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Summary. This paper considers the problem of the existence of set-indexed 
L6vy processes having regular sample paths defined over as large a class, d ,  
as possible of subsets of the unit cube in IR d. Regular sample paths means 
here the natural generalization of right continuity and left limits, to con- 
cepts of outer continuity and inner limits. A general integral condition 
involving the L6vy measure and the entropy exp(H(6)) of the class d is 
obtained that is sufficient for the existence of such regular processes. In the 
particular case where the process is stable of index c~, ~ ( 1 ,  2), the condition 
becomes 

I 
(. (H(x) /x )  ~- ~/~,tx < oc. 
o 

1. Introduction 

Processes with independent increments have been extensively studied, with the 
earliest work including that by deFinett i  (1929), L6vy (1937, 1948) and Ito 
(1942) among others. The processes were viewed as functions of a real parame- 
ter, say 0__<t< o% and the focus was upon their existence as right continuous 
processes with left limits, their characterizations, and other aspects of their 
sample function behavior. The two special cases of Brownian Motion and a 
Poisson process, which were of course studied much earlier, form the basic 
building blocks for these processes. In particular, for infinitely divisible (ID) 
processes (those with stationary as well as independent increments) the main 
structure of the non-Gaussian part is that of a series of independent compound 
Poisson processes (e.g. Ito (1942), Ben6s (1958), Ferguson and Klass (1972), 
Kallenberg (1974)). 

A compound Poisson process has a specific structure that allows it to be 
viewed as a random measure. This follows since the process is equivalent to a 
sequence of pairs {(T~, Yn): n > l }  where the T,'s are the ordered discontinuity 
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points of the process and the Y,'s are the iid jump heights that occur at these 
points. Thus almost surely, such a process may be viewed as a signed measure 
defined for all Borel sets, Nd. In contrast to this, the sample paths of a 
Brownian Motion are not of bounded variation. Consequently, when viewed as 
a continuous set-function, its domain cannot be enlarged to interesting classes 
much larger than the class of intervals. Thus we see in these two main special 
cases the two extremes that are possible when considering to what extent ID 
processes can be considered as random functions of sets rather than points. 
[Fristedt (1974) and Taylor (1973) may be referenced for details on ID 
processes.] 

When one extends the idea of ID processes to higher dimensions the 
questions of existence and maximal domains become much more challenging. 
The concept of independent increments is of course straightforward; Z(A) and 
Z(B) are independent whenever A and B are disjoint members of the domain 
of Z. The first domain one would consider in higher dimensions would be the 
class of 'lower orthants'  (0,t] for 0, t~Ia=(0,  1] a. (Throughout this paper we 
restrict attention to the unit cube of R e. Extensions to the entire upper orthant 
Re+ or to R a are straightforward.) The compound Poisson case does not change 
in higher dimensions since the sample paths may again be identified as the 
assignment of masses at separated locations thereby determining a signed 
measure defined on ~a, the class of all Borel sets in the domain I d. This 
extension to orthants in higher dimensions of non-Gaussian processes with 
independent increments has been fully developed in Adler et al. (1.983). 

The case of a multidimensional extension of Brownian Motion was first 
considered in 1956 when Chentsov showed the existence of a continuous 2- 
dimensional Gaussian process {Z(t): t e I  2} that had zero means and eovariance 
structure given by EZ( t )Z(s )=( t  1 A sl)(t z As2). This is the same as a Gaussian 
ID process indexed by the lower orthants when one equates Z(t) with Z((0, t]). 
This process was called a Brownian Sheet in Pyke (1973), where further 
references are given. 

Although in one dimension it is not possible to view a Brownian Motion 
as a continuous set function over interesting classes much larger than the class 
of intervals, it is possible in higher dimensions to extend the domain for a 
Brownian Sheet to much larger families of sets than the finite union of d- 
dimensional intervals (s, t]. In Dudley (1973) it is shown that there exists a 
continuous Brownian process {Z(A): A e d }  provided that the class d is not so 
large as to cause the divergence of the integral ~ {H(u)/u} +du where H, the 

0 +  

log-entropy of d ,  is defined below. This result implies for example that such a 
Brownian Process exists when d is the class of closed convex subsets in 12 but 
not when d is the class of closed convex subsets in I a for d >  3. Subsequently 
Dudley (1979) showed that d = 3  is also a case for which a continuous version 
does not exist; actually it is shown that not even a bounded version exists. 

