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Introduction 

Let 5e(R d) be the Schwartz space of real-valued C ~ functions on R e which, 
together with all their derivatives, are rapidly decreasing, and denote by 5 e'(Rd), 
the dual of 5~(Rd), the space of tempered distributions, If f# is an open set in R d, 
let ~e  be the o--algebra generated by the functions (p--rq~(f) as f runs through 
C~(f#); and if S is an arbitrary non-empty subset of R d, define d s =  (~ ~-s~, 

~>0 
where S~={x~Rd: Ix-Sl<e}.  A probability measure # on 5P'(R a) is called a 
Markov random field if for all bounded open fq~R d and all bounded ~-~- 
measurable ~: 5 p' (e  d) ~ C, E ~ [q~ I ~ o ]  = E u [~  I doe]  (a.s., #). 

There are many known examples of Markov random fields in this context 
(cf. [4], [81, and Theorem (1.5) below). Simplest among these are those which 
are Gaussian and have conditional marginals which are translation invariant. It 
is with such fields that we will be dealing in this paper. Indeed, the problem that 
we want to solve is that of describing the set of Markov random fields v which 
have the same conditional marginals as a given Gaussian translation invariant 
Markov random field #. That is, given #, let J/~ be the set of all v such that v l ~  
~ # l ~  for all bounded open fq's and E~[~bld~c]=EU[~ldo~ ] (a.s., v) for all 
bounded open fq's and all bounded ~e-measurable ~'s. We want to describe 
~//g,. (It is hard to miss the analogy between this problem and the problem of 
phase transition for a lattice gas as formulated by Dobrushin, Lanford, and 
Ruelle. Indeed, the problem is the same, the only change is in the context.) What 
we will show is that if the covariance of # is given by ((p, ( -  L) - 1 (p), where L is a 
constant coefficient differential operator, then (under mild conditions on L) the 
extreme elements of Jr coincide with the translates of # by tempered distri- 
butions H satisfying LH=O. As a consequence we see that if L1 =0  then there 
are many translation invariant Markov random fields with the specified con- 
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ditional expectations. This situation should be compared with those in [1], [4], 
and [7]. Also the analogy between our results and those of Dobrushin [2] 
should be noted. Qualitatively the results are the same; however, in [2] 
Dobrushin concerns himself with random fields over the integer lattice. 

Finally, once we have obtained the description of J~u, we have been able to 
isolate an analytically prescribed subspace S of Y'(R a) such that if(S)= 1 and the 
only extreme v ~  with v(S)>0 is v=# .  

We take this opportunity to thank L. Accardi for mentioning this problem to 
us. Our only regret is that he did not have time to tell us for what he wanted to 
use the solution. We hope to eventually find out. 

Section (1) 

Up through Theorem (1.5), the contents of this section are simply our in- 
terpretation of Nelson's ideas. We have put in the details mostly to satisfy 
ourselves that Nelson's scheme works without a hitch even in the "mass free" 
case. Furthermore, we will need the notation introduced along the way. 

Let or: Ra--rR 1 be an even non-negative polynomial and denote by L the real 
constant coefficient differential operator whose symbol is ~r. That is Lf= (~rf) v for 
f~Se(Ra), where "'~' and "~' are, respectively, the symbols denoting Fourier and 
inverse Fourier transform. Throughout  we will assume that 

1 
(1.1) ~ ~r(x) dx < oo. 

{x: or(x)< 1} 

define A1/2: ~(Ra)--,L2(R a) by A1/2 f = (~-~ f)v and introduce on ~(R a) Next, 

the inner product (., ")A given by (f, g)A =(A1/2f, At/2g) (throughout (', ") stands 
for the usual Hermitian La(Ra)-inner product). Complete S#(R a) with respect to 
the norm II'IIA determined by ( ' , ')~, and let HA denote this completion. It will 
be convenient for us to identify ~/r~A with the space of Z~Se'(R a) such that 

1 2sL~oc(R a) and ~ G~j  12(x)l/dx < oo. That is, we will think of 240 A as a subspace 

of ~'(Ra). Clearly, the action of )~24r A as an element of J ' (R  a) is given by z(f)  
=~2(x)f(x)ax. Observe that if p~C~(R a) with Ip (x )dx=l  and p,(x) 
=e -d p(x/e), e>0,  then for any ~0e~A: 

1 
Ilp~* z - z l l  2 = J o-(x) I~(sx) 2 ( x ) -  2(x)l 2 dx ~ 0  

as e$0, by Lebesgue's dominated convergence theorem. Hence if Zs~A and 
supp(z )cz fq  (c=  means "compactly contained"), then we can choose {f,}~ 
_~ C~(~) so that IIf.--)~llA~0. 

