Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete © by Springer-Verlag 1980

A Note on the Convergence of Sequences of Conditional Expectations of Random Variables

Zheng Wei-an

Department of Mathematics, Shanghai Normal University, Shanghai, China

Summary. We disprove two theorems on the convergence of sequences of conditional expectations of random variables in [1] by providing a counter-example.

Let $(x_n)_{n=1,2,...}$ be a sequence of random variables which are uniformly integrable. It is well known that

$$\overline{\lim_{n \to \infty}} E[x_n] \leq E[\lim_{n \to \infty} x_n] \tag{1}$$

but, if we replace the symbol E[.] by that of the conditional expectation $E[.|\mathscr{G}]$ where \mathscr{G} is some σ -field, will the inequality (1) still remain true? Such a proposition needs a proof. But Liptser and Shiryayev state it as Theorem 1.2 of their book [1] without giving a proof. They also state without proof (their Theorem 1.3) that if $0 \leq x_n \rightarrow x$ a.s., $E[x_n] < \infty$, then

$$E[X_n|\mathscr{G}] \xrightarrow{n \to \infty} E[X|\mathscr{G}] \quad \text{a.s.}$$
(2)

if and only if (X_n) are uniformly integrable. Both theorems are not true. It is the purpose of this note to disprove the validity of the two theorems by proposing a counter-example as follows.

Let $\Omega = (0,1] \times (0,1]$ be the unit square in the Cartesian plane, \mathscr{B} the Borel field on that square, and $p = \mu \times \mu$ the product measure, where μ is the Lebesque measure on (0,1].

Thus, (Ω, \mathcal{B}, p) forms a probability space. For every positive integer *n*, write $n = 2^k + j - 2$, where *k* is a positive integer, with $j = 1, 2, ..., 2^{k+1} - 2^k$. Then, to every *n* there corresponds a pair of positive integers (k, j) which we shall denote as functions of *n* by (k, j) = (K(n), J(n)).

Let

$$\begin{split} A_{n} = & \left\{ s \colon \frac{J(n) - 1}{2^{K(n)}} < s \leqq \frac{J(n)}{2^{K(n)}} \right\}, \\ B_{n} = & \left\{ t \colon 0 < y \leqq \frac{1}{2^{K(n)}} \right\}, \\ X_{n}(s, t) = 2^{K(n)} I_{A_{n} \times B_{n}}(s, t), \\ \mathcal{G} = \mathcal{B}_{0} \times (0, 1], \end{split}$$

and

where \mathscr{B}_0 is the Borel field on (0,1]. Evidently \mathscr{G} is a sub- σ -field of \mathscr{B} . For every $B \in \mathscr{G}$, we have $B = B_0 \times (0,1]$ where $B_0 \in \mathscr{B}_0$. Furthermore,

$$\int_{B} x_n dP = \int_{B_0 \times (0,1]} 2^{K(n)} I_{A_n \times B_n}(s,t) dP$$

= $2^{K(n)} \mu [A_n \cap B_0] \mu(B_n)$
= $\mu [A_n \cap B_0]$
= $\int_{B_0 \times (0,1]} I_{A_n \times (0,1]}(s,t) dP$
= $\int_{B} I_{A_n \times (0,1]}(s,t) dP.$

Hence

 $E[x_n|\mathscr{G}] = I_{A_n \times \{0,1\}} \quad \text{a.s.}$

Since $x_n \to 0$ and $E[x_n] \to 0$, (x_n) are uniformly integrable. They satisfy the conditions of Theorems 1.2 and 1.3 of [1]. But $\lim_{n \to \infty} E[x_n|\mathscr{G}] = \lim_{n \to \infty} I_{A_n \times (0,1]}$ = $1 > 0 = E[\overline{\lim_{n \to \infty} x_n}|\mathscr{G}]$ a.s. leads to a contradiction.

Note of a referee: The example above also shows that the Corollary to Theorem 1.2 and 1.3 of [1] is wrong.

Reference

1. Липцер, Р. Щ., Ширяев, А. Н.: Статистика Случайных процессов. Москва, 1974. (English translation: Liptser, R.S., Shiryayev, A.N.: Statistics of Random Processes I. New York: Springer 1978.)

Received October 15, 1979

292