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1. Introduction 

Given a M a r k o v  process x(t,w) with semigroup T(t ) f (x)=E, f (x( t ,w))  and  in- 
finitesimal generator  A there is a well known  recipe due to Dynk in  (1965) for 
construct ing martingales associated with x(t) l: 

(1.1) Lcmma.  For f ~  ~(f4), ft the weak infinitesimal operator, the process f(x(t)) 
t 

- ~ ftf(x(s))ds is a martingale. 
0 

A useful extension of  L e m m a  (1.1) is conta ined in 

(1.2) Theorem. Suppose U( t ,x )e~(A) ,  U t ( t , x ) ~ ( f t )  for each t>=O, U(t,x) and 
f tU(t ,x)  are absoIute!y continuous in t for each x. Then the process U(t,x(t)) 

t 

--~ [U~(s,x(s)) + A U (s, x(s))] ds is a martingale. 
0 

Proof This is a routine general izat ion of  Theorem 1 on p. 269 of  Rosenkran tz  
(1975) and the p roof  is therefore omitted. A similar result under  slightly dif- 
ferent hypotheses has been obta ined by Kur t z  (1981), Proposi t ion  3.5. 

It is wor th  point ing out  that  some restrictions on  the funct ion f are essen- 
tial if the process defined in L e m m a  (1.1) is to be a martingale.  For  example, 
consider the reflecting Brownian  mot ion  process x(t)=[w(t)[, where w(t) is the 
s tandard  Wiener  process and Af(x)=(1/2)f"(x) .  N o w  if f ( x ) = x  then Af(x)=O 
and  (1.1), if true, would imply f(x(t))=x(t)=lw(t)l  is a mart ingale - a result 
which is clearly absurd. The  difficulty here is due to the f ac t  tha t  f will not  be 
in ~ (A)  unless f ' ( 0 ) = 0 .  Since f ( x ) = x  has derivative f ' ( 0 ) =  1 4=0 we see at once 
that  f(x)  = x ~ @(A). 

N o w  the problem of  const ruct ing a nice class of  functions f for which 

f ( x ( t ) ) - j 'A f (x ( s ) )ds  is a mart ingale  is equivalent to solving the mart ingale  
0 
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problem for the operator A and this is not an easy matter in general, see, e.g. 
Stroock-Varadhan (1979). Some idea of the subtleties involved can be gained 
by considering the following class of stochastic processes studied by Cinlar- 
Pinsky (1971). In their paper x(t) denotes the content of a dam at time t with 
release rate r(x) and random cumulative input A(t)-=A(t, w) assumed to be a pro- 
cess with stationary and nonnegative independent increments. In addition it is 
assumed the jump rate b of A(t) is finite and H(y)  denotes the distribution of 
the size of the jump. Under the additional hypotheses that r(0)=0, r(x) is 
strictly increasing and Lipschitz continuous they showed that x(t) is a strong 
Markov process with state space R + =[0,  .ze) whose corresponding semigroup 
T ( t ) f ( x ) = E J ( x ( t ) )  satisfies the integral equation 

t oO 

(1.3) T( t ) f (x )  = e-  b,f(q (x, t)) + ~ ~ b e -  bs T(t  - s ) f ( y  + q (x, s)) dH (y) ds. 
0 0 

Here q(x, t) is the unique solution to the ordinary differential equation 

(1.4) z'(t) = a - r(z(t)), z(O) = x. 

The following facts concerning q(x, t)  are easily established by explicitly 
solving (1.4). 

(1.5) (i) For fixed x, t ~ q(x, t) is monotone continuous. 

(ii) For fixed t, x ~ q(x, t) is nondecreasing and continuous. 

(iii) q(q(x, s), t) = q(x, s + t). 

(iv) q,(x, t) = (a - r(x)) q,(x,  t). 

Making use of the integral representation (1.3) and the properties of q(x, t) 
listed at (1.5) Cinlar-Pinsky remark without proof that the function v(t ,x) 
= T( t ) f (x )  satisfies the integro-differential equation: 

(1.6) (i) v t=Av( t , x ) ,  v (O,x)=f(x) ,  x ~ R  + 

(ii) Af (x )  = (a - r (x)) f '  (x) + b ~ ( f ( x  + y) - f ( x ) )  dH(y). 
0 

One of the main purposes of this paper is to Show that the class of Markov 
processes constructed by ~inlar-Pinsky solves the martingale problem corre- 
sponding to the operator A defined in (1.6(ii)) above. Specifically, let Cc(R +) 
denote the space of bounded, continuous functions on R + with compact sup- 
port; let C l ( R + ) = { f : f , f ' s C c ( R + ) } .  We then show, in Corollary 2.3, that 
C~(R+)cN(f f t ) .  It is important to note that this result does not follow directly 
from the integral equation (1.3); it is however a consequence of Theorem 2.2 
which asserts that r ( t ) C ( R + ) c  C(R +) and C(/~+) = {f: f bounded, continuous 
on /~+ = R  + w{,zo}, i.e. l i m f ( x ) = f ( o v )  exists}. For future reference we define 

x ~ o o  

Co(R +) = {f: f ~  C(/~+),/(,re) = 0}. 
Before proceeding further it is worth noting that our methods can be exten- 

ded to cover the very important special case of the virtual waiting time process 
q(t) for the M/GI /1  queue, for the definition of which we refer the reader to 



Some Martingales Associated with Queueing and Storage Processes 207 

Tak/tcs (1962) p. 49. Indeed the virtual waiting time process corresponds to the 
case where a = 0 ,  r ( x ) = l  for x > 0  and r(0)=0.  The fact that r(x) is discon- 
tinuous is relatively unimportant  because it can be shown that the integral re- 
presentation (1.3) remains valid in this case too, provided we set q(x, t ) -  
[ x - t ~  +, x + =Max(x ,  0). Indeed, it is only necessary to repeat the argument of 
Lemma 2.18 of ~inlar-Pinsky to establish (1.3) for the virtual waiting time pro- 
cess. 

