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1. Introduction

There are three main problems that are solved here. First, given a Markov
process X with some state space E, we characterize all functions f such that
f(X) is a semimartingale; basically, f is such a function if and only if it is locally
the difference of two excessive functions.

Second, when the state space of the Markov process X is R™ we give
necessary and sufficient conditions for X to be a semimartingale. In particular, a
quasi-left-continuous strong Markov process X is a semimartingale if and only
if there is a random time change that transforms X into a process whose
extended generator is of the form

GfxX)= X b'(x)D;f (x)+3 Y, ¢“(x)D;;f (x)
(11) ism i,j<m
+§K(x, dy) [f (x+y)—f(x)— 1[0,1](|)’D Z yiDif(x)]
for feC*(R™).

Third, given an additive process Y that is a semimartingale with respect to
every probability P~ (corresponding to the initial position x of X), we show that
the decomposition of Y into a martingale and a process with finite variation and
various other processes such as the continuous local martingale part of Y and
the quadratic variation of Y can be so constructed that they are all additive and
are the same under every P*. Our original motivation for this and related
matters came from the first two problems mentioned above, whose proofs
require these. However, these results are more basic and have a larger domain of
applicability, for they settle a good part of stochastic calculus on Markov
processes. This explains why we choose to give a systematic treatment with full
proofs and in as great a generality as possible.

2. Summary of Main Results

Our aim in this section is to discuss the main results of the paper in an informal
style, and to describe its organization.

Throughout this paper we follow the notational conventions of Blumenthal
and Getoor [3]. The following are some particulars and extensions. As usual we
write IR ,, R, R™, etc. for [0, o0), (— oo, + o), m-dimensional Euclidean space,
etc. For any topological space E, & denotes its Borel g-field. For any measurable
space (E, &), £* denotes the universal completion of &. If (E, &) and (F, #) are
measurable spaces and if f: E— F is measurable with respect to & and &%, we
write feé/F ; when F=IR™ we write fe& instead of fe&/A™. Moreover, we let
pé&, b&, pb& denote the sets of all positive (=0), bounded, positive and
bounded &-measurable functions respectively.

For the purposes of this expository section, let X=(2, #, %,,0,, X,, P*) be a
right continuous strong Markov process with some topological state space E,
and with %, being the usual completion of the o-field generated by X, s<t.
Weaker or different assumptions will be discussed below.
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2a) Additive Semimartingales and Random Measures

Let Y be a process which is a semimartingale over (2, % %,, P*) for every x. A
priori, its decomposition as a sum of a local martingale and a process with finite
variation, its quadratic variation process, its continuous local martingale part,
and stochastic integrals with respect to it are all dependent on the measure P*
being used. However, a slight extension of the recent work of Stricker and Yor
[46] shows that such decompositions and processes can be defined in such a
way as to be the same for all P¥; (this property has in fact nothing to do with the
Markov property of X; see (3.12)ff.). Somewhat more surprisingly, ¥ is then a
semimartingale over (Q, # %,, P*) for all initial laws p, and the above mentioned
decompositions and processes are also fitted to the measures P¥; see (3.13). One
of our major results concerns the case where Y is additive (that is, Y, =0 a.s. and
Y, =Y, + 7,00, a.s. with the exceptional set possibly depending on s and 1): then,
the above mentioned decompositions and processes are also additive; see
Theorem (3.18). All these results are stated in §3a,b and proved in §3¢,d.

As a corollary, we obtain that, if Y is an increasing additive process that is
P*-locally integrable for every x, there exists an additive process which is a
version of the dual predictable projection of Y for every P* (and even P*). This
result extends over to the case of random measures I which satisfy a suitable
condition of ¢-integrability with respect to every P*. In addition, if T' is an
integer valued additive random measure, its additivity property is inherited by
the stochastic integrals with respect to it; see §6a,b.

Suppose further that the integer valued additive random measure I is quasi-
left-continuous. Then, by a standard argument based upon Motoo’s theorem, (a
slightly generalized version of which is stated and proved in §3f) the dual
predictable projection I° of I admits the factorization [(w;dt,dy)
=dF,(w) K(X,(w),dy) for some increasing continuous additive process F and
some positive kernel K. The proof, given in §6c, is essentially the same as in
Benveniste and Jacod [1]. This theorem is the key step in proving many results
such as the existence of Lévy systems for X, last exit decompositions for X, and
entrance-exit decompositions for regenerative systems. Similar results would
hold for the dual optional projection as well, hence allowing one to prove the
Markov property at certain times other than stopping times.

Finally, the previous results are applied in §6d to obtain the additivity of,
and a nice factorization for, the local characteristics of an additive semi-
martingale.

The results of Sects. 3 and 6 are in some sense mere extensions of those in
the fundamental paper by Kunita and Watanabe [27]: most of these were either
known at least in some special cases (see the various references in the text itself),
or strongly suspected to be true by all specialists. Even then, we have chosen to
present this material systematically and with full proofs. Our choice seems
necessary not only because our results are formally new, but also because we
want to achieve both the best possible measurability properties and the weakest
possible conditions.

Concerning these conditions, it is worth pointing out two features. First, for
most of the results presented in Sects. 3 and 6, the ordinary Markov property is
sufficient. Second, we are forced to work with a filtration (.#,) which is larger
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than (%), and in fact our semimartingales Y are on the space (Q, .#, #,, P*).
Moreover, in order to obtain the additivity of the various decompositions and
processes related to an additive Y, we need an “extended” version of the Markov
property, namely that the future 67! .# (and not only 6,* #) be conditionally
independent of the past .#, given X,. (Thus, when this property is in force and Y
is additive, the pair (X, Y) is a Markov additive process in the sense of [5].) This
property yields some surprising results; for example, any increasing (.4,)-
predictable additive process is (#)-predictable; see Theorem (3.26) and its proof
in §3e.

2b) Semimartingale Functions

For any deterministic function f, ¥,= f(X,)— f (X ) defines an additive process.
If Y is further a semimartingale, then our previous results will apply. In the case
of continuous strong Markov processes X on R, the classical result of Feller is
that there always is such a good function f, in fact a strictly increasing and
continuous one, and this fact is the key step in characterizing such X. So, the
natural question is, given the Markov process X, for what functions f is f(X) a
semimartingale for every P*?

In Sect.4 we answer this question as follows when X is a right process: f(X)
is a semimartingale for every P~ if and only if there exist finely open sets E, and
1-excessive functions g, and h, of the process X killed at the time T, of exit from
E, such that | JE,=E, supT,=+ o0 as, and f=g,—h, on E,.

In Sect. 5 we answer the same question for more specific processes, namely,
for linear Brownian motion, linear Brownian motion reflecting at 0 or absorbed
at 0, and more generally, diffusions on R. For instance, f(X) is a semi-
martingale, when X is the linear Brownian motion, if and only if f is locally the
difference of two convex functions. This result implies that Meyer’s Theorem
(according to which a convex function of a semimartingale is a semimartingale)
cannot be substantially extended. If X is a regular conservative diffusion on IR,
then X is itself a semimartingale if and only if its inverse scale function is locally
the difference of two convex functions. The proofs of Sect.5 do not rely upon
Sect.4; otherwise, the result just mentioned for the Brownian motion case can
be obtained at once from the main characterization for f given in Sect. 4 and the
well-known fact that every excessive function of a Brownian motion on an
interval is concave.

2¢) Markov Processes That are Semimartingales

Section 7 contains our third major result: a characterization of strong Markov
processes on IR™ that are semimartingales. Our results are particularly pleasant
for Hunt processes: an IR™ valued Hunt process is a semimartingale if and only
if there is a random time change that transforms it into a process whose
extended generator has the form (1.1) for feC*(R™).

Thus, the processes whose extended generators have the form (1.1) are of
central importance among semimartingale Markov processes, and deserve a
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name of their own. We call them Ito processes. We believe this choice of the
name is particularly appropriate, not only because of Ito’s pioneering contri-
butions to Markov processes and stochastic calculus, but also because the
processes under discussion are exactly those that were first introduced by Ito
[197 as solutions of certain stochastic integral equations; see [6] for this.

2d) Stochasric Differential Equations and Markov Processes

In the final section, Sect.8, we consider the stochastic equation Y=y+H
+jF (Y)dZ with a given additive process H and additive semimartingale Z.
Under some conditions making F homogeneous and insuring a solution Y, we
show that the pair (X, Y) is a Markov process. When, in addition, X is a right
process, so is (X, Y). This extends a result of [37].

The following is a logic chart for reading the paper.

(e, d)——Ba,b)——(1)

- /
s // VAR

@ 5 (§) (68,b)—(66,d)>(7)

3. Semimartingales Defined on a Markov Process
3a) Basic Setup

Although we will follow [3] closely, we find it useful to recall here the basic
ingredients of a Markov process and the particular assumptions and conven-
tions being made in this paper.

Throughout, E is a topological space whose Borel o-field & is separable; we
write &* for the o-field of universally measurable subsets of E.

Let © be a space on which there are defined

(i) a semi-group (8,),, o of operators;

(ii) a right continuous process X =(X,),», taking values in (E, &) and such
that X,, (=X 00,; we let Z°=0(X;s<t) and F°=\/ £?°; note that each Z° is
separable and that £ =Z°v 0, 4(£°); !

(i) an increasing family (.#),., of separable o-ficlds on @ such that

FLPcMP; we let M°=\/ #?; we assume that 0,e.4°/.4°,;
T
(iv) a probability kernel P*(dw) from (E, &%) into (Q, .4°).

As usual, for each probability measure u on (E, &) we write P*={ u(dx) P*.
We let .#* be the P*-completion of .#°; .4} is the o-field generated by .#° and
the P“null sets of .#*; and =", M,=() M} We define F and 7,

u u
similarly. Throughout we assume that the following holds:

(3.1) Hypothesis. The collection X=(Q, .4, A,

0, X,, P¥) is a Markov process,
that is, for every Zeb %, t 20, and all ,

EM[Z<0,| 4, 1= EX[Z].
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In many places we will need to assume the following stronger form of
Markov property.

(3.2) Definition. The filtration (#,) is a Markov filtration if
() AL =007 (MO for all s,t20;

t+s

(i) E*[Z-0 L// +] E"‘[Z] for all u,t and all Zeb.#.

Of course, under (3.1), (%, is always a Markov filtration. It is shown in [3],
(8.12) of Chap.I, that #, =%, under (3.1); and a similar proof shows that .#,
=k, when (M) is a Markov filtration. To illustrate the difference between
(3.1) and (3.2) we give the following examples with the reflecting Brownian

motion.
(3.3) Examples. Let (Q,%,4,,6,, B,, P¥*) be a Brownian motion on R.

(i) Let X,=|B,|. Then, the process X=(2, 4, %,,0,, X ,, P¥) satisfies (3.1) with
A= 2%,. But (%,) is not a Markov filtration for X, since the future of B after time
t depends not only on X,=|B,| but also on the sign of B,.

(i) Set A,= ,“m B)ds and rt,=inf{s:4,>t}. Let X,=B,. Then, X'
=(Q, %, 4., GH,X .» P¥) satisfies again (3.1) with .#,=4_; furthermore, now (.%,)
is a Markov filtration for X"

Note that the processes X and X’ have the same distributions under each P*:
they are reflecting Brownian motions on R, .

The following is the extended strong Markov property in accordance with
(3.2):

(3.4)  Definition. The filtration (.#,) is a strong Markov filtration if for every
finite (%", )-stopping time T we have

(i) MGy, =AM, vOF (AL, for all s=0,
(ii) Zo GTej/ and E*[Zo0;| My, ]1=E*"[Z] for all u and all Eeb ..

When .#°=%7, (3.4,1) is satisfied automatically, and (3.4,ii) reduces to the
usual strong Markov property. Note that (3.4,ii) implies E*[Z60,|.#,]
=E*T[Z] on {T <o} for every (possibly nonfinite) stopping time T of (,//{,).

Going back to the general assumptions, we note that the lifetime of X is
infinite. In addition, we will assume the following to hold:

(3.5) Hypothesis. Either X is normal, (that is, P*{X =x}=1 for every xeE,) or
else 8, is the identity mapping on Q and the property (3.2,ii) holds for t=0.

In order to unify the treatment of various measurability properties, we
introduce the following convention:

(3.6) Convention. Throughout, &,, #;, # will satisfy one of the following three
cases:

(i) So=* H=M,, AH=4.
(i) £=8°H,=F°,H = \/ Z°, where &°¢ is the o-field on E generated by

t

the x-excessive functions (oc>0) and Ff=o(f(X):sZt,fe€&°); in this case it is
assumed that .#°=%" and that X is a “right” process (see [13, 41]), and we
have § cé,=é* and £5 = H# <= &,
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(i) &y=&, #, =4, #=.4°; in this case it is assumed that P*(dw) is a
transition kernel from (E, &) into (Q, .#°).

In fact, as far as measurability properties are concerned, we need only the
following properties, which always hold under the above convention.

(3.7) P*(dw) is a probability kernel from (E, &,) into (2, 5);
(3.8) X.eH/by;

(3.9) A=, and # is contained in the (.#, P*)-completion of the separable
o-field .47, ; for all s>0.

Finally, we recall that the (#)-optional (resp. (#))-predictabie) o-field is the
o-field on @ xR, generated by all (#)-adapted processes that are right-con-
tinuous and admit left-hand limits (resp. that are left-continuous), without any
reference to a specific probability measure on (Q, 7).

3b) Semimartingales

Let P be a probability measure on (£, #). A semimartingale on (Q, #, #,.P) is a
P-as. right continuous {4#,)-optional process Y which is the sum Y=M+ A4 of a
local martingale M and a (J#)-optional process A with a.s. finite variation over
finite intervals. (Note that we are always working with a (#)-optional version
of Y) T
When the total variation {|dA,| of A is locally integrable, we call Y a special
0

semimartingale, in which case there exists a unique (up to a P-null set)
decomposition Y=M + A with 4 predictable and M ,=0; this decomposition is
called the canonical decomposition of the special semimartingale Y.

Let Y be a semimartingale. As usual, we denote by Y* the “continuous local
martingale” part of ¥ and by [Y, Y] its “quadratic variation process”. If Y is a
(o)-optional process with P-locally integrable variation, we denote by Y its dual
predictable projection. We denote by L(Y,P) the linear space of all (#)-
predictable processes which are integrable with respect to Y; see [21]. If
HeL(Y,P), we denote by H-Y the “stochastic integral process” of H with
respect to Y; (this may happen to be an ordinary Stieltjes integral). We do not
need a precise description of L(Y, P), but we will need the following facts:

(3.10) Every bounded (#))-predictable process is in L(Y, P).
(3.11) Let KeL(Y,P), and let (H") be a sequence of (4#)-predictable processes

converging pointwise to a process H and such that |[H" < K. Then, H" and H are
in L(Y,P), and P-limH" - Y,=H Y, for every t=0; (P-lim means “limit in

n
measure”; this is the Lebesgue dominated convergence theorem for stochastic
integrals).

For all facts about semimartingales and stochastic integrals, we refer to [21] and

[34].



168 E. Cinlar et al.

Returning to the Markov process X, we introduce the following notations for
semimartingales on it:

& ={Y: Yis a semimartingale on (Q, #, 5#,, P*) for every xeE}
&, ={Ye¥:Yis P*special for every xeE}
¥ ={Ye¥: Y,=0as, Yis a P*-local martingale for every xeE}
vt ={Ye¥: Y=0as, Yis increasing a.s.}
Vv =¥t —9¥ " ={Ye: Y as. has finite variation over finite intervals}.
2, ={Ye?": for every xeE, Y admits a P*-locally integrable variation}.
Pn¥ ={Ye¥ : for every xeE, Y is P*-indistinguishable
from a (#)-predictable process}.

A priori, for Ye % the various decompositions such as Y =M + A4, such terms
as Y° and [Y, Y], and stochastic integrals H-Y all depend on the measure P*
being used. The fact that these terms can all be defined in such a way as to be
the same for all P* is one of our basic results.

(3.12) Theorem. Let Ye &~

(i) There exist Me ¥ and Ae?¥” such that Y=M + A.

(i) If Yed,, there exist Me L and AeP NV such that Y =M+ A; (this is
the canonical decomposition of Y).

(i) If Yesd,,, there exists YeP ¥ which is a version of the P*-dual
predictable projection of Y for every x€E.

(iv) There exists an a.s. continuous Y°e ¥ which is a version of the P*-
continuous local martingale part of Y for every xeE.

(v) There exists [Y,Ye?"* which is a version of the P*-quadratic variation of
Y for every xeE.

(vi) For every He () (Y, P¥) there exists H-Ye$ which is a version of the

xeE

P*-stochastic integral process of H with respect to Y for every xekE.

The preceding theorem is very closely related to the results of Stricker and
Yor [46]; it will be proved in §3d together with the following corollary, which
gives an affirmative answer to a question of Meyer [36], p.777. (In fact, the
Markov property (3.1) is not used for proving (3.12) and (3.13): all that will be
used is (3.7) and, in case X is not normal, property (3.2,1i) at time ¢ =0.)

(3.13) Corollary. Let u be a probability measure on (E, &).

(i) If Yis in & (resp. &, resp. ,, resp. o4, and E'[[Yy|] <o), then Y is a
semimartingale (resp. a local martingale, resp. a special semimartingale, resp. a
process with locally integrable variation) over the space (Q, #, #,, P*).

(ii) If Ye< then the processes Y and ['Y, Y] defined in (3.12,1v, V) are versions,
respectively, of the continuous local martingale part and the quadratic variation of
Y with respect to the measure P*. If Yed,,, and E*[|Y,|]1< oo, then Y defined in

(3.12,iii) is a version of the dual predictable projection of Y with respect to P*.
(it) If Ye& and He () L(Y, P¥), then HeL(Y, P*) and the process H- Y defined

xek
in (3.12,vi) is a version of the P*-stochastic integral process of H with respect to Y.

Next we examine the homogeneity properties which can be deduced from the
Markov property. First, in accordance with [40] and [41], we introduce the
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“big shifts” &, by setting, for every process Y,
(3.14) (0,Y),=Y,_00,1, (1), 5,t20.

For example, if Y=1Ip, ,; for some stopping time T, then @, Y =1 _ 1, ,;if ¥
=f(X,) for all z, then (6,Y),=Y, 1 .,(®). In view of Theorem (3.12), a natural
question to ask is: if s=0 and Ye %, do we have O, Ye ¥ ? If the answer is yes, do
we have (O,Y)'=6,Y°) or [6,Y,0,Y]=0,Y,Y]), etc.? The answers are not
always positive, but are so under fairly broad conditions:

(3.15) Theorem. Suppose (4.} is a Markov filtration. Let Ye & and s=0.