The purpose of this paper is to provide a criterion, in terms of both the 
entropy of d and the LOvy measure of the process, under which the existence 
of a suitably regular version of general ID set-indexed processes can be 
established. Under this condition it will be seen that the domains d will vary 
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in size from the relatively smaller families for the Brownian process to the 
largest possible case of sC=~d  for a compound Poisson process. In the latter 
case, the regularity imposed is that of being signed measures, almost surely. By 
regular sample paths we mean the natural generalization of 'right continuity 
with left limits' to 'outer  continuity with inner limits.' Since this sample 
regularity of ID processes in one dimension is due to L6vy they are often 
referred to as LOvy processes, and we do the same; see Definition 2.3. Set- 
indexed stable processes will be special cases of L6vy processes. In this case 
our integral criterion for existence simplifies to where only the stable index 
( 0 < e < 2 )  is relevant. It is of interest to see that the convex sets in I d form a 
suitable index family ~ for a stable process of index ~ provided only that 

< (d + 1)/(d - 1). 
We believe that our criteria are close to being optimal; in particular we 

conjecture that when e > (d + 1) / (d-  1), the closed convex sets in I e do not form 
a suitable index family. We do not, however, have any results in this direction. 

Sect. 2 contains the notation and preliminaries necessary to state our main 
results. Sect. 3 contains the statement and proof of these results; most ID 
processes are covered by Theorem 3.1 whereas Theorem 3.2 covers the near- 
normal case and Theorem 3.3 the Cauchy case. 

While the results of this paper were being prepared for typing, we received 
from R.J. Adler a copy of the paper Adler and Feigin (1984). In this paper the 
authors also formulate the question of the existence of set-indexed L6vy pro- 
cesses. They independently obtain an integral criterion for existence that relates 
entropy and the L4vy measure. Their result is not as strong as that given here; 
they make a conjecture for the stable case that is much closer to the results we 
obtain. Two interesting examples are included that indicate clearly the ne- 
cessity of entropy conditions on sJ. 

2. Notation and Preliminary Propositions 

We use the L6vy representation of an ID characteristic function, namely, 

ln O(u)=iul~_a2u2/2 + y (ei,X_ l _ iux 1 -}-X 2 ] v(dx) (2.1) 

where v, called the L~vy measure, is defined on the Borel subsets of Ro=  
( - 0 %  0)w(0, m) and satisfies 

(x 2 A 1) v ( d x ) <  o0. 

A process Z={Z(B) :  B e N  d} is said to be an ID process with L~vy measure v if 
it has independent "increments" in the sense that Z(B1) . . . . .  Z(Bk) are inde- 
pendent whenever B1 . . . . .  B k are disjoint, and the marginal distributions are 
given by 

lnE{e  i"zw)} =IBI In 4~(u), u~R 1, B e ~  ~, 

where IBI denotes Lebesgue measure of B. All finite dimensional distributions 
are uniquely determined by these properties in a consistent way, showing 
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existence of such processes by Kolmogorov's consistency theorem. Since we use 
IBI rather than g(IBI) with g finitely additive, these ID processes have no fixed 
"points" of discontinuities. 

We assume throughout that all underlying probability spaces are complete. 
As mentioned in Sect. 1, the basic structure of the non-Gaussian part of an 

ID process is that of a convergent series of compound Poisson processes. The 
convergence of the series entails the limit of compound Poisson processes as 
smaller and more frequent point masses are permitted. The known structure of 
a compound Poisson process is as follows: Let {gn: n > l }  be a sequence of iid 
random masses with distribution F. Let W be a Poisson-(Z) r.v. representing 
the number of masses in P,  and let {Un: n > l }  be iid uniform r.v.'s on I d 
representing the locations of the masses. Define, for any B e N  d , 

W 

Z(B) = ~ Y. 1B(U.), 
n = l  

interpreting Z (B)=0  if W=0. Then it is known that 

log E {e iuztm} = [BI 2E(e iur~ - 1)= IBI J (e i~x - 1) v(dx) 

where v=2F,  restricted to R o, is a bounded L6vy measure. Conversely, given a 
bounded measure v one can choose F=v/v(Ro) and repeat the above con- 
struction. Thus for any L6vy measure v, its restriction v~ to ( - ~ ,  -e)w(e,  oo) 
determines an ID process in the form of a compound process which is defined 
on all of ~a. Moreover, L6vy's 1-dimensional theory states that if v satisfies 

(Ixl/x 1) v(dx) < oo (2.2) 

then Z(P)  exists as the limit of compound Poisson processes in which the sum 
over I d of all the positive (resp. negative) masses is finite. Thus any such 
process has a representation which is the difference of two purely atomic 
measures. This proves 

Theorem 2.1. I f  (2.2) holds, an ID process {Z(A): A E ~  a} exists that is almost 
surely a signed measure. 

In the case of positive Z, a representation of ID processes is included in the 
study by Kingman (1967) of random measures with independent increments. 

When (2.2) does not hold it is necessary to restrict d to be smaller than 
N~. Recall that in the 1-dimensional case the sample paths are no longer of 
bounded variation even though the non-deterministic part of the sample paths 
move by jumps only. The reason is that the sum of all of the positive jumps 
does not converge, although when one adds all jumps in an interval, there is 
sufficient cancellation to make the centered series converge. In our situation 
this translates into being able to use only families s~ of sufficiently smooth 
sets, like the intervals on the line, in which a similar cancellation can take 
place. 