In part  3 we apply Lemma  1.1 to the special case where x(t)=tl(t) (the vir- 
tual waiting time process), f(x)  = x", n > 1 to derive a new recursive formula for 

- " (3.4). A formula for ml(t,x) was first de- the moments  m,,(t ,x)-E~ffl(t)) - see 
rived by Tak~tcs (1962) p. 55" thus the recursive formula (3.4) may be regarded 
as a significant generalization of his result. It is to be observed that x" is un- 
bounded hence x'q~ C(/~+) and to justify the use of Lemma 1.1 we found it 
necessary to resurrect the notion of a "semigroup of type F",  an idea due to 
Doob  (1955) in the context of classical one dimensional diffusion processes - 
this is carried out in part  2. 

One additional consequence of the martingale methods of part  3 is a new 
bound on the distribution of the supremum of the virtual waiting time process. 
For  example if 

then 

o:3 

#m=~ymdH(y)< .~ ,  m > l  and g ( x ) = l + x  m 
0 

(1.7) Px( sup ~7(s)>y)<=eX~ 
O~sSt 

where 2 o is a constant depending only on m and #i; l ~ j ~ m .  The constant 2 o 
is defined in the proof  of Lemma (3.9). In particular if #~ < oo then (1.7) implies 

(1.8) Px( sup ~l(s))y)=O(y ~) as y-~ ~o, t held fixed. 
O~s<_t 

It is interesting to compare this estimate with the result in Cohen (1969) pp. 
607-608, that sup~/(s), taken over a busy cycle, is in L 2 iff #2<.~o. Cohen as- 
sumes that the traffic intensity p < 1. Our estimate is valid for all m and even 
for p ~ 1. In particular applying Chebyshev's inequality to Cohen's estimate in 
the case m = 2 yields an estimate on the tail no better than estimate (1.8). 

In part  4 we turn our attention to the integro-differential equation (1.6) it- 
self and study the conditions that must be imposed on f if the function v(t, x) 
=T(t) f (x)  is to satisfy (1.6) in the classical sense. Indeed to give a rigorous 
proof  of the ~inlar-Pinsky remark it is first necessary to prove that T(t) pre- 
serves the differentiability of the initial datum f;  but this is equivalent to estab- 
lishing a regularity theorem for the solutions to the integro-differential equa- 
tion (1.6). One method for solving the Kolmogorov  backward equation (1.6) is 
to study T(t) as an equation of evolution in a suitable Banach Space and then 
characterize the domain D(A) of T(t) - this is carried out in part  4. 

It is noteworthy that D(A) depends on a and r(x). For  example, when 

(1.9i) a = 0  wehave  ~(A)={f:f, rf'eC(R+),limr(x)f'(x)=O}, 
x ~ 0  
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and in the case of the virtual waiting time process we have 

(1.9ii) N(A) = {f: f, f ' e  C(/~ +), if(0) = 0}. 

In general a complete analysis of the integro-differential equation (1.6) re- 
quires that we distinguish 4 cases which we present here for future reference. 

(1.10) Case I. x(t)=rl(t)(the virtual waiting time process). 

In this case q(x, t) = Ix - t] + and 

f t f (x)  = -- f '  (x) + b S [ f (x  + y) - f ( x ) ]  dH(y), x > O, 
0 

A f (0 )=  b ~ [ f (y ) - f (0 ) ]  dH(y). 
0 

Note. In case 2-4 it is assumed r(0)=0, r(x) is strictly increasing and Lipschitz 
continuous. 

(1.11) Case 2. a=0.  

Af (x )=r (x ) f ' ( x )+b  S [ f ( x + y ) - f ( x ) ] d H ( y ) ,  x>0 ,  
0 

Af(O) = b ~ [f(y) -f(O)] dH(y). 
0 

Remark. Under the additional condition that i(1/r(y))dY<'-~, x > 0  Harrison 
0 

and Resnick (1976) characterize ~(A) in cases 1 and 2. However in order to 
solve (1.6) in the classical sense it is necessary to study ~(A) - see Theorem 
4.5. 

(1.12) Case 3. a>0,  sup r(x)<=a. 
0 < x < c o  

Af(x)  = (a - r (x))f' (x) + b ~ [ f (x  + y) - f ( x ) ]  dH(y), 0 < x < .~. 
0 

(1.13) Case 4. a>0 ,  sup r(x)>a.  Let x* be the unique solution to the equa- 
O < x < ~  

tion r(x*)= a. Then 

fftf(x) = (a - r (x)f'  (x) + b S [ f (x  + y) - f ( x ) ]  dH(y), 
0 

f t f(x*) = b ~ [f(x* + y) - f (x*) ]  dH(y). 
0 

x@x*, 

In part 4 we explicitly characterize domains @(A) in each of the 4 cases 
above - see (4.1) through (4.4). This leads to the following strong regularity 
theorem for the solutions to (1.6) - see Theorem (4.5). 
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Theorem. The function v( t ,x )=T( t ) f (x ) ,  f e ~ ( A ) ,  as defined in (4.1)-(4.4), is the 
unique solution to the integro differential equation (1.6) satisfying the conditions 

(i) v(t,x) is strongly differentiable in t with strongly continuous derivative 
v~(t, x); 

(ii) IIv(t)[[ is bounded; 

(iii) lira ]Iv(t, x)-f(x)]L =0. 