Now let # be the probability measure on 6a'(R d) such that 

(1.2) E" [e io(y)] = e - 1/2(f, f )A fE~(Ra). 
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Clearly # is Gaussian and translation invariant. Denote by Yr, the closure in 
L2(#) of the set of random variables (p(f), fsSe(Rd). Thinking of 5e(R d) as a 
dense subspace of Yfa and noting that f-- , (0(f)  is an isometry taking 5P(R e) into 
a dense subspace of Y~,, we see that NFA is isometrically isomorphic to Yf~. 
Given Z~Y~A, we will use X z to stand for the element of ~ into which Z is sent 
by this isomorphism. 

If S 4 = ~ is a subset of R e, we use ~s  and ~&s to denote, respectively, the a- 
algebras over 5P'(R e) generated by {(p(f): f~5~(R e) and supp(f)cz=S} and 
{Xx: ZeYf A and supp0~)cz=S}. Clearly ~ s - - - ~ - O n  the other hand, if S is open 
and X~Yf A satisfies supp(z)cS ,  then we can find {f,}]~176 such IIq~(fn) 
--X~llL.(.)= IIA--Z[IA~0 as n---> oo. Thus 

(1.3) J~s = ~s(  a-s., #), S open in R e. 

Next set d s =  (~ Js~ where S~= {xeRe: Ix-S[  <e}. Because of (1.3) 
e > 0  

d s  = S ) s -  (~ ~s~ (a.s., #). 
e > 0  

(1.4) Lemma. Let f~ be a bounded open subset of R e and denote by ~ the 
orthogonal projection in NfA onto the subspace {XeYt~A: supp(x)___N~}. Then for 
any geC~(f~), X~g is ~e-measurable and Zg-q~(g)-X~g is a Gaussian random 
variable which has mean 0 and is independent of ~eo. 

Proof To see that X~g is ~ - m e a s u r a b l e  we need only check that supp(~g) 
_~0~. Certainly supp(Tcg)_~f~q At the same time, if ~C~((f~)~), then 
L 0  e C~ ((N)0 and so: 

rcg(0) = (~g, Lr = (g, Lr = (g, 0) = 0. 

Thus supp (xg) _~ ~N. 
To prove the desired properties of Zg, note that N'~, under # is a Gaussian 

family of mean 0 random variables and therefore Z~ is certainly a mean 0 
Gaussian random variable. Furthermore, if Z e t a  with supp()()cr-N c, then 

E.  [Z~ ;? . ]  = ( ( I -  ~) g, Z)A = 0. 

Hence Zg is independent of ~e, .  Q.E.D. 

(1.5) Theorem (Nelson). Let fq be a bounded open set in R e and ~: 5r a 
bounded Ye-measurable function. 7hen E ~ [ ~ [ ~ , ]  = E" [r ] sJoe] (a.s., #). In par- 
ticular, there is an sC~e-measurable version of EU[~b [ s uteri. 

Proof Because # is a Gaussian measure, we need only check that for each 
ge C~ (fr E" lop(g) I see,] admits an ~o~-measurable version. To this end, set 
(q~ =((fq~)~)~ and define ~ accordingly (as in Lemma (1.4)) with ~q~ replacing fr 
Then, by Lemma (1.4), E"[cp(g)[ ~(e~)~] = X ~ g  (a.s., #); and so, by the remarks 
preceding Lemma (1.4), E ~ [(p(g) [ ~ / , ) , ]  admits a ~o~)=/,-measurable version @,. 
On the other hand, by the martingale convergence theorem, EU[~o(g)[~,/,)o] 
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~EU[qo(g) l ~ ]  as n ~  oo; and, again by the remarks preceding Lemma (1.4), 
EU[q)(g)ls~]=EU[cp(g)ld~o] (a.s., #). Hence, @, - ,  EU [q) (g) l d e , ]  (a.s., #), and 
therefore EU[cp(g) l d~ , ]  admits an do~= ~ ~0~),/,-measurable version. Q.E.D. 

n > l  

We now know that # is a Markov random field. Define the set ~//gu as in the 
introduction. Our next result shows that in general J /u will contain elements 
besides # itself. 