() We have O, Ye S If YeS, (resp. L, ¥, Ay, P V), then O, YeS, (resp. £,
V) Ayey POY).

(i) If Ye¥, admits the canonical decomposition Y=M+ A, then 6, Y =060,M
+ O, A is the canonical decomposition of 6, Y.

(iii) If Yesd,, then 6,Y=0,¥.

(iv) We have (O, Y)'=0,(Y°).

(v) We have [0,Y,0.Y]=060(Y, Y]).

(vi) Let He()L(Y,P*). Then, O,He(|L(O,Y,P) and (O,H) (6,Y)
— @s(H ) Y) xek xeE

Moreover, if (M) is a strong Markov filtration, all these statements hold
when s is replaced by any finite (#)-stopping time S.

The proof of (3.15) will be given in § 3d. We now consider the questions of
additivity for semimartingales. We say that a process Y is additive (resp. strongly
additive) if

(3.16) (i) Y,=0as.
(i) for every s,t2=0 we have Y, =Y, + Y00, as. (resp. for all t >0 and all
(«#)-stopping times S we have Yy = Y;+ Y00 a.s.).

We denote by %, (resp. & .as ZLaa> Vad> Foe,d) the set of all additive processes
that are in & (resp. &, &£, ¥, o4,,). We say that a process H is homogeneous

(resp. strongly homogeneous) if,

(3.17) for every s=0 (resp. every finite (.#)-stopping time S), the processes H
and @, H (resp. H and O H) are indistinguishable on (s, o0) (resp. on (S, o0)).

The following theorem is a simple corollary of Theorems (3.12) and (3.15).
This is the main result of the present section.

(3.18) Theorem. Suppose (#,) is a Markov filtration, and let Ye %,.

(i) There exist Me%,, and Ae¥,, such that Y =M + A.

(i) If Yed, 4 there exist Me %,y and AeP NV 4 such that Y=M + 4.

(iil) If Yeod, .4, there exists YeP NV, which is a version of the P*-dual
predictable projection of Y for every xeE.

(iv) There exists an as. continuous Ye %,y which is a version of the P*-
continuous local martingale part of Y for every xeE.

(v} There exists [Y, Y1e¥,5 which is a version of the P*-quadratic variation of
Y for every x€eE.

(vi) Let He () L(Y, P*) be homogeneous. Then, there exists a H- Ye 4 which is

xeE
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a version of the P*-stochastic integral process of H with respect to Y for every
xeE.

Moreover, if (M) is a strong Markov filtration and if 'Y is strongly additive,
then we may find strongly additive versions of M and A in (i), (ii), of Y in (iii), of
Y¢in (iv), of [Y. Y] in (v), and of H-Y in (vi) when H is strongly homogeneous.

Proof. First we note that a process Z is additive if and only if

(3.19) Z,=0 as. and for all 5,t=0 we have (@,Z2),=Z,—Z,, , as.

Let Ye, 4; then, by Theorem (3.12), Y admits a canonical decomposition Y
=M + A. Then Theorem (3.15) implies that @ .Y =0 M+ 0 A4 is the canonical
decomposition of @Y. Since Y satisfies (3.19), this canonical decomposition is
also @, Y=M'+A', where M,=M,—M, ,and A,=A,— A, ,. It follows that M
and A satisfy (3.19) as well, and (ii) is proved. Statements (iii), (iv), (v), and (vi)
are proved similarly, using (3.12), (3.15), (3.19), and the definition (3.17) and the
fact that ¥;=0 for (vi).

Next we prove (i). Let Ye¥,, and let 4Y denote the jump process of Y with
the convention that 4Y,=0 whenever Y,_ does not exist (this can happen only on

an evanescent set). Set

(3.20) Ye= Y AV sy

O0<s=r

We obviously have Y°e?¥,,, and thus Y'=Y—Y* belongs to %,. Since {4Y'|<1,
we have Y'e¥, ,; and (ii) implies the existence of Me %, and BeZ ¥, such
that Y'=M + B. Puiting A=B+Y*°, we obtain the decomposition Y=M+ A4
satisfying (i).

There remains to prove the statements about strong additivity. Using the last
statement of Theorem (3.15) and replacing s by a finite (J#))-stopping time S in
all places above, we obtain that the various processes Z for which we want to
prove the strong additivity satisfy Zg.,=Z¢+Z,00 as. for every finite (#))-
stopping time S. If S is a finite (.#,)-stopping time (recall here that .#,= .#,.), for
every xeE there exists a stopping time S* of (#) (and even of (.#)) such that S
=S* P*-as. From what precedes, we obtain that Z., ., =Zgep,+ 72,005,
P*.as. for every nz 1, and it follows that Zy  ,=Z+Z,c0gas. [J

The statements (3.18, iii) for Yess 4 and (3.18, iv, v, vi) for Ye & ; were
proved a long time ago by Kunita and Watanabe [26, 27, 51] and Meyer [32]
under the assumption that X is a standard process and that Hypothesis (L) holds
(plus some other minor assumptions on Y). Hypothesis (L) simplifies matters
considerably, since it allows one to work with only one measure instead of the
family (P¥), ;. Without Hypothesis (L), when Y has a bounded 1-potential, (3.18,
iii) was proved in [14] and [2], while (3.18, iv, v) for Ye%,, was proved by
Meyer [36].

We have established a careful distinction in (3.16) between additivity and
strong additivity. It is well known (see [3] for instance) that any right con-
tinuous additive functional (i.e. (F)-adapted) of a strong Markov process is
strongly additive. Walsh [48] has proved that a finite valued additive functional
is indistinguishable from a “perfect” additive process Y, that is, a process Y
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which satisfies Y,=0 as. and Y,, ;= Y,+Y,0 0, outside a null set that does not
depend on s, t. Of course, a perfect additive process is strongly additive. The
following clarifies the relationships between additivity, strong additivity, and
perfectness for (##)-adapted processes:

(3.21) Proposition. Suppose (M#,) is a Markov filtration. Suppose that for every
Zeb.#® the mapping s—Z o0 (w) on R is Borel measurable for all weQ; (this
assumption is automatically satisfied when .#°=%°). Let Y be a (#)-adapted
right continuous real valued additive process. Then,

(1) Y is indistinguishable from a perfect additive process Y';

(ii) if (A,) is a strong Markov filtration, Y is strongly additive.

Remark. The process Y' above is (.4)-adapted, but it is possible that it is not
adapted to ().

Proof. (i) The result is obtained by applying the proof of [48] to M =e". In [48]
it is assumed that .#,« % and M,g(0,1] for all 1 =0. The former assumption is
used only through the facts that s— Z o6, is Borel for all Zeb#° and that the
Markov property (3.1) applies; (see [48], p. 235;) here we replace these facts by
the Borel measurability of s — Z o0, for all Zeb.#° and by the Markov property
(3.2, 1i). The latter assumption that M,e(0, 1] has been weakened to the assump-
tion M,e(0, ) by Meyer [33], which is fulfilled here by M =e"; (in [33] the
strong Markov property is assumed but not used for this result when M >0).

(1) Apply the strong additivity of Y and the almost sure equalities Yy= Yy,
Ys ., =Yg ,,and Yo 0,=7Y 00y for all stopping times S (the last equality uses the
strong Markov property (3.4, i1)).

{3.22) Remark. Let us recall that, if YeZ?n ¥, then for every xcE there exists a
(A)-predictable process which is P¥-indistinguishable from Y. When in addition
Y is additive, .#°= %, and X is a right process, we can find a (#)-predictable
process which does not depend on x and which is P*-indistinguishable from Y
for every xeE; see [41].

It may be of interest to consider simultaneously the filtration (/) and a
smaller filtration related to (£°). We introduce the following convention
complementing (3.6).

(3.23) Convention. Throughout, #, will satisfy the following:
(i) =%, when (3.6, 1) holds;
(ii) %’ F5 when (3.6, ii) holds, (then #) = );
(iti) #' =2 when (3.6, iii) holds.

For purposes of avoiding confusion, we will indicate the filtration being used
in discussing such classes as &, ¥7,... by writing S(H), V(H),..., S(H),
V(H), ..
Note that (o#,) satisfies (3.7), (3.8), (3 9) with # and .# there replaced by
and #°. The Markov property in (3.1) implies 1mmed1ate1y that every
bounded martingale on (Q, 5, #,, P*) is also a martingale on (Q, #, #,, P%).
From [21] §IX-2-c, we deduce the following:

(3.24)y () AH)=F(H); in fact, due to a result of Stricker [45], we have
L (AN ={YeS(H): Y is (#))-adapted},

fO
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(i) L(A)= L (H), T(H]) =T H);

(iii) if YeS(o#,) then the various decompositions and processes appearing in
(3.12) are relative to the filtration (#]) as well as to the filtration (J#)), (provided
that in (3.12, vi) H be (#)-predictable).

(3.25) Remark. Even when the filtration (.#,) is not Markov, Theorems (3.15)
and (3.18) are still valid for a (#)-adapted process Y. This can be proved as
follows. The Markov process (@, #, Z, 0,, X,, P¥) satisfies (3.2) and Y is (#])-
adapted. Thus, (3.15) and (3.18) apply relative to (s#/), and because of (3.24)
above, they apply relative to () as well.

When the filtration (.#,) is Markov, the next theorem shows that (.#,) cannot
be “too much bigger” than (%) at least as far as its ability to hold additive
functionals is concerned. Within the theorem, by saying that (Q,.#°) is a “nice
measurable space”, we mean that for every probability measure P on (Q,.#°)
there exists a regular version of the conditional probability P(+|#°). For
instance, (2, .#°) is nice if it is a U-space in the sense of Getoor [12].

(3.26) Theorem. Suppose (.#,) is a Markov filtration.
t
Q) If YelP V) ) is such that EX [jldYsl]<oo for all xeE, 120, then
0

there exists Y'e(P ¥ )(A,) which is P*-indistinguishable from Y for every x, and
hence Y is (#,)-adapted.

(ii) The same conclusion holds for every continuous Ye ¥, ().

(iii) Suppose (Q, #°) is a nice measurable space. Then, the same conclusion
holds for every Ye(P ¥, )(H).

(iv) Suppose (M,) is a strong Markov filtration. Then, the same conclusion
holds for every strongly additive Ye(P ¥, )(H).

Proof will be given in §3.c except for (iii), for which we refer to [23]. The key
point for obtaining (i) was pointed out to us by Maisonneuve, while (ii) is a
trivial consequence of the results in [5]. In fact, when (#)) is a Markov filtration
and Y is additive, the pair (X, Y) is a Markov additive process in the sense of
[5]. The latter provides examples of processes Ye & (#,) which are not (%)-
adapted: either because they are not (#)-predictable although in ¥4, like (z,) in
Example (3.3, ii), or because they are not in ¥, although (5#)-predictable, like
continuous elements of &, ().

In the same line of thought, the following may be deduced from [5]: When
(«#,) is a Markov filtration, every right continuous (#,)-adapted additive process
that is not a semimartingale is the sum of a process in “4(#)) and a right
continuous (#;)-adapted additive process that is not a semimartingale.

3¢) Some Measurability Properties

We start with the following

(3.27) Lemma. Let (Y™), g be a family of processes such that
(1) for every xeE, Y* is right-continuous and left-hand limited P*-a.s.
(i) for every t 20, there exists Z,e ¥, such that Z,=Y" P*-a.s. for every xeLE.
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Then, there exists a right-continuous process Y adapted to (#,) such that Y and
Y* are P*-indistinguishable for every x€E.

Remark. It follows that Y is as. left-hand limited. However, unlike right-
continuity, we cannot in general obtain a process whose every path is left-hand
limited.

Proof. Let A, be the set of all w such that, for some right-continuous and left-
hand limited function f, Z (w)=/f(r) for every re@Qn[0,t]. For every t, 4,€.#;
[7] IV-T-18; and A4, decreases when t increases. Thus,

lim Z,(w) if wel]A,
Y;(w):{rlt.r>t,reQ s>t
0 otherwise,

defines a right-continuous (J#)-adapted process. From (i) we obtain P*[A4,]=1,
and Y=Y, P*-as. The P*-indistinguishability of ¥ and Y* follows from the
right-continuity.

The next several results provide criteria ensuring that conditions (3.27, i) and
(3.27, ii) are met. The first one is basically due to Doléans-Dade [8]; the proof
here follows [36] and [46].

(3.28) Lemma. Let (V") be a sequence of #,-measurable variables such that P*-
lim V" exists for every xeE. Then, there exists Ve #, such that P*-lim V"=V for

every xeE.

Proof. Put ny(x)=0 and

nfx)=inf {m>n,_,(x): sup P*[|V?—V9>2"¥F] <27k}

p.gzm
By (3.7), each n, is &,-measurable, and thus (x, w) > Z{(w)= V"N w) is &, R #-
measurable as well as (x, w) » Z¥(w)=Ilim inf Z}(w). Since
k
PIZE - 25, |> 27 527,
the Borel-Cantelli lemma implies that Z7—Z* P*-a.s. Since P*-lim V" exists by

hypothesis, we have n,(x)— oo for every xeE, from which we deduce that P*-
lim V"=2~

Now we set V(w)=Z*"“(w). V is obviously #,-measurable. If X is normal,
the proof is finished. Suppose X is not normal, but that (3.5, ii) holds for t=0.
Saying that P*-lim V,=Z* amounts to saying that EX[1 A |[V*—Z%*]—0 as n—o0.

Applying the Markov property (3.2) at t =0, and using the fact that 8, is the
identity mapping on £2, we obtain

E LAV =V]] prx(da)) EXo(w)[l A |V"—ZX°(‘D)|],

which goes to 0 by the bounded convergence theorem. This completes the proof.
The following is an immediate consequence of (3.27) and (3.28).
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(3.29) Lemma. Let (Y*) _; be a family of processes such that

(i) for every xeE, Y* is P*-a.s. right-continuous and left-hand-limited ;

(ii) there exists a sequence (Z") of (#;)-adapted processes with P*-lim Z!'=Y>*
for all 120, xeE. "
Then, there exists a right-continuous (#)-adapted process Y which is P*-in-
distinguishable from Y* for every xeE.

(3.30) Lemma. Let (‘V’C)xE g be a family of variables such that

(i) for every xeE, V*ed,. and E*[|V*]<o0;

(i) for every Ae#°, there exists Z ;e # such that EX[V*1/]=E*[Z,] for
every xeE.
Then, there exists Ve #, such that V=V* P*-as. for every xeE.

Proof. Let s>t. We define two finite transition kernels from (E, &) into (£, .#°)
by setting

P A]=PTAl, QIA]=FE(Z,], A’

Since QI[A]=E*[V*1,], we have Q*<P* Since .#° is separable, Doob's
theorem on Radon-Nikodym derivatives (see [30], p. 154) implies the existence
of a &,® #;-measurable function: (x,w)— Z¥w) such that QI [4]=E*[Z}1,]
Since V*e#, and since #, is contained in the P*-completion of .#°, the fact
that E*[V*1,]=E*[Z*1,] for all Ae.#? implies that V*=Z% P*as. Set

Z*= liminf Z¥: we have V*=2%* P*-as. again, and (x, w)—>Z¥(w) is measurable
sit,seQ,s>1¢

with respect to [)(6, ® ). Finally, set V(w)=Z*'*)(w). Since #,=#,., the

t
s>t

variable V is obviously #-measurable. If X is normal the proof is finished. If X
isnot normal, 6, is the identity mapping on Q and, applying (3.2, ii) for r =0 twice, we
have

E*[V1,]=E[Z%0c0,41,00,]

= [ PX(do) EXe@[ZXo@)] ]
= P(dw) E*“[Z,]
=E*[Z,000]=E*[Z J=E"[V*1,],
which again yields the desired conclusion that V*=V P*-a.s.
The following is a result on the interchangeability of limits and time shifts.

(3.31) Lemma. Suppose the filtration (.#,) is Markov. Let (V") be a sequence of
variables such that P*-lim V"=V for every xeE. Then P*-lim V"o 0_= Vo 8 for all

520, xeE.
Proof. This is immediate from the following consequence of the Markov
property (3.2) (see the proof of (3.28)):

EX[1AV 0, — Vol |]=E*[EX[1AV*—V[]].

Note that, when (.#,) is not Markovian, the preceding result is not true in
general unless the V™ above are # -measurable. This is a permanent feature for
all homogeneity properties.
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(3.32) Lemma. Let Vebi#.

(i) There exists a right-continuous (H#,)-adapted process ™V which is a version
of the martingale E*[V|A#,] for every xeE. Moreover, if Veb%, then "V is (#)-
adapted.

(i) Suppose the filtration (M) is Markov. Then, for all t=s=0, we have
(O,"V),="(Vo0, as.

Proof. We follow [2] closely. Let Y* be a right-continuous version of the
martingale E¥[V|.#,], so that the family (Y*) _; satisfies (3.27, i). For every
Aedl,, Z,=V1, 18 #-measurable and E*[Y*1,]=E*[Z ], hence by Lemma
(3.30) we obtain that the family (Y*) _, satisfies (3.27, ii) as well. Then, there
exists a right continuous (#))-adapted process "V such that "V, = ¥* P*-a.s. for all
t=0, xeE.

Let t20, Ueb%, Web#, and suppose V=UWo0, Then, EV|H#]
=UE*[W]=E*[V|#]. Since Z, is generated by the random variables V of this
form, a monotone class argument shows that, for every Veb%, E*[V|#]]
=E*[V|%,]. This proves the last assertion in (i) (this property is related to
(3.24)).

(ii) Since (3.2, ii) holds, we have for all 1 2s=0, Ueb.#°, Web.#!

EX[UWo0(0,"V),]=ETUE*[W™V,_]]
=E [UEX[WV]]
= E [UWo8,Vo0]
=E [UWo0 (Vo))

since UWo0 e, Since by (3.2, i) the random variables of the form UWeo 8,
generate ., while (0,"V),e #,, and #,ec.#,, we obtain the desired conclusion,

(3.33) Remark. When the filtration (.#,) is strong Markov, we can replace s in
Lemmas (3.31) and (3.32, ii) by any finite (.#,)-stopping time S; the proof is
exactly the same.