In Case 1 we can actually prove a stronger result namely that T(t)(C~(R+)) 
= 

A novelty of our approach is the use we make of a perturbation theorem of 
Hille-Phillips to characterize N(A). More precisely we decompose the operator 
A in (1.6ii) into the sum 

Af(x)  = Bf(x)  + Cf(x)  where 

(1.14) Bf(x) = (a - r (x))f' (x) - b f (x)  
oo  

Cf(x)  = b S f ( x  + y) dH (y). 
o 

A trivial calculation shows that B is the infinitesimal generator of the semi- 
group U(t) f (x )= e-btf(q(x, t)) and thus T(t)= e tA = e t(B+ c) is a perturbation (as 
defined by Hille-Phillips) of the semigroup U(t)---etB; note that C is a bounded 
linear operator and hence ~(A)=@(B).  In addition our approach yields a 
sharp regularity theorem for the solutions to the integro-differential equation 
(1.6) which we believe to be new even in the case of the so-called Takfics in- 
tegro-differential equation for the virtual waiting time process. 

The decomposition (1.14) of the infinitesimal generator A into a sum A = B  
+ C where C is bounded and B generates a semigroup whose domain ~(B) 
=@(A) is easily computed is applicable to a much larger class of Markov pro- 
cesses than is considered here. It is particularly useful in proving heavy traffic 
limit theorems via the Trotter-Kato theorem. For  example in the recent thesis 
of D. Burman (1979) we are confronted with a sequence of integro-partial dif- 
ferential operators of the form: 

A , f ( x , y ) = B J ( x , y ) + C J ( x , y ) ,  ( x , y ) ~ R x R  + 

(1.15) B,f(x ,  y) = ] ~  f~ (x, y) + n f ,  (x, y) 

C, f(x ,  y) = nr(y) [ f (x  + n-  a/2 O) - f ( x ,  O)J. 

It is not too difficult to see that B, is the infinitesimal generator of the 
semigroup U ( t ) f ( x , y ) = f ( x - n l / Z t ,  y+n t )  and with a little more work one can 
compute @(B,). Now the Trot ter-Kato-Kurtz  approach to the heavy traffic ap- 
proximation requires the construction of a sequence of functions f , ,e~(An)  
with the property that lim A, f ,  = A f  in some suitable sense. If the perturbation 

n ~ o o  

theorem of Hille-Phillips is valid (and it is under suitable conditions) we can 
compute @(A,) by observing that ~ ( A , ) = ~ ( B , ) ,  the computation of the latter 
being often a much simpler task. These and other aspects of the functional 
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analytic approach to queueing theory are currently the subject of a joint study 
with D. Burman of Bell Laboratories. It is also a pleasure to acknowledge 
some useful conversations ith W. Whitt, also of Bell Laboratories. 

2. The Martingale Problem and Its Solution 

We now show that the Markov processes x(t), whose corresponding semi- 
groups T(t) satisfy the integral equation (1.3), solve the martingale problem; 
more precisely we shall prove the following result: 

(2.1) Theorem. Let f ~ C) (R + ). Then the process f (x(t))-  i ft f (x(s)) ds is a mar- 
0 

tingale. 

Cc(R ) Proof By a Theorem of Dynkin (1965) p. 133 it suffices to show that 1 + 
c ~ ( A )  and this in turn is a consequence of 

(2.2) Theorem. Let f e  C(R+). Then there exists a unique solution T(t)f(x) to 
the integral equation (1.3) satisfying the conditions 

(i) IrT(t)f][ < []f[J (ii) T(t ) fe  C(R +) and (iii) T(t)f(x): R + •  + ~ R  is con- 
tinuous in (t, x). 

(2.3) Corollary. C~(R+)c~(]t) .  

We shall begin with the proof of Corollary (2.3). It suffices to show that 
l im(T( t ) f ( x ) - f ( x ) ) / t= f t f ( x )  in the sense of bounded pointwise convergence - 
t ~ 0  

see Dynkin (1965) p. 55. 

Step 1. Set g(s , t , x )=Sbe-bST( t - - s ) f (y+q(x , s ) )dH(y) ,  and hold x fixed. By 
0 

Theorem (2.2) T( t - s ) f ( y+q(x , s ) )  is jointly continuous in (s,t,x) and this im- 
plies the continuity of g(s,t,x). In particular, by the fundamental theorem of 
the calculus, we have 

(2.5) 

Thus 

t oo 

(2.4) lim (l/t) ~ g(s, t, x) ds = g(O, O, x) = b ~ f ( x  + y) dH(y) 
t ~ O  0 0 

in the sense of bounded pointwise convergence; it is easily checked that 

' x) ds < (1/t) ! g(s,t, Hfll(1/t) S 

Step 2. In terms of the function g(s, t, x) the integral equation (1.3) can be re- 
written as 

t 

T(t)f(x) = e-b' f(q(x,  t)) + ~ g(s, t, X) ds. 
0 

t 

( T( t) f (x) -- f (x))/t = (e- bt f ( q (X, t) ) -- f (x))/t + (l/t) ~ g(s, t, X) ds. 
0 



Some Martingales Associated with Queueing and Storage Processes 211 

Now an easy calculation using (1.4) and (1.5) shows that 

d bt 
lira (e- btf(q (x, t)) -- f(x))/t =dt (e- f(q (x, t))) 

evaluated at t = 0  and this equals -bf(x)+(a-r(x)) f ' (x) .  Moreover the hy- 
pothesis f~ C~(R +) implies that the above limit exists in the sense of bounded 
pointwise convergence. Summing up then we've shown that f~  Q!(R +) implies' 

lim ( T(t) f (x) - f (x))/t 
t ~ O  

= (a - r (x))f' (x) + b [f(x + y) - f(x)] dH (y) = ]if(x) 
o 

in the sense of bounded pointwise convergence. For a complete description of 
~]f the reade~ is referred back to (1.10)-(1.13). Hence C~(R+)c~(ft). [] 

Remark. When r is bounded, as in Cases 1 and 3, one can replace C~(R +) in 
Theorem 2.1 by CI(R+). If r is unbounded then Theorem (2.1) remains valid 
for those functions f r f '~  C(/~ +) - we omit the details of the proof. 