The index families ad considered for the case in which (2.2) is not satisfied 
are familes of subsets of I ~ that satisfy the following basic property: 
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(TBI) Totally bounded with inclusion: For every 6>0,  there exists a finite set 
d ~ c d  such that for any A e d ,  there exists Ao, A ~ d o  such that Aoc_Ac_A~ 
and dL(A~, A~) = [A~ \A~I <-_ 6. 

This concept was introduced by Dudley (1978). Note that d~ is a a-net with 
respect to d L for d .  As an example of a family that can be shown to be (TBI) 
we mention the class of closed convex sets in I d. 

A second assumption about d is also needed which imposes a restriction, 
in terms of the given L6vy measure v, upon the size of d through its log- 
entropy H where H(6) is defined to be the logarithm of the cardinality of the 
smallest 6-net do.  When d is the family of closed convex sets in I d for 
example, it is known (cf. Dudley (1974)) that H(c3)<K6-" for r=(d-1)/2. 
Another example is the class d(d,  q, c), introduced by Dudley (cf. Dudley 
(1974)), of closed sets in I d whose boundaries are represented parametrically as 
continuous mappings of the d - 1  dimensional unit sphere, which have bounded 
(by c) derivatives of orders up to q. For  this class r = (d - 1)/q. 

Before stating the second assumption the following notation is introduced. 
Define 

m ( x ) = v ( ( - ~ ,  - x ) w ( x ,  ~)), x > 0 ,  

Q(x)= ~ u2v(du), x > 0 ,  
I"l=<x (2.3) 

m-l (y )=in f{x :M(y)<x} ,  y >0 ,  and 

G(y)=yM-l(y), y>0 .  

With this notation, an example of the third type of assumption on d is that 
needed in Theorem 3.1, namely 

1 

S G(H(u)/u) du < oo. (2.4) 
0 

Further assumptions, aimed primarily at giving some technical simplicity with- 
out too much essential loss of generality are the following: 

(A1) H(x)=x-C~ for some constant c0> l ,  where L is a slowly varying 
function near 0 such that X (c~ H(x) increases as x"~0. (In particular, H is 
regularly varying of order greater than 1.) 

(A2) H is regularly varying near 0 and xH(x) is monotone. 

Assumption (A1) is used in Theorem 3.1 whereas (A2) is required in Theo- 
rem 3.2. 

We also impose some general conditions on the L6vy measure v that do 
not involve d .  They are 

(B 1) limsup x 2 ]lnxl 9 M(x) < 0o. 
x~0 

(B2) For some z>0 ,  x~M(x) increases as x'~0. 

The stable processes form an important subclass of ID processes. We 
denote the L6vy measure of a stable distribution of index ~, 0 < ~ <2, by v~. In 



162 R.F. Bass and R. Pyke 

view of Theorem 2.1, we are interested only in 1<c~<2. Here vjdx) is pro- 
portional to Ix[ - ' - 1  dx and so M(x) is proportional to ]xl-L In this case 

M - l ( y ) = c o n s t .  xy  -i/~' and G(y)=const.  x y  1-1/~. 

Consequently, (2.4) is satisfied provided (A 1) holds with c o < 1 / (~-  1). 
Some remarks on the preceding assumptions are in order. First of all, as 

the proof of Theorem 3.1 shows, limsupx2M(x)=O. Therefore (B1) is an 
x ~ 0  

extremely mild condition. The exponent of In x in the condition may be any 
number >4,  provided the definition of t/, and Yd in Theorem 3.1 are suitably 
modified. For the stable processes, M(x) is a multiple of x -~, and so (B1) is 
trivially satisfied. 

(B2) is also satisfied for the stable processes. The only use of this condition 
in the proof of Theorem 3.1 is to show that k, must grow with n at some 
minimum rate, which in turn is used only in showing that the integrability 
condition (3.1) implies summability of t/,. 

For  most L6vy measures v, one could circumvent (B 2) as follows. If 

1 

.~ Ixl 2 -=~  v(dx)< 
- 1  

for some z > 0, let 

vi(dx)=zx -~-i M(x)dx+x-~v(dx) and v2(dx)=vl(dx )-v(dx). 

1 

It is not hard to check that ~ x2vi(dx)<oo, i=1 ,2 .  Define M~ and M 2 
- 1  

analogously to M, and then define Gi(y)=yM i- l(y), i=  1, 2. Replacing G in the 
integrability condition (3.1) by G 1 and G2, construct L6vy processes Y1, Y2 (see 
Definition 2.3), and finally, let Y= I71- Y2- Y will be the desired L6vy process 
corresponding to v. (B2) is easily seen to be satisfied for M1, M2, since x~M1 
=M.  Alternately, see the comment following the proof of Theorem 3.1. 