(1.6) Theorem. Let H~S~'(Ra)c~C~(R a) satisfy LH=O. 77wn the translate #u of 
# by H (i.e. #n is the distribution of q)+ H under #) is an element of Jgu. 

Proof We must first show that # n l ~  ~ #1.~,~ for bounded open (q's, and clearly it 
is enough to do this when (#=B(0, R) for R>0 .  Given R, choose 
r/~ C~ (B (0, 2R)) so that t /= 1 on B (0, 3 R/2), and set f = L(t/H) and 

X(q~) = exp [ q ) ( f ) -  1/2(ff)A] , (p~Sa'(Re). 

Then for any g e C~~ (B (0, 5 R/4)): 

E" [e ~~ X(q~)] = exp [ -  1/2 (g, g)A + i(g, f)A] 
= exp [--  1/2 (g, g)A + i(g, AL(tlH))] 
= exp [ -  1/2 (g, g)A + ill(r/g)] 

= exp [--  1/2 (g, g)A +iH (g)] = E u~r [ei'P(g)]. 

Thus Xd# equals d#u on din0" m, and so #uldB~o, R~ r m" 
TO prove that EU~[q)ld~=]=Eu[q)lde~] (a.s., #n) for bounded Ye- 

measurable ~b's, choose R o >0  so that ~ c c B(0, Ro) and let R > R  o be arbitrary. 
Define t/, f, and X as in the preceding paragraph relative to R. Then for any 

E"~E~, B3 -=E"EX~,, B3 =E"EXE'E~Id~.3, B] 
=E"EXE"E~'Ide~3, B3 --E"~ EE" E~ I ~0~3, B3 

since s u p p ( f ) ~ B ( 0 ,  R) c and therefore X is d~o-measurable. Q.E.D. 

The rest of this section is devoted to proving the converse of Theorem (1.6). 
For  this purpose, we want to show that every vs Jg ,  is a stationary measure for 
a certain Ornstein-Uhlenbeck flow on 5~'(Ra). Since in an earlier paper [3], we 
classified all such stationary measures, we will be essentially done once we have 
shown this. 

Define the semi-group {T t : t>0  } o n  ~9~(R d) by T~f=(e-~/e~f) ". For con- 
venience, we will use ft to denote T t f  It is shown in [3] that {Tt : t>0} 
determines a unique transition probability function P(t, 0, ") on 5e'(R a) via the 
equation: 

(1.7) 
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1 
for FeCb(R 1) and feSe(Ra), where 7(z, ~)=(2rc.c)1/2 e-g2/2r. P(t, 0, ") is the tran- 

sition probabil i ty function for the Ornste in-Uhlenbeck flow alluded to in the 
preceding paragraph.  

(1.8) Lemma.  Given f = ( f l ,  "',fn)e(5~(Re)) ", let Fy(t," ) denote the Gaussian 
measure on R" having mean 0 and covariance 

Then for F~C~(Rn): 

(1.9) ~ F(cP(fl), ' " ,  ~P(fn)) P(t, tp, dq~) 

= (F * FT(t, "))(0 ((fl)t) . . . .  , $ ((f,),)). 

In particular, if F~CZ(R ") and we define 

F ' ( r  . . . ,  ~ n ) = ( F  * r ? ( t , - ) ) ( ~ 1  . . . . .  r 
then 

(1.10) 

and so as t.~0: 

F(~o(f O . . . . .  ~o(fn)) P(t, 0, dqO- FOP(fl) . . . .  , ~(fn)) ~(~ 02FS 
= ! 1 / 2  i, 1 ((f/)s, (fj)s) (~ ~i ~ ~j 

- ,=1 ~ O(L(f~)s) 0 ~, ] (O((fl)s) . . . .  , O((f,  ls)) ds ; 

1 
(1.11) t [~ F ( 9 ( f 0  . . . . .  q~(f~)) P(t, 0, dg) -F(O( f~)  . . . .  , O(f,))] 

1/2 i, --l(f/ '  fj) O~i O~j i=1 ~t(LN) (~t(fl), -.., O(fn)) 

point-wise as well as in L z (/0. 