(3.34) Remark. Let H be a bounded #-measurable process. It follows from
(3.32) that there exists a process °H (resp. ”H) which is a version of the (J#)-
optional (resp. predictable) projection of H for every measure P* (or even P*): it
is sufficient to prove this for H of the form H=V1y, ,; with Vebs#, 0=5u<y,
and in this case, we have °H="V 1y, ,; and "H=("V)_1,, ,;. Moreover, (3.32, ii)
and (3.33) imply that, when the filtration (.#,) is Markov (resp. strong Markov),
we have %@, H)=0(°H) and %O H)=0(*H) for every s=0 (resp. %O H)
=04 H) and (O4H)=0O4"H) for every [inite (#)-stopping time S). See [41]
for many more facts about this question.

3d) Proofs of (3.12), (3.13) and (3.15)
Our proof of (3.12) will follow closely Stricker and Yor [46], from which our

Theorem (3.12) might be deduced up to some minor details mainly concerned
with measurability properties. However, for the sake of completeness, and also
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because we will need many of the intermediate steps of this proof to prove
theorem (3.15), we present the proof in full.

We begin by a series of lemmas. In the first one, P is any probability measure
on (@, #), and ) (P) denotes the class of all nonnegative increasing right-
continuous processes Y which are P-locally integrable (we do not require here
that Y be (s#)-adapted, but there exists a sequence (7,) of finite (#)-stopping
times increasing to + oo, such that E[ Y} ]<oo). Recall that Y denotes the (#)-
dual predictable projection of such a Y; Yis uniquely determined up to a P-null
set.

(3.35) Lemma. Let (Y") be a sequence of elements of o4,}(P) such that Y"*!
—Y"e I (P). Then, Y"1~ ¥"20 as. Moreover, if Y= sup Y" and Y—sup Y,

then Yes/7(P) if and only if Y'es/J(P), in which case Y= Y’ a.s.

loc

Proof. The first statement is obvious. Since the dual predictable projection Z of
Zes I (P) is characterized by its predictability and the property that E[Z;]

=E[Z;] for every finite ()-stopping time T, the final statement readily follows
from the monotone convergence theorem.

We turn back to our Markov process X.

(3.36) Lemma. Let Ye&. If H is a bounded (#)-predictable process, there exists
H-Ye& which is a version of the P*-stochastic integral process of H with respect
to Y for every xeE.

Proof. Put

(3.37) H=UL,0+ Y Ul (0,
i=1

where U°chi#, U'eb#, . An (s#)-optional version of the stochastic integral
process H-Y is

(3.38) H Y,=UY,+ Z UY, o= Yonds

i=

regardless of the measure P*.

Let A be the linear space of all bounded (#)-predictable processes for
which the conclusion of our lemma holds. Let (H") be a sequence of elements of
A which converges uniformly (resp. increasingly) to a bounded process H. Let
Z* denote a version of the P*-stochastic integral process of H with respect to Y.
Property (3.11) implies that P*lim H"- Y,=Z7 for all 1>0, xeE. Hence, (3.29)

implies the existence of a ()-optional process H-Y which is P*-indistinguish-
able from Z* for every xeE. Thus He .. Since 4~ contains all processes (3.37), a
monotone class argument shows that " is exactly the set of all bounded (5#))-
predictable processes.

(3.39) Lemma. If Ye.%, there exists [Y,Y]e¥ " which is a version of the P*-
quadratic variation of Y for every xeE.



Semimartingales and Markov Processes 177

Proof. Let A be a version of the P*-quadratic variation of Y. The family (4%),.
satisfies (3.27, i). If I(n,t)={0=t,<t,<...<t,=t} is a subdivision of [0, r],
whose mesh goes to 0 when n— oo, and if

(3.40) Vien=Ye + 2 (%, =Y, _ )%
i=1

then P*-lim V;, ,= A}. The result now follows from (3.29).

(3.41) Lemma. Let Ye%° be such that Yy,=0 and that the jump process AY is
bounded by a constant c. Then, there exists Me ¥ and AcP Y such that Y=M
+ A. Moreover, up to an evanescent set, we have |AM|Z2c¢, and [AA| Zc.

Proof. Because of (3.27), we may, and will, replace Y (resp. [Y,Y]) by an
indistinguishable process which is still denoted by the same symbol Y (resp.
Y, Y1), and which is (#£)-adapted and everywhere right-continuous. Hence,

T,=inf{t: |Y)Zn,o0r [Y,Y],2n)

is a (#)-stopping time, even in case #,=.4,.

Since [4Y{<c, we have Ye¥. Let Y=M*+A4" be a version of the P*-
canonical decomposition of Y, and let [M*,M*] and [4%,A4*] be the P*-
quadratic variations of M* and A*. By a well-known property of canonical
decompositions (see [45], for instance), we have E*[[A%, A*], J<SE*[[Y, Y], ].
Since M*=Y —A*, we have [M*, M*1Z2([Y, Y]+ [4%, A*]), which is a general
property of quadratic variations. Since [4Y|=c, we have [Y, Y], <n +c2. There-
fore,

EX[[M*, M*]3, JS4E*[[Y, Y1, 1S4(n+c?).

Hence, (M7, );50 is a P*-square integrable martingale. Since |Y,, ; [Sn+c, it
follows that

sup (47)? <(n+c+ sup M|,
12Ty t=Ty
which is P*-integrable.
Let Veb # We consider the martingale "V introduced in (3.32), and we put B
=["V,"V]. Since "V is bounded, we have EX[B_]<o0. Since 4* is predictable,
the change of variables formula yields

(3:42) A, Virr, =A% TV) g, OV AT, 1,

The P*-quadratic variation of the P*-local martingale 4*- "V is C=(4%)?-B. We
have

EX[CY21< B (sup 147 B}
12Ty

< {E*[sup |71 E*[Br, 1},

t=T,
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which is finite, from what precedes. Thus ((A*-"V); , )20 is @ P*-uniformly
integrable martingale. See [34]. Taking the expectation on both sides of (3.42)
yields

(3.43) E*[AY 1, Virr J=ELCV_- A7), 1, 1.

The process "V_ is bounded, and (M7 ,)», is a P*-square integrable
martingale. Thus (("V_- M%)y , )., is again a P*-square integrable martingale,
and we have E*[("V_-M¥); ,,1=0. The definition of "V implies

EX[AIATH t/\Tn] Ex[AtATn ]
Using Y=M*+ A* and (3.43), we obtain at last
(3.44) E* AL, ¢, VI=E*[(V_-Y), 1,1

Lemmas(3.32) and (3.36) imply that ("V_-Y),, r €. Thus, we deduce from
(3.30) and (3.27) the existence of a right-continuous (#))-adapted process A(n)
such that A(n),=A4;, ;, P*-as. for all t 20, xeE. Since lim T, = oca.s., the process

n

A=Y A, Ly, 1, )(0)

is right-continuous, (#)-adapted, P*-indistinguishable from A4* for every xeE.
Thus, AeP~¥"; and M =Y — A is P*-indistinguishable from M™ for every xeE,
and hence Me.%.

Since Y=M + A is the P*-canonical decomposition of Y, and since {4Y|=Zc, it
is well known (see [21] (2.15) for instance) that [AM|<2¢ and |44|<c¢, up to a
P*-evanescent set for every xeE.

(3.45) Lemma. Suppose the filtration (.#,) is Markov. Let Ye.& be such that the
jump process AY is bounded by a constant c. Then, ©,Ye & for every s=0.

Proof. Put T =inf{t: |Y;|>n} and T,/=inf{¢: (@, Y),|>n}. We have

T, =inf{t>s:Y,_00|>n}=s+T00,

—S

which implies [@,(Y;._,..)],=(6,Y);, .. Since (Y, 1,),» o 1S @ martingale bounded
by n+c, with the notation of (3.32) we have Y, ,,="(Y;),. Thus, (3.32,1i) implies

(O, ), ,="(Y7, 20y, as. if t=s, while (6,Y),=0 if t<s because Y,=0. There-
fore ((@ Y, At),>0 is a martingale, and, since lim T, =ooa.s., we obtain the
desired conclusion that 6,YeZ. "

The following proves (3.12,1ii), (3.15,iii), and part of (3.15,1).

(3.46) Lemma. Let Ye.sf, . There exists Ye? ¥~ which is a version of the P*-

dual predictable projection of Y for every xeE. Moreover, if the filtration (4),) is
Markov, we have ©,Ye s, and @ Y=0,Y for every s=0.

loc

PlOOf It is clearly sufficient to prove the result when Y is positive and
increasing. Set Y”=Y An. We have Y"e%, and |4Y"|<n, thus (3.41) implies the
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existence of M"e# and Y"eZ ¥ such that Y"=M"+Y" which means in
particular that ¥” is the P*-dual predictable projection of Y” for every xeE. If
we set ¥ =sup Y", (3.35) implies that ¥ is the dual predictable projection of Y for
every P*. *

Suppose (.#,) is a Markov filtration. By (3.29) we have |AM"| =2 n; thus (3.45)
implies that @ M"e.%. Hence @, ¥" is the dual predictable projection of @, Y”.
Since Ye#? 7] it is obvious that @, Ye?n ¥~ and, since (@, ¥),=0, it follows
that @, Yes, (see [34], or [21], (1.37)). Obviously &, Y=sup®,Y" and 0,7

loc

=sup @, ", thus applying once more (3.35) completes the proof.

(3.47) Lemma. If Ye.&, then there exists an a.s. continuous Y€ & which is a
version of the P*-continuous local martingale part of Y for every xcE. Moreover,
if () is a Markov filtration we have ©,Ye ¥ and (0,Y)'=0,Y").

Proof. We follow [36]. As in (3.41) we may assume that Y is everywhere right-
continuous. Therefore the following process

(3.48) Am),= Z AYsl{lAYs|>1/n}

O<s=r

is (A;)-adapted and right-continuous (recall the convention: 4Y,=0 when Y,
does not exist). It is well known that A(n)e.o ., and we set N(n)=A(n)— A(n),

where A(n) is the dual predictable projection of A(n). Let N* be a version of the
P*-continuous local martingale part of Y. We know that P*-lim N(n),=Y,— N~

for all t=0, xeE. Then, the existence of a Y°e% which is P*-indistinguishable
from N* for every xeE follows from (3.29).

Suppose (4,) is a Markov filtration. Since |[A(Y—N(1))|£2, (3.45) implies
O,(Y—-N(1)eZ, while (3.46) implies O, N(1)e &L. Therefore O, Ye.#, and from
what precedes we can consider (@, Y)". Moreover the process assocrated to 6,Y
by (3.48) is O, A(n), and from (3.45) we have @ An)=0 A(n) thus we have P*-
hm(@ Nm),=(0,Y),—(0,Y). Since P*- hm N(n)t Y- Y (3.31) implies that

(@S Y(E=06,Y°), as. for all t=s. Since (@ YE=0,Y9,=0 for t<s, we have
finished the proof.

Proof of (3.12). We may assume that Y is everywhere right continuous, so the
process Y° defined by (3.20) is in #; and Y'=Y —Y,— Y* belongs to 4, (since
|4Y’| <1). (3.41) implies the existence of Ne.# and BeZ ¥ such that Y'=N
+B.

We obtain (i) by setting M =N and A=Y, + Y+ B. Statements (iii) and (iv)
have been proved in (3.46) and (3.39). Since the continuous local martingale
parts of Y and N coincide, (v) follows from (3.47). When Ye ¥, we have Y¢e.o/,,
and we obtain (ii) by setting M=N+Y°—Y¢and 4=Y,+ YE+B

Let He ﬂ L(Y, P*). We put H"=H 1, . ,,. We have constructed the stochas-

xek

tic integral processes H"- Ye.% in (3.26). Let Z* be a version of the P*-stochastic
integral process of H with respect to Y. By (3.11) we have P*-lim H"- Y,=Z7 for
all t =20, xeE. Hence, (vi) immediately follows from (3.29). "
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Proof of (3.13). We divide the proof into several steps.

(a) Every Ye.? such that [4Y|<c for some celR, is a P*-local martingale:
because E*[ Yy, 1=|u(dx)E*[Y;,; ]=0 for all stopping times T, where T,
=inf{t: |Y|=n}.

(b) Every Ye¥” has P*-as. finite variation over finite intervals: this is
obvious. Since every Ye & has a decomposition Y=M + 4 with Me %, |[AM|£2,
Aev it follows that every Ye is a P*-semimartingale.

(c) Let YeZ "7, t=0, Vebp # Since EX[ VY, ]=E*[("V)_- Y] for all xeE,
we have E*[VY]=E*[("V)_- Y] and since "V,=E*[V|#,] we deduce that Y is
(A})-predictable (this is the identification between predictable and natural
processes), so Y is P*-indistinguishable from a (£)-predictable process.

(d) Let Yes4 , with E*[Y,]<oo. Using (c) and the fact that Y (with the
notation of (3.12, iii)), being predictable increasing with E*[¥,] < oo, is P¥-locally
integrable, see [21] (1.37), we deduce that Yis P*locally integrable and admits ¥
as a version of its P#-dual predictable projection.

(e) Let Ye& and let us use the notation of the proof of (3.12). From (a) we
deduce that N is a P*-local martingale. If Ye &, we have M=N+Y*¢— Y* which
is a P*-local martingale by (d), so Y is a P-special semimartingale by (c). If
Ye ¥ we have Y=M which is a P*-local martingale. So far we have proved (i)
and the assertion in (ii) about ¥.

(f) To prove the assertion in (ii) about Y, it is sufficient to consider the case
where Ye¥ and |4Y|=¢, and by localization we may even assume Y is bounded.
With the notations of the proof of (3.47), E*[sup(Y,— Y —N(n),)*] converges

to 0 boundedly in x, so E“[sup(Y,— Y,*—N(n))*]—0. But Y° is a continuous P*-
14

local martingale by (a), and N(n) is a P*-compensated sum of jumps by (b), and
it follows that Y¢ is the P*-continuous local martingale part of Y. Since

[LYL=[Y,Y]+Y5+ Y (4Y)

‘WO<sst

and since [Y¢, Y¢] is the unique continuous increasing process such that (Y)?
—[Y< Y] is a local martingale, we deduce that [Y,Y] is the P*-quadratic
variation of Y for every Ye &

(g) It remains to prove (iii), and for this we will use freely [21], §11-2-f (what
follows will be needed for the proof of (3.15,vi) also). Let Ye.%, He () L(Y, P%).

xeD
Put D={|AY|>1}U{|HAY|>1}, and

Y=Y,+ > A4Y1,(s), Y'=Y-Y"
O<s=t
We have Y'e?,Y'ed,, |[AY"|<1. Moreover, the assumption on H implies that if
Y"=M+ A is the P*-canonical decomposition of Y” (independent of x and also
valid for P* from what precedes), then the Stieltjes integral processes H- Y’ and
H- A exist P*-as. and the P*-stochastic integral of H with respect to M exists,
which amounts to saying that H?-[M, M]es/ . (PY), for every xeE. Since the
Stieltjes integrals do not depend on the measure, we have H-Y'e? (P"),
H-Aev(P%, and H?*-[M,M]e (P*) by (d). These facts prove that



Semimartingales and Markov Processes 181

HeL(Y,P¥), and it remains to prove that the process H-M constructed in
(3.12,vi) is a version of the P*-stochastic integral. Since [AM|£2 and [HAM|<2,
by localizing we may assume that [M, M] and H?-[M, M] are P*-integrable.
Then the result, which is evident for H of the form (3.37), is proved by the same
arguments as in (3.36) (for H bounded) and as in the proof of (3.12,vi) (for H
unbounded), provided we replace convergence in measure by L*-convergence as
in (f) above. (Note that, unless we use sophisticated arguments such as “medial
limits”, we cannot conclude immediately from the fact that P*lim U"=U for
every xeE, that P*-lim U"="U).

Proof of (3.15). We have shown (iii) in (3.46). If Ye¥~ (resp. Z N ¥"), it is obvious
that @, Ye¥” (resp. Z7"). We have proved in (3.45) that Ye.# implies O, Ye &
Using (3.12,1,1i), the remaining assertions in (i), as well as (ii), are obvious. Since
Y¢=M¢ and similarly (6, Y)'=(O, M), whenever Y=M+A4 with MeZ and
Ae’, (iv) follows from (3.47).

With the notation (3.40), lemma (3.31) implies

LY, Y]togssz-liin VI(n,z)OGS

=P*lim[(0,Y)2+ Y. (6,Y),,,,—(0,Y),, )]
n i=1
Since @, Y=0 on [0,s), the above limit equals [6,Y, O, Y], as., which proves
(v).
It remains to prove (vi), and for this we use the notations of part (g) of the
proof of (3.13). It is an easy computation to check that

(O, H)-(6,Y)=6,H-Y), (6,H)(6,4)=06(H-4),
(6,H)*-[6,M,6,M]=06,(H*-[M,M])

(these are Stieltjes integrals, we use (v) for the last one). Because of (1), the first
two processes above are in ¥; and the last one is in ./ .. Thus, ©, H is integrable

with respect to 6, Y, to O, 4, and to O, M, for every measure P*, and we have
O,He (| L(©,Y, P).

xeE

When H is given by (3.37), a simple computation based upon (3.38) shows
that ©,(H-Y)=(0,H)-(0,Y). Using (3.31) we obtain that the same property
holds, by using the same argument as in (3.36) for H bounded, and then the
same argument as in the proof of (3.12, vi) for H unbounded.

Finally, when (.#,) is a strong Markov filtration, we can replace s by any
finite (J)-stopping time S in (3.45), (3.46), (3.47) and above, to obtain the final
assertion of (3.15) (see remark (3.33)).

3e) Proof of Theorem(3.26)

Proof of (3.26,1i). It is sufficient to prove the result when Ye(# n¥,.J)(4#). Since
(.#,) is a Markov filtration, (Q, .#,.4#,,0,,(X,,Y,),P*) is a Markov additive
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process, see [5]. Since Y is continuous and increasing, it is shown in [5] that Y is
(#)-adapted, and hence (%,)-predictable (although in [5] it is assumed that the
transition semi-group of X is Borel, this fact does not play any role).

It remains to prove that when '+ .4, we can find a (#})-adapted process
which is indistinguishable from Y. Since Ye#,, x— E*[Y,1,] is &,-measurable
for all Aest’=\/ ;. Since Y,eZ, by taking #, in place of J# in (3.30) we see

t
that for all r >0 there exists Y, such that ¥,=Y, a.s. Then the desired result is
obtained by applying (3.27) to the filtration ().

(3.49) Remark. Let us sketch here the proof of (3.26, iii).