We turn now to Theorem (2.2) the proof of which has been adapted from 
Kato (1976) 2rid edition, pp. 497-498. 

(2.6) Definition. (i) U(t)f(x)=e-b~f(q(x, t)), 

(ii) Cf(x)=b ~ f(x+y)dH(y), f~C(R+). 
0 

(2.7) Lemma. U(t)f(x): C(R+)-~ C(R +) is a strongly continuous contraction 
semigroup and C is a bounded linear operator on C(R +) with H C[] _-<b. 

Proof From property 1.5(iii) and the compactness of/~+ it is easy to check 
that U(t) is a semigroup and that lim U(t)f(x)=f(x) in the sense of bounded 

t ~ O  

pointwise convergence since lim q(x, t)--x. Moreover lira q(x, t) exists as a fi- 
t ~ O  X ~ o O  

nite or infinite limit and f ~  C(/~ +) implies lim U(t)f(x)= lira e-b~f(q(x, t)) ex- 
~ r  x ~ o o  

ists also, so U(t)f~ C(/~+). Thus U(t)f is weakly right continuous in t and he- 
nce by a well known result, e.g. Dynkin (1965) p. 35, Theorem 1.5, U(t)f is 
strongly continuous. It is trivial to see that 11Cfl] <b IIf]l since H is a probabil- 
ity distribution. In addition lim f ( x  +y)=f(oo) in the sense of bounded point- 

wise convergence and hence lira Cf(x) exists also. [] 
x ~ o o  

(2.8) Lemma. The integral equation (1.3) can be written as: 

(2.9) T(t)f(x) = U(t)f(x) + i U( t -  a) CT(cr)f(x) da. 
0 

Moreover the solution T(t)f(x) is unique and can be expressed as 

(2.10) T(t)f(x)= ~ U,(t)f(x) 
n = O  
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where 

U0(t) = U(t), U,(t)f(x) = i U(t-  a) CU,_ i(a)f(x)da, n = 1, 2 .... 
0 

Remark. U,,(t)f(x) is for each n jointly continuous in (t, x). 

Proof Set v(t, x )=  T(t)f(x) and note that v(t-s, q(x, s ) + y ) =  T(t-s)f(q(x, s) 

+y). Now CT(a)f(x)= Cv(a, x)= 7 by(a, x + y)dH(y) and therefore 
0 

i U(t-a) CT(a)f(x)da =i be-b(t-~) 7 v(a, q(x, t-a)+y)dH(y)da 
0 0 0 

t oo 

= ~ ~ be-bsv(t--S, q(x, s)+y)dH(y)ds 
0 0 

t c~ 

= ~ ~ b e-b~ T(t  - s) f (q (x, s) + y) dH (y) ds. 
0 0 

Since U(t)f(x)= e-btf(q(x, t)) this completes the proof of (2.9). 
We next prove that the infinite series (2.10) converges uniformly for x~/~ § 

and t belonging to compact subintervals of R § Since U(t) is a contraction 

semigroup we have [IU,(t)fll<=bie-b('-~)llU,_l(a)fNda and hence by induc- 
0 

tion 

(2.11) N U,(t)fN <(e-bt(bt)~/n!) NfN, n=0,  1, 2 . . . .  

From which it follows at once that w(t, x )=  ~ U~(t)f(x) converges uniformly 
n = O  

for x~/~ + and t belonging to compact subsets of R +. We now show that w(t, x) 
is a solution to the integral equation (2.9). 

n = O  n = i  0 

=U(t)f(x)+f U(t-a) C U.(a)f(x da 
0 n 0 

o r  
t 

w(t, x) = U(Of(x ) + ~ U(t-  a) Cw(a, x) dcr. 
0 

The proof of the Lemma will be completed by showing that h(t,x)=w(t,x) 
-r(t)f(x)=O. It is clear that liw(t,x)H--<lJfl[ and that liT(Of]l<= I[fll and thus 
sup Nh(o-, x)N < 2  I[fl[ = M.  In addition h(t, x) satisfies the integral equation: 

O_<a_<t 

(2.12) h(t, x)=  i U(t-a) Ch(a, x)da. 
0 
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Thus 

]lie(t, x)[I < i b ilh(o-, x)l I d a < 2 h t  Ilfl[. 
0 

In particular IIh(a,x)ll <2ba[Ifl] on [0, t]. By mathematical induction one sees 
that 

(2.13) LIh(a,x)lL<(2bt)'/n!)[lfH, O<a<=t, n = l , 2  . . . .  

from which it follows at once that h(a, x)==-0. [] 

The martingales produced by Theorem (3.1) require that f e  C~(R +) but for 
many purposes this is unnecessarily restrictive. For example polynomial func- 
tions of the form f ( x ) = x  "~ are excluded and yet it is known that if #m 

= }v y"dH(y)<.:~ and x(t)=rl(t) (the virtual waiting time process for the M/- 
0 

GI/1 queue) then T(t)f(x)=Ex(tl(t)m)<,~. Thus r ( t ) f (x )  is defined for func- 
tions f (x)  satisfying a growth condition of the form lim I f(x) l / ( l+xm)<.~.  

x ~ o O  

The possibility of extending the action of T(t) to a much larger class of un- 
bounded continuous functions was first noted by Doob (1955) who was interes- 
ted in constructing martingales and supermartingales associated with Markov 
processes. For example it is not too difficult to show that if ge~(A)  and 
]lg(x)<Zg(x) then e a'g(x(t)) is a supermartingale - see Theorem 3.5. Unfor- 
tunately in many cases g is unbounded and hence is not in @(A) as defined, 
say, in Corollary (2.3). 

