death time. The main result here is (6.21) which gives a complete 
characterization of such times. 

Since R is a regular birth time, the results of w 5 obtain, and there exists a 
coterminal time L < R  such that (5.5)-(5.8) hold. The regular death time proper- 
ty, as discussed in w gives us a right terminal time T o > R  such that R is co- 
optional for (X, To). 

Define now (p(x)=P~(L>O). Then it is easy to check that (p is excessive. 
Further if 

(6.1) E 0 = {x:  (p(x) < 1}, 

then using elementary properties of coterminal times, it is straight-forward to 
show that (XL§ o stays in E o a.s. on {L<oo}. (This assertion is part of the 
result cited after (5.1).) We can further subdivide E o as Ao uA1, where 

(6.2) Ao={X: ~O(x)=O}, A l = { x : O < ( o ( x ) < l  }. 

Because q) is excessive, A o is a finely closed absorbing set for X, and we denote 
its hitting time by S: 

(6.3) S=inf{t :  X, eAo}. 

Note that ~o(Xs)=0. 

(6.4) Lemma. Almost surely, L <-S <- T o. 

Proof Since 
PX[L> S] =PX[Lo Os>O , S< oo] 

= Ex[px~(L > O), S< oo ] 

= ExDp(Xs) ,  S < oo] 

: 0 ,  

it follows that L < S  a.s. On the other hand, L <  T O almost surely, so that Lo 0to 
= ( L - T o )  + = 0  a.s., and 

O=pX[Lo Oro >0, T o < oo] 

= Ex[px(r~ > 0), T o < oo] 

=EX[(p(X(To)), To< ~] .  

Hence, (p(X(To)=0 a.s. on To< o o, and that forces S N T  o a.s. by the definition 
of S. 

For  every x~Eo, P~(L=0)>0 ,  so the elementary conditional probabilities 
P~[ ' [L =0 ]  are defined unambiguously. If we set for x~E o 

(6.5) h(x) = px [R > 0]L = 0], 

(6.6) g(x) = P~[R > 0, L = 0], 
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then g(x)=h(x)  (1-q~(x)) on E o. Moreover, from (5.8) h takes only the values 
zero and one, and we define two more subsets of E0 by 

(6.7) Ai={xeEo:  h(x)= 1}, Ar={xeEo:  h(x)=0} 

so that Eo=A~wA~, and A~, A, are respectively the irregular and regular points 
for R, conditional on L = 0. 

The sets A~,<A 1 and A s i A  o play a crucial role in our characterization of 
R. Unfortunately we need better measurability than A~, A~e~* to complete our 
argument, and the discussion from now to the statement of Lemma (6.15) is 
primarily concerned with this technical point. 

From w 3 and w 4 we may assume T o is a perfect right terminal time. Let M 
denote the closed random set in s g generated by T 0, so that the m-section 
of M is the closure in ]0, ov[ of {t+To(O/o): t>0}. Then if 7~=inf{t: t~M} 
there is a nearly optional set F c E such that 

T O = 7 ~ A (inf{t >_ 0: X,~F}).  

It may be assumed that F is polar for (X, 7~). Then set 

W t = leo. Rt(t) 1 tL, To[( t)" 

it is easy to check that W~Sy([[0, To[[). (See w Using the projection 
results from [13], it follows that the optional projection of W is equal to 
g(X,) l~o, ro~(t), where g was defined in (6.6). Since W is a.s. right continuous, 
t -+ g(Xt) 1to ' Tot(t) is necessarily a.s. right continuous. Hence, using h = g(1 - ~o) 
and the fact that ~p(Xt)< 1 for all t>L ,  we have 

(6.8) Lemma. t--rh(X~) is a.s. right continuous on ]L, 7o[. 

We now make use of the homogeneous extension method described in [14] 
(see also [t3]) to check that the process g(Xt)1Mo(t), which is a homogeneous 
extension of g(X,)lto, rot(t), belongs to ~ c ~  g. Then, using (6.7), we conclude 
immediately that 

(6.9) Lemma. Both {XeA~}c~M ~ and {X~A~}c~M ~ belong to s  ~. 