(a) The proof of the above referenced result in [5] goes as follows. We
denote by Q*(w,*) a version of the conditional distribution of the process Y,
conditionally with respect to & for the measure P*. It is easy enough to show
that for P*-almost all w, Y is a process with (non-stationary) independent
increments under Q%(w, ). Since Y is continuous increasing, it is deterministic
for Q*(w, +), which means that the process Y is #-measurable. Then it is easy to
check that YeZ,.

(b) When Ye(Z 7,7 )(H#) is not continuous, we can construct Q* as before
and Y is a process with independent increments for Q*(w, +). However, Y may be
(#)-predictable without being predictable with respect to the filtration %,
=0(Y;: s£t), so we cannot conclude that Y is deterministic for Q%(cw,").
However when (@, .#°) is a “nice measurable space”, we can consider a regular
version Q*(w, *) of the conditional probability P* with respect to %. With some
efforts one can prove (see.[23]) that (@, .#°, .#°,Y,,Q*(w,*)) is again a process
with independent increments and since Y is (.#,)-predictable and increasing we
can deduce that Y is deterministic under Q*(w, *). It follows like in (a) that YeZ,
and we prove like for (3.26,ii) that Y is indistinguishable from a (#)-adapted
process.

(c) It remains to prove that for every xeE, Y is P*-indistinguishable from a
(#)-predictable process Y*. For this we consider a version ¥*" of the (S, P¥)-
dual predictable projection of Y An. Since ¥*"—Yan is a (%, P¥)-martingale,
the remark before (3.24) implies that it is also a (.#,, P*)-martingale, which is
(«)-predictable and has finite variation. Hence Y*"=Y An P*-as. and the
result follows by taking ¥*=sup ¥*.

In order to prove (3.26,i,iv), we begin with an auxiliary result, which is
interesting in itsclf. We say that a process Y has (#)-local integrable variation if
it is the difference Y=Y"'—Y? of two nonnegative #-measurable increasing
right-continuous processes Y and Y? such that, for every xeE, there exists a
sequence (1)) of (H#)-stopping times (possibly depending on x), with lim T, = cc

a.s. and E"[YT"H]<oo for all neN, i=1,2. Note that Y does not need to be
adapted, but Y, is #-measurable for all >0,
(3.50) Proposition. Let Y be a process with (#,)-local integrable variation.

(i) There exists a process Y which is a version of the (#))-dual predictable
projection of Y for every P~
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(ii) If the filtration () is Markov (resp. strong Markov) and if Y is additive
(resp. strongly additive ) then Y is additive (resp. strongly additive ).

An additive process Y such as above is sometimes called a “raw additive
functional”. (3.50,i1) is well known: see [14] and [2]. Although this result is
basically the same as (3.12,iii) and (3.18,iii), it needs a new proof that is
reproduced from [2]. Note that the same proof (just replace (*V)_ by "V below)
would give the existence of an (additive) (#/)-dual optional projection of the
(additive) process Y; we would obtain similarly the existence of a (J#)-dual
optional projection. See [41] for a complete treatment of these matters.

Proof. (1) We can suppose Y is positive and increasing. Let Y* be a version of the
(s#/)-dual predictable projection of Y for P*. Let Ae#. (3.32,1) shows that ("1 ),
=FE*[1,|%] and, by a well known property of dual predictable projections, we
have

Ex[?tx IA] =E* [((nlAL ’ Y)z]

for all t 20, xeE. Since Y and "1, are #-measurable processes, (3.7) implies that
for every t 20, the family (Y,), . satisfies the conditions of (3.30) with respect to
A take Z ,=("1,)_-Y,. The existence of Y follows from (3.27).

(i) Let Y*=Y An, and denote by Y" and 6,Y" the (#/)-dual predictable
projections of Y" and @, Y", as constructed in (i). Let Veb % Web Z. Since 6, Y
=0 on [0,s5), and W™ (Vef),="(WV-0,), if t =5, we have

(3.51) W (Ve0)_-(0,Y"],=["WV-0)_-(0,Y"],.
If t =5, we have

EX[WVo0 (0, Y™ ]=EX [WEX[VY" 11 (by(3.14)
—E*X[WEX[("V_-Y",_]] (definition of ¥")
=E*[W(V_00)-(Y"o0,), _]
=EX[W(O,(V)_-6,Y")] (by (3.51))
=E [W((Ve0)_-(0,YM)] (by (3.32,i1)
=E*[("(WV-0)_-(@,Y")] (by (3.51))
=E*[WVo8,(0,Y"),] (by definition of &, Y").

Since the variables of the form WVe0, generate %, we obtain (& f’")t=(@/s\Y")t
a.s.Afor @\t >s. The same equality being trivially fullfilled for t<s, we obtain
0.Y"=6,Y"

Using (3.35), we prove exactly as in (3.46) that ©,Y has (#))-locally integr-
able variation, and that @,Y is the (#))-dual predictable projection of 6, Y.

Then, using (3.19), we prove as in (3.18) that, since Y is additive, Y is also
additive.

(3.52) Proposition. If (.#,) is a Markov filtration, we have (3.26,1).

Proof. 1t is sufficient to prove the result when Ye(Zn¥.])(#) satisfies
E*[Y]< oo for all xeE, t=0. We can apply (3.50) to such a Y. Since Y and Y are
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additive, and since Y is the (##,)-dual predictable projection of Y, for all 5,620
we have

E*[Y, ,— VI A]=EX[V]=E*[Y]=E'[Y,,,~ Y| #].

Since Y is P*-indistinguishable from a (#)-predictable process, and since
E*[Y]<oo for all t>0, the above property characterizes Y as being the (5£)-
dual predictable projection of Y for P*. Since Y itself is P*-indistinguishable
from a (#)-predictable process, we deduce that ¥ and Y are P*-indistinguish-
able, which proves the result.

Although this proposition contains the main idea, (3.26, iv) is far from being
an easy corollary of it. The following is a preparatory lemma, more or less well
known, and which will be used again later.

(3.53) Lemma. Suppose (.#,) is a strong Markov filtration. Let Ye#,} be purely
discontinuous and strongly additive, with a.s. finitely many jumps over each finite
interval, the size of them being bounded by a constant c. Then, there exists an
increasing sequence (D,) of &,-measurable sets, such that \ JD,=E and that
sup E*[{e™" 1, (1)dY,]< co.

xeE

1.
Proof. T=inf{t: Y,>0} is a (#)-stopping time, and Dnz{x: E e T]<1 ——} is
n

&,-measurable. Since T>0 a.s., we have | JD,=E. The process Z"=1, (X) Y is
in .7, it is purely discontinuous, and its jumps occur at successive times which
we label S;,S,,... (we have S ,—co). We also have S; =T, and Xs,€D, on

1 . . ..
{S,< o0}, hence E¥®?[e=51]<1—~ on {S,<oo}. Since Z" is strongly additive,
n

we have S, =S, +8S,¢0g_ as. Therefore (3.4,ii) implies

1
Efem50 =B 0o () ™[ 1)< (1) B¥Le ],

1ya-1
EX[fe "1, (X)dY]< Y E*[ce 5=c Y (1——) =cn.
gz1 qz1 n
Proof. of (3.26,1v). It is sufficient to prove the result when Ye(2n7,;)(#), and
because of (3.26,ii), when in addition Y is purely discontinuous. Set

Y;nz Z AY;1(1/H§AYS§"}.

O<sst
Since Y=I1lim Y", it is sufficient to prove the result for each Y* or, in other

words, to prove the result for every Ye(# n ¥,7) () satisfying the conditions of
(3.53). Let Y be such a process, and let (D,) be the sequence of subsets associated
by (3.53). Denote by Z” the (#)-dual predictable projection of Z"=1p (X)-Y.
We have Ze(Pn¥,;)(H#) and (3.53) implies that E*[Z"]=E*[Z"] < for all
120, xeE. Since Z""'—Z"e¥"" and Y=sup Z" by the monotone convergence
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theorem, (3.35) implies that ¥=supZ”. Since Ye#n¥ ", we also have Y
=sup Z". Therefore the desired conclusion is obtained by applying (3.26,i) to
each Z".

(3.54) Remark. The previous proof for (3.26,iv) hinges upon two non-trivial

results, namely (3.26,1i) which relies upon [5], and (3.50). It would be interesting

to have a direct proof. We have such a proof in our hands when X is a right

process and (.#,) is a strong Markov filtration. For simplicity, we assume that

=7, o

(a) Let Ye(?n¥,7)(#) have a bounded 1-potential u(x)=E"[je*tdYt].
0

Then a classical result (or an application of (3.18, i) to the process e™'u(X))
—u(X,), for the filtration (£,)) gives the existence of a Ye(Z 7,7 }(#,) such that

u(X,)=eE* [j"e‘sdf’s‘%], and since Y is additive we also have u(X))
t

[c9} 0
=e' E* [j" e—*dy, ///t]. A simple computation yields u(X,)=¢' E* [f e *dY, //Z,].
t t

i t
Since both processes (e *dY, and (e *d¥, are (4)-predictable, we deduce that
0 0

they are a.s. equal (this is basically the same argument as in (3.52), ¥ is exactly
the process constructed in (3.50)), and it follows that Y possesses the desired
property.

{(b) To prove the result for Ye(#n ¥,])(+#) the same argument as in the
proof of (3.26,1v) shows that we can assume AY <c¢ for some ceRR. We will see
later (4.7) that there exists an increasing sequence (E,) of finely open sets such

that if 7, =inf{r>0: X,¢E,} the function E*[ | e~'dY] is bounded and lim T,
10,7, "
=00 as. Then Y"=Y; ., is an additive functional with bounded 1-potential for
the right process obtained from X by killing it at time 7,. Moreover, this killed
process is (#)-adapted. Applying (a) we obtain that Y” is indistinguishable from
a (#,)-predictable process, and since lim T,= co a.s. we obtain the same property

for Y.

3f) Relative Densities of Additive Increasing Processes
First, we state a generalized version of Motoo’s theorem.

(3.55) Theorem. Suppose (.#,) is a strong Markov filtration. Let B, B'e V¥, (#,) be
both continuous and satisfy the following condition:

febé&, f(X)-B=0 as. = f(X) -B'=0 as.

Then there exists he&, such that B'=h(X)-B up to an evanescent set.

Note that because of (3.26,11) we have B, B'e7¥,,(%,). This theorem is proved
in [1] for B,B’ increasing, but only when X is a right process, an assumption
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which is explicitly used in the proof. The idea of computing the relative densities
by means of Lebesgue’s differentiation theorem originates with Kunita (un-
published) who described the procedure to Getoor who in turn communicated
the proof to Meyer. The following auxiliary result may be of interest, since it
does not require the strong Markov property.

(3.56) Proposition. Suppose (#,) is a Markov filtration. Let BeV,J () satisfy
t

dB,<dt a.s. Then there exists hep &, such that B,=[h(X))ds a.s.
0

Proof. Set Z,=lim 1nf (
slo
hepé&,. For every w such that dB,(w)<dt the Lebesgue derivation theorem
t

..—BJ)/s and h(x)=E*[Z,]. Since Z,ep #,, we have

implies that B,(w)=[Z(w)ds for all t=0. The additivity of B yields Z,=Z¢8,

0
a.s., hence the Markov property implies Z,=h(X,) a.s. for all t=0. That is, if D
={(w,1): Z (w)*h(X,(0))} and D= {t: (w,t)eD} and D,={w: (w,t)eD}, we have
P*[D,]=0 for all t=0. If we can apply the Fubini Theorem to D relative to

P*(dw) ®dt, it follows that the Lebesgue measure of D, is zero for P*-almost all
t

w, and since B,=[Z ds a.s., we obtain the result.
0

Since (w,t)—B,(w) 18 F xA#_-measurable, (w,t)—=>Z,(w) is FxX_-
measurable as well. Let v(+)=U"(x, *) where xeE and (U”),_, is the resolvent of
X. There exists #',h"e& such that ' <h <k’ and v(h'—Hh)=0. Since v(h"'—H)

e "EX[(W —h){(X )]dt, the Fubini Theorem implies that {(w,t): (1"
2

0
— ) (X (@) >0} is P*(dw)®dt-null and therefore the function (w,t) = h(X,(w))
is measurable with respect to the P*(dw)® dt-completion of # x % .. Hence D
is measurable with respect to the same completion, and we can apply Fubini’s
Theorem to D.

Proof of (3.55). By (3.26,ii) we can replace B, B’ by indistinguishable processes
still denoted by B, B’ and belonging to ¥,4(#/). Let B*, B~ (resp. B'*,B'~) be
the positive and negative variation processes of B (resp. B), and let C=B* +B~,
C’=B'"+B'~: all these processes are in ¥,4 (#,) and by (3.21) applied to .#
:97,0 they are strongly additive. Set F,=t+ C,+ C; and 7,=inf{s: F,>t}. Each t,
is a finite (s#)-stopping time. Since F, B* are strongly additive and (%)) is a
strong Markov filtration, B;f =B/ is an increasing additive functional of the time-
changed Markov process X, X and B* is adapted to the filtration (%) as-
sociated to X by the same conventlon 3. 23) as (#/) to X. Moreover dB; <dt.

By (3.56) there exists h* epé, such that B, = jh*(X )ds and changing time back
y1elds B+—jh (X,)dF, a.s. Similarly we obtam h= W W~ epé, such that B

—jh dF Bt= jh’*(X )dF, and B,~ ~jh’ (X,)dF,. The hypothesis on B, B’
1mp11es that {h*=h" }c {W*=h"}uptoa set of F-potential zero, so if we set h
t

=[(h* =W ~)(h* —h~)] 14 ., , we obtain B,=[h(X,)dB, as.
{ } 5
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Motoo’s Theorem generalizes as follows in the discontinuous case.

(3.57) Theorem. Suppose (,) is a strong Markov filtration. Let B, B'e ¥ 4(#,) be
strongly additive and satisfy the following condition:

Z strongly homogeneous (#))-optional, Z-B=0 as. = Z-B'=0 as.

Then, there exists a strongly homogeneous (#,)-optional process H such that
B'=H - B up to an evanescent set.

Proof. Set Be=B,—B,— Y. A4B,, and define B'® similatly. B° and B'® satisfy the
0<s=t

conditions of {3.55), so there exists heé&, such that B“=h(X)-B" Let D={4B

=0}. The process 1, is strongly homogeneous and 1,-B=0, so 1,-B'=0 as.

and we have up to an evanescent set: {4B'+0} = {AB =0} (with the conventions

AB,=B, and 4B,=By). Then obviously the conclusion of our theorem is met

by setting

A8
H=h(X)1p+—1p..
() 1p+ 55 1o

(3.58) Remark. Assume X is a right process and .#°=Z°.

(a) Recall that for every l-excessive function f the process f(X) admits a.s.
left-hand limits. Then one can prove ([41]) that a strongly homogeneous (%,°)-
optional process H, considered as a function on @x IR, is measurable with
respect to the o-field generated by the processes X and f(X)_, where f goes
through the set of all 1-excessive functions. Hence one can always choose an H
as such in (3.57), since every (%,)-adapted increasing additive functional of X is
indistinguishable from a (£)-adapted functional. See [1] or [41].

(b) When in addition hypothesis (L) holds, Glover [16] has shown that in
(3.57) one can choose an H of the form H=h(X*, X) where X* is the left-hand
limit of X in a suitable compactification E* of E and where & is a Borel function
on E*x E.

(¢) When B,B'e(ZnY,f) in (3.57), one can choose H measurable with
respect to the o-field on @ x R, generated by all processes f(X)_, where f is any
1-excessive function.

4. Semimartingale Functions of a Markov Process

It will be assumed throughout this section that the underlying process X
=(Q, M, 4,0, X, P)is a right process. The state space E is a topological space
which is homeomorphic to a universally measurable subset of a compact
metrizable space (that is, a U-space); see [13] or [41]. We investigate here the
following problem:

{(4.1) For which real functions f on E is the process f(X) a semimartingale over
(Q, #, M, P) for all xeE?

A function f satisfying the condition of (4.1) will be called a semimartingale
function for X. Let us note to begin with that, because of (3.24), and since a
process f(X) is (#)-adapted as soon as it is (.#)-adapted, a function f is a
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semimartingale function if and only f(X) is a semimartingale over (Q, % %,. P¥)
for every x€E. So until the end of this section, we work only with the natural
filtration A, =F,= H,.

Before stating the main result (4.6) we make some observations about the
problem (4.1). If f(X) is to be in %, f must be &*-measurable, and the almost
sure right-continuity of f(X) implies that f must be finely continuous and &°-
measurable; see [3], 1I-(4.8) and [41], (9.8). If T is a terminal time for X, then
(X, T) denotes the process X killed at time T it is constructed on the same space
(Q. &, P*) by adjoining a death point 4 to E and by setting

- X,(w) if t<T(w),
X(@)= {A if 1> T(w).

If one restricts x to the set G of irregular points for 7, that is, G={x€E:
P*[T>0]=1}, it is a standard fact that (X, T) restricted to Gu {4} is a right
process if the terminal time T is exact; see [41], (12.20) for example. If T=T, is
the hitting time of a set Ke&®, then T, is an exact terminal time and G =E\K",
where K” is the set of regular points for K. The set K" is finely closed and in &,
because it may be expressed in the form K"={¢=1} where ¢(x)=E*[e~"*] is
1-excessive. Let B¢ denote the a-order hitting operator for K, defined by Bf f(x)
=E*[e *Txf(X 1)l f€pE*. One has the following standard facts relating
excessive functions for (X, T) to excessive functions for X. For fep&* and o >0,
set

Vif(x)=E[ [ e *f(X,)df], xeE.

[0, Tk)

The restriction of V* to G=E\K" is the a-potential kernel for the process
(X, Ty). Note that if xeK”, then V*f(x)=0 for every fep&*. If (U*) denotes the
resolvent for X, Dynkin’s formula ([3], II{1.2)) gives the relation

(4.2) Vef=Uf—P2U*f, feb&*, o>0.
An fep&¥ is called a~(X, Ty)-excessive if

(43) e ™E*[f(X)1, 1] increases to f(x) when decreases to 0, for every
xekE.

It is easy to see that an u-(X, T;)-excessive function vanishes on K" and its
restriction to G=E\K" is a-excessive for (X, T). Conversely, any function
defined on G which is a-excessive for (X, Ty) is an o-(X, Ty)-excessive function if it
is set equal to zero on K" In particular, if a>0, every wo-(X, Ty)-excessive
function is equal to the limit of an increasing sequence (V*h,) with h,ebp &*.
Using (4.2) and the fact that if f is a-excessive then so is BYf, one derives the
following:

(4.4) Proposition. If a>0, every a-(X, T;)-excessive function on E is &°-measur-
able. Hence the o-field £°(X, Ty) generated by all v-excessive functions of (X, Ty)
is the trace of &° on G=E\K".
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It is also easy to see that a subset of G is finely open for (X, T}) if and only if
it is finely open for X.
We recall the following simple way of forming o-(X, T,)-excessive functions.

