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1. Introduction

It 1s a well known fact in Markov process theory that if a Markov process is
killed at a terminal time - typically the hitting time of some subset of the state
space - then the killed process is also Markovian. In addition, the process X
killed at a terminal time T is conditionally independent of the future
(X7,5t20) given X ;. Of more recent origin [5] is the fact that if Lis a co-
optional time then X killed at L is Markovian, and though it is not in general
true that X killed at L is conditionally independent of (X, ,;t=0) given X,
there is a conditional independence property [3] in which, roughly speaking,
past and future are conditionally independent on {0<L< oo} given the left
germ field at L. The first results aiming at a characterization of those random
times at which killing preserves the Markov property with conditional inde-
pendence of the future were obtained by Jacobson and Pitman [4] for Markov
chains with countable stable spaces. Their result states that such a time is in
essence a co-optional time before some terminal time. The main result of this
paper is an extension of that result to right processes, and though the technical-
ities are considerably more burdensome, one obtains essentially the same
result, the left germ field at L seceming to be the correct analogue in continuous
time of ¢(X, ;) for chains.

It should be mentioned that Jacobson and Pitman also characterized for
chains birth times with conditional independence of the past, and Pittenger [6]
has recently extended their characterization to right processes. It would be
interesting to put the result of this paper together with Pittenger’s to obtain a
characterization of those random times at which killing and birthing produce
conditionally independent Markov processes, but such a result is lacking
except for chains in which all states communicate [4].
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2. Preliminaries

It is assumed throughout that X =(Q, &, &,, X,,0,, P¥) is a right process with
state space E and transition semigroup (B). The work [7] will serve as a
reference for technical results needed here, and [2] contains some of the
material on additive functionals, shifts and homogeneity. As some of the objects
discussed below are not quite standard, we shall give careful definitions. A
stopping time T is a terminal time if for every stopping time S over (&), T=S
+Tofg as. on {S<T}. An F-measurable random variable with values in
[0, 0] will be called a2 random time. Given a terminal time 7 and a random
time R, we say that R is co-optional for (X, T) if

(21) () RETas.;
(i) for every stopping time S, RoOg=(R—S)" as. on {S<T}.

In case T={, the lifetime of X, the definition agrees with the usual meaning of
a co-optional time, though (2.1)(ii) may be replaced then by the weaker
condition with S replaced by an arbitrary constant time. The fact that the
weaker condition suffices comes from a perfection result ([7], (25.6), for exam-
ple) which is not available in the case of an arbitrary terminal time. Examples
of random times R co-optional for (X, T) include (i) R=T; (ii) R=L1; 1,
where L is co-optional for X. The latter example points out that R depends in
general not only on the process X killed at 7 but possibly on information in
the future from T.
By a multiplicative functional (MF) for X we mean a process (M,) satisfying

(2.2) (i) M, is positive and optional over {§,);

(ii) for every stopping time S and every t20, M, ¢=MgM 05 almost
surely;

(ii)) M,=0for all t={.

We are not insisting here that t -M, be right continuous or decreasing, but we
are assuming the strong multiplicative property. If M is a right continuous MF
then S,,=inf{zr: M,=0} is a terminal time with Mg =0 on {S,, <oo} and one
sees from (2.2)(ii) that a.s. M,=0 for all t = S,,.

By a raw additive functional (RAF) of (X, M), where M is a MF, is meant
an increasing positive process A satisfying

(2.3) (i) for every t=0, A, is F-measurable;
(ii) t—4, is a.s. right continuous and finite valued,;
(iii) for every stopping time S and every t 20, A, =Ag+MgAd, 05 as.

If A satisfies (2.3) and 4 is adapted to (§,) we say that 4 is an AF of (X, M). It
is casy to see that if 4 is a RAF of (X, M) then 4,=Ay,, for all t=S,,, almost
surely. It is permitted however that A(S,)>A(S, -) on {Sy<oco}. If 4 is a
(raw) AF of (X, M) where M =1y, ; for some terminal time 7; then A is also
called a (raw) AF of (X, T). A simple calculation shows that if T is a terminal
time and R is co-optional for (X, T) then A, =1, () 1o r<wy 15 @ RAF of
(X, T). The converse result will be important in the characterization of killing
times.
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(2.4) Proposition. Let M be a MF and let A be a RAF of (X, M). Then
R=sup{t: 44,>0}  (with sup0=0)
defines a co-optional time for (X, S,,).
Proof. Let T be an arbitrary stopping time. Then since R<S,,,
RoOr=sup{0<u=S,00;: 44,00,>0}.