To circumvent these difficulties Doob introduced the notion of a semigroup 
of type F. For us this means the introduction of a growth function ~b(x) which 
is (i) strictly positive on R +, (ii) continuous and (iii) lira qS(x)= + .~. We then 

X + O C  

define a Banach Space C(qS,/~+) via the recipe 

(2.14) C(~b, iR +) = {f: f(x)/O(x)~ C(/~+)} 

IIfH0= Sup If(x)/O(x)j. 
0<x<ao 

Our choice of ~b depends on the existence of #m. 

(2.15) Definition. If # , , < ~  then qSm(x)=l +x% m > l .  

Remark. From now on we restrict our attention to the case where x(t)=t/(t) 
= virtual waiting time process. 

(2.16) Lemma. f ~  C(~b~,/~+) implies U(t) f(x)=e-b~f([x--t]+)eC(qS, , , /~+) 
and moreover ]L U ( t ) f ]l ,~ < e- bt H f ll ,m . 

The proof is simple and straightforward and therefore omitted. 

(2.17) Lemma. Suppose #,~ < .2 and f e  C(O,,, R+). Then 

(i) Cf(x )e  C(Chm, R+) and 
(ii) ]1Cf LI 4,,~ < M'b II f 11 ,~ where 
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M_- sup  xJtj  +x , 
O _ < x < .  j = O  

Proof By hypothesis ff(x)[_-< Hf rl,m( l + x~), thus 

ICf(x)l <=b Jlfl],~ ~ (1 +(x+y)")dH(y) 
0 

m j 

Thus I Cf(x)/(l+xm)l<M'bllfll4~ We leave it to the reader to check that 
f ~  C(~b,,, R +) implies Cf~ C(O,,, R+). 

Combining Lemmas (2.16) and (2.17) allows us to solve the integral equa- 
tion (1.3) in the much larger space C(q5 m,/~+). More precisely we have the fol- 
lowing result. 

(2.18) Theorem. Suppose #m < ~ and f ~ C(O~,R+). Then the integral equation 
(1.3) possesses a unique solution denoted by T(t)f with the following properties: 
(i) T(t)feC(~m,R +) and (ii) ]]T(t)fl],,<=e~]lf)]o~ where 7 = ( M ' - l ) b ,  M' 
defined as in Lemma (2.17). 

Remark. The estimate (ii) implies that T(t) is a semigroup of type F in the se- 
nse of Doob (1955) - see p. 168. 

Proof The proof of Theorem (2.18) proceeds exactly as in Lemma (2.8) with 
the sup norm replaced by [J r[,~. In particular making use of Lemmas (2.16) 
and (2,17) it is easy to show that the operators Un(t ) defined in (2.10) satisfy the 
analogue of the estimate (2.11) i.e. 

(2.19) Irg,(t)flp~<__(e-bt(M'bt)~/n!)[lfl[~, n=0,  1,2, ... 

Hence the series ~ U,,(t)f(x) converges uniformly in the Ir []e~ norm to a 
n = 0  

solution T(t)f(x) satisfying (2.18) (i) and (ii). [] 

(2.20) Definition. Cl(~m,/~+)= {f: f and f ' ~  C(~b~,/~+)}. 

Example. If f is a polynomial of degree m then f ~  Cl(q~m,/~+). 

(2.21) Theorem. Assume l~m < '~ and f ~ Cl(O~, R+). Then 

f(tl(t))- i flf(rl(s))ds is a martingale. 
0 

Proof Let j(x) denote a C ~ function with the property that j ( x ) = l  on x < 0 ;  
0 < j ( x ) < l  on 0_<x_<l and j (x )=0  for x > l ;  set f , (x )~ f (x) j (x -n) .  It is clear 
that (i)]f , ,(x)l<lf(x)[,  (ii) (f,'(x)l<lf'(x)l+clf(x)] where c~][j'll and that 

f , e  Col(/~+)c~(A). Thus f , ( q ( t ) ) - i  ftf,(tl(s))ds is a martingale for each n. We 
0 
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would like to pass to the limit and conclude that f(rl(t))- i Af,(rl(s))ds is a 
0 

martingale too. Now E~([s and so 
as a consequence of the Lebesgue dominated convergence theorem 

lim E(s O<_a<t. 

Similarly it is easily seen that 

Thus 

I AL(x)I ~ t f~'(x)I + b S I f,,(x + y) -f~(x)ldH (y) 
0 

< If'(x)l +cif(x)l +b o~ If(x +y)ldH(y) +b ~ If(x)[dH(y) 
0 0 

< if'(x)l + (c + b)if(x)[ + Ctfl(x). 

l[Af,,ll~m = IIf'll~.,+(b +c)Ilfl[~+M'b iI f I1~., 

--[If'llem+(b+c+M'b) Ilf I1,~. 