(4.5) Proposition. If fep &%, then B¢ f-1, is a-(X, Ty)-excessive.
Proof. We have, letting h=1,- F f,

e "E[h(X)1, o ]=e " E 15X, Ly cra EXt[e*“TKf(XTK)]].

However, X,€G as. on {t<Ty}, and Ty=t+Tyo0, as. on {t<T}, so the last
expression above reduces by the Markov property to

E¥[e*tH TR0 f(X 1 ) Ly 1]
=B Le™ ™ f (X7 ) 1y ro]s
which increases to E*[e™*"*f(X ; )] 15(x) as ¢ | 0.
We may now described the solution to (4.1).

(4.6) Theorem. A real function f on E is a semimartingale function for X if and
only if the following condition is satisfied: there exists a sequence (E,) of finely
open &°-measurable sets with E=\_JE, such that if T,= Ty, is the hitting time of E;,
then supT,=c0 as., and for each n there exist bounded 1-(X, T )-excessive
Junctions g,, h, on E such that f1;_ g..=g,—h,. If f is bounded, the sets E, may
be constructed so that they are increasing, and hence the stopping times T, are
increasing.

It should be remarked that the sufficiency of the condition is a simple
consequence of a theorem of Meyer ([ 34], IV-T33 and the footnote on p. 313, or
[22] (2.17)), since then the process f(X) coincides with the semimartingale g, (X)
—h,(X) on the stochastic interval [0, T,[.

The technical lemma used for producing the sets E, is similar to a result of
Revuz [38] based on an exponential formula of Meyer [31].

(4.7) Lemma. Let Be ¥, with ABZc for some constant c. Then, there exists an
increasing sequence (E,),» , of finely open &°-measurable sets with E=| ) E,, such

that if T,=Tg, is the hitting time of ES then lim1T,=o0 as., and for all n>1,
(n)

supE*[ | e 'dB]<ono.
xeE (0T,

Proof. We may suppose that ¢<1. By (3.27,i) we may also suppose that B is a
perfect additive functional, that is, we have B, =B, + B,c0, everywhere outside
a null set not depending on (s, t). If M is defined by

M,=e %11, _ ., [(1—4B)e®],

then M is a decreasing right-continuous perfect multiplicative functional of X
with My=1 as. and M,>0 as. for all £>0. Moreover, M satisfies

4.8) M=1-M_-B



190 E. Cinlar et al.

The kernels V*, >0, defined on b £* by
yeag [je*“’f )M dt] feb&*,

form a resolvent on E, (which turns out to be just the resolvent of the process X
killed at rate —dM,/M, , see [3] Chap.Ill, a fact which will not be used later).
Let Ug be the a-potential kernel for B, defined by

s f [je‘“‘f t], fep&*,

It is well known ([3], Chap.IV) that U;f is o-excessive on E if fep &*. The
kernels V* and Uy are related to each other by

(4.9) UsVe=U*—V?  >0.

To prove (4.9) start with the formula

o0

[e=*"dB, e~ "D f(X)M,_,o0,ds
(4.10) ©o
—fef(x jMMldB,,
0

valid a.s. since M is perfect, for all febp &*. Using (4.8),
(})MSM,1dBt=;[Mth‘lM;1(—th)
=Ms}d(M[1)=MS(M;1 ~)=1-M,.
0
We obtain thus from (4.10)
E [}Oe—mdB, [est 9 £(X )M, 6, ds]
0 :
=Uf () Vef (x).

However, the process

(4.11)

[ e ™= (X)M,_,°0,ds= (j e“’”‘f(Xu)Mudu>09t
t 0
admits the following optional projection for all measures P*:
[j" e (X) M, du| =V (X)),

by the strong Markov property. Using this in (4.11) proves (4.9).
Now let ¢=V"'1. Then 0<¢ <1 and by (49), ¢=U'1—-V"'1 is a difference
of two bounded 1-excessive functions. In particular, ¢ is finely continuous and
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&*-measurable. Let G,={xeE: ¢(x)>1/n}. Each E, is a finely open set in &%,

1
and E 1E. If T,=T,, since E; is finely closed, ¢(X )< a.s. on {T,<co}. It
follows by deflmtlon of ¢ that for all xeE

Ex[j‘e*‘Mtdt
Tn

1
~Tp
g‘fn] < e My,

If T=1im T,, since je‘[M dt— je‘tM dt boundedly, taking expectations
Tr

in the above inequality yields

E* [j e*thdt] =0
T

Since e="M,>0 as. for all t =0, we deduce that T=o0 as.
Since AB=Zc¢<1, one has

B[ | e'dB]<E*[ | e 'dB]+1

(0, Ty] (0.Ty)

and since np(X,)>1 for all t <7,

B[ | e'dBJSI+ET | e 'ne(X)dB,]

(0, Tl (0, Ty)
S1+4nUp ¢(x)<1+n

because Uz ¢ <U' 1 <1 using (4.9).
We now apply (4.7) to obtain a more precise formulation of (3.41). This is the
key step in the proof of (4.6).

(4.12) Lemma. Let Ye¥, be such that the jump process AY is bounded by a
constant c. There exists Me%,, and AeP ¥,y such that Y=M+ A, and there
exists an increasing sequence (E,) of finely open sets in &° such that UE,,:E and

such that if T, is the hitting time of E;, then lim1T,=co as., and for all n,
tn)

(4.13) supEX[ | e '(dLY, Y], +d[ M, M],+|dA4,))] < .

xek (0. T,]

Proof. Theorem (3.18) implies the existence of Me %, and Ae#n ¥4 such that

Y=M+ A, and the existence of the quadratic Vanatlon processes [Y, Y] and

M, M] which are in #,F. It is well known that the total variation process A4;
t

={ldA4, is in ¥}. Since |4Y[<c. we have A[Y,Y]=c® and (3.41) implies

0
[AM|<2c and [4A4|Zc, so A[M,M]<4c? and 44’ <c. Hence the final part of
the lemma follows from (4.7) applied to B=[Y, Y]+[M. M]+ 4"

Proof of (4.6). (1) Suppose first that /" is a bounded semimartingale function. Let
Y=f(X)—f(X,), so that Ye&, has uniformly bounded jumps. Let (E,) be the
sequence of &*-measurable finely open sets constructed in (4.12). Let Y,
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t
= (e *dY,, where the stochastic integral has been constructed independently of
0

the measure P, as in (3.12,vi). Using the formula for integration by parts,

(4.14) e f(X)=f(Xo)+Y,—fe " f(X,)du.

t
By (4.12), we have Y=M + A with Me¥,; and AeZn¥,,. Set M,=[e *dM,
0

t
and A,=[e *dA,, so that Y =M + A. We rewrite (4.14) as
0

(4.15) f(XO)ze*’f(Xz)—Mt—ﬁt-l—ie’sf(Xs)ds
0

Take t=T,, the hitting time of E{, and take expectations in (4.15), to obtain

f)=E e " f(Xy )] - E* [My ]~ E*[Ay ]
+E[ | e*f(X)ds];

(0.7,]

(4.16)

since by (4.13) the process (M, , 1 )5 Is a square-integrable martingale for every
P*, (4.16) is valid even if T, takes infinite values, and EX[M ]=0. Write A=A~
—A~ where A" and A~ are the positive and negative variation of A. As we
pointed out in the proof of (4.12), the total variation A" of A is an additive
functional and so therefore are A+ =(4'+ A4)/2 and A~ =(A'— A)/2.

From (4.16) we may write

f=E[e (X )]—E[ | e *dA;]
(0, Tw]

FE[ | e tdAT]+EL | eSf(X,)ds].

(0, T] (0.T,]

(4.17)

It follows from (4.5) that il G, is the complement of the set of regular points for
EZ, then x—14 (x)E*[e”T"f(X )] is a difference of two bounded functions,
each of which is 1-(X, T))-excessive. The remaining part of the right-hand side of

2 h.

(4.17) is a sum of bounded terms of the form h(x)=E*[ [ e *dB,] where
(0,7,
Bev,}. Each such expression defines a bounded 1-(X, 7,)-excessive function, for

e E*[h(X )1, _r  =e "EX[EX[ | e *dBJ}1,_ ;]

(0. Tn}

=e "E[1,_.r, [ e *dBy8]
(OsTn°9t)

=E[ | e “dB, Locr, ]

(&, 1+ Thob]

—E[ | e“dB,1, ;1.

u Tt < Ty
(& Tyl
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which obviously increases to h(x) as t}0. Thus there exist bounded 1-(X, T,)-
excessive functions g,, h, such that f1; =g,—h,. This proves the necessary
condition in (4.6) for a bounded f. We remark that it is tempting to let n— o0 in
(4.17): each term on the right-hand side of (4.17) converges, the last term

converges to E* [j"e*sf (X, ds], which is a difference of 1-excessive functions
0

for X, however, it may happen that E~ [j e‘SdAS] does not have meaning.
0

(ii) We turn now to the general case where f is a not necessarily bounded
semimartingale function. As we pointed out at the beginning of this section, f is
finely continuous and £°-measurable. Let K, ={x: |f(x)|=n} so that K €&* and
K, is finely closed. Let H, =K, the set of regular points for K,. Then H, is
finely closed, H,=K,, and H,e&° ([3], II-(2.13)). Let S, denote the hitting time
of K,. Then, since | f (X )I=n a.s. on {S,< oo}, we have lim1S,= o0 as.

()

Recalling the remarks on killed processes at the beginning of this section,
each killed process (X, S,) is a right process with state space E\H,. We denote
by X7 the value at time t of the process X killed at S,. Fine continuity of f
implies that {|f|<n}cE\H,<={|fI<n} so the restriction of f to E\H, is
bounded by n. With the convention f(4)=0, one has f(X})=f(X) 1,5, () and
so f(X") is a semimartingale over (Q, # #,, P¥) for every xeE\H,. That is, the
restriction of f to E\H, is a bounded semimartingale function of (X,S).
Applying (i) we obtain an increasing sequence (EV),., of subsets of E\H,
having the properties B

(4.18) EMTENH, as n—o;

(4.19) E7 is finely open relative to (X,S,) and EJ belongs to the o-field on
E\H, generated by the a-excessive functions of (X, S,);

(4.20) if S is the first exit time from ET U {4} by X", then limTS" = coP*-a.s.
for every xeE\H,,.

As we noted in (4.4) and the subsequent remark, (4.19) implies that Ee&*
and E7 is finely open for X. The definition of §% in (4.20) is equivalent to

St=inf(t>0: t<S,, X,¢E}).
The process (X, §)) may therefore be identified with (X, S7* A S,). Moreover,
SEAS,SRI=inf(t>0: X,¢ED),

and so for all xeE\H,,, P*-a.s. one has

no
SupRy ZsupST A S,=S,.
(m) (m)

Therefore sup supR)= coP*-as. for every x€E. Letting (E,) be an enumeration
n  om)
of the sets EY, the necessary condition stated in (4.6) has been proved. Finally,

the sufficient condition has been proved right after the statement of the theorem.
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(4.21) Remark. 1t should be pointed out that the results of this section do not
take account of the lifetime of the underlying process X. That is, the death point,
if there is one, has been treated as an ordinary point of the state space. The
reason for this is that the usual theory of semimartingales does not take account
of the presence of a distinguished lifetime. It is undoubtedly the case that such a
theory can be developed without too much difficulty, and it may be quite useful
in discussing processes such as Brownian motion in the unit disc. There is a
theory of local martingales with a distinguished lifetime, see [15] and [28]. In
this framework, the result in (4.6) would change to sup7,={ as., instead of

supT =00 as. )
(m)

5. Brownian Motion and Linear Diffusions

We shall prove in this section that every semimartingale function of a Brownian
motion on the line is locally a difference of convex functions. For reference we
record the following facts from real analysis. The proofs are standard.

(5.1) Proposition. Let f be a real function defined on R. Then, the following
conditions on f are equivalent:

(i) for every compact interval I there exists a pair g, h of convex functions on I
such that f;=g—h (where f); denotes the restriction of f to 1);

(i) the weak second derivative of f may be identified on each compact interval
as a signed measure;

(iii) the function f has a right-continuous right-hand derivative which has finite
variation on every compact interval.

Instead of using (4.6) we shall return to (3.18) and base the arguments on
some well known facts about linear Brownian motion. Let X denote the linear
Brownian motion, so E=R, and assume .#,=%,. Let I*=(L)),. , be a local time
at x for X, normalized so that x— I is a density for the occupation time relative
to the Lebesgue measure. One may select (I}, so that for all w, (t, x)— L(w) is
jointly continuous (see [3], V-(3.30)) and the normalization amounts to the fact
that for every AcR

t

(5.2) [1,(X, () ds= | E(w)dx.

4]
The following closely related results are well known. See for example [50].

(5.3) Proposition. If Acv.}, then A is continuous and there exists a Radon
measure v on R such that A,={ L v(dx) as.

(5.4) Proposition. If f is a convex function on R with weak second derivative
identified with the Radon measure v and righthand derivative f, then

F(B)=f(By)+] ' (BydB,+4 (I v(dx).
0 0
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The result (5.4) is a routine consequence of the formula of Tanaka, which
corresponds to the special case f(x)=|x]|, see for example [34]. Here is our main
result.

(5.5) Theorem. Let f be a semimartingale function for linear Brownian motion X.
Then f is locally a difference of bounded convex functions.

Proof. According to (3.18), there exists Ae#n¥,, such that f(X)—f(X,)
—Ae¥,,. The positive and negative variations A* and 4~ of 4 are in 7.}, so
by (5.3) there exist Radon measures v*, v~ such that 4} ={IZv*(dx) and 4,
=] L5v~(dx). Let g be the function on IR, determined up to an additive affine
function, such that for every compact interval I the weak second derivative of g
may be identified on I with (v* —v7);;. It follows from (5.4) that g(X)—g(X,)
—Ae,,. Therefore, if h=f—g, then h(X) is a P*-local martingale for every
xek.

Outside a null set, we have the following: the process h(X) is right-
continuous, and each point x€R is reached by the process X from above at
some finite time and from below at some other finite time. It follows that & is a
continuous function. If a>0, set T,=inf{t: |X,— X |>a}. Since h is bounded
over [x—a,x+a], the process (h(X,, 7)), is a bounded P*-martingale, and
thus h(x)=E*[h(X )], which obviously equals (h(x+a)-+h(x —a))/2. These re-
lationships, valid for all xeR, a>0, and the continuity of h, imply that h is an
affine function. Recalling (5.1) and the definition of g, the theorem is proven.

The recurrence of linear Brownian motion allows one to strengthen (5.5) in
appearance.

(5.6) Theorem. Suppose that there exists an initial law u for the linear Brownian
motion X such that f(X) is a P*-semimartingale. Then f(X) is a P*-semimartingale
Jor every xeR and so, by (5.5), f is locally a difference of bounded convex
functions.

Proof. Let xeR and T=inf{t>0: X, =x}. Then P*[T<oc|=1. Since f(X) is a
semimartingale over (Q, # #,, P*), the process Y,=f(X;_,) is a semimartingale
over (Q, # A, P¥), where ;= % this is not hard to show directly, but is also
a simple consequence of Kazamaki’s theorem [25] to the effect that semi-
martingales are preserved under right-continuous time changes (namely, here: ,
=T+1). Since Y,€07 (%) and since 07 '(F) < A;, by Stricker’s theorem [45], Y
is also a semimartingale over (2,07 (%), 07 {(%,), P*). As X, =x as., the strong
Markov property implies that the filtered spaces (2, % %, P*) and
(Q,0:1(7),07(F).P*) can be identified via the mapping 6,. Since Y,
=f(X)o 0y, a classical “change of space” theorem (see for example [217, § X-2-a)
shows that f(X) is a semimartingale over (Q, #, #,, P¥).

(5.7 Remark. Examples of functions which are not semimartingale functions of
the linear Brownian motion X were noted by Wang [49] and Yor [52], who
remarked that f(X)=|x|" (0<y<1) is not a semimartingale function. In the
notes of Meyer [34] it is shown that if f is locally a difference of convex
functions then for every semimartingale Y, f(Y) is also a semimartingale and an
expansion extending that in (5.4) was derived. The results (5.5) and (5.6) show
that no more general class of functions operates on real-valued semimartingales.
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There are trivial extensions of (5.5) and (5.6) to processes related to linear
Brownian motion.

(5.8) Theorem. A function f is a semimartingale function for the reflecting
Brownian motion on R, if and only if its weak second derivative may be identified
on every finite interval of the form [0,a] with a signed measure.

Proof. It is sufficient to prove the result on a specific realization of the reflecting
Brownian motion. We choose the one constructed in (3.3,1): (2, %, %,,0,, B,, P¥)
is a linecar Brownian motion, X,=|B,, .#,=%, #°=c(X;:s<t). By (3.24, i)
we have f(X)e# () if and only if f(X)e & (M,). Since f(X)=g(B) if g(x)=f(|x]),
the result is immediate from (5.5).

Note that, above, f must have a finite right-hand derivative at 0. The
situation is slightly different in the case of a killed Brownian motion.

(59) Theorem. Let X be a Brownian motion on R , , =(0, o) killed at 0. Then a
function f on R, ,, which is defined arbitrarily at the death state A, is a
semimartingale function for X if and only if the following conditions are satisfied:

(1) f(0+) exists and is finite;

(i) the right-hand derivative f’ of f is right-continuous and of finite variation
on every compact subinterval of R, _;

(iii) the positive Radon measure v generated by the total variation of [’

£

satisfies [xv(dx)<oco for some, and hence all, ¢>0.
0

Proof. We shall show only the necessity of the conditions (their sufficiency easily
follows from Ito’s formula extended to convex functions, see [34], and from the
forthcoming lemma (5.10)). Let { be the killing time. Since { < oo ass., (i) is clearly
necessary. Since the value of f at 4 is irrelevant to the problem, we may suppose
fA)=1(0+).

Using (3.18) we may write f(X)—f(X)=M+4 where MeZ,,, Ae¥,.
Since f(X) is continuous at time { and constant on [, c0), it follows that 4 is the
difference of two additive increasing functionals A*, 4% of X which do not
charge [{, o). By a result of [3], VI-(4.21), and just as in the proof of (5.5), there
exist positive Radon measures v', v on R,, such that for j=1,2, A
= [ I v/(dx) where L is local time for X at x. The necessity of condition (ii) is
then proved just as in (3.5). Since { < <o ass., 4] must be finite as. for j=1,2. The
condition (iii) will then follow from the following lemma.

