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1. Introduction 

It is a well known fact in Markov process theory that if a Markov process is 
killed at a terminal time - typically the hitting time of some subset of the state 
space - then the killed process is also Markovian. In addition, the process X 
killed at a terminal time T is conditionally independent of the future 
(Xr+t;  t>0 )  given X r. Of more recent origin [5] is the fact that if L i s a  co- 
optional time then X killed at L is Markovian, and though it is not in general 
true that X killed at L is conditionally independent of (XL+~; t>0)  given XL, 
there is a conditional independence property [3] in which, roughly speaking, 
past and future are conditionally independent on { 0 < L < o o }  given the left 
germ field at L. The first results aiming at a characterization of those random 
times at which killing preserves the Markov property with conditional inde- 
pendence of the future were obtained by Jacobson and Pitman [4] for Markov 
chains with countable stable spaces. Their result states that such a time is in 
essence a co-optional time before some terminal time. The main result of this 
paper is an extension of that result to right processes, and though the technical- 
ities are considerably more burdensome, one obtains essentially the same 
result, the left germ field at L seeming to be the correct analogue in continuous 
time of cr(XL_ 1) for chains. 

It should be mentioned that Jacobson and Pitman also characterized for 
chains birth times with conditional independence of the past, and Pittenger [-6] 
has recently extended their characterization to right processes. It would be 
interesting to put the result of this paper together with Pittenger's to obtain a 
characterization of those random times at which killing and birthing produce 
conditionally independent Markov processes, but such a result is lacking 
except for chains in which all states communicate [4]. 
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2. Preliminaries 

It is assumed throughout that X=(~2, J ,  Jt, Xt, Ot,P x) is a right process with 
state space E and transition semigroup (Pt). The work [-7] will serve as a 
reference for technical results needed here, and [-2] contains some of the 
material on additive functionals, shifts and homogeneity. As some of the objects 
discussed below are not quite standard, we shall give careful definitions. A 
stopping time T is a terminal time if for every stopping time S over (j,), T = S  
+ToO s a.s. on {S<T}. An j-measurable random variable with values in 
[0, m] will be called a random time. Given a terminal time T and a random 
time R, we say that R is co-optional for (X, T) if 

(2.1) (i) R<Za.s.," 
(ii) for every stopping time S, R o O s = ( R - S )  + a.s. on {S< T}. 

In case T= ~, the lifetime of X, the definition agrees with the usual meaning of 
a co-optional time, though (2.1)(ii) may be replaced then by the weaker 
condition with S replaced by an arbitrary constant time. The fact that the 
weaker condition suffices comes from a perfection result ([7], (25.6), for exam- 
ple) which is not available in the case of an arbitrary terminal time. Examples 
of random times R co-optional for (X ,T)  include (i) R = T ;  (ii) R=LI{L~r  }, 
where L is co-optional for X. The latter example points out that R depends in 
general not only on the process X killed at T but possibly on information in 
the future from T. 

By a multiplicativefunctional (MF) for X we mean a process (Mr) satisfying 

(2.2) (i) M t is positive and optional over (Jt); 
(ii) for every stopping time S and every t>O, Mt+s=MsMtoO s almost 

surely; 
(iii) M, = 0 for all t > ~. 

We are not insisting here that t-~M, be right continuous or decreasing, but we 
are assuming the strong multiplicative property. If M is a right continuous MF 
then SM=inf{t: M,=0} is a terminal time with Ms~=O on {S~t< oo} and one 
sees from (2.2)(ii) that a.s. Mt=O for all t > S  M. 

By a raw additive functional (RAF) of (X,M), where M is a MF, is meant 
an increasing positive process A satisfying 

(2.3) (i) for every t >O, A t is j-measurable; 
(ii) t ~ A  t is a.s. right continuous and finite valued; 

(iii) for every stopping time S and every t >=O, At+s=As+ MsAtoOs a.s. 