But M;4A4,00,=4A, ; for all u=0, as. on {T<oo}, and M;>0 as. on
{T<S,}. Consequently, as. on {T<S,,},
Rof,=sup{O<u=<S,,—T: 44, >0}
=(R-T)*.
Let 9 and B denote respectively the measurable and predictable o-fields
on R* xQ (see [7], §20) and let $¢ H# be the ¢-fields defined by Azéma [1]
(see also [7]; §24) generated respectively by measurable processes which are

right continuous with left limits (resp., left continuous with right limits) and
satisfy, except on a null set

(2.9) Zo0,=2,_, forall sz0, tz0 (resp., s>0,t=0).

Given a right continuous measurable increasing process 4 with 4,=0 and 4
locally integrable relative to every P*, A will denote the dual predictable
projection (or compensator) of A. More precisely, we need the version of A
which works simultaneously for all P*. See ([7], §31). For t=0, O, denotes the
shift operator on measurable processes defined by

(2.6) (0,2)(s,0)=Z,_(0,0) 1, ((5).

If ZebM_, and 4 is an increasing process as described above, ZxA is the

increasing process defined by (ZxA),= | Z,dA,. It is easily checked that
10,41
O (Z+A)=0,Z+6; A. In addition, one has the commutation property

2.7 L cop (01 A) = 1yr op* O (A)

for every stopping time T. See [7], §31.

(2.8) Proposition. Let M be a MF, and let A be a right continuous increasing
measurable process with Aq=0 and E*A_<oo for all xeE. Suppose that for
every Zeb$%, (Z+A)~ is an AF of (X,M). Then A is a RAF of (X, M).

Proof. For any stopping time T, (Z+A)~ being an AF of (X, M) implies
M 1yp oop* O r(ZxA)™ =1y g *(ZxA).
Because of (2.7) this implies that

M lyr ¥ (@1 Z5 @A) =M1y % (Z*A)7.
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But, since Ze$®, ©,Z=Z1y; ;. Therefore
MTl]]T,oo[[* (Z+0;4)" = IHT,ooE*(Z*A)N'

Integration relative to an arbitrary Yeb¥3, now gives, using the fact that
My lyy €%,
E* | MY, Z,0,Aduw=E | Y,Z,dA,.

1T, 00[ 1T, ool
However, products YZ with Yeb®P, and Zeb$?, generate M ([7], §24) so by
monotone classes,

EX | WM 0, Adu=E* | W,dA,

1T, 0ol 1T, col

for every WebI. This last equality implies that the random measures M, @
Afdu) and dA, agree on ] 7T, co[, which is the same as saying that A is a RAF
of (X, M).

Let R be a random time. Following [3], we say that R is a left Markov
time if the strict past and future from R are conditionally independent on
{0<R< oo} given the left germ field at the present. The operational meaning
which will be used in the next section is that for every Zeb$% there exists
Z'eb(PnH¥), such that Zsx(eglig gy and Z'x(egly g. ) have the same
dual predictable projection. Here egly_ k.o is shorthand for the random
measure generated by the increasing process 4, = Iz .o;(1) Lio g <ooy

A function f on E is nearly optional if the process t—f(X,) is (P*
indistinguishable from) a process which is optional over (@, & P*) for every
initial law g, and a subset A of E is called nearly optional if its indicator 1, is
a nearly optional function. A terminal time T is a right terminal time if
reg(T)={xcE: P*{T=0}=1} is a nearly optional subset of E. See [7], VIL
where it is shown that if T is a right terminal time, then T is as.
equal to TA S, where T is the perfect exact regularization of T and
S=inf{t>0: X,ereg(T)}, and that a.s., X,¢reg(T) for all t€]0, T[. In particular,
right terminal times are perfectable, and it can be shown that a right process
killed at a right terminal time remains a right process. If T is a right terminal
time and if R is co-optional for (X, T), then since T may be assumed perfect,
one may modify the proof of the perfection theorem for ordinary co-optional
times ([7], (25.6), for example) to show that one may replace R in (2.1) by an
equivalent random time R’ satisfying R'«6,=(R'—t)* for all t<T ~ that is, R’
is a perfect co-optional time for (X, T).

In similar vein, a MF (M,),, , will be called a right MF if t > M, is a.s. right
continuous and if E,,={xeE: P*{M,=1}=1} is nearly optional relative to X.
It is easy to see that if M is a right MF, then S,,=inf{t=0: M,=0} is a right
terminal time.