(5.10) Lemma. Let X be the linear Brownian motion. Let v be a positive Radon
measure on R , . Let L be jointly continuous local times for X normalized as in
(5.2). If T denotes the hitting time of {0} then | L., ; v(dx)< coP*-as. for all x>0

if and only if [xv(dx)<oo for some e>0,
0

Proof. Because P*[T<oo]=1 for all x>0, [ L, ;v(dx)<co as. if and only if

[, pv(dx)<oo as. for some e>0. We may in particular assume that v is
0
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carried by (0,1). Then 4,=| L, ; v(dx) defines a continuous increasing additive
functional of (X, T) which is finite for all t<T. Applying (4.7), one obtains an
increasing sequence (E,) of finely open subsets of R, . u{4} such that if T, is

the exit time from E,, lim1T,=o0 a.s. and EX[ | e 'dA,] is bounded in x on
n [0, Tul
R, for each n. However, the fine topology for Brownian motion is the same as

the Euclidian topology, and the condition lim {7, = o0 a.s. implies that for some
n S

n, E, includes an interval of the form (0,¢). If S=inf{r: X,¢(0,¢)}, E* [je“dAt]
0

is bounded. If ¢ is chosen sufficiently small, E*[¢?5] is bounded in x: this is a
simple consequence of the known distribution of S under P*, or of estimates on
the BMO-martingale X, ¢ whose quadratic variation process is tA S, [34]
p. 348. For 0 <x <¢, the Cauchy-Schwarz inequality gives

N
E[AJ=E*[eSe S AJ| < E* [es je*tdA,]
0

1

g{Ex [¢25 E* [(Ee“‘dAt)z]}i.

s 2
By Meyer’s energy inequality, [30], E* [(je‘tdAt) ] is bounded by 2 ¢* where ¢
s 0
= sup E* [j'e“‘dAt] < co. Since E*[A4]=0 for x=e¢ and x<£0, we obtain

O<x<e 0

sup EX[Ag] <co. But E*[Ag]=E*[{ Dyv(dy)]={ E*[L%]v(dy), and since E*[I%]
(x)

is equal to the Green’s kernel for the interval [0,¢) which, as a function of y,
is proportional to y near 0, the result follows.

It should be noted that the conditions (5.9,1) and (5.9,iii) are not needed if
the notion of semimartingale functions is changed according to (4.27). In this
instance, we could say that f(X) is a P¥*-semimartingale on [0,{) if and only if,

. . 1 . . . .
letting Tn:mf{t: X, =0, f(X )1 1,(0) is a P*-semimartingale for all n. In this
n

sense, for example, f(x)=x" is a semimartingale function (localized to [0,{)) for
all real y, but f(x) is a semimartingale function for X in the usual sense if and
only if y=>0.

The theorems above permit us to describe those regular diffusions on an
interval J<IR | which are semimartingales (sec Sect.7 for another point of view
on this matter). To avoid going into a tedious analysis of boundary conditions,
we shall confine our attention to one specific case. Suppose X is a conservative
regular diffusion on an interval J and that X has scale function s and speed
measure m. Consult [20] for the properties of diffusions used below. Let Y
denote Brownian motion on the interval s(J) with reflection at finite endpoints
of 5(J), and let 4 be the additive functional of Y given by A4,= | I A(dx), where
L, are jointly continuous local times for Y and 7 is the image of m under s. If r,
=inf{s: A;>t}, then s~!(Y,) is a model of X (ie. a Markov process with the
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same transition semigroup). Thus, determining whether X is a semimartingale
relative to every P* is the same as determining whether s—* is a semimartingale
function of (Y, ).

Casel. s(J)=R. Here Y is a Brownian motion on R so 4 = as. and so
7,< 00 as. for all +=0. Kazamaki’s Theorem [257 on changes of time shows that
s™! is a semimartingale function of (Y,) if and only if s=! is a semimartingale
function of Y. By (5.5), X is a semimartingale relative to every P* if and only if
s~ 1 is locally a difference of convex functions.

The other cases are analyzed in a similar manner. We shall not discuss the
details, but in brief, on every subinterval strictly interior to s(J), s~* must be
equal to a difference of convex functions, while at finite endpoints of s(J), s=!
must satisfy the condition corresponding to (5.9,1) and (5.9, iii) if the correspond-
ing endpoint of J is a reflection point for X. If the endpoint of J is not an exit
point for X, no endpoint condition on s~! need be imposed.

Finally, we mention that if X is a Brownian motion on an open subset of R™
(m=1), Theorem (4.6) shows that every semimartingale function is locally a
difference of 1-excessive functions, each of which may be represented locally as
the sum of a finely harmonic function and the 1-potential of a measure. This
shows that one may not expect to have generalizations of the formulas of Ito
and Tanaka beyond those given by Brosamler [4]; see also Meyer [35]. It
would be of interest to delineate the class of functions on IR™ such that for every
m-dimensional semimartingale Y. the process f(Y) is also a semimartingale: such
a function f is obviously of the form described above; using (5.5) one also sees
easily that for every C>-map ¢: R, »R™, fog is locally a difference of convex
functions.

6. Additive Random Measures and Semimartingales

Throughout this section, all the assumptions, conventions and notations of
Sect.3 are in force. In addition, we consider an auxiliary topological space G
and let ¥ be its Borel o-field. We denote by O(#) and (o) the o-fields of all
(s#)-optional and (#)-predictable subsets of QxR respectively, and let 2
denote the product o-field 2(#;) x % on the space Q=2 xR, xG.

6a) Random Measures

We start with the following convention supplementing (3.6).

(6.1) Convention. Concerning G we assume that

(i) either G is a Borel subset of a compact metric space, i.e., a Lusin space,
(ii) or G is a universally measurable subset of a compact metric space (a U-
space in the terminology of [12]), and in this case we suppose that (3.6,1) holds.

We state the following well-known lemma without proof, see [12]. Here
(A, 27) is a measurable space and M is an arbitrary family of positive o-finite
measures on it.
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(6.2) Lemma. Let {f(B): Be%} be a family of functions in p s/ such that f(| )B,)
=Y f(B)m-a.e. for every meM and every sequence (B,) of pairwise disjoint sets
in 9. Suppose (6.1,1) (resp. (6.1,1i)) holds. Then, there exists a positive kernel
K(a,dy) from (A, o) (resp. from (A, /%)) into (G, %) such that K(-,B)=f(B)m-a.e.
for all meM and Be9.

Let I'(w;dt,dy) be a positive transition kernel from (€, #) into (R
X G, R, ®%), and for every measurable function W on £ set

+

(6.3) W)= W(®,5, ) Lj0,4(5) T(e; ds,dy)

whenever this integral makes sense, for instance when W =0. We will call I" a
random measure if the process W=I" defined by (6.3) is (#)-optional for every
positive O(#,)® % measurable function W on Q. Among random measures, we
distinguish the following classes:

A,

g

={I": I' is a random measure; there exists a #-measurable partition (D,)
of Q such that 1, *I'es, , for every n};

loc

P, ={Tesl,: WxI' is P"—mdlstmguishable from a (s#)-predictable process,
for every Wep 2, xeE}.

2]

The subscript “o” stands for o-finite. Note the resemblance between the
definition of 2N .47, and that of ¥ in Sect. 3.

We extend the Def1n1t10n(3 14) of the “big shifts” @, to functions W on Q
and to random measures I” by

O Wlw,t,y)=W(0,w,t—s.y) I; ,,,(1),

(6.4)
O, Iw;dt,dy)=T(0,w;dt—s,dy) 1 (D).

A simple computation shows that for every positive W
(6.5) O(W=I=(O0,W)=(O,I).

For all facts about random measures we refer to [217]. Note that, if Ye.o/ 7,
the formula I'(w;dt, {0})=dY,(w) defines a random measure Fe;vf on the
singleton G={0}; in this case, (6.4) and (6.5) reduce to the corresponding
properties in Sect. 3. Accordingly, the following is an extension of (3.12,1ii) and

(3.15, ii).
(6.6) Theorem. Let ['c.o,.

(i) There exists a I'eP s, which is a version of the dual predictable
projection of T for every P*, (that is, [€? N, and EX[WxI, ]=E*[W=xI] for
all xeE and Wep P).

(i) Suppose (#,) is a Markov filtration and let s=0. Then, ©,I'e/,, and O, I'
is a version of the dual predictable projection of ©,I'. Moreover, if (#) is a strong
Markov filtration, the same property holds when s is replaced by any finite (H)-
stopping time S.

Proof. (i) Let (D,),», be a P-measurable partition of Q such that C"
=1p, xI'esd,, for every n. As usual, C"eZ ¥ * denotes a version of the dual
predlctable projection of C”, (see (3.12)).
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For every Be¥ the process Y(n, B)=(1;1, )+ I belongs to o4, ; thus, we may
introduce its dual predictable projection Y(n B). Since dY(n,B),<dC} by
construction, we have dY(n B),<dC" as. Hence there exists a (s#))-optional
process f(n, B) such that Y(n, B)= f(n,B)- C

Next we apply Lemma(6.2) with (A, A)=(QxR_ . 0) and M
={P*(dw)®dC}(w): xeE}. For every pairwise disjoint sequence (B,) we have
Y(n,|)B,) z Y(n,B,), and hence, Y(n, )B,)= Z Y(n,B,) up to an evanescent

set, which imphes that f(n,{ JB,)=Y f(n,B)m- ae for every meM. Thus, by

(6.2), there exists a positive kernel K”q(w, t;dy) such that K"(-, B)=f(n, Bym-a.e.
for all meM and Be%. We set ["(w;dt,dy)=dC"(w) K"(w,t;dy).

By definition, 1,#I™= Y (n, B) up to an evanescent set for all Be%. Hence, for
every DeP(H), 1, g =1, -(1,+1™) belongs to Zn ¥+, and

E*[1p, p[3}=E"[15- Y(n,B),]
» :Ex[lD'Y(naB)oo:l:Ex[(]'DxBlD")*Foo]'

Therefore, I"e#? N, and by a monotone class argument we see that
Ex[W*f"] E*[(W1y )1 ] for all xeE, n21, Wep 2. There remains to set I’
=Y I" and the proof of (i) is finished.
(i) Suppose (.#,) is a Markov filtration, and let s=0. We set D=0 x[0,s)
X G, and D, ={(w,1,y): 6,1, (w,1,y)=1} for n=1. Then, (D,),,, is a P-measut-
able partition of Q. We have 1,,#(©, =0, while for n=1, (6.5) implies that
15 #(0,T)=0,(1,, =I'), which belongs to ., because of (3.15,1). Thus O,I'e o,

loc

and we denote by (:)s\f“ its dual predictable projection. Similarly, we have
O, F'e? s, For all n=1, Be¥, the process (IBID;‘)*é:IJ“ which equals

O,[(1p1p)xI"] because of (6.5). Then, (3.15iii) implies that (151, )*@ r
=0.[(1, 1 *F] which equals (151,)* 6O, I because of (6.5) again. It is obv1ous

that (1, IDO)*@SF-: 151,)*O,I'=0. So far, we have obtained: ( lBan)*@sF

=(131,)#@, I for all n20, Be%, from which we deduce that 0,1 =0, "
Finally, when (.#,) is a strong Markov filtration, the final assertion is proved
exactly like the final assertion of (3.15).
The random measure I is called additive (resp. strongly additive) if

6.7) () (-, {0} xG)=0 as.
(i) for all s=0, (O, I)(+,dt,dy)=TI(-,dt,dy)1 (1) as. (resp. for all finite
M)-stopping times S, (@5 I ( dt,dy)=I(-,dt,dy) 15 (1) as.).

(6 8) Theorem. Suppose (.4,) is a Markov (resp. strong Markov) filtration. Let
Tesl, be additive (resp. strongly additive). Then there exists an additive (Tesp.
strongly additive) I'e? ~.of, which is a version of the P*-dual predictable
projection of I' for every xeE.

Proof. It is immediate from (6.6) and (6.7), and by using the same argument as in
the final part of the proof of (3.18) to obtain the strong additivity of I
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(6.9) Remark. Suppose .#° =7, or more generally suppose that the function
s—Zof(w) on R, is Borel for all weQ, Zeb #°. Suppose (M) is a strong
Markov filtration. Then any additive random measures I satisfying the follow-
ing condition is strongly additive:

there exists a O(H,)® %-measurable partition (D,) of @ such that 1 p, ¥ €Y, for
every n.

This follows casily form (3.27, ii): for each Be%, the process 1, . o.r. p*l
is additive, so is strongly additive. The desired conclusion thus immediately
follows from the separability of the o-field Z. ® .

6b) Integer-Valued Random Measures and Stochastic Integrals

Except for the next definition, the content of this subsection will not be used in
the sequel. A random measure I is called integer-valued if it has the form

(6.10) Mow;dt,dy)= Z (@, 5) &5, 7.0 (dL, dY),

where Ae((#), where Z is a G-valued (s#))-optional process, and where ¢,
denotes the Dirac measure at point a.

Let I'es/, be an integer-valued random measure. Let ['eP N7, be a
version of its dual predictable projection. We will recall some facts about
stochastic integrals with respect to I'—1T, see [21]. If We2, we put

(6.11) Wt(w)=cf;W(w,f,Y)T(w;{t},dy)—f Wiw,t,y) [w; {1},dy)
G

where this expression makes sense, and W(w)= oo where it does not. We denote
by G(I', P¥) the set of all We# such that the increasing process [Z (W)*14% is

P*-locally integrable. Let WeG(I", P*); then, there exists a P*-local martlngale N,
unique up to a P*-evanescent set, which is a compensated sum of jumps
satisfying N, =0 and

(6.12) AN=W up to a P*-evanescent set.

This local martingale N is called the stochastic integral of W with respect to I’
—I. Note that N=W=I'—W=I whenever WeG(I', P¥) is such that WxT
admits a P*-locally integrable variation.

(6.13) Proposition. Let Fe&i be integer-valued. Ler Feg’md be its dual
predictable projection. Let We ﬂ G(I, P).

xekE
(i) There exists a W«(I'— e which is a version of the P*-stochastic
integral of W with respect to I —I" for every xeE.
(ii) Suppose (M) is a Markov filtration, and let s$=0. We have
O,We (\G(O,I',P*) and (O ,W) % (O I — 0O I')= O (W= (I —TI)).

xeckE
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(i) Suppose (M) is a strong Markov filtration. Then property (ii) holds if s is
replaced by any finite ()-stopping time S.

(iv) Suppose (M) is a Markov (resp. strong Markov) filtration. 1f I is
additive (resp. strongly additive), and if W1y ., =OW for all s20, then the
process W« (I'—1I') is additive (resp. strongly additive ).

Proof. (i) Let N* be a version of the P*-stochastic integral of W with respect to I’
—T. Since [} (W,)*]"2eo,,,, the process

g

loc>

An),= W1
(n)z 0<ZS§I s {”/Vsl>%}
is in «7,,,, and we denote by A(n) its dual predictable projection, as constructed
in (3.12, iil). We know that P*-lim(A(n),— A(n),)= N for all t=0, x€E, and the

result follows from (3.29). N .
(ii) The process associated to @.W, O.I' and O.I" by (6.10) is O, W, and we

know that @, =(:):f from (6.6, ii). We have
[2(@,W)7]2 =6l (W) 1),

which is in 4, because of (3.15, i). Therefore O,We()G(O,I,P), and

xecE
(O W) (O, — O e is well defined by (i). Moreover, m)z 0, A(n), which
implies

P-lim [(8,4(n)),— (O,A(n)),1=(O W) * (8,1 — O,I),.

Then, the result follows readily from (3.31).
(1) It is proved as (ii), just replacing s by S.
(iv) It is immediate from (ii) and (iii): see the proof of (3.18).

6¢) More on Additive Integer-Valued Random Measures

When (4} is a strong Markov filtration, we have much better results about dual
predictable projections of additive random measures.

In order to avoid tedious difficulties, we concentrate on the class &7} ,4 of
additive integer-valued random measures I" for which there exists a 2-measur-
able partition (D,) of Q such that 1, * I'e.o/ Obviously o} ,,co,.

(6.14) Theorem. Suppose (#,) is a strong Markov filtration. Let O be the o-field
(9(1/2’) (resp. its universal completion O(#,)*) when (6.1, 1) (resp. (6.1, i) holds. If
Ied} 4, there exists Fe(P NV, )(#;) and a positive kernel K(w,t;dy) from (Q

xR, 0) into (G, %), such that

loc,ad"

(6.15) F(w;dt,dy)=dF(w) K(w,t;dy)

is a version I'e@P sl of the (#)-dual predictable projection of I' for every P*.
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Remark. By (3.27) and (6.9) applied to .#°=%°, F and I are strongly additive
even when I’ is not so.

Proof. Let (D,),»,; be a P-measurable partition of Q such that B"
=1, *I'eof,, 4. Since B" satisfies the conditions of (3.53), there exists a
sequence (C(n,m)),», of &,-measurable sets such that U C(n,m)=FE and that
H(n,m)=1¢,, ,(X)-B" satisfies a(n,m)=sup E*[[e *dH(n,m)]<co. Let H

xekE

Y. b(n,m) H(n,m), where (b(n,m)) is a sequence of positive numbers satisfying

nmz1
Y. b(n,m)a(n,m)<co. It is easy to check that He!, 4, and (3.18) and (3.26)
n,mz=1

imply that one can find a Fe(? n¥,7)(s#,) which is a version of the ()-dual
predictable projection of H.

From now on, we copy the proof of (6.6), with the following changes. By
(3.26) again, we can choose Y(n,B) in (Zn ¥, )(A#,). Since | ) C(n,m)=E, and

m

since | /D, =9, it is easy to check that dY(n, B), <dH,; therefore, we can find a

(#,)-optional process f(n,B) such that Y(n,B)=f(n,B)-F as. We consider the
kernel K" constructed in (6.6), and we set IM(w; dt, dy)=dF{w) K", t;dy). Since
one knows that I'= ) [™ is the dual predictable projection of I', we obtain the

nz1
factorization (6.14) by putting K= > K"
nz1

(6.16) Remark. The factorization (6.15) is by no means unique. However, for a
given Fe?n¥,{, K is unique up to a set which is P*(dw) ®dF,(w)-null for every
xeE. Now, if FFe?nv,; satisfies dF,<dF, as., there exists another kernel K’
such that (6.15) holds with F' and K': this property obviously follows from the
previous proof.