By Theorem (2.18) E~(l_~f,(rl(s))l)<e"(l[f'll,+(b+c+M'b Ilfl[e.,), s<t, and 
thus we can apply the Lebesgue dominated convergence theorem again to con- 
clude: 

n ~ c o  0 n ~ o o  

= i E~(ftfOT(s))lF(a) ds 
0 

Puttung these results together yields the result 

i E(f(rl(t)) 7tf(rl(s))dslF(a))= lim E(f,(rl(t))- i ftf(rl(s))dslF(~)) 
0 n ~ o 9  0 

= lim (f.(tl(a)) - i f4f.(rl(S)) ds) 
n 0 

=f ( r / ( a ) ) -  i ftf(tl(sl)ds. [] 
0 

3. Some Martingales Associated with the Virtual Waiting Time Process 

Let p denote the traffic intensity of the M/GI/1 queue, i,e. p=txlb, in his book 
Tak~tcs' (1962) p. 50 derived in a fairly straight-forward way the following for- 
mula for Ex(~(t))=ml(t, x). 
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(3.1) Theorem (Takfics' (1962) p. 55). 

t 

m 1 (t, x) = x + (p - 1) t + ~ P~ (tl (s) = O) ds. 
0 

It is instructive to derive this formula via Theorem (2.21) with f ( x ) = x .  A 
routine calculation yields 

2 i f ( x )  = (p - 1)I(0 ' oo)(x) + p I(o)(X ) = p - 1 + I(o ) (3.2) 

Thus 

o r  

since 

o [(p -- 1) -t- I(o)(q (s)) ] ds) ~ X  

t 

G ( . ( t ) )  = x + ( ;  - 1) t -  ~ p~(~(s) = o) & ,  
0 

Ex(Ico)(tl(S)))=px(tl(s)=O). [] 

The process by which we just computed m 1 (t, x) is easily extended to derive 
a new recursive formula for mn(t,x)=E:~(tl(t)n), n = 0 , 1 , 2  . . . .  , m o ( t , x ) = l .  Set 
f (x )  = x  n, assume #n < ~x~, n > 1 and apply Theorem (2.21) to conclude: 

(3.3) Ex t l ( t ) " - I .  - n  ~ ( s )  " - 1  + ~ b ,-~ ~ ( s ) " - ; y ; d H ( y )  ds =x" .  
o j=l 

Of course # ; <  ~o, 1 <=j<=n and thus (3.3) can be rewritten as 

{ } (3.4) m.(t,x)=x"+! n(,-1)m._,(s,x)+b Z #j m._j(s,x) ds. 
j = 2  

(3.5) Theorem. Assume #m < XD, g~ Cl(Om, R+) and that g satisfies the integro- 
differential inequality ftg(x)<__2g(x) for some constant 2. Then e-;'tg(tl(t)) is a 
supermartingale. 

Proof The proof  is very similar to that  of Theorem (2.21) so we shall only 
sketch the details. Set gn (x )=g(x ) j ( x -n ) ,  where j (x)  is the same function 
defined at the beginning of the proof  of Theorem (2.21). Then gne~(A)  and 
U(")(t ,x)=e Xtg,,(x) satisfies the conditions of Theorem (1.2) from which it 
follows that  

(3.6) U (") (t, r/(t)) - i { U} ") (s, t/(s)) + .4 U (") (s, t/(s))} ds 
0 

is a martingale for each n. It is easy to check that  the pointwise limit of (3.6) 
a s  n ~ ,3o i s  

t 

(3.7) U (t, ~/(t)) - y { U s (s, t/(s)) + d U (s, t/(s))} ds 
0 
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with U(t ,x)=e ;~g(x). Indeed, using estimates similar to those obtained in the 
course of proving Theorem (2.21), it can be shown that the Lebesgue domi- 
nated convergence theorem is applicable and hence (3.7) is a martingale, too. 
An easy calculation shows that 

(3.8) U~(t,x)+fflg(t,x)<=O all (t,x) 

and this clearly implies that U(t, ~l(t))=e-;~'g(r/(t)) is a supermartingale. [] 

(3.9) Lemma. Assume /4, <'x~, g(x)= 1 + x m. Then there exists a constant 2 o de- 
pending only on the moments #j, 1 <j<m,  of the service time distribution H(y), b 
and m such that Ag(x)<2og(X ). Hence e-*~ is a nonnegative super- 
martingale. 

Proof. 
m - - I  

Case 1. m~=2. An easy calculation shows that Ag(x)= y, a j S  is a polynomial 
j = O  

of degree m - 1  where the coefficients aj depend only on b, m, j and #j, 

O<j<m. If we now set 2o= sup ~=o ajxJ/(1 +xm) then it is easy to see that 
0=<x< co \ j _  

Ag(x)<2og(X). 

Case 2. When g (x )= l  + x  then/ fg(x)  is discontinuous at x=0 ,  i.e. A g ( x ) = -  
1 + p for x > 0 and A'g(0)= p. In any event it is still true that ~fg(x)=< p g(x). [] 

From Lemma (3.9) we deduce the following estimate on the supremum: 

(3.10) Theorem. Assume #m <'2.  Then 

P~( sup rl(s)>y)<eZ~ +xm)/(1 +y ' ) .  
O<_s<_t 

Hence 
P~( sup tl(s)>y)=O(y m) as y - ~ .  

O<_s<_t 

Notation. zy=inf{t>O: ~(t)>y}. 

Proof. By Doob's optional stopping theorem applied to the supermartingale 
e ;'tg(rl(t)) we get 

g(x) > Ex(eS~ g(rl(zy /~ t))) > Ex(e- ;'~ g(rl(~,) ; v, < t)). 

But on the set where vy<t we have e ,o~,>e ~ot and g(x) is monotone in- 
creasing implies g(r/('cy))~ g(y), thus 

E e- Zo,s ~( g(r/(vy)); zy<t)>e Z~ 

From which it follows at once that 

Px( sup rl(s)> y)=Px(zy<=t)<=(e;'~ [] 
O ~ s < t  

An immediate consequence of Theorem (3.10) is the integrability of the 
sup r/(s)=t/*(t). More precisely if #m>.~,  r e> l ,  0 < c < m ,  then 

O<_s<_t 
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rl*(t)eL" ~(R+). T. Kurtz, in a private communication, has observed that this 
result can be obtained much more simply by noting that rl*(t)<~(t)+x where 

Nb (t) 

~(t)= ~ xl, where Nb(t ) is a Poisson process with parameter b and the X i are 
i _ 1  

i.i.d, with distribution H. Thus Px(~*(t)>y)<P(~(t)>y--x)NE(~(t)m)/(y--x) m, 
where E(~(t))=O(t m) if #m ( .9o. Note that this eliminates the unpleasant expo- 
nential factor e ;~t. 