If A satisfies (2.3) and A is adapted to (Jt) we say that A is an AF of (X, M). It 
is easy to see that if A is a RAF of (X,M) then At=As~ , for all t>S~t, almost 
surely. It is permitted however that A(S~)>A(S M ) on {SM<oo}. If A is a 
(raw) AF of (X,M) where M = l ~ o , r  ~ for some terminal time T, then A is also 
called a (raw) AF of (X, T). A simple calculation shows that if T is a terminal 
time and R is co-optional for (X ,T)  then At=IER,~L(t) I~o<R<~ ~ is a RAF of 
(X, T). The converse result will be important in the characterization of killing 
times. 
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(2.4) Proposition. Let M be a MF and let A be a RAF of (X, M). Then 

R = s u p { t :  AAt>0} (with supS) =0) 

defines a co-optional time for (X, SM). 

Proof. Let T be an arbitrary stopping time. Then since R < S M, 

RoOr=sup{O<u<SMoOr: AA~oOr>O}. 

But M r A A ,  oOr=AA,+ r for all u>0 ,  a.s. on {T<oe}, and Mr>O a.s. on 
{T<SM}. Consequently, a.s. on {T<SM}, 

RoOr=sup{O<u<SM-  T: dAu+r>0}  

= ( R -  r )  + . 

Let 931 and ~ denote respectively the measurable and predictable or-fields 
on lR+x f2 (see [7], w and let S3a, S3 g be the o--fields defined by Az4ma [1] 
(see also [7]; w generated respectively by measurable processes which are 
right continuous with left limits (resp., left continuous with right limits) and 
satisfy, except on a null set 

(2.5) Z~oOt=Zs+, for all s>O, t>O (resp., s>0,  t>0).  

Given a right continuous measurable increasing process A with A o = 0  and A 
locally integrable relative to every px, ~ will denote the dual predictable 
projection (or compensator) of A. More precisely, we need the version of 
which works simultaneously for all px. See ([7], w For t>0 ,  O~ denotes the 
shift operator on measurable processes defined by 

(2.6) ( O tZ) (s, co)= Z ~_,( O, co) 1~,, <(s). 

If ZebgJl+, and A is an increasing process as described above, Z , A  is the 
increasing process defined by ( Z , A ) , =  ~ ZsdA ~. It is easily checked that 

]o,t] 
Or(Z ,A)  = O r Z* O r A. In addition, one has the commutation property 

(2.7) l~r,~o~*(ora)- = l~r,oo~* Or(A ) 

for every stopping time T. See [7], w 

(2.8) Proposition. Let M be a MF, and let A be a right continuous increasing 
measurable process with A 0 = 0  and E~Aoo< or for all x~E. Suppose that for 
every Zeb~3e+, ( Z . A )  ~ is an AF of (X,M). Then A is a RAF of (X,M). 

Proof. For any stopping time T, ( Z . A )  ~ being an AF of (X,M) implies 

Mr l~r,oo~* O r(Z * A) ~ = l~r,oo~*(Z * A) ~. 

Because of (2.7) this implies that 

Mr 1F,oo~*(OrZ* OrA)~ = M  r l~r, oo~* ( Z ' A )  ~. 
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But, since Z ~  d, OTZ=ZI~T, oo~. Therefore 

M r  l~T, oo~* (Z*OrA) ~ = l~r, oo~* (Z.A) ~. 

Integration relative to an arbitrary Ysb?~+ now gives, using the fact that 
Mr  l ~ T , ~ 3 ,  

EX S M~LZ.OTA(du) =ex ~ LZudA.. 
]T, oo[ ]T, oo[ 

However, products YZ with Y~b~3+ and Z~b~d+ generate 9~ ([7], w so by 
monotone classes, 

E x ~ W.MTOTA(du)=E x ~ W.dA. 
]T, oo[ IT, co[ 

for every W~bgX. This last equality implies that the random measures MTO r 
A(du) and dA u agree on lIT, oQ~, which is the same as saying that A is a RAF 
of (x, M). 