(6.17) Remark. We know that I" is “predictable”, but in general one cannot
choose a “predictable” kernel K. However, this would be possible if # = Z, and
if (6.1, i) holds and if X were a right process: see (3.22). But even when such a
choice of K is not possible, as far as computations are concerned, the kernel K
behaves as if it were predictable. For instance if Wep# and if Z is a positive
(A)-predictable process such that Z- (W= Iess,,, then the dual predictable
projection of this process is (ZK(W))- F, where K(W),( jK(a) t:dy) Ww,t, y).
For various related matters, we refer to [42], (30.4).

(6.18) Remark. We know that I is strongly additive. It follows from (3.57) that
for every Wep @ satisfying identically W )= 6O, W the process K(W) defined
in (6.17) is equal to a strongly homogeneous process, up to a P (dw)®dF, (w)-
negligible set for all xeE. However we do not know if we can choose a kernel K
which is strongly homogeneous in the sense that K(+,S(*}+¢; -)=K(04(*), ;) as.
for every t =0, for all finite stopping times S.

We say that the random measure I is quasi-left-continuous if

Mo {T(0)} xG)=0 as. in won {T<ow0}
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for every predictable (J)-stopping time 7. When I’ e;z?/},,ad is given by (6.10), this
is equivalent to saying that An[7T] is evanescent for every predictable stopping
time T This is also equivalent to saying that in (6.13) we can choose a F which is
continuous. Then, it is possible to take advantage of Motoo’s Theorem (3.56).

(6.19) Theorem. Suppose (#,) is a strong Markov filtration. If Fe;z?i,ad is quasi-
left continuous, there exist a continuous Fe¥,{(#)) and a positive kernel K(x,dy)
from (E, &) into (G, %), such that

(6.20) [w;dr,dy)=dF(o) K(X {@),dy)
is a version of the (#,)-dual predictable projection of I for every P~.

About uniqueness of (F,K), the same comments as those in (6.16) can be
made.

Proof. The beginning of the proof is like (6.14), but here, since I' is quasi-left
continuous, we find a continuous F. Applying (3.55), we obtain g(n, B)ep&, such
that ¥(n, B)=g(n, B)(X)- F. We apply (6.2) to each family (g(n, B))z.4, With (4, )
=(E,&,), and M is the family of measures: De@ — E*[1,(x)- F,], for all xeE.
There exists a positive kernel K"(x,dy) from (E, &,) into (G, %) such that ¥(n, B)
=K"(x,B)- F (when using (6.2), we recall that &,=&¢ when (6.1, ii) holds). The
proof is completed by setting K=) K", the justification of it being like in (6.14).

(6.21) Remark. We could prove (6.14) and (6.19) for every strongly additive
I'es/ , by using a result of Meyer [36] Théoréme 3.

6d) Applications to Additive Semimartingales

First, we recall some more facts about semimartingales which are defined on (£,
H, #,, P), where P is an arbitrary probability measure on (2, ). We consider
a m-dimensional semimartingale Y=(Y"),_,. We define the m-dimensional pro-
cess Y°=((Y*)),.,, by (3.20), in which formula |+| denotes the usual norm on IR™
Now, Y—Y,~Y® is a m-dimensional special semimartingale, whose canonical
decomposition we denote by Y—Y,—Y¢=M+B. We also define the following

integer-valued random measure I' on G=R" by
(6.22) [@;d5,dy)= 3 Liay )+ 016,47 .n @5 dY)-
s>0

I' is called the jump measure of Y. According to [17, 241, the local characteristics
of Y consist of the following triplet (B, C, I'):

(i) B=(B"),<,, is the process appearing above,

(i) C=(C'h, s, where CUI=[(Y')(YI)],

(iii) I is the dual predictable projection of I.
This triplet is unique, up to a P-null set, and it does indeed characterize the
distribution of Y in some particular cases (as we shall see in the next section).
Moreover, one may choose a version of (B, C, I') which satisfies the following
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identically:

(6.23) (i) for all tzs20, C,— C, is a nonnegative symmetric matrix.
(i) Iw; R, x{0})=
(iii) j (Iy]? A1) I (o; [0 t]xdy)< for every t>0.

Returning to our Markov process, we shall write Ye#™ when Y=(Y"),_,
and Y'e¥ for every i<m; we do similarly for the other classes of processes.

(6.24) Theorem. Let Ye ™.

(i) There exists a Be(P ¥ Y", an a.s. continuous Ce¥™, and a l'eP o,
such that (B, C, I} is a version of the local characterisitcs of Y for every P*.

(i) Suppose (M) is a Markov filtration. If Y,=0, then for every s=0, (6B,
0.C, ©.I') is a version of the local characteristics of 6.Y.

(iil) Suppose (M) is a strong Markov filtration. When Y, =0 the property (ii)
holds if s is replaced by any finite (#,)-stopping time S.

(iv) Suppose (M,) is a Markov (resp. strong Markov) filtration. If Y is
additive, then B, C, I are additive (resp. strongly additive).

Remark. When Y,+0, the local characterisitcs of ©,Y are easily expressed in
terms of, but are not equal to, (BB, ©,C, 6,I'). We leave it to the reader.

Proof. (i) Let Dy=Q xR, x {0} and, for n=1,

1 1
D,={(w,1,7): we@, 120, yeR™, |yle [~, )}
nn—1

The jump measure I' of Y obviously satisfies 1, =I'eof,  for every n=0, thus
implying I'e./,. The existence of (B, C, ') follows from (3.12) and (6.6).

(111) Since Y =0, the jump measure of O.Y is O.I, and the process as-
sociated to @Y by (3.20) is @,Y*. Then, the result follows from (3.15) and (6.6).

(iii) It is immediate from (3.15) and (6.6).

(iv) Since I' is additive when Y is additive, (3.18) and (6.8) imply that B, C, I’
are additive. Moreover, I'ed/! , since 1, *I'es, 4. Now, (3.6) and (6.14)
imply that B, C, ' are P* indlstlngulshable from some (H#)-predictable pro-
cesses and measures, and their strong additivity follows from (3.21) and (6.9)
applied to .4 =

(6.25) Theorem. Suppose (A,) is a strong Markov filtration. Let Ye%3. There
exist

() a Fe(2 0 7,0)(H,);

(ii) a (#)-optional process b=(b"),_,,;

(ii1) a (A ’) optional process = (c”)—
nonnegative matrices;

(iv) a positive kernel K(w, t;dy) from (Q x R, (7)) into (R™, Z™), satisfying
K({0})=0 and [(|y|* A1) K(dy)< o0 such that

i<m With values in the set of all symmetric

(6.26) B=bh-F, C=&F, [(wdtxdy)=dF(w)K(w,t;dy)

form a version of the (#))-local characteristics of Y.
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Proof. We have seen in the proof of (6.24) that B, C, I, I' are strongly additive
and that I'es/? . If D, is like in the proof of (6.24), we have 1, xless,, thus
r e;z/}, ad- Slnce (61 1) holds (because G=2%"), (6.14) implies the existence of
F'e(@n7,4)(#,) and of a kernel K’ from (@ xR, O(#)) into (R™,#™) such
that I admits the factorization (6.15) with F’ and K’ Set

F=F+ 3% | |dB‘|+ Y CL
i=m0 i<m

Because of (3.26), and up to a change on an evanescent set, we can suppose that
B', CY, F arc in (ZNY¥,,)(5#)). Since dF,<dF,, I' admits another factorization
(6.15) based upon F, with some kernel K, see Remark (6.16). Since dB! <dF, and
dC <dF,, (#/)-optional processes b and & such that B=bh-F and C=¢-F exist.

Finally, we consider the set A of all (w,t) where, either c(w,t) is not
symmetric nonnegative, or K(w,t;{0})>0, or jly[2 A K(w,t;dy)= 0. We have
Ael(#)), and E*[1,-F_]=0 for every x€E, because of (6.23). Thus, replacing ¢
and K by 1,.¢ and 1,.K completes the proof.

It follows from this proof and from (3.57) that we can choose strongly
homogeneous versions for the processes b and é.

If Y is quasi-left continuous, B is continuous and I' is also quasi-left
continuous. Using (3.55) and (6.19), we obtain similarly:

(6.27) Theorem. Suppose (#,) is a strong Markov filtration. Let Ye%.} be P*-
quasi-left-continuous for all xeE. Then, there exist:

(i) a continuous Fe ¥, (H#]);

(i) a &,-measurable function b=(b"),.,;

(iii) a &,-measurable function c=(c"),
metric nonnegative matrices,

(iv) a positive kernel K(x,dy) from (E, &) into (R™, &™) satisfying K(x,{0})=0
and [(|y|* A1) K(x,dy) < co; such that

(628) B=b(X)-F, C=c(X)-F, [w;dtxdy)=dF(w)K(X(w),dy)

with values in the set of all sym-

Lism

are a version of the (#)-local characteristics of Y.

About uniqueness of (F; b, & K) in (6.25), or of (F; b, ¢, K) in (6.27), the
comments of (6.16) are still valid. In particular, when Y is quasi-left continuous,
we can apply simultaneously (6.25) and (6.27); in this case, if (F; b, ¢, K) satisfies
(6.26) and if (F; b, ¢, K) satisfies (6.28), with the same continuous F, we have

biw)=b(X (), lw)=c(X ()

(6.29) i
K(w,t;dy)=K(X (w),dy)

except on a null F-potential set (that is, a D= Q xR, such that E*[1,-F_]=0
for every xeE). However, note that except when &,=4, we cannot have (6.29)
holding true everywhere, in general, since b(X,(w)), ..., are not necessarily (5))-
optional (for instance when b is £*-measurable, but not Borel).
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7. Markov Processes That Are Semimartingales

In this section we suppose that E=R™ and that the underlying process X
=(Q,7,7,60,,X,,PY) is a strong Markov process: in other word, Z,°=.4 and
{.#,) is a strong Markov filtration. Since we are interested in the property for X
to be a semimartingale and since X if (#,°)-adapted, we would get no further
generality by allowing the inclusions #° = .#° to be strict: see (3.24).

The process X is said to be a Markov semimartingale if Xe %™, or equiva-
lently since X, =X,c0, if X—X,e%%. In this case we can apply Theorem
(6.25) to X —X,. We say that X is a Huntr semimartingale if X %™ and if X is
quasi-left continuous. If Xe%™, then X is a Hunt semimartingale if and only if
we can choose F in (6.25) to be continuous. Note that we depart slightly from
the usual definition of a Hunt process [3], since we assume neither normality for
X, nor Borel measurability for its transition semigroup. Finally we call X an Ito
process if Xe 9™ admits F,=t for the process F appearing in (6.25) applied to X
— Xy it turns out that these are exactly the processes introduced by Ito in [19]
as solutions of certain stochastic differential equations, a fact that will be proved
in the forthcoming paper [6].

Our purpose in this section is to characterize Markov and Hunt semi-
martingales and Ito processes in terms of their generators. Ito processes have
nice and workable characterizations and we will show in (7.13) that every Hunt
semimartingale is obtained by a random time change from an Ito process.

7a) Generators

We start by introducing various generators that will be used for characterizing
Markov semimartingales. We are presenting them in increasing order of gene-
rality (and decreasing order of interest!). The notion of an extended generator
we are putting next is due to Dynkin [10].

(7.1)  Definition. An operator G with domain % is said to be an extended
generator for X if 9 consists of those functions fe #™ for which there exists a
function Gfeé&, such that the process

(7.2) Cl=f(X)—f(Xo)— [ Gf(X)ds

is well defined and belongs to % (and thus to %, ,).

(1.3} Remarks. i) For every fe%;, Gf is uniquely defined up to a set of
potential zero. Thus (G, %) is not a linear operator in the ordinary sense of the
word: actually 9 is uniquely defined, but there exist various “versions” of G on
the same domain 9, each version being “almost linear™.

(if) Suppose X is a right process, and let (G*, 9;;.) be its weak infinitesimal
generator. Then, by Dynkin’s formula, and since f(X) is a.s. right-continuous for
every f€Pg., we have ;. = 9D; and G*f is a version of Gf for every fe%..
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(iii) The condition that Gfeé&, in Definition (7.2) is there to insure that C/
be adapted to (). This can be weakened by requiring only that Gf e #™ = &*, a
change which does not enlarge the domain Z: in fact, if for some feb#™ there
is Gfeb#™ such that C’ is a local martingale (necessarily additive) on every (€,
F, F,, P¥), then there exists ged, such that {g+Gf} is of potential zero (this
follows from applying (3.18, ii) to Y=/(X) and using (3.55)) thus, g can serve as
Gf.

The next definition follows Kunita [26].

(74) Definition. Let Fe¥,] be continuous. Then, an operator G with domain
D, 1s said to be an F-extended generator of X if 9, consists of those feb ™
for which there exists a G feé, such that the process f(X)—f(X o) —Gf(X) - F
is well defined and belongs to & (and thus to .Z,,).

(1.5) Definition. Let Fe? n¥,;. Then an operator G with domain P_ is said
to be an F-random generator of X if % _ consists of those feb#™ for which
there exists an (J)-optional process G f such that

Gef) Fe?n?,  fX)—[(Xo)—(Gpf) FeZ.

Remarks (7.2, i, ii, iii) apply to the F-extended generators and F-random
generators, with the role of zero potential sets being played by zero F-potential
sets. The following is an immediate consequence of Motoo’s Theorem (3.55).

(7.6) Lemma. If Fev,{ is continuous, then D =9, ., and for every feDg_,
Gpf=Gpf(X) except possibly on a set of F-potential zero.

To complete this account of the preliminaries, we need two more notions.
They are needed because we want to achieve the sharpest possible result; but the
reader may as well consider C*(IR™) or C*(R™) in lieu of the two classes being
introduced next.

(7.7) Definition. A class % of functions is said to be a full class if for all i,geN
with i <m there exists a finite family {f,,...,f,} =% and ge C*(R™) such that

x'=g(f1(x), 5(x), ... £,(x))

for all xeR™, |x|<gq.

(7.8) Definition. A class of Borel functions on R™ is said to be a complete class
if it contains a countable subset € =C?*(IR™) with the property that, for every
xelR™, the countable collection of numbers

Z ﬁiDif(x)—F% Z VijDijf(x)

i=m LjiZm

+ @ fx+y)—f(x)=10.,(¥) X ¥’ D f(x)],

i=m

fe%, completely determines the vector feR™, the symmetric nonnegative ma-
trix y, and the positive measure p satisfying p({0})=0 and [ (|y|*> A 1) p(dy) < 0.

For example, C(R™), C*(R™), CZ(R™), and the class {x —&'*“*: ucR™} are
classes that are both full and complete.
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7b) Characterization of Markov Semimartingales

Recall that our only basic assumption is that X is an R™-valued right-
continuous strong Markov process. Here is the main result of this section, (that
is, the most “fundamental”, although probably useless as such).

(7.9) Theorem. (i) X is a Markov semimartingale if and only if there exists
FeP v, such that D¢, is a full class.

(ii) Suppose X is a Markov semimartingale, and let (F, b, &, K) satisfy (6.25)
applied to X —X . Then, C* (R™ <Dy, and for every feC? (IR”’, the process
defined by

Lf{w)= Y. bi{@) D, f(X,-(@)+5 Y &9w)D;;f(X,-(»)

ism LjSm

+[ K, t;dy)[ f(X,-(@)+y) = f(X,-(w))
—10.4(¥) 2 ¥ D f(X,-(w))]

i<m

is a version of Gpf.

(iii) Suppose X is a Markov semimartingale, and let Fe? N 1/;‘;‘ be such that
Dg, is a complete class. Then there exists b, ¢, K, such that (F, b, #, K) satisfies
(6.25) applied to X — X ,. Hence, (EZ(]R'”)CQG and (7.10) gives a version of G on

2(]Rm)

At a first glance it may appear that the sufficient condition in (i) is the most
interesting statement in Theorem (7.9); however, we shall see that it is com-
pletely obvious. In fact, (ii) and (iii) are far more interesting.

Proof. (1) This statement is the key point for the whole theorem; its proof will be
a simple application of Ito’s formula and will not differ much from a proof by
Kunita [26].

Let X* be the process associated to X by (3.20). We denote by X —X°*— X,
= M + B the canonical decomposition of X — X°—X,; we have X°e¥™, Me¥™,
Be(@nv"y". Let I' be the jump measure of X ; its dual predictable projection is
denoted by I'. Finally, let C=(C") with CY=[(X),(X’)]. By hypothesis, B
C, I are given by (6.25).

Let feC*(R™). We apply Ito’s formula to f(X), relative to the measure P* (the
result is independent of x):

f(X)—f(Xo):ZDif(X_)~X"+§ZDijf(X_).Cij
+ Y [fX)=f(X-) =% D, f(X,-) 4X3).

O<s=:

Lj=m

Using the definition of I', since X =X+ X°+ M+ B, we have
f(X) f ZD f(X Mi+ZDif(X—)'Bi“"%ZD,’jf(X_)'Cij
1 i,j

L (X +9) = (X )= 1o, 5(PD X YD, f (X1 T (ds, dy).
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Consider the right-hand side of this expression: The first sum is a local
martingale. The second and third are continuous processes in ¥, thus they
belong to /.. The fourth term is in ¥7; but since f(X)e, (because f is
bounded), this term is in fact in =, (see [34] for instance); hence its dual
predictable projection is given by the same expression with I replacing I'. Thus,

we have proved that the process
JX)=f(X) =YD, f(X_)-B' =33 D, f(X_)- C¥
— L X +0) = () =110, (W) Xy DS (X )] F(ds, dy)

is in &, and each of the three last terms above is in Zn¥". Using (6.25) and
(7.10), it is easy to check that the sum of these three last terms is the process
(Lf)-F. We have proved that (Lf)-FeZn¥ and that f(X)—f(X,)
—(Lf)- Fe %, thus obtaining (ii).

(i) Since C*R™) is a full class, the necessary condition follows from (6.25)
and (ii). Conversely, suppose that D is a full class for some FeZn¥,{. From
Definition (7.5), f(X)e& for every fe%g . Applying Ito’s formula to the
function g appearing in Definition (7.7) shows that the process X* coincides with
a semimartingale on ee}ch stochastic interval [0, T)[, where T,=inf{t:|X,|=q}.
Since lim T, = oo a.s., X" itself is in & see [34]. This proves the sufficiency of the
condition (i).