If a L6vy process can be defined over a class d ,  it certainly can be defined 
over any subclass. Thus, there is no loss of generality in taking d as large as 
possible. In particular, requiring H(x) to be regularly varying entails very little 
loss of generality. H regularly varying is used to show that (3.1) implies 
summability of q,. 

The assumption that H(x)=x-C~ Co> 1 is not a restrictive condition in 
most cases. For example, for a stable process, G(y)=y 1-~/~, and we can 
therefore take H(x) as large as x -r  as long as r < ( e - 1 )  -1. In this case, we take 
l < c o < ( c ~ - l )  -~. In general (A1) is a restrictive condition only when the L6vy 
measure concentrates most of its mass very close to the origin, that is, when 
x 2-~ M(x)~ oe for all ~ >0. This case is treated in Theorem 3.2. 

Before proceding to the main results it is necessary to define the type of 
sample path regularity that we wish our processes to possess in the situations 
where (2.2) is not satisfied. As we have mentioned above, it will not be possible 
in these cases for the sample paths to be signed measures over all Borel sets; 
rather, sr must be restricted to a smaller family of sets. We nevertheless want 
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the sample paths to have a measure-like continuity which we describe as 
having inner limits and being outer continuous. The precise definition is given 
i n  

Definition 2.1. A set function 0: ~r 1 is said to have inner limits and outer 
continuity at A e d  if 

i) O(A,)--*O(A) for any (outer) sequence { A , } c d  such that A , = A  for all 
n and lim A, = A, and 

n ~ o o  

ii) lira O(A,) exists for any (inner) sequence {A,} c d  such that A, c A  ~ for 
n ~ o o  

all n and lim A, = A ~ 
n ~ o o  

Recall that a sequence of sets, {A,}, is said to have a limit if 

(] U A.=L) 
n r n > n  n m > n  

Also, notice that no monotoneity is imposed on these sequences; if mono- 
toneity were required this concept would not even be adequate for the orthant 
case of real functions o v e r  R 2 having left limits and right continuity. 

Definition 2.2. The space of all functions ~: d - ~ R  i that have inner limits and 
outer continuity at each A ~ d  is denoted by ~ ( d ) .  

Definition 2.3. {Z(A): A ~ d }  is said to be a L6vy process indexed by d and 
having Lbvy measure v if it is an ID process with L6vy measure v and if the 
sample paths are almost surely ~ ( d ) .  

With this notation, Theorem 2.1 can be restated by saying that when (2.2) is 
satisfied there exists a L6vy process with paths in @(~d). Let ]l'lLd denote the 
sup-norm defined by 

H O LI~ = sup It) (A)I. (2.5) 
A 6 _ ~  

Note that if ~ is a finite signed measure with Jordan decomposition ~ = ~ +  
- ~ -  then [I Oil e,  = ~ + (Id) v ~ -  (I e) in contrast to the variation norm ~ + (1 d) 
+ ~ -  (ia). 

The reader should also note that in this paper we do not need IJZIL~ to be 
measurable. This is because only almost sure results are proved; specifically 
our results state that except on a null set the sample paths have a certain 
structure. In a forthcoming paper (Bass and Pyke, 1984) we study the Central 
Limit problem for arrays of independent r.v.'s in the domain of attraction of 
ID distributions. There we provide a suitable topology on N ( d )  which permits 
us to establish the measurability of the partial-sum processes considered 
therein; this is needed for the existence of image laws and the study of their 
weak convergence. 

Our method of proof for Theorems 3.1, 3.2, and 3.3 is to establish the 
uniform convergence with respect to 1[" Ila of a sequence of L6vy processes with 
bounded L6vy measures. For these proofs and for general application the 
following elementary properties are needed. 
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Lemma 2.1. (i) I f  u and u are two independent Ldvy processes indexed by d 
and defined on the same probability space, then I11 + c Y2 is also a LOvy process 
indexed by d ,  for any constant c. 

(ii) I f  Y is the degenerate process defined by Y(A)=c[A[ for some constant 
c, Y is a continuous Ldvy process defined over all Borel sets. 

(iii) I f  v is a finite measure on IRI\{0}, there exists a LOvy process defined 
over all Borel sets with Ldvy measure v. 

(iv) I f  Yn is a sequence of LOvy processes, all defined over the same class d ,  
and I] Y , -  Ym][~r + 0 a.s. as n, m ~ 0% then there is a LOvy process Y defined on d 
such that I I Y , - Y I ] ~ 0  a.s. 

Proof (i) and (ii) are clear. (iii) was proved above. Alternatively, let X(t) be a 
process with stationary, independent increments indexed by points in I a, and 
let Y(A)= ~ AXt,  the sum of the jumps of X t for teA. 

tEA 

To show (iv), first observe that I[" kite defines a complete norm for set- 
indexed functions. Then note that the uniform limit of elements of ~ ( d )  is 
again in N(d ) .  [] 

In view of the properties, we may restrict ourselves without any loss of 
generality to L6vy measures with support in [ - 1 ,  1] and for which the Gauss- 
ian component is zero as well as the mean. 