4. Solution to the Kolmogorov Backward Differential Equation (1.6) 

It was noted in the introduction that ~(A) depends on a and r. Specifically 
there are 4 cases to be considered and these are listed below: 

Case 1. x(t)=lT(t ) (virtual waiting time) process, then 

(4.1) ~(A)={f: feC(R+), f 'eC(R+), f ' (O)=O},  and q(x , t )=[x- t ]  + 

Note. In case 2-4 below it is assumed that r(x) is monotone, strictly increasing, 
Lipschitz continuous with r(0)= 0. 

Case 2. a = 0, then 

(4.2) ~(A) = {f: f e  C(R+), rf 'e C(R+), lira r(x)f'(x) = O, f '(x) exists for x > 0.} 
x$0 

Note. lira r(x)f'(x)=O does not imply that f ' (0)  exists. 
x~0 

Case3. a >0 ,  sup r(x)<a, then 
O < x < ~  

(4.3) ~(A) = {f: f, (r(x) -a ) f ' ( x )e  C(/~+), lira (r(x) -a) f ' (x)=0}.  
X ~ o O  

Case4. a >0 ,  sup r(x)>a, then 
0 < x < o o  

(4.4) ~(A)={f: feC(R+), (r(x)-a) f ' (x)eC(R+),  lim(r(x)-a)f'(x)=O} 
x ~ x *  

where r(x*)=a, 0 < x *  < .~. 

Note. As in case (4.2)f '(x) need not exist for x=x*. 

The correct version of remark (2.26) of Cinlar-Pinsky can now be given: 

(4.5) Theorem. The function v(t,x)= T(t)f(x), f c~(A) (as defines in (4.1)-(4.4) 
is the unique solution to the integro-differential equation (1.6) satisfying the con- 
ditions: 

(i) v(t,x) is strongly differentiable with strongly continuous derivative 
v,(t, x). 

(ii) Jrv(t)ll is bounded. 
(iii) lira IIv(t, x)-f(x)ll =0. 

t,Lo 
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Remark. This is a consequence of Theorem (4.6) below that T(t) is a strongly 
continuous semigroup acting on C(/~ +) with domain ~(A) - see Dynkin p. 28. 
The proof of Theorem (4.6) follows from the observation that T(t) is a per- 
turbation of the semigroup U(t)=e tB with T(t)=et(B+C)=e tA, where U(t), C 
were defined at (2.6) and the definition of B depends on q(x, t), see e.g. (4.7), 
(4.14). 

We can now state the main theorem of this section. 

(4.6) Theorem. The semigroup T(t) (for which T ( t ) f ( x )  is the unique solution to 
the integral equation (1.2)) is a strongly continuous semigroup 
T(t): C(/~+)~C(/~ +) with infinitesimal generator A as in (1.6ii) and ~ (A)  as in 
(4.1)-(4.4). 

Proof We shall give the proofs for Cases 1 and 2 only since Cases 3 and 4 are 
quite similar to Case 2. 

Case 1 (the virtual waiting time process): q(x, t)= [ x - t ]  § 
We've already seen that U(t) f (x)=-e b~f ([x- t ]+)  is a strongly continuous 

semigroup and it is easy to see that for f ~ ( A )  given by (4.1), its infinitesimal 
generator is 

(4.7) 

Clearly 

B f (x) = l im ( U (t) f (x) - f (x))/t = - i f ( x )  - b f (x), x > 0 
t$o  

= - bf(O), x = O. 

o~ oo 
f ~ ( B )  iff f ( x ) = ~ e - X t U ( t ) g ( x ) = ~ e  ; ' tg ([x- t ]+)dt  

0 0 

for some Z>O and some g~C(/~ § i.e, f belongs to the range of the resolvent. 
An easy calculation shows that 

(4.8) f (x) = g (0) e (x + b)x/( 2 + b) + e-  (~ + b)~ i e(x + b)yg (y) dy. 
0 

The representation (4.8) implies that f e  C(R§ f '  exists and that 

(), - B ) f  (x) = (2 + b) f (x) +if(x)  = g (x). 

Now f ' ( x ) = - [ - ( 2 + b ) f ( x ) + g ( x ) ] e C ( ] 2  +) so if f e ~ ( B )  then f, f ' ~ C ( R  +) 
and since f (O)=(2+b)- lg (O)  we see that f ' ( 0 )=0 .  We have thus shown that 
~ ( B ) ~ { f : f , f ' ~ C ( R + ) ,  f ' ( 0 ) = 0 } ;  a direct calculation as in (4.7) shows that 
{f: f , f ' e C ( R + ) ,  f ' ( 0 ) =  0} c@(B) and hence 

(4.9) ~ (B) = { f :  f, f '  e C (/~ + ), f '(0) = 0}. 

As is customary we write f = ( Z - B )  lg. 
Turing now to the proof of Theorem (4.6) we begin by writing the integro- 

differential operator A as a sum. 