Proof. It is sufficient to prove (1.9) for F(~I,  . . . ,  ~n)=exp i ~, 2 ~  , in which 
j= l  

case (1.9) is a consequence of (1.7). Given (1.9), (1.10) follows by differentiating 
(f,Q(t,.))(O((fl),),...,O((fn),)) with respect to t. Finally, the point-wise 
convergence in (1.11) is evident from (1.10). To prove that  the convergence takes 
place also in D(#),  observe that from (1.10) one obtains the estimate 

l t[  ~ V(q~(f O, ..., q~(f~)) P(t, t~, dqO- F(O( f  O, ..., O(f,))] 
2 

<= C/t 1 + 10(g(f)s) l  2 ds 
0 
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where C depends only on the LZ(Ra)-norms of t he f f s  and the C~(R")-bounds on 
F. Hence, since/~ is a Gaussian measure on 5:'(R a) and s--+L(fj), is continuous, 
we see that 

I- 1 
sup EU[ L t [j" F(q~(fl) . . . . .  q~(f.))P(t, O, dq)) 

0=<t_<l 

-F(~( f l ) ,  ..., ~(f~))] 2j - < ~ .  Q.E.D. 

(1.12) Lemma. Let ~, kgeCb(5:'(Ra)). Then 

(1.13) ~ tP(O)( S ~b(q~) P(t, ~, dq~)) #(dO) 
= ~ ~(~)(~ 7/(q~)P(t, ~, dg) ) #(d~), t=>O. 

In particular, # is P(t, tp, .)-invariant, and so if f l ,  . . . , f ,~S:(R d) and F6C2(R"), 
then 

(1.14) 
[ ~j= 02F 

Proof We need only prove (1.13) for ~b(~o)=e ~(:) and 
f, gsS:(Ra). But 

S ei0(g)(S ei~ ~9, do) ) #(dO) 
t 

= ~ eiO~g ) eiO(f,)-1/2 ! IFLll 2 as u (d O) 

] =exp  [ -  1/2(g + f  t, g +ft)A-- 1/2 l0 IILII2 ds 

= exp [ -  1/2 ((g, g)a + (f, f)A + (g, f,) + (f, g))]" 

The last of these equalities results from 

t 

t 1 e_tO(x ) i f (x ) l  z dx+5(ie_~,,~x)if(x)[ 2 dx)ds (f.Lh+ o~ Ilfsll2 ds=S 7 ~  o 
1 

= j" ~ If(x)[ 2 dx=(f ,  f)A 

=~14,(Lf/) 0V (0(L) ..... 4'(L)) ~(d0)=0, 
i =  

~(q)) = e i~(g) where 

plus 
1 

(g, f~)A = ~ 7 ~ ,  e-'/2 ~x~ ~(x) f (x) dx  = (f, gOA. 
otx) 

Since the final expression is symmetric in f and g, (1.13) now follows. 
The invariance of # is obvious from (1.13) upon taking ~ = 1 .  Finally, 

combining the invariance of # with the convergence result in (1.11), one easily 
arrives at (1.14). Q.E.D. 

(1.15) Lemma. Let f, g~C~(R a) have disjoint supports. Then for all FEC2(R 1) 
und G~ Cb(R1): 
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(1.16) ~ (LIf II 2 F"(O(f))-O(Lf)F'(O(f))) G(O(g)) #(dO)=0. 

Proof Clearly it is enough to prove (1.16) for F, G~C~(R1). Given such F and G 
and applying (1.14) to F(q(f)). G(q(g)), we obtain 

(][f I12 F"(O(f))-O(Lf) F'(O(f))) G(0(g)) #(d0) 

= - -  ~ ( l [g  H 2 G"(0 (g))- 0(Lg) G'(0(g))) F(O(f)) #(dO), 

since (f, g)=0. On the other hand, from (1.13) we know that 

(~ F(cp(f)) P(t, O, d q)-F(O(f))) G(O(g)) #(dO) 
= ~ (~ G(~o(g)) P(t, O, d~o)- G(0 (g))) F(O(f)) #(dO). 

Hence, if we apply (1.11) to both sides, we get: 

~ (I]f II 2 F"(O(f))- O(Lf)F'(O(f))) G(0(g)) #(dO) 

= ~ (Hg I] 2 G"(0(g))-  O(Lg) G'(0 (g))) F(O(f)) #(dO). 