Two probability inequalities are central to the proofs. One is a bound on 
the tail of a Poisson r.v., while the second is a necessary analogue of 
Bernstein's inequality for unbounded partial sums that can be obtained for ID 
random variables. 

Lemma 2.2 I f  W is a Poisson (2) random variable then 

P (W > s) < exp { - s (ln (s/2) - 1 + 2/s)} if s > 2 
< e x p ( - s )  if s>e22. (2.5) 

Proof [-This result is obtained in Pyke (1983) although it is probably older. 
The proof is standard.] Observe 

p ( W  > s)< P(eCW > eCS)<e-C~ Ee cw 

=exp { - c s  + 2(eC-1)} 

= e x p { - s ( l n ( s / 2 ) - l + 2 / s ) }  at c=ln(s/2). 

The result is immediate. [] 

Lemma 2.3. Suppose X is ID with 

E e ' ~ X = e x p { ! ( e ' ~ - l - i u x ) v ( d x ) }  

and define O=Q(a)= i x2 v(dx)< ~ .  Then for any ,~>0 
- - a  

P(X > 2) < exp { - 22/2(0 + a2/3)} (2.6) 
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and 
P(IXI > 2) < 2  exp { - 2 2 / 2 ( 0  + a~/3)}. (2.7) 

Proof. First  of all, 
le' - 1 - y [  <�89 + ly[/3 +ya/4" 3 +.. .)  

=<�89 -- [y[/3) -1 

for lYL <3.  The  m o m e n t  generat ing function for X is, for u > 0  

{!a } Ee "x = exp - 1 - u x )  v(dx) 

< e x p  ( 1 - u a / 3 )  -1 i T v(dx) 
- - a  

< exp {(1 -ua /3 ) -  t 0u2/2} 

prov ided  ua < 3. Set g(u) =(1  -ua /3 ) -  1. Then  by Cebygev's inequality, 

P(X > 2) = P(e "x > e ~) <= e -"~ E(e ux) 

< exp ( - u2 + g(u) u 2 0/2) 

if ua < 3. Let  u o = 2(0 + a2 /3 ) -  1 so that  u o = 2/g(uo) 0. Then  

P (X > 2) =< exp ( - 22/2 g (u0) 0) = exp ( - 2 2 / 2 ( 0  + a 2/3)) 

since in this case Uoa=a2(O+a2/3) -1 < 3  as required, p rovided  only that  0 > 0 .  
However ,  if 0 = 0 ,  X = 0  a.s. and  the p roof  of (2.6) is complete.  Since 0 is 
unchanged  when X is replaced by - X ,  the 2-sided inequali ty (2.7) is im- 
mediate.  [ ]  

Remark. If one wishes to obta in  an analogue of Bennett ' s  inequali ty (Bennett  
(1962), Eq. (Sb)) for an I D  r.v. X, which would be of interest when providing 
bounds  for P(X>2)  for large values of 2, it is necessary to begin with 

le y -  1 -Yl  < 1/2 y2 eLyl 

which holds for all y. F r o m  this it follows that  

Ee "x < exp {(0/2) u 2 eUa}, 

Choose  r~. > 0, and  set 

u > 0 .  

u o = a -  1 {ln )~ - In in 2 + In r~}. 
Then 

P ( X  > 2) < exp { - u  o )~+eU~ 2 0/2} 

= exp ( - (2/a)(in 2) { 1 - d~. + 0 r~(1 + d~)Z/2a}), 

where dz=lnr~/ ln2-1nln2/ ln2.  Provided r~=o(1)  and l n r ) j l n 2 = o ( 1 )  
2 ~ o% we obta in  the one-sided bound  

P(X >= 2) <= exp { - (2/a)(ln 2)(1 + o(1))}. 

as 

(2.8) 
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By minor modifications to this argument, (2.8) still holds if X has non-zero 
mean and non-zero Gaussian component. 

The bound in (2.8) under our assumptions is asymptotically best since Sato 
(1973) has shown that - lnP(X>2) . .~a-121n2 as 2 ~ o e  in the sense that the 
ratio converges to 1. Theorem 4.9 of Rossberg, Jesiak, and Siegel (1981) states 
a related result of Kruglov. 

3. Main Results 

Our main theorem is 

Theorem 3.1. Suppose d is a class of sets satisfying (TBI) and (A1). Suppose v is 
a L~vy measure satisfying (B1), (B2). Suppose 

1 

G(I-I(x)/x) dx < o0. (3.1) 
0 

Then there exists a Ldvy process indexed by d .  