Next define times T1, L 1 by 

(6.10) Tl(co )--- inf{t > 0: X~(co)~Aor-~ A~}, 

(6.11) L l (e ) )=sup{t>0:  X~(oo)~Atc~Ai}. 

We are unable to show directly that T, is a stopping time or that L,  is a 
coterminal time and rely instead on the following weaker assertions. 

(6.12) Lemma. T o/, T t is a stopping time. 

(6.13) Lemma. The time L o = L  v L 1 is a coterminal time. 

Proof of (6.12). Using the above description of To, it is easy to see that T O A T, 
is the debut of the random set 

M w {X ~ Aoc~A,.} vo({0} x {Xoef}) 

=Mw({XeA~}mM~c~{XeAo})Va({O} x {XoeF}}). 
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The latter set is optional because A o is an optional set and {X~Ar}nMC~ 
was obtained in (6.9). 

Proof of (6.13). From the results mentioned in w 3 we may assume that L has 
the form 

L(O)) =(sup{t: (t, co)eN}) v (oo lr(o))) 

where N e ~ n ~  g and F is perfectly invariant. Then, using (6.9), 
N=Nu({XeAlnAi} r~M ~) belongs to k3n.~g. We claim that 

(6.14) Lo(o) ) = (sup {t: (t, co) e_N}) v (oo lr(o))), 

and once this is done the proof will be complete. First, as was shown in (6.4), 
X, eA o for all u >  T o. Therefore, denoting by L the right side of (6.14), 

t>L(o))~o)~F and Vs>t, (s,O))q~Nu({X~AI~Ai}AM c) 

~*o)$F,t>supN and Vs>t, (s,o))${X~AlnAi}~M c 

~L(o))<t and gse]t, To[, (s,o))~{X~AlnAi} 

~L(o))<t and Ll(o))<t,  

completing the proof of (6.14) and thus of (6.13). 
We now have the machinery in place to characterize R, and the first step in 

this direction is the following lemma. 

(6.15) Lemma. Almost surely, Xt(o))EA i for all te]L(o)),R(o))[ and Xt(o))~A r 
for all te]R(o)), To(o))[. 

Proof. For every t > 0 one has 

{R> L +t}= N{R >=L +s}e~((L +t)+ ) 
s > t  

from (5.6). Thus, for every t => 0, 

(6.16) PX[R > L + tl ~( (L + t) +)3 = lto, RL( L + t). 

Since R is co-optional for (X, To), 

{R>L+t}=O;t+~{R>O} on {T>L+t}.  

Observe that {To>L+t}E~(L+t), and since To>=R we deduce from (6.16) that 

(6.17) P~[ltR > 0} o OL+ t I{To>L+t)J~((L q- t) +)] = 1[0 ' m(L + t). 

Now recall the definitions from w 5 of (J)t, ~t, ~)t >0 as Xt = X(L + t), ~t = ~((L 
+t)+), [~(.)=PX(.IL=O) and the fact that this is a Markov process on E o. 
Thus for xeE o and t>0,  

Ex{I{R> 0} ~ OL+t l{To>L+t}l~t} =[ax'( R >0) l{L+t < To} 

Substituting this in (6.17) we obtain a.s. 

(6.18) 1[o,m(L + t) = !a~(XL+t) �9 1[o ' rot(L + t). 
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In view of (6.8) each side of (6.18) is right continuous in t, and so the two sides 
of (6.18) are indistinguishable. The conclusion of (6.15) is immediate from this. 

(6.19) Lemma. Almost surely, XtCAoc~A r for all t< T o. 

Proof. Let T = T o A T  P Then from (6.12) T is a stopping time, and (6.15) gives 
T > R .  However, as shown in (4.6), T O is the minimal stopping time dominating 
R. Hence T > T o a.s., and thus T 1 > T o a.s. as claimed. 

Since L is not necessarily the largest coterminal time dominated by R, the 
situation to the left of R is not completely analogous to that on the right. 
However, the analogy does obtain if we replace L by the coterminal time L o 
defined in (6.13). From the definition of L o and the set A o it is obvious that 
L o_-< S. More is true though. 

(6.20) Lemma. L o < R a.s. 