3. Characterization of Killing Times

For ease of manipulations we shall suppose that X is realized as the co-
ordinate process on the space Q of all right continuous maps of R, into E,
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=Eu{4} admitting 4 as a trap. Let { denote the lifetime variable on Q and let
w4 denote the path constantly equal to 4. Take (k,) to be the killing operators
on Q and let F' =¢{f(X):0<s<t, febE*}.

Given a random time R, let cx(x)=P*{R>0}, a universally measurable
function on E, and let Cp={x€E: cx(x)>0}. By the process X killed at R is
meant the process Y defined by

(3.1) Y=X, ift<R
=4 ift2R

under the probability measures P*{-|R>0}, xeC,. We shall say that R is a
killing time if
(3.2) ¢y is a nearly optional function relative to X ;

(3.3) The process Y with the measures P*{-|R >0} is temporally homogeneous
strong Markov on the state space Cyg.

It is implicit in (3.3) that as. X,eCy for all t<R. The condition (3.2) is a
technical condition which will be needed for comparison of ¥ and X. It also
follows from (3.2) that S=inf{¢: X,¢ Ci} is a stopping time over (§,). Obviously
(3.2) is satisfied if cg is Borel on E. We suppose now that R is a killing time
and, to simplify notation, write ¢ for ¢, and C for Cy.

The killed process Y may be handled more expeditiously by means of its
distribution on the path space Q. For xeE ,— C let P"zsw and for xeC let P~
be the distribution of Y under P*{:|R>0}. That is, for 0=¢,<...<¢t,,
fis -, [,ebE* and xeC.

(3.4) EX{fi(X,) o Sy =EX{ fi(X,) o X0 ) Ly, < R> 0.

We are of course using the convention f(4)=0 for febE*. The correspondence
between P* and P* is more compactly expressed in terms of killing operators.
A monotone class argument based on (3.4) shows that for Heb&°* and x<E,

(3.5) EX{H} ¢(x)=E*{Hokgy; R>0}.

That is, for every xeC, the trace of ﬁfgo* on {t<(} is absolutely continuous
relative to the trace of Piso. 0D {t<}. A well known representation theorem
([7], VII for example) shows that there exists then a right continuous super-
martingale MF (M,),,, generating P* from P*. Spelling this out, (M), is
right continuous and satisfies the conditions (2.2), EXM, <1 for all xeE and all
t20, and for every stopping time T over (F?;),

(3.6) E*{Hly_ ,}=E*{HM,} if HebJ7,.

Because of the section theorem, (3.6) uniquely determines (M,),>,, up to eva-
nescence. Taking H= 1, _,, with xe C one sees that E,,= C, and as C is nearly
optional by hypothesis, M is a right MF, using the terminology established at
the end of §2.

(3.7) Proposition. For every t>0 and xeE,

P(R> ([} =c(x) M,.
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Proof. 1t suffices to show that if HebF®" then
E*{H1, _p} = c(x) EX{HM}.

Because 1, gy =1y _ropy Hlogy=Hokgl , and so, by (3.5)

{t<lokr
EX{H1y g} = C(X)Ex{Hl(r<C)}'

Then (3.6) applies to evaluate the right side as c(x)E*{HM,}.
If xeE ,— C, (3.6) shows that P*{M,=0}=1. If xeC, (3.7) yields

(3.8) c(X)M,=W,+Z,

where W, is a right continuous version, independent of x, of the uniformly
integrable martingale P*{R=o0|&,} with final value l,_,, and Z, is the
potential of the random measure &gl _g. ., generated by the increasing
process A, =1z (1) 1,o_ g . ) It follows then that for every stopping time T,

(3.9) PHR>T|Fp}=Wr+Zr=c(x)M; where M =limM,.

100

Now let S denote the debut of E,— C. Then § is a stopping time because of
hypothesis (3.2). Let T,=inf{t: M,=0}, so that T, is a terminal time and M,=0
for all t=T,, almost surely. Because M is a right MF, T, is in fact a right
terminal time.

(3.10) Proposition. Almost surely, R<T,=S.

Proof. If xeE, —C, P*{M,=0}=1 as we noted above and so P*{T,=0}=1.
Therefore P*{T,=S}=1if xeE,— C. If xeC, (3.9) gives

1
EM =——P*{R>S
S C(X) { }:

but P*{R>S}=0 because of the hypothesis (3.3). Therefore P*{S=T,} =1 if
xeC, proving that as., Ty<S. For xeE,—C, P*{R=0}=1s0 P{R=T,}=1.If
xeC, (3.9) gives

1
0=E"MTO=C—(X—)P’“{R>TO}

and we conclude that P{R<T,}=1.