Proof. Let 0 < fl < 1, 6j = fiJ, j = 0, 1, 2,. . . ,  n, the value of fl to be chosen later. Let 
a, tend to 0, a o = l .  Let v, be the restriction of v to [ - a , _ l ,  -a,)w(a, ,a,_1],  
and let Z ,  be a mean 0 L6vy process whose L6vy measure is v n. Let Y, be the 

L6vy process defined by Y.(A)= ~ Zn(A). Let t /n~0 such that 
j = l  

~ t / ,  < or. (3.2) 
n = l  

We will show that a n and t/, may be selected so that 

P*(l[Znll~>6 r/n)< 0% (3.3) 
n = l  

where P* is the outer measured induced by P. It then would follow that 
P* (llZnll~ > 6 t/, i.o.) = 0 by the appropriate modification of the Borel-Cantelli 

lemma. Given e, take N large so that ~ 6t/ ,<e,  and then, depending on co, 
n = N  

choose N,o>N so that if n>N,o, IlZn(co)Hd <6t/n. If n, m>N,o, 

]lYn(co)-Ym(co)ll._~<e, or I[Yn-Y,,]I~-,0 a.s. 

Applying Lemma 2.1 would then complete the proof of the theorem. 
Let us then consider P*(lIZ, l ld>6t/,  ). For any A ~ d ,  we may write 

kn 

Zn(A ) = ~, [Zn(Aj) -Z , (A j_  1)] + [Zn(A) --Z,(Ak,)], (3.4) 
j = l  

where Ao-=O , Aj~d,~j, AL~Ck.  , [AjAAj_II<g)j_I, Ak ~A~A~ . ,  and 
IA~.\Ak. I <6k., k n a number to be chosen later. Since AjesCa~ and Aj_~esCej_~, 
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the cardinality of the set of AjAA~_ l's is less than or equal to 

exp(H(@) exp(H(g;_ 1)) < exp (2 H(g;)), 

while the cardinality of the set of Ak+\Akn's is less than or equal to 
exp(2 H(gk.)). 

Let ~; be a sequence (to be chosen later) such that 

~ 7; = 1. (3.5) 
j=0  

Let q,j=qnTj. Let Mn=M(an), and let Qn_l=Q(an_l)-Q(a,). Since the 
support of v n is contained in [ - a  n_ 1, a,_ 1 ] \ [ - a n ,  an], 

Qn- 1 2 Mn (3.6) <an_lm(an)_ z - -an_  1 
Since 

IZn(A;) -Zn(A;_ 1)1 < IZ.(As\Aj_ 1)1 + IZ.(A;_ I\Aj)[, 

if [A; AAj_ 1[ < fir- t, Lemma 2.3 gives us 

P(IZ.(Aj) -Zn(A ;_ 1)f > 2 nn;) < 2 Pn;, (3.7) 

2 + an- 1 tin;~3))" where Pnj = 2 exp( -rl.;/2(Q ._ 1 g;- 1 
Let Ak., AL ~C ~k" with [A~.\ Ak. [ < gk." Then 

P*(IZn(A)-Z.(AJ] >4t / .  for some AesJ, Ak ~_A~_AL)<2qn , (3.8) 

where 

qn=max{P*(  sup + IZn(B)I>2qn): Ak. ,A;ed~k ., ]A~.\Ak.l<gk. }. 
Akn ~ B = Ak n 

Putting (3.4), (3.7), and (3.8) together 

P*(llznll~>6q,) 
kn 

< ~ exp(2 H(@) max {P([Zn(A;) -Z , (A;_  1)1 > 2 t/n;): 
j = l  

A i~Aaj, A;_ 1s~r ~, [Aj AAj_ 11 <= 6i- 1} 

+ exp(2 H(gk.)) max {P*( sup IZn(A ) -Z,(Ak.)[ > 4  qn): 
Ag~, 

Akn c A ~ A~n 

Ak., AL ~ dak,,, IA~.\ Ak.] <= gk.} 
kn 

< 2  ~ exp(2H(g;)) pn;+2qn exp(2 H(gk.)). (3.9) 
j = l  

and 

Suppose that for j = 1, 2, ..., kn, 

2 I-l(g;)< ~,;/8 max(g;_ t Q, -  1/tl,;, an- l/3), 

~,;/8 max(g;_ 1 Qn- l/t]nj, an- 1/3) ----> 2 Inn + Ink,. 

(3.10) 

(3.11) 
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Then, 

Hence 

exp(2 H(@) p.j < 2 exp(2 H(@ - r/.j2(aj_ ~ Q._ i/t/.~ + a._ 1/3)) 

<2  exp ( - t / . j 8  max(~j_, Q._ ,/,/.j, a._ t/3)) 

<2  exp( - 2  In n - i n  k.). 

kn 

exp(2 H(@) p.~ < 2 k. exp( - 2 inn - l n k . )  = 2 n-  2, 
j = l  

which is summable. 
Let us now look at q,. 