Let R be a random time. Following [3], we say that R is a left Markov 
time if the strict past and future from R are conditionally independent on 
{0<R<oo}  given the left germ field at the present. The operational meaning 
which will be used in the next section is that for every Zeb~d+ there exists 
Z'Eb(.~c~3g)+ such that  Z*(~Rl(0<g<oo} ) and Z'*(eRI(o<R<~}) have the same 
dual predictable projection. Here eRl(o<R<oo~ is shorthand for the random 
measure generated by the increasing process At--lw,oor(t ) 1~0 ~R<ooI" 

A function f on E is nearly optional if the process t--+f(Xt) is (pu 
indistinguishable from) a process which is optional over ((2, ~t",W) for every 
initial law/~, and a subset A of E is called nearly optional if its indicator 1A is 
a nearly optional function. A terminal time T is a right terminal time if 
reg(T)=-{x~E:W{T=O}=l} is a nearly optional subset of E. See [7], VII, 
where it is shown that if T is a right terminal time, then T is a.s. 
equal to T/x S, where T is the perfect exact regularization of T and 
S = i n f { t > 0 :  Xt~reg(T)}, and that a.s., Xt~reg(T ) for all t e l  0, T[. In particular, 
right terminal times are perfectable, and it can be shown that a right process 
killed at a right terminal time remains a right process. If T is a right terminal 
time and if R is co-optional for (X, T), then since T may be assumed perfect, 
one may modify the proof of the perfection theorem for ordinary co-optional 
times ([7], (25.6), for example) to show that one may replace R in (2.1) by an 
equivalent random time R' satisfying R'oOt=(R'-t)  + for all t < T -  that is, R' 
is a perfect co-optional time for (X, T). 

In similar vein, a MF (Mt)t>=o will be called a right MF if t--~M t is a.s. right 
continuous and if E~t=-{x~E: W { M o = I  } =1} is nearly optional relative to X. 
It is easy to see that if M is a right MF, then SM~-inf{t=0: Mr=0} is a right 
terminal time. 

3. Characterization of Killing Times 

For ease of manipulations we shall suppose that X is realized as the co- 
ordinate process on the space (2 of all right continuous maps of IR+ into E A 
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=Evo{A} admitting A as a trap. Let ~ denote the lifetime variable on (2 and let 
co A denote the path constantly equal to A. Take (k~) to be the killing operators 
on O and let ~~ O<s<t, fEb@*}. 

Given a random time R, let cR(x)=P~{R>O}, a universally measurable 
function on E, and let CR={xeE: cR(x)>0 }. By the process X killed at R is 
meant the process Y defined by 

(3.1) Y,=X~ if t<R 

=A if t>R 

under the probability measures Px{.IR>0},  x~C R. We shall say that R is a 
killing time if 

(3.2) c R is a nearly optional function relati,:e to X; 

(3.3) The process Y with the measures Px{' IR>0} is temporally homogeneous 
strong Markov on the state space C R. 

It is implicit in (3.3) that a.s. X,eC R for all t<R. The condition (3.2) is a 
technical condition which will be needed for comparison of Y and X. It also 
follows from (3.2) that S = inf{t: Xtr CR} is a stopping time over (~t). Obviously 
(3.2) is satisfied if c R is Borel on E. We suppose now that R is a killing time 
and, to simplify notation, write c for c R and C for C R. 

The killed process Y may be handled more expeditiously by means of its 
distribution on the path space s For  x~E A-  C let f ix=G, ~ and for x~C let/~x 
be the distribution of Y under P~{'LR>0}. That is, for 0 < t l < . . . < t n ,  
f l  . . . .  , s  and x~C. 

(3.4) E'~{f,(Xt,) ... f,(X,.)} =EX{f,(Xt,)...f,(Xt~) l{t.<mIR > 0}. 

We are of course using the convention f(d)=0 for feb~*. The correspondence 
between /~  and px is more compactly expressed in terms of killing operators. 
A monotone class argument based on (3.4) shows that for Heb~  ~ and xeE, 

(3.5) s c(x)=EX{HoG; R>0}. 