After combining these two, we arrive at (1.16). Q.E.D. 

(1.17) Lemma. If  ~ is a bounded open set in R d and f ~C~(~), then for every 
FeC~(R1): 

(1.18) ~ (llflI2F"(O(f))-O(Lf)F'(O(f)))#(dO)=O, Uesr 
B 

Proof Since feC~(~q), we can find % > 0  so that supp(f)c~(~c)~~ Hence if 
0 < e < %  and g~C~((f~c)~), then, by (1.16), for all GECb(R1): 

(H f H2 F" (O(f))- O(Lf) F' (O(f))) G(O(g)) #(d0)=0. 

Clearly (1.18) is a consequence of this. Q.E.D. 

(1.19) Lemma. If veJ/du, then for all f ~Sf(R d) the random variable q(Lf) has the 
same distribution under v and #. Furthermore, for each f 6S~(R d) and Fe C2(R1): 

(1.20) ~ ([] f ]] 2 F"(O(f)) - O(Lf) F'(O(f))) v (dO) = O. 

Proof We need only prove the first part under the assumption that f~C~(Rd). 
Given f6C~(Ra), choose R > 0  so that supp(f)=~B(O,R). Then, by 
Lemma(1.4), we can write qo(Lf)=X,Ly+ZLr where ZLr is independent of 
~B(O,R)c. H e n c e  

E~ [ eizz~'] = E~ [ E~ [ ei; 'z~I S~es(o, 2R)]] = E~ [ eizz~f]  

since ~S(0,2R)~__~B(O,R)c and veJ/u.  Thus if we can show that 7eLf=O, then we 
will be done. But supp(nLf)~_B(O, R) ~ and so 

[]rc Lf I] 2 = (~ Lf, Lf) A = ~ gJ'Lf (x) f (x~ dx = ( reEf) ( f )=0  

since f e C~(B(O, R)). 
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In proving (1.20), we can and will assume that f ~  C~(B(O, R)) for some R > 0. 
Given F~C~(R1), define @(~o)= I[fll2f"(q~(f))--~o(gf)F'(f)). Then by the pre- 
ceding q~EL~(v). Moreover, since @ is ~(o,R~-measurable, we can combine 
Theorem (1.5) and (1.18) to conclude that 

E"[@ [ ~sco, m] =0  (a.s., #). 

Hence since E~[~[dB(O,R)c]=E"[~Ids(o.R)] (a.s., v), we have E~[@] 
=0. Q.E.D. 

It should be noted that if A: ~C~ then the first part of Lem- 
ma (1.19) shows that ~ = { # }  without any further ado, since we can in this 
case write every f~9~(R  a) as Lg with g = A f  Thus all our machinery involving 
P(t, 0, ") is relevant only when A fails to map • (R  a) into itself. 

(1.21) Theorem. I f  v~Jg~, then v is P(t, 0, ")-invariant. 

Proof. Let f ~ ( R  e) and F~C~(R 1) be given and define F t accordingly as in 
Lemma (1.8) (here n = 1). Then by (1.9): 

S F(qo(f)) P(t, 0, d o ) - F ( O ( f ) )  

= 1/2 i (ll fsll 2 (FS),, (0 (f)) - $ (Lfs) (FS) ' (t~ (F~))) ds. 
0 

Furthermore, by (1.20), for each s 

(ll fs [I 2 (FS),, (~, (f)) _ ~ (L f,) (F*)' (~ (fs))) v (d 0) = 0. 

Finally, but the first part of Lemma (1.19), 

sup E~ElO(Lf,)12]= sup E"[lO(Lfs)12]<oo. 
O<_s<_t O<_s<_t 

Hence we can apply Fubini's theorem to complete the proof. Q.E.D. 

In order to arrive at our final result, we must borrow the following fact 
about the structure of P(t, 0, ")-invariant measures from [-3] (cf. Theorem (5.7) 
and Lemma (5.17)). 

(1.22) Theorem. I f  v is P(t, 0, ")-invariant, then there is a unique probability 
measure m~ on { H ~ ' ( R d ) :  L H = 0 }  such that v=~ #nm~,(dH ). 

Combining Theorems (1.6), (1.21), and (1.22) we arrive at our main result. 