(3.11) Proposition. For every stopping time 1, a.s.,
{R=00,T<Ty}={RobOr=00, T<Ty}.
Proof. Letting t — o0 in (3.7) gives
Lig_ooy=¢(Xo)M .
By the multiplicative property of M,

MTl{RcGT:oo}:C(XT)MTM
=c(Xp)M,

o0y
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as. on {T<oo}. On {T<T,}, TES and (3.10) gives ¢(X,)>0 and M, >0, so
that g, >0 if and only if M >0. Because T<T, implies ¢(X4)>0, it
follows that Ro#,= o0 if and only if R=o00, as. on {T <Ty}.

Define now M,=c(X ,)M,/c(X,). Because of (3.10), M is well defined (setting
0/0=0) and T,=inf{t: M,=0}. Though M, need not be right continuous, it is
obviously a MF as described in (2.2).

(3.12) Proposition. Let A denote the dual predictable projection of A,
=1 oot Lio <k < ooj- Then A is an AF of (X, M).

Proof. As in (3.8) let Z be the potential of 4 so that Z is also the potential of
A. Setting h(x)=E*M _ one sees that for every stopping time T

Ex{MooIgT} 1{T<oa} zEx{MTMooOHTig’T} 1{T< oo}

=M h(Xp) Lir -
Therefore, from (3.8) and the fact that 1_ ., =c(X )M,
(3.13) Wy 1{T<oo):Px{R:OOI(&T} 1{T<<>o}
=c(X )M h(X ) Ly <o0y-

(If we knew that & were an optional function, this would imply that W, and
c{X o) M, (X)) were indistinguishable.) From (3.8), almost surely

Zr=Zy Lrcoy= [e(X o) Mp— Wy ] Lz <oy
=c(X )M [1=h(X )] Lz .y

It follows that for each t=0, almost surely
Zz"@T 1{T<oo}=C(XT) M,o0,[1 ‘h(XerT)] 1{T<oo}

__C(XT)C(X())
T XM, el =X 0] Lir o).

SO
ZtOQT 1{T<T0}
That is,
WTZtO Op=c(X,) M, .[1 “h(Xt+ ] 1{7r< To}
=Z, 7 I{T<:rg;~

By right continuity in ¢, this implies that M;Z,c0; and Z, +T1{T<To} are
indistinguishable. In other words M,;©,Z and Z 1 17,00l = Z Lgr oor Lir < 7oy 2TE
indistinguishable. Now, it is easy to see ([7], (33.12) for example} that the
potential Z' of @, A4 satisfies

Z 1 pr o =@ 1 D yr g
$0 we obtain
M1Z' Lir =2 lir sop-

But M,Z’ Lyr, op I8 the restriction to [ 7; oof of the potential of the predictable ran-
dom measure M, ® A so using ([7], (33.13)) we conclude that 4T o MT@ A
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and 1y mﬁ*ﬁ { are distinguishable. This is just another way of saying that A is
an AF of (X, M).
Here then is the principal result.

(3.14) Theorem. Let R be a killing time which is also a left Markov time. Then
there exists a right terminal time T,= R such that R is co-optional for (X, T,).

Proof. If Veb®? there exists V'ePnH® such that the random measure
Vi(eglio . g<opy) has the same dual predictable projection as V' #(eg Lo <k <cop)
Therefore Vi(eglyg . g q) has dual predictable projection V'xA which is, by

(3.12), an AF of (X, M). In view of (2.8), g Lig g is @ 1aw AF of (X, M) so
(24) shows that L=sup{t: A(eg Lo cr<o)i >0} =R1g gy I8 co-optional for
(X, T,), where T,=inf(r: M,=0}=inf{t: M,=0}. Consequently, if T is an arbi-
trary stopping time,
ROGTZ'(R 1{O<R<oo})06T+(R1{R=co})08T
=Lolp+Ro0p Lig,pp_ o)

On {T<T,}, Lef,=(L—T)* and (3.11) shows that R=co if and only of Rof;
=o0. Thus, a.s. on {T<T,},

Rofp=(L—T)" +Rlg_ .y
=R1jpcrcoy— D" +Rlgooy—T)
=(R—-T)",

proving that R is co-optional for (X, Tp).

It should be remarked that if R is co-optional for (X, T), where T is a right
terminal time, then R has the left Markov property and R is a killing time.
The first of these assertions follows from the results of [3] and the proof of the
second is a rather trivial modification of the proof ([5]) of the fact that
ordinary co-optional times are killing times.
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