Proof. Since S < T  o and Lo <S, Lo < T  o. On {R<Lo}, R < T  o and so by (6.15) 
X~eA r for all t in -IR, To[. But X~eA o for t>To ,  since S<To,  and thus L o < R  
a.s. on {R<L0}. Hence L o < R  a.s. 

We are now in a position to state and prove the main result. 

(6.21) Theorem. A random time R is both a regular birth time and a regular 
death time if and only if there exists 

(i) a finely closed absorbing set A o c E  with hitting time S, 

(ii) a right terminal time To, and 

(iii) a coterminal time L o such that the following are satisfied: 

(6.22) L o < S < T  o and L o < R < T o ,  

(6.23) for a.a. co, the unordered pair {R(co), S(co)} is equal to {Lo(co), To(cO)}. 

Proof. Given a random time R which is both a regular birth time and a regular 
death time, the arguments of this section give (6.22). Suppose cO~{R<T0}. 
Then by (6.15), Xt~A r for all te]R,  To[. However, it was shown in (6.19) that 
XtCAoc~A, for all te]R,  To[ and consequently Xt~Alc~A,. for all te]R,  To[. It 
follows that S > T O a.s. on {R < To} and hence S = T o a.s. on {R < To}. 

Now look at {Lo<R }. In view of (6.15), X,  EA i for all t s ]Lo ,R[ ,  and by the 
definition of Lo, XtCAI ,~A i for all t e ] L o , R  [. Therefore XteAoC~A i for all 
t e ]Lo ,R[ ,  and hence S = L  o a.s. on {Lo<R }. Note in particular that on 
{L o < R < To} one obtains the absurdity S = T o and S = L o a.s. 

To obtain the converse we shall prove that under (6.22) and (6.23) R is 
optional after L o [11] and co-optional before T o [12]. The conditions (6.22) 
and (6.23) imply that 

R={To  if L o v S < T  o 
L o otherwise. 

Therefore, observing that S is both optional and co-optional, one obtains a.s. 
on it  < To} 
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RoOt=~TooOt if LooOtvSoOt<TooOt 
(L  o o 0 t otherwise 

= ~ T o - t  if (Lo- t )  + v (S - t )+  < T o - t  
((L o - t) + otherwise 

~To- t  if Lo v S < T  o 
= ((L o - t) + otherwise 

= ( R - t )  +. 

Consequently R is co-optional for (X, To) so [12] R is a regular death time. 
Finally, under (6.22) and (6.23), set S'=inf{t>O: XtCAo}. Then because A 0 is 
absorbing we have 

, ~0 on {S>O} 
S = ] o o  on {S=O}" 

Define p: g2 x (2~[0 ,  oo] by 

To(co' A S'(co') if Lo(co ) < To(co ) 
p(co, co')= if Lo(co ) = To(m)' 

For fixed co'el2, co~p(co, co') is in ~(L), and for each fixed c o ~ ,  co'~p(co, co') is 
obviously a stopping time. In addition for a.a. co we can write 

(6.24) R(co) = L0(co ) + p(co, 0Lo~). 

The validity of (6.24) is easy to check by examining separately the cases {L o 
=To}, {Lo=S<To} and {Lo<S=To}, the only cases possible under (6.23). The 
structure of R as described in (6.24) is what is meant by "optional  after L o" in 
[11], and R is thus a regular birth time. 

From the characterization in (6.21) we obtain the following special c a s e  
which is the direct analogue of a theorem of Jacobsen and Pitman [6]. 

(6.25) Theorem. Suppose that X admits no non-trivial finely closed absorbing 
sets. Then if R is both a regular birth time and a regular death time, R must be 
either terminal or coterminal. 

Proof The hypothesis implies that the time S in (6.21) is either identically zero 
or identically infinite. If S - 0  then L o ~0,  since L o <S, and thus R = T o and is 
terminal. If S - o o ,  then T o - o o  and so (6.21) gives R = L  o and R is thus 
coterminal. 