(1.23) Theorem. I f  m is a probability measure on {H~SP'(Rd)c~ C~176 LH=0} ,  
then ~ #Mm(dH)~Jr Conversely, if v~J~',, then there is a unique probability 
measure m, on {H~Sf'(Ra): L H = 0 }  such that v=~#nm, (dH ). Hence, if 
{H �9 S~' (R d) : L H  = 0} ~_ C ~ (Ra), then the mapping m --* ~ #nm (dH) defines a one-to- 
one mapping from the set of  probability measures on {H~J'(Rd): L H = 0 }  onto 

(1.23) Remark. The condition { H ~ ' ( R a ) :  L H = 0 }  __ C~176 d) is not so restrictive 
as it may appear at first. Indeed, for many choices of a(" ), it is possible to check 
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this condition by hand (e.g. when a ( ' ) = a 0 ( ' ) + a l ( ' )  where % ( ' )  is homo- 
geneous polynomial of degree 2n such that ao(x ) >0  for x :~0 and a l ( .  ) is a non- 
negative polynomial of degree strictly less than 2n). The best result that we 
know on this subject are due to L. H6rmander  and can be found in section (4.1) 
of this book [4]. Perhaps the most useful sufficient condition is that or( . )>0 on 
R d \  {0}. 

(1.24) Remark. The introduction of P(t, 0, ") may appear to be simply a device 
with which we have reduced the problem at hand to one which has already been 
solved. Indeed, a more direct route to Theorem (1.22) would run as follows. 
Starting from Lemma (1.19), we know that for any veJC{, and g~5:(R d) the 
distribution of q~(Lg) under v is the same as it is under/~. Now suppose that for 
any f~5:(R ~) we could construct {g,}~_~5:(R ~) so that Llf-Lg, LIA--,O and f 
- L g ,  vanishes on B((9, n)--({x~Rd: Ixl <n}). Setting f ,=Lg,  and h , = f - f , ,  we 
would have: cp ( f )=(p  ( f , )+  ~o(h,) where (p (f,) under v is a mean 0 Gaussian with 

variance (f,, L-if,). Furthermore, we would know that cp(f,)- L,(~)X: where X: 
is a mean 0 Gaussian with variance (f, L - i f ) .  Hence, it would follow that 

<o(h,) L,(,~ y: where Y: must be tail-measurable and therefore independent of 
X:. Without much trouble, it would also be possible to show that f ~ X :  and 
f ~ Y: can be chosen so that X. and Y. are tempered distribution-valued random 
variables. Finally, it is clear that YLg would have to be 0 for all g~5:(R d) and 
therefore that Y. must be an L-harmonic distribution. The result of all this would 
therefore be that we could write (p(f)=X:+ Y:, fs5:(Rd), where f ~ X :  and 
f ~  Y: are independent 5:'(Rd)-valued random variables, X: under v is a mean 
0 Gaussian with variance (f, L ~ f ) ,  and LY-O. Obviously, this is just what is 
needed to prove part of Theorem (1.22) not covered by Theorem (1.6). 

The preceding paragraph leaves the problem of constructing the sequence 
{g~}]L We have been able to construct {g,}~ in the case when L =  - A ,  but the 
technique that we used does not appear to be readily generalized. This is the 
main reason why we chose the route via P(t, 0, . ) .  A secondary reason is that 
the connection between the D.L.R. conditions and the flow determined by 
P(t, ~, .) seems to us to be of independent interest in its own right. 

Section 2 

We now have a quite complete description of ~ , .  In particular, we know that if 
the only He5:'(R d) satisfying LH=O is H = 0 ,  then d//u= {/~}. This will of course 
be the case if A maps 5:(R d) into itself. On the other hand, if for instance a(x) 
= I xl 2, there are an infinity of non-trivial H e5:'(R d) such that LH = 0. Thus it is 
natural to ask if it is not possible to isolate an analytically describable Hilbert 
subspace S of 5: '(R d) such that #(S)= 1 and the only H~S satisfying LH= 0 is H 
=0.  If we can find such an S, then it is clear that JCtuc~ {v: v(S)= 1} = {#}. 