Zn(B ) = ~ AZ . ( t ) - c l  IB[, 
t s B  

where c l = E  ~ AZ.(t). Since the support of v, is contained in [ -a ,~_l ,  a ._ l ] ,  
t ~ I  a 

{AZ.(t){<a,,_ 1 for all t, and 

a n -  :t 

c1= ~ x v . ( d x ) < a . - l v . ( I R ) < M . a . - l .  
- - a n -  1 

Let W. be a Poisson process on I a that has a positive jump of size 1 whenever 
Z .  jumps, that is 

W,(B) = ~ I(AZ.(O , o)' (3.12) 
t~B 

Suppose Ac_A + and }A+\AIs  . Then 

[Z.(B)I <=an_ 1 W. (A+\A)+a ._ I  M.}A+\A} .  sup 
A c B ~ A  + 

Suppose 

where c 2 = e ;. Then 
tl./a._ 1 > c2 6k. M. ,  (3.13) 

q._<_ sup P(W.(A+\A)>t l . /a ._O 
A c A  + , 

[A + \ A [ ~ 6 k n  

< exp ( - rl./a . ~ t) 

by Lemma 2.2, in view of (3.13). If 

and 

then 

which is summable. 

H(b~.) =< q./4 a._ 1, 

t/./2 a._ 1 > 2 In n, 

exp(2 H(cSk.)) q. < exp(2 H(cSk. ) -- r l ja ._ z) 

<exp(--2 in n)=n -2, 

(3.14) 

(3.15) 
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It thus remains to choose fi, a,, ~l,, 7j, k, to satisfy (3.2), (3.5), (3.10), (3.11), 
(3.13), (3.14), and (3.15). 

Choose fi close to 0 so that (Co-1) l lnf i [>8.  Let a,=/~". Clearly H(x)/x 
increases as x decreases. Select k, to be the largest integer such that 

H (fik")/ fik" < M,,. (3.16) 
For any t > x > 0 ,  

Q(t)> ~ y2 v(dy)>x2 [M(x) -M( t ) ] .  
[-t,t]..[-x, xl 

Then lim sup x 2 M(x)<Q(t)  for all t, and since t is arbitrary, lim x 2 M(x)=0.  
x ~ 0  x ~ O  

Therefore M,,<a~-2=~ -2" for n large. This, together with H > I  implies that 
kJn  is bounded above by 2. 

Let tT~=c3max(n -2, fik"M,a,_t), where %=max(16,64f i -1) .  (3.13) and 
(3.15) are then automatically satisfied. We also have (3.14) satisfied since 

Let 
H(fi kn) <= M. ~k. <=~./c 3 a._ 1. (3.17) 

Y i = c 4 ( k , + l - j )  -2, j = l , . . . , k , ,  
(3.18) 

=0, j > k,, 

where c~= (k,+ 1 - j )  2 Obviously (3.5) holds. Also �89 1. Note 
j -  

that, unlike most entropy arguments, 7j increases in j. This is necessary to 
avoid an unwanted in x in the integrability condition on H. 

Elementary calculus shows that, since (Co-1)[ln/~[>8, v f  2 ~j-(~o-t)/2 in- 
creases in j, j < k,. Therefore 

~j H(t~j) 7j  2 = (c~l + (co - 1)/2 H(@)(~f  (~~ ~ )/2 ?f 2) 

is increasing in j, j <= k, by (A1). 
To verify (3.10), it suffices to show 

(i) H(@<3r l , /16a ,_ t ,  j = l , . . . , k , ,  and 
(3.19) 

(ii) H(@<rl~/166j_ lQ,_ l ,  j = l  .... ,k,. 

(i) holds since ~f l  H(@ is increasing in j, and the inequality holds for j 
= k,. Recalling (3.6) and that c~j H(6j)7f 2 increases in j, 

Qn- 1 g)j- 1 H((~j) 7 f  2 ~ c4 2 f l-  t Qn- 1 ~k~ H((~kn) 

< c22 ~- 1 2 x M, 6ko H(~k,) 
= a,_ (3.20) 

<r/X/256 

by the definition of r/,, j =  1 .... , k~. Thus (3.19)(ii) holds. 
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To verify (3.11), it suffices to show 

(i) 3 t/ , /8 a,_ i > 2 Inn + In k,, j = 1 . . . . .  k,, and 
(3.2l) 

(ii) 2 t/ , /8 6j_ 1 Q, -  1 > 2 Inn + In k,, j = 1 . . . . .  k,. 

Since k,/n is bounded, then rl, k s  or (i) holds for 
j = l ,  and hence for all j < k , .  To show (ii), we need only check the case j = l .  
But 

Q, t <=a2n_l mn<=csf1-2 a,2 a,-2 iln a,,]-9 

for n large, where by (B 1) we can choose c 5 finite and greater than 
lira sup m (x) x 2 I ln x] 9; (ii) follows. 