Appendix 

At the heart of the method used to characterize a regular birth time is an 
absolute continuity theorem for Markovian measures [11; (5.1)]. It was point- 
ed out to the authors by R.K. Getoor  that the use of the section theorem in 
the proof given in [11] permits a weakening of the hypotheses and that the 
result itself can be expressed in a more general way. Since this result may be 
useful in other investigations, we present a complete statement and proof  here, 
and we are indebted to Getoor  for permitting us to include his improvements. 
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As in w 5, let t?= t2(E) be the space of right continuous maps of IR + into E~ 
admitting A as a trap. It is assumed that E is a U-space. The coordinate 
process is denoted by X t. Suppose {P~; xsE} and {/5~; xcE} are two families 
of measures on (f], 3 ~ such that both families make the coordinate process 
normal and strong Markov. Suppose in addition that both x---)PX(A) and 
x~P~(A), A e 3  ~ are nearly optional (P) and nearly optional (/5). That is, both 
functions are nearly optional using the definition of nearly optional relative to 
{PX, xeE} and also the definition relative to {/5~,xEE}. This measurability 
condition is satisfied, for example, if both functions are Borel measurable. (See 
[13, w 5].) 

Let 
Sl={x~E:/sx~PX}, S2={x~E,P~/5~},  

and S = S lc~S 2. The following are the principal results of this section. 

(A.1) Theorem. I f  xeS1, then S~ is/5~-polar. 

(A.2) Theorem. I f  x~S, then S c is PX-polar and fiX-polar. 

Before we turn to the proof of (A.1), we observe that (A.2) follows directly 
from (A.1). Indeed, assuming (A.1) proven, S~ is/sX-polar if xeS, and since then 
P ~ P ~ ,  S~ is also P~-polar. Dually, S~ is PX-polar and hence/SX-polar if xES. 
Since a union of two polar sets is polar, (A.2) follows. 

Proof of (A.1). The o--field 3 ~ is separable, and we let {An} be a countable field 
in 3 ~ generating 3 ~ For ~ > 0, 6 > 0 and n a positive integer let 

S(~, 6, n) = {x~E : _fiX(An) > ~, PX(A~) < ~} 

and note that S(e, 6, n) decreases as ~ decreases and decreases as ~ increases. 
Next let 

s(~, ~)= U s(~, ~, n), 
n 

so that S(e, 6) has the same monotonicity properties as S(a, ~, n), and then set 

S(e) = ~ S(e, 1/m)= (~ S(e, 1/m). 
m m > M  

(A.3) Lemma. Sl = U s(1/k)= U s(~). 
e > O  

The proof of (A.3) is a standard exercise in measure theory, and we omit it 
here. 

Now take e>0  and let T be a stopping time over (3~ Write 

A(m, n)= {co~f2: n is the smallest integer with Xr(co)~S(~, 1/m, n)}. 

For fixed n the A(m, n) are disjoint and belong to 3~ Moreover, as m-~ oo 

U A(m, n)= {co: Xr(co)eS(e, 1/m)}${XTeS(z)}. 

Write 
A(m) = U [ A(m, n)c~O~ 1(An) 3. 

n 
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Then  the s t rong Markov  proper ty  relative to /sx  gives 

;fiX[T< oo, A(m)] = ~, Fx[pXT(A~); A(m, n), T< co] 
n 

> ~ / s x [ e ;  A(m, n), T< co], 
n 

by the defini t ion of S(e, 1/m, n), and  obviously  we have 

_PX[T < o% A(m)] > ePX[T < o% U A(m, n)]. 
n 

Thus, let t ing m ~ o% 

(A.4) l im P~[T< oo, A(m)] > ~PXET< o% XT~S(~)]. 
m ~ a o  

The same calculat ion with the px, but  using instead PX(A,)<l/m, if 
x~S(e, 1/m, n), gives the inequal i ty  

(a.5) P~[ r < o% A(m)] =< 1/mpx[ T < oo, 0 A(m, n)]. 
n 

Lett ing m ~ oo in (A.5), we obta in  

(A.6) P~[T < ~, 0 A(m)] = 0  
t n  

Take now xeS1 so that  px~p~. F r o m  (A.6) we obta in  pX[T< 0% 0 A(m)] =0 ,  
m 

and  thus from (A.4) fiX[T< 0% XreS(e)]=O. The section theorem now implies 
that  S(e) is fiX-polar, and  because of (A.3) we may  conclude that S~ is/SX-polar 
if x is in $1. 
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