In order to prove that S exists, we will make the following additional 
assumptions about or('). Namely, we assume that there exists a 6 > 0  such that 

(2.1) ~ (a(x))-(1 + 1/6)dx < ~. 
{x:a(x)< 1} 
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To carry out our program, we need some notation. For k>0,  let h k denote 
the k TM Hermite function: 

d k 
hk (X  ) = (711/2 2 k k !)- 1/2 ( - -  1)k eX2/2 _ _  e - ~  

d xk 
x~R  ~. 

Given a multiindex e e I =  ({0, 1 . . . .  , n,... })a and x = ( x 1 , . . .  , Xd)eR d, set 

h~(x) = h=,(xt).., h=d(xd). 

Recall that {h=: aeI} forms an ortho-normal basis in L2(R e) and that f eL2 (R  d) is 
an element of ~ ( R  e) if and only if {(f, h=): aeI} is rapidly decreasing, in which 
case ~ (f, h=) h~--+f as N 1' oe in 5~ 

M__<N 

(2.2) Lemma. For the 5 > 0  in (2.1): 

where {Tt: t>0}  is the semi-group on ~~ introduced before (1.7). 

Proof. Certainly it suffices to show that 

But 

(2.3) 

E ~ ~ (1-l-]or 2 <00. 
t+ - -  +tEl 

co 2 

n o~eI 
+o 1 

= ~ (1 + I~l) -(aa§ j" ~--~o a(7) e - ~  ~,x)ih~(x)l 2 dx. 

~,, (30 

Now write Go().)= e-X"~= S e-*tdUo(t), where Uo(t)= ~, 1 = I t  1/~ + 1. By a 
n = 0  0 n 6 < t  

standard Abelian theorem (cf. p. 420 of [1]), we see that Go(), ) is asymptotic to 
F(1 + 1/6))`-1/~ as 250. Since Go()` ) is bounded for 2 in each interval [e, a2) with 
e > 0, we now obtain: 

With this estimate, we get: 

co 1 
Y~ o  ~ e-n~(~)[h~(x)12 dx 

<= Co(8) 1- 5 (o-(x))-(1 + t/a)th~(x)[2 dx 
(x: a(x)< 1} 

+ ~ ]h~(x)] 2 d x ]  
(x: a(x) > 1 } 

< Co(a) [11 h~ll2~(Rd) 5 (~r(x))-" +l/a)dx+ 1]. 
{x: a ( x )  < 1 } 
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But Ilh~llL~<i~)~ Cz(d)(1-k-lc~l) ~/4 (el. (A.12) in  [3]), and so there is a C(d, 6)<  Go 
such that  

~o 1 ~ = ~ e  "~c~)[h=(x)12dx~C(d,~)(l+]c~]) a/z. 

Plugging this back  into (2.3), we have:  

We now define 

E~ ~ (1+1~1) <3~+2)/21qo(r~h~)12 
n _  ~ c I  

<C(d, 6) Y,(l+lc~l) (~+~)<oo. Q.E.D. 

It  is clear that  S can be given a natura l  Hi lber t  space s tructure and that  S is a 
dense F~-subset of 5e'(Re). 

(2.5) L e m m a .  I f  (p~S, then (o(T~f)~O as n ~  oo for all f eSP(Re). In particular, 
if H~S and LH=O, then H = 0 .  

Proof Given  fsSP(Re), we have:  

I~o(T.~ f)l =l ~ (f, ha) q)(T.eh~)l 

--<l ~ (f, h.)~ (1 + I~l)<~+~)/~l~/~l 

�9 ~ (1 +lc~l) ~3~+~)/Zlq~(T,~h~)lZl~/~, 

0tffI 

and, since ~oeS, 

as n~o �9  

Finally, if H6S and LH=O, then H ( T J ) = H ( f )  for all t > 0  and fESe(Rd). 
Hence  H ( f ) =  lira H(T,~f)=O, f~SP(Rd). Q.E.D. 

r l ~ o o  

(2.6) L e m m a .  I f  HeS'(R d) and LH=O, then # n ( S ) > 0  implies H = 0 .  

Proof If  #n(S) > 0, then, since #u(S + H) = 1, S c~ (S + H) =t= ~.  Hence  there exist 
~o, OsS  such that  q ~ = ~ + H .  But this means  that  O=LH=L(q)-O), and so q)=O. 
In other  words  H = 0 .  Q.E.D. 

(2.7) Theorem. Let S be defined as in (2.4). Then J//uc~ {v: v ( S ) = l }  ={#}.  
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