(4.10) A f = B f +  Cf, C as in definition (2.6) and invoking the following pertur- 
bation theorem of Hille-Phillips - see Kato (1976) pp. 497-498. 
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(4,11) Theorem. Suppose B generates a strongly continuous semigroup on the 
Banach Space X with IlU(t)l] <Me ~. Let C denote a bounded linear operator 
with norm IlCrl. Then T(t)=e t(B+c) is a strongly continuous semigroup on X such 
that IIr(t)J] <Me (~+Mlrcll)* and ~(A)=D(B + C)=D(B). Moreover r(t) satisfies 
the integral equation 

t 

(4.12) r(t) f = g (t) f + ~ U ( t -  s) Cr(s) f ds. 
0 

Remark. Note that in all our cases f l = - b ,  M = I ,  rlCIp=b so IlT(t)Jr<l, as is 
to be expected. Since ~(A)=D(B) as defined in (4.9), the proof of Theorem 
(4.6) Case 1 is finished. [] 

x 

Case2. In this case q(x,t)=O l(~(x)- t )  where O(x)=~r(z)-ldz, ~'(x) 
= r ( x ) -  1. 1 

Exactly the same reasoning used in the proof of Lemma (2.7) shows that 

(4.13) U(t)f(x) = e-btf(q(x, t)): C(/~ +) --* C(/~ § 

is a strongly continuous semigroup with Ilg(t)lr <e -b' and for f eD(A)  given 
by (4.2) its infinitesimal generator B is 

(4.14) Bf(x)=l im(U(t ) f (x) - f (x) ) / t= - r (x ) f ' ( x ) -b f (x ) ,  x>O. 
t + O  

Now feD(B) if and only if there exists 2>0,  geC(/~ +) such that f(x) 
co 

= ~ e-Ztg(q(x, t))dt from which it follows at once that 
0 

Ilfll<(2+b)-ll[gH, NEC(R § and f(O)=(2+b)-lg(O), 

since q(x, t)_=0. Fix x > 0  and make the change of variable y=q(0,  t)=q~-l((~(X) 
- t )  so t=4)(x)-~(y ) and O<t<,~ implies O<y<x with d t = - 4 ' ( y ) d y =  
- r(y)- 1 dy. Thus 

(4.15) f(x) = e-(~+b)~(x) i e(~+b)~(')(g(y)/r(Y)) dy. 
0 

From (4.15) one sees at once that f '(x) exists for x > 0  and that 

(4.16) (2-B)f(x)=(2+b)f(x)+r(x) f ' (x)=g(x) ,  x > 0 .  

Since r(x) f ' (x)=g(x)- (2+b)f (x)eC(R +) it follows that limr(x)f'(x)=g(O) 
x ~ 0  

- (2 + b) f(0) = 0. Thus 

~(B) = {f: f, rf 'e C(R+), lira r(x)f'(x) = 0}. 
x ~ 0  

Once again it is very easy to show that if f, rf'eC(R+), lim r(x)f'(x)=O 
x ~ O  

and (2-B) f (x)=g(x)  then f ( x ) =  S e-Ztg(q(x, t )d t=(2-B)- lg(x)  and hence in 
Case 2 o 
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(4.17) ~(B) = {f: f, rf'~ C(R+), lim r(x)f'(x)=0}. 
X ~ 0  

At this point we just apply the perturbation theorem (4.11) to conclude in 
Case 2 that T(t) = e tA = e '(B+ c) with ~(A) = ~(B). 5 

The proofs in Cases 3 and 4 are quite similar and are therefore omitted. 
Finally we show that the semigroup T(t) associated with the virtual waiting 

time process t/(t) is strongly continuous on C~(i~+) i.e., if f and f '  are in 
Co(/~+) then the same is true for T(t)f(x). To see this introduce the norm 
Hflll=llfll+Hf'l] for feC~(12+). It is clear that C~(/~+) is a Banach space 
with respect to the norm II [11- It is also easily seen that the operator Cf(x) 

oo 

=b ~ f (x+y)dH(y)  is a bounded linear operator on Co1(/~+) since differen- 
o 

tiation under the integral sign is easily justified to conclude (Cf(x))'= Cf'(x) 
and thus 

(4.18) Jl Cf L]I <=b ][f I11. 

The only thing left to show is that to every ge  C1(/~+) there exists a unique 
f e ~ l ( B ) =  { f : f~  C2(/~+),f '(0)=0} satisfying the equation 

(4.19) (2+b)f(x)+f '(x)=g(x) and the apriori inequality 

(4.20) (3~+ b)IkflL1 _-< IIglll. 

That there exists a function f e ~ l ( B  ) satisfying (4.19) follows at once from 
the representation (4.8). Note however that f"(x) exists because f ' ( x )=g(x ) -  
(2+b)f(x) and we are assuming that g'(x) exists too. Thus f '(x) satisfies the 
differential equation 

(4.21) (2 + b) f '  (x) + f "  (x) = g' (x). 

Since f ' ( 0 ) = 0  familiar reasoning with the maximum principle yields the es- 
timate (d~+b)ILN'II<]N'H. We already know that (;~+b)llf]!<l]glL and adding 
these two inequalities yields the estimate: 

(4.22) (,~+b)(ILf!]+lLf'l[)<lLgll+]lg'll or equivalently (2+b)l[flL1<lLgHl. 

The Hille-Yosida theorem and the Hille-Phillips perturbation theorem now tell 
us that A is the infinitesimal generator of a semigroup T(t) 
=etA: C~(I~+)--, C~(R+), such that IlZ(t)flLl< ]LfN1. The analogue of Theorem 
(4.5) with respect to the norm ]q ][1 is left to the reader. 

It is to be observed that the above method for showing that T(t) preserves 
the differentiability of f is applicable to a much larger class of Markov pro- 
cesses than is considered here and we refer the interested reader to Brezis, Ro- 
senkrantz and Singer (1971), C.C.Y. Dora (1976). S.Ethier (1978) where similar 
computations are performed. 
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