(iii) Suppose X is a Markov semimartingale. Let Fe# n¥.{ be such that
P, is a complete class. We associate to %;  a countable class €
=g, nC*(R™) satisfying the property stated in (7.8). Because of (6.25) and of
(ii), there also exist F'eZn¥,; and (b, &, K) such that CA(R™)<= %;_,, and that
G coincide on C2(R™) with the operator I' defined by (7.10) with (b€, &, K.

Let fe%. We have that f(X)—f(X,)—(G;f)-Fe# and that f(X)—f(X,)
—(Lf)-F'e, while (G.f)-F and (Lf)-F' are in #n¥". Uniqueness of the
canonical decomposition of f(X) yields

(7.11) (Gpf)-F=(Lf)-F  up to an evanescent set.

Set D= {(w,1): (Lf),(w)=0 for every f€%}. The characteristic property (7.8) of
implies that D is exactly the set where &' =0, & =0, K'=0. Hence we may replace
F' by I,,.- F' without altering (6.25), that is, we can suppose that 1, F'=0. This
property, together with (7.11), obviously implies that dF, <dF, a.s. Hence, we
know that there exists a triplet (b, &, K) such that (F; b, &, K) satisfies all the
conditions of (6.25), and we have proved (iii).

(7.12) Remark. More generally, let us turn back to the assumptions of Sect. 3,
with an arbitrary state space E, and suppose (#,) is a strong Markov filtration.
For Ye&", consider a term (F; b, &, K) satisfying the conditions of (6.25) relative
to Y. Then, the same proof as above shows that, if we define Lf for fe C*(IR™) by
(7.10) where X,_(w) is replaced by Y, (w), we have (Lf)-Fe?n ¥, and f(Y)
—fO)—(Lf) FeZ,,.
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7¢c) Characterization of Hunt Semimartingales

(7.13) Proposition. Every Hunt semimartingale is a random time-changed Ito
process.

Proof. By hypothesis, the local characteristics (B, C,F) of X — X, (and of X as
well) are given by (6.25), with Fe¥,; continuous. We can suppose that F is
strictly increasing and satisfies lim, F,= oo (by replacing F by F,+1, for instance).

Let t,=inf{s: F,>t}. Since each t, is a finite (/f) stopping time, we can put
X=X, 0=0_ Jf’ A, It is well known that X = Q, #, #,0, X, Pis a
Hunt process. By Kazamak1 s theorem [25], X is a semlmartlngale on (Q, #,
A, P for every x€E, and its local characteristics are B, =B, ,C.= C,. and ["
defined by F([O t]x D)= I([0,7,] x D) for all =0, De%’” see [21] ch. X. In
other words, (B, C, I') are given by (6.25), where F is replaced by F,= F, . Since

F=t,X is an Ito process.

Characterizations of Hunt semimartingales and Ito processes are very easily
obtained from (7.9).

(7.14) Theorem. (i) X is a Hunt semimartingale if and only if there exist a
continuous Fe¥,{ such that D is a full and complete class.

(1) Suppose X is a Hunt semimartingale, and let (F; b, ¢, K) satisfy (6.27)
applied to X —X . Then, C(R™) < %D, and the following operator L on CXR™)

(715 Lf(x)= Y bx) D f()+5 ). ¢"(x) Dy f(x)

i<m Lj=m

+I K@ dy)[f(x+y)—f () =10y X ¥'Dif(x)]
,jSm
is a version of the restriction of G, to C*(R™),

(i) Suppose X is a Hunt semimartingale, and let Fe¥,7 be continuous and
such that 9 is a complete class. Then, there exist b, ¢, K such that (F; b, ¢, K)
satisfies (6.27) applied to X — X . Hence, CZ(]R'")CQGF, and (7.15) gives a version
of G on C*(R™).

Proof. (ii) If (F; b, ¢, K) satisfies (6.27) applied to X — X, there exists b, ¢, K such
that (F; b, &, K) satisfies (6.24) and that (6.29) holds. Then, if L is given by (7.10),
we have (Lf )-F=Lf(X_) F as. for every feC*(R™), and (ii) follows from (7.9,
ii).

(i) Since C3*(R™) is a full and complete class, the necessity of the condition
follows from (ii). The sufficiency of the condition is deduced from (7.9, i), (7.9, iii),
(7.6), and the definition of a Hunt semimartingale.

(iii) It is immediate from (7.9, iii).

(7.16) Theorem. (i) X is an Ito process if and only if the domain D of its
extended generator is a full and complete class.

(ii) In this case, suppose (F,=t; b, ¢, K) satisfies (6.27) applied to X —X,.
Then, CHR™c %, and the operator L defined by (7.15) is a version of the
restriction of G to C*(R™).
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Proof. It is immediate from (7.14), once noticed that (G, D) is the F-extended
generator (G, %) for F,=t.

Among other things, this theorem tells us that the Ito processes are also the
“diffusion processes with Lévy generator” introduced by Stroock [47], except
that here we do not make continuity, Borel measurability or boundedness
assumptions on b, ¢, K; (but we do assume universal measurability).

A number of results related to (7.14, ii) and (7.16, ii) have been proved by
many authors, under hypothesis (L), or when X is a Feller process: see in
particular Kunita [26], Skorokhod [42], [43], and [44] where (7.16, ii) is
implicitly proved when the process is Feller and has finite variation over finite
intervals (in that case, c=0 and [(y| A1) K(x,dy)< o). See also Ikeda and
Watanabe [18] for one of the first results related to these matters.

Unfortunately, we do not have such a nice characterization as (7.16, i) in
terms of the weak infinitesimal generator (G*, 9;.), because of the lack of
conditions for functions in 9, to belong to %... However, the following is
obvious: see (7.3, ii).

(7.17)  Corollary. Suppose X is a right process. If the domain of its weak
infinitesimal generator is a full and complete class, then X is an Ito process.

The previous theorems may be complemented in several ways. For instance,
if we make the additional assumption that Xe¥ (it is the case, for example,
when the process is a.s. increasing), then &=0 (resp. ¢=0) in (7.10) (resp. (7.15)):
it follows that in (7.9, ii) (resp. (7.14, ii), resp. (7.16, ii)) we have (El(]R'”)c@GF
(resp. D, 1esp. Z). That is the situation examined in [44].

Finally, let us state another immediate corollary, which extends a result of
Roth [39].

(7.18)  Corollary. Let (G, @) be a linear operator from C*(R™) into the space of
finite R™"-measurable functions such that

(i) D¢ is a full and complete class;

(ii) there exists (at least) one R™-valued, right-continuous, strong Markov
process X with infinite lifetime, whose extended generator is an extension of
(G, ).

Then, there exists a triplet (b ¢, K) satisfying conditions (ii)—(iv) of( ) and
such that the operator L on €*R™) defined by (7.15) is an extension of (G, De).

8. Stochastic Differential Equations and Markov Processes

Let X=(Q, 4, #, 0,, X,, P*) be an underlying Markov process. The assump-
tions and notational conventions that were established at the beginning of
Sect.3 are in effect throughout this section. In addition, we denote by & the
class of all real-valued right continuous (#))-adapted processes on €, which a.s.
admit left-hand limits.

We will consider the stochastic differential equation

(8.1) Y=H+F(Y)-Z,
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where He% and Ze& are given processes, and F(Y) denotes the “coefficient”,
which depends on the solution Y, this solution belonging to & when it exists.
Under some conditions on H, Z, F, to be described later, we show in Theorem
(8.11) that the process (X, Y) is Markov (resp. strong Markov) when (.#)) is a
Markov (resp. strong Markov) filtration. The results here are similar to those of
[37] but they are sharper and more general.

In order to allow simultancous consideration of all possible deterministic
initia] values Hy=y, yelR, of the solution Y it is convenient to introduce the
followmg enlargement of the space @: we define Q=Q x R with the o-fields .4
=M)QR, AM°=4°QR, and with the probability measure P* '=P*Qs,,
(x,y)e E=E x #. We also introduce the filtration (%)l>0, which is the smallest
right-continuous filtration satisfying # Q% <#, for all t=0 (that is, #
=\ HQR).

§>1

There is a one-to-one correspondence between processes V on Q and
families of processes (V?), g on Q, which is given by ¥*(w) =V(w,y): we will use
both notations V and (Vy)y,s]R Finally, let us denote by  the set of all (#)-
adapted right-continuous processes on Q which have left-hand limits P*?-a.s. for
every (x,y)eE. Of course, Ve % implies Ve P for all yelR.

We turn now to the definition of the coefficient F appearing in (8.2).

(8.2) Definition. A coefficient F is an application Y — F(Y) of & into the set of
all (5F)-predictable processes, which satisfies

(1) if ¥, Ye?, wel, 1>0 satisfy Y(w)=Y/(w) for all s<t, then F(Y),()
= F(Y')(@); ) _

(it) if Y=(¥?),.x belongs to &, then (F(Y*)), g is (J)-predictable.

(8.3) Remark. Let W be the set of all right-continuous functions on R, with
the usual filtration (%)), . In most cases, (see [21] for instance) F is constructed
as follows: we consider a function F on Qx W xR which, considered as a
process on Q x W, is (#,® #;)-predictable, and we set F(Y),(w)=F(w, Y.(),) for
ve. In this case, conditions (i) and (ii) above are obviously satisfied.

A solution of Eq.(8.1) for the measure P* is a process YeZ such that
F(Y)eL(Z,P*) and that (8.1) holds true up to a P*-evanescent set (note that by
(8.2, 1), F(Y) and F(Y') are P*-indistinguishable whenever Y and Y’ are such).

(8.4) Definition. The coefficient F is said to be acceptable if for all xeE, He 9,
Ze¥ the following hold:

(i) a unique (up to a P*-evanescent set) solution Y of (8.1) exists;

{ii) we can define by induction Y(1)=

8.5) Yn+1D)=H+FYn)-Z, n=xl,

and then P*-lim Y(n),=Y, for every t 0.

There has been much recent progress in obtaining sufficient conditions for F
to be acceptable. These conditions suppose that F is constructed via a F as in
(8.3), and amount to a suitable local Lipshitz condition on the function F(w, *,1):
see [8, 11, 29, 21].
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(8.6) Remark. For simplicity, we consider only one-dimensional processes.
Obviously the same results would hold true when Z, H, Y are multidimensional
and F is matrix valued, with the appropriate dimensions. In that case, the
stochastic integral in (8.1) may be taken componentwise, or more generally
“globally”: see [22].

The following is a simple consequence of Theorem (3.12). For ease of
referencing later, we state it for a “measurable” family of Egs. (8.1) instead of a
single one.

(8.7) Theorem. Let H= (HY), RED. Let 7= 2, RED be such that Z’e¥ Jfor
every yelR; let F be an acceptable coefficient. Then there exists Y = (Y?),.r€2
such that for every yeR and for every measure P*, Y7 is the solution of the
equation

(8.8) VY= H’+ F(Y?)- 2

Proof. Although it would be possible to use a direct argument based upon a
mild extension of the lemmas of § 3¢ for processes “depending on a parameter”,
see [46], we will rather base our argument on an enlargement of X to which
these lemmas apply directly.
On Q we define the operators 8w, y)=(0,(w),y) and the E-valued _process
X(w,y)=(X (o), ). It is immediate to check thatX (Q, #°, #£5,0,, X, P*)isa
Markov process satisfying all the assumptions of §3a, with () satlsfymg (3.6)
relative to X. Since P*'=P*®g¢,, Z is a semimartingale over each space (Q 2,
s P*). It is immediate to check that, for any (#)-predictable process K on @,

Ke () L(Z,P*Y) if and only if K’¢ ﬂL(Zy P for all yeR, and that in this

(x,yeE xeE
case we can find a version of the stochastic integral K - Z valid for each space (2,

H#, #, P~?) and such that (K-ZY =K”-Z” for all yelR.

In view of these remarks, and using (8.2, ii), (8.4, ii), and (3.12, vi) applied to
X, we can define by induction Y(1)=H, Y(n—i—l) H+F(Y(n)- Z, where F(V)
=F(V?) for all yeRR, Ve%. We have Y(n)eZ for all n>1. Let Y™ be a version
of the solution of (8.8) for the measure P*. According to (8.4, ii) we have P*-

lim Y(n)? = ¥*> for all xeF, yelR, t=0. Therefore P*’-lim Y(n),=Y*? for all
) ™ _
(x,y)eE, t=0, where Y*¥w,y)=Y>*(w). Applying Lemma (3.29) to X, we

obtain a Ye@ that is P*’-indistinguishable from Y*? for all (x, y)eE, and the
theorem is proven.

We turn now to our desired Markov property. For this, we need further
assumptions on H, Z, F. We suppose that the processes H and Z are additive or
strongly additive. Concerning F we need the following

(8.9) Definition. The coefficient F is said to be homogeneous (resp. strongly
homogeneous) if
(i) for all Ye9, s=0 (resp. S finite stopping time), the processes O(F(Y))
and F(6,Y) (resp. O4F(Y)) and F(@,Y)) are indistinguishable on Js, oo (resp. on
(i) for all weR, s=0,t>s, Y, Y'eZ such that Y(w)=Y/(w) when s<r<t, we
have F(Y),(w)=F(Y’'),(w).
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For example, the coefficient F defined by
F(Y)(w)=f(X,-(o), Y,-(w)) Lo, ()

is strongly homogeneous when X is left-hand-limited and f is a function on E.
According to (8.7), we denote by Y? a version of the solution of

(8.10) Y'=y+H+F(Y)-Z

that is valid for every P* and such that ¥ =( Yy)yeme@ (we apply (8.7) to Z¥=Z
and H”=y+ H; recall that here H,=0 a.s.).

(8.11) Theorem. Suppose (.#,) is a Markov (resp. strong Markov ) filtration. Let
Ze¥, HeD be additive (resp. strongly additive). Let F be an acceptable,
homogeneous (resp. strongly homogeneous ) coefficient. Let 17=(Yy)ye]RE.9§ be such
that Y? is the solution of Eq.(8.10) for every yeR. Then

(8.12) E¥[f(Xsyo Yo, I =EXTS[f(X,, F)],  feb(é x R)
for all (x,y)eE, S=seR . (resp. S finite (5)-stopping time).

In other words, (Q, 2, ffi, X, 171), P*%) is a (strong) right-continuous
Markov process in the sense of [3], except that the shift operators are not
present. We can define these operators as follows

gt(wa V) = (Qz(w)a E(w: y))

We have X, =X,00, on Q but 0,, ,=0,00,and Y, =
surely.

We shall prove only the simple Markov property, since as usual the strong
Markov property is proved exactly in the same way by just replacing s>0 by a
finite stopping time S. We begin by two lemmas, in which s >0 is fixed. Set

=7Y,00, hold only almost

(8.13) H=H,~H Z,=7,~Z,,,

tAS?

If G is a finite #-measurable variable, we denote by Y a version of the solution
of the following equation, valid for all P~ (see (8.7)):

(8.14) YO=Gly, o +H +F(Y%) Z.
(8.15) Lemma. If G=Y/, we have Y9 =Y} as. for all t>s.
Proof. Set

J‘<7

Y {u<s}+ YGl{u>s}’
which belongs to 2. If t 25, by using (8.13) and (8.10) we obtain

I

Y=Y =Y+ H+F({¥9 Z

=y+H,+F(Y*)-Z +F(Y%-Z.
By (8.9, ii) we have F(Y?),=F(Y), if u<s, and F(Y%),=F(Y), if u>s. Since Z, =0
if u<s, we obtain
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(8.16) Y=y+H,+FY) 2,

for all 1>s. Since (8.16) obviously holds for t<s, we obtain that Y is a solution
of (8.10), and the result follows from (8.4, i).

(8.17) Lemma. The processes ©,Y” and Y* are indistinguishable (recall that Y? is
the solution of (8.14) with G=y).

Proof. By the definition (3.14) and by (3.15, vi), we have
O,Y’ =yl o+ O.H+(O,F(Y) (0,Z), as.

(3.19) implies ® H=H' as. and ©,Z=Z" as. (8.9, 1) implies that (6,F(Y?)),
=F(O,Y"), as. if u>s; since Z,=0 for u<s, we obtain

O,V =yl (+H+FO,Y)-Z as
The result follows from the uniqueness (8.4, i) of the solution of (8.14).

Proof of (8.11). Since for each (x,y)eE the o-field # is contained in the P*’-
completion of #,®{$, R}, we have only to prove that

(8.18) B VS (X, Y, J]=EX[VEXT[f(X,, Y)T]
for all s20,t=0, Vebi#, feb(6 R Z). Let G=Y?. We have

E_x'y[Vf(Xs+t= Y_;+t)] =Ex[Vf(Xs+t= Ysy+t)]
=E*[Vf(X,.,, Y5

by (8.15). But (8.7) implies that (o, y)~ Y7, (@) is #,,® #-measurable while
Ge i, so the preceding expression is equal to

= [ PX(de) V() B f(X,, ("), YEO (DAY (o)

s+t

= | P*(dw) V() EX[f(X,, Y5 o O ()| ] ()
by (8.17). Applying the Markov property (3.2, ii) shows that this is equal to

= [ Pdw) V() EX@ [ f(X,, ¥5)]
= PX(dw) V(w) X S f(X,, Y]
=E* [VES V[ f(X,, V)]

=B [VEXT[ f(X,, ¥)]]

Thus (8.18) is established, and the proof is complete.

Now, an obvious question arises: if one knows that the underlying Markov
process X is a right process, is (X, ¥) also a right process? Of course (X, Y) is not
in general a right process in the usual sense, since for instance it does not admit
the usual shifts 6,. However it may happen that its canonical realization is a
right process: this is a property of its transition semigroup, which will then be
called a right semi-group.
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(8. 19) Corollary. Suppose X is a right process. Let Ze %y, HE @ be additive and
(#%)-adapted. Let F be an acceptable strongly homogeneous coefficient satisfying
(8. 7) with #=FF. Let Y= (Yy)yeme@ be such that Y? is the solution of Eq.(8.10)
for every yeR. Then the process (X,Y) admits a right transition semi-group.

Because of (3.21), Z and H are strongly additive. The assumption that Z be
(% )-adapted is not a restriction since by a slight extension of [1], any Ze %, is
indistinguishable from a Z'e %, which is (%7, )-adapted.

Proof. We put =%, and our assumptions imply that Y is (#)-adapted, see
(8.7). If (P) denotes the transition semigroup of (X, Y), it follows that (x, y)—
Pf(x,y)=E*[f(X,, Y?)] is &° x #-measurable for all febé&. Since &° is contained
in the o-field of nearly Borel subsets of E for X, it is obvious that P f is nearly-
Borel-measurable relative to (X, Y) for every febé&. By [41], (7.6), this property
implies that (P) is a right semigroup.
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