That is, for every x~C, the trace of /~ao,  on {t<{} is absolutely continuous 
relative to the trace of P~ap, on {t < <}. )~ well known representation theorem 
([7], VII for example) shows that there exists then a right continuous super- 
martingale MF (Mr)t> o generating ,fix from PL Spelling this out, (M~),_> 0 is 
right continuous and satisfies the conditions (2.2), E~M~< 1 for all xeE and all 

0* t>0 ,  and for every stopping time T over ({~t+), 

(3.6) ^~ - ~ . E {HI{r<;}}-E {HMr} if Hebq~+ 

Because of the section theorem, (3.6) uniquely determines (M,)~=>o, up to eva- 
nescence. Taking H =  l{xo=~} with xeC one sees that EM= C, and as C is nearly 
optional by hypothesis, M is a right MF, using the terminology established at 
the end of w 

(3.7) Proposition. For e,oery t > 0  and xeE, 

P~(R > ti~,} = c(x) M, .  



228 M.J. Sharpe 

Proof It suffices to show that if H~b~ ~ then 

EX{H l~t<m} = c(x)EX{HMt}. 

Because l{t<R)= l{t<~okR} , Hlt<R)=HokR l{t<~ok M and so, by (3.5) 

EX{HI(t <m} = c(x)E'{Hl~t <~}" 

Then (3.6) applies to evaluate the right side as c(x)E~{HMt}. 
If xffE A --C, (3.6) shows that P~{M o =0} =1. If xeC, (3.7) yields 

(3.8) c(x) M, = ~ + Zt 

where I~ is a right continuous version, independent of x, of the uniformly 
integrable martingale PX{R=oo[~t} with final value l~R=o~ and Z t is the 
potential of the random measure eRI~o<R<~ ~ generated by the increasing 
process At= 1LR, ooL(t ) I~O<R<~ ~. It follows then that for every stopping time T, 

(3.9) pX{R> TI~T}=WT+ZT-=C(X)MT where Moo=limMr 
t ~ (X) 

Now let S denote the debut of E ~ - C .  Then S is a stopping time because of 
hypothesis (3.2). Let To=inf{t:  Mr=0},  so that T o is a terminal time and M~=0 
for all t >  To, almost surely. Because M is a right MF, T O is in fact a right 
terminal time. 

(3.10) Proposition. Almost surely, R < T O <S. 

Proof If X~EA-C  , pX{Mo=O}=l as we noted above and so P~{To=0}=I .  
Therefore P~ { T O < S} = 1 if x ~E~ - C. If x E C, (3.9) gives 

E X M s = c ~  P~{R > S}, 

but P'{R>S}=O because of the hypothesis (3.3). Therefore px{S>To}=I if 
x~C, proving that a.s., TONS. For x~E~-C ,  P ~ { R = 0 } = I  so P~{R<To}=I. If 
xeC, (3.9) gives 

1 
0 = E~Mro = c(x) P~{R > 7 o } 

and we conclude that P~{R < To} = 1. 

(3.11) Proposition. For every stopping time T, a.s., 

{R = oo, T <  To} = {RoOr = o% T<  To}. 

Proof Letting t ~  in (3.7) gives 

I{R = ~} = c(Xo)Moo. 

By the multiplicative property of M, 

MT I{RoO r = ~} = C(XT)M T Mo~ o 0 r 

= C(XT)Moo 
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a.s. on {T<oo}.  On {T<To}, T<S and (3.10) gives C(XT)>O and MT>O, So 
that I{Ro0T~;>0 if and only if M ~ > 0 .  Because T < T  o implies c(Xo)>0,  it 
follows that ROOT= o0 if and only if R = oo, a.s. on {T <  To}. 

Define now ~4t=c(Xo)M]c(Xt). Because of (3.10),)U is well defined (setting 
0/0 =0) and T O = inf{t: ~Jt =0}. Though ~ t  need not be right continuous, it is 
obviously a M F  as described in (2.2). 

(3.12) Proposition. Let ft denote the dual predictable prqjection of A~ 
= t[R.~[(t) l{o<R<~ }. Then ft is an AF of(X,~).  