It now remains to check (3.2), or since 17-2 is summable, that Elk. M, a,_ a is 
summable. We will show this by fixing a positive integer d and then showing 

fl~"d+~ M,d+ia,d+i is summable for each i=0,  1, . . . , d - 1 .  
First of all, since x ~M(x) increases as x decreases for some z >0  by (B 2), 

a~+dM~+d>__a}mj, or 

H(fik~ + ~+ 1)~ilk j+ d+ 1 >= M j+d >= fl-d~ M j (3.22) 

> ~-  ~ H(Z~O/p~. 

Choose d large enough so that dr > 1 + 2 c o. By the regularly varying nature of 
H, kj+ d must be at least as large as k j + l  for j sufficiently large. In particular, 
~k~ _ flkj+d > flkj (1 --/~). 

If x < y ,  M-1(x)>=M-~(y).  Then by the definition of G, (3.1), and the 
monotoneity of H(x)/x, 

flknd + i 

G(H(x)/x) dx 
flk{n+ l)d+z 

(/?k.~ + ~-/3k{. + ~,,.,) [H(/~k.~ + ,)/ilk,, + ~] M-1  ( H ( f l & "  + `) a+9/flk("+ ~)d. ,) 

n 

->-2 
n 

---2 
n 

-->2 
n 

==_2 
n 

Thus (3.2) follows. [] 

(1--fl)flk"d+~fll+2~~ (3.23) 

(1  - - ] ~ )  f l l  + 2 c 0  flknd+i m n d +  i a(n+ 1 ) d + i  

(1 - fl) fl1+ 2co fla ilk,d+, M ,d + i a,d + i . 

The focus of Theorem 3.1 is to determine for which families s~/there exists 
a L6vy process indexed by d for a given L6vy measure v. One could also take 
the opposite point of view: given a family d ,  for which L6vy measures v does 
there exist a L6vy process indexed by s~'? An appropriate condition for the 
latter approach is 

1 

M(x)  R -  I(M(x)) dx < 0% (3.24) 
0 

where R(x) = H(x)/x. 
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To  prove  this, note that  it suffices to prove  (3.2), the remainder  of the p roof  

being identical. But ~#k"M.a._t<oo when ~R-l (M(f l") )M(#")#"- l<oo 
n n 

since flk,+t <R-I (M, )  by the definition of k, and  the fact that  R(x) increases as 
x decreases. (B 2) is not  needed for this argument .  

To  handle  the nea r -normal  case, where (3.1) and (A1) m a y  be mutua l ly  
exclusive, we have 

Theorem 3.2. Suppose sJ satisfies (TBI) and (A2). Suppose v satisfies (B1), (B2). 
Suppose 

for some e > 0 ,  ~llnx[l+~G(H(x)/x)dx<oo. (3.25) 

Then there exists a Ldvy process indexed by d .  

Proof Define yj=c4j ~+~), where c 4 =  j-(~+~) . Let  
j t 

t / = c  3 max(n  2, k~+~fik"Mna,_ O, 

where f l=  1/2, and Ca, c5, a, ,  M, ,  k, are defined as before. The p roo f  goes 
th rough  virtually as for T h e o r e m  3.1, except for checking (3.19) (ii). If cSjH(bj) 
increases with j, it suffices to show (3.19) (ii) for j=k , ,  which follows exactly as 

2 in (3.20). If ~Sj H ( @  decreases with j, it suffices to show that  t/, 2 Yk,/Q, - ~ ~ oo as 
n ~ oo. But this follows eactly as in the p roof  of (3.21) (ii). [ ]  

We can get a more  refined result than T h e o r e m  3.1 for the Cauchy  process, 
either symmetr ic  or asymmetr ic .  There, (A1) imposes a restr ict ion in tha t  
classes ~4 with much  larger en t ropy  are allowable. Fo r  the Cauchy  process, c~ 
= 1, M(x) is a mult iple  of x -1 and Q(x) is a mult iple  of  x. 

Theorem 3.3. Suppose c o is any positive real and H(x)<=x -c~ for x small. I f  
~ satisfies (TBI), there exists a LOvy process defined over ~/ whose Ldvy 
measure is that of a Cauchy law. 

Proof We need to show that  (3.2), (3.5), (3.10), (3.11), (3.13), (3.14), and  (3.15) in 
the p roof  of T h e o r e m  3.1 are satisfied by an appropr ia te  choice of  k,, q,, a, ,  
and yj. Let  7j be defined as in (3.18). Take /3  close to 1 so that  c0[ lnf l [< �88 Let  
an = fln(n + 1)/2 nc~ n, where c ~ > 1 + e for some e > 0. Let  t/, = n -  (1 + ~), and  let k, = n. 
(3.2), (3.5), (3.11), and (3.15) are trivially satisfied. 

S t ra ight forward calculat ion shows that  6,M,  an_a=o(n-(~+~)), or (3.13) is 
satisfied. Also H(fl")<(#-")~~ -"~/4. But then a,_~H(3,)=o(fl"), and 
(3.14) is satisfied. It  is now easy to check that  (3.19)(i) and (ii) are satisfied, and 
hence so is (3.10. [ ]  
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