Proof. As in (3.8) let Z be the potential of A so that Z is also the potential of 
A. Setting h(x)-E ~ - M~, one sees that for every stopping time T 

E~{M~lq~r} l l r<~ } =E~{MrM~~ l{r<~} 

= M r h(Xr) l{r < ~}. 

Therefore, from (3.8) and the fact that ltR=oo}=c(Xo)M ~ 

(3.13) W T l{r<oo}=P~{R = aZl~T} ltr< oo } 

= c(Xo)M T h(XT) l{r < ~1" 

(If we knew that h were an optional function, this would imply that W~ and 
c(Xo) M~ h(Xt) were indistinguishable.) From (3.8), almost surely 

Zr=ZT l{r<~}= [,c(Xo)Mr- Wr] l{r<~ / 

= c(Xo) Mr[-1 -- h(Xr) ] l{r < ~}. 

It follows that for each t > 0, almost surely 

SO 

That is, 

Z~~ l(r< oo} = c(Xr) MtoOr[,1 -h(X,+r)~ l{r < ~ 

c(Xr) c(Xo) 
Zt~ l~r<To~ c(Xo)MT Mt+r[ ' l -h (Xt+T)]  l~r<ro). 

MrZto 0 r = c(Xo) Mr+ r [1 - h(Xt+ r)] I{T< To} 

=Zt+T I{T< To}- 

By right continuity in t, this implies that MTZtOOr and Z~+Tl{r<ro} are 
indistinguishable. In other words ~-lrOrZ and Zl~r ,~=Zl~, ,oo~l t r<ro}  are 
indistinguishable. Now, it is easy to see ([--73, (33.12) for example) that the 
potential Z' of OrA satisfies 

Z' 1Er,~ ~ = ( O r Z )  l~r,~ ~ 
so we obtain 

MrZ' l~r,  ~l~ = Z II~T, ~lI- 

But MTZ' l~r ' oo~_is the restriction to [[ E ooI~ of the potential of the predictable ran- 
dom measure MTOrA so using ([-7], (33.13)) we conclude that II~T,~IIMTOTA 
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and l~r ~ , ] i  are distinguishable. This is just another way of saying that A is 
an AF of (X, M). 

Here then is the principal result. 

(3.14) Theorem. Let  R be a killing time which is also a left Markov  time. Then 

there exis ts  a right terminal t ime T O > R such that R is co-optional f o r  (X, To). 

Proo f  If V ~ b ~  a there exists V'E~c~.~ g such that the random measure 
V, (e~ t~o < ~ < ~ )  has the same dual predictable projection as V'* (eR leo < R < ~)- 
Therefore V*(eRlf0<R<~) has dual 'predictable projection V ' , A  which is, by 

(3.12), an AF of (X,~I). In view of (2.8), eR l(o<g<o~ is a raw AF of ( X , M )  so 
(2.4) shows that L=sup{ t :  A(eRI~o<R<~)t>0}=RI/0<R<~ is co-optional for 
(X, To), where To=in f ( t :M~=0}=in f{ t :  M~=0}. Consequently, if T is an arbi- 
trary stopping time, 

R ~ 1{o <R <~o})~ +( R I{R= oo})~ 

=- Lo 0 T + R o 0 T I~RoO T = ~ .  

On {T<T0}, L o O r = ( L - T )  + and (3.1l) shows that R = o o  if and only o f R o O  r 

=co.  Thus, a.s. on { r <  To}, 

RoOr = ( L -  T)  + + R I{R=~ ~ 

=(R l{o<R < ~o~ - T) + +(R I{R = oo~ - T) 

= ( R  - T) +, 

proving that R is co-optional for (X, To). 
It should be remarked that if R is co-optional for (X, T), where T is a right 

terminal time, then R has the left Markov property and R is a killing time. 
The first of these assertions follows from the results of [3] and the proof of the 
second is a rather trivial modification of the proof ([5]) of the fact that 
ordinary co-optional times are killing times. 
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