# A Note on the Convergence of Sequences of Conditional Expectations of Random Variables 

Zheng Wei-an<br>Department of Mathematics, Shanghai Normal University, Shanghai, China

Summary. We disprove two theorems on the convergence of sequences of conditional expectations of random variables in [1] by providing a counterexample.

Let $\left(x_{n}\right)_{n=1,2, \ldots}$ be a sequence of random variables which are uniformly integrable. It is well known that

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty} E\left[x_{n}\right] \leqq E\left[\overline{\lim _{n \rightarrow \infty}} x_{n}\right] \tag{1}
\end{equation*}
$$

but, if we replace the symbol $E[$.$] by that of the conditional expectation E[. \mid \mathscr{G}]$ where $\mathscr{G}$ is some $\sigma$-field, will the inequality (1) still remain true? Such a proposition needs a proof. But Liptser and Shiryayev state it as Theorem 1.2 of their book [1] without giving a proof. They also state without proof (their Theorem 1.3) that if $0 \leqq x_{n} \rightarrow x$ a.s., $E\left[x_{n}\right]<\infty$, then

$$
\begin{equation*}
E\left[X_{n} \mid \mathscr{G}\right] \xrightarrow{n \rightarrow \infty} E[X \mid \mathscr{G}] \quad \text { a.s. } \tag{2}
\end{equation*}
$$

if and only if $\left(X_{n}\right)$ are uniformly integrable. Both theorems are not true. It is the purpose of this note to disprove the validity of the two theorems by proposing a counter-example as follows.

Let $\Omega=(0,1] \times(0,1]$ be the unit square in the Cartesian plane, $\mathscr{B}$ the Borel field on that square, and $p=\mu \times \mu$ the product measure, where $\mu$ is the Lebesque measure on $(0,1]$.

Thus, $(\Omega, \mathscr{B}, p)$ forms a probability space. For every positive integer $n$, write $n$ $=2^{k}+j-2$, where $k$ is a positive integer, with $j=1,2, \ldots, 2^{k+1}-2^{k}$. Then, to every $n$ there corresponds a pair of positive integers ( $k, j$ ) which we shall denote as functions of $n$ by $(k, j)=(K(n), J(n))$.

Let

$$
\begin{gathered}
A_{n}=\left\{s: \frac{J(n)-1}{2^{K(n)}}<s \leqq \frac{J(n)}{2^{K(n)}}\right\}, \\
B_{n}=\left\{t: 0<y \leqq \frac{1}{2^{K(n)}}\right\},
\end{gathered}
$$

and

$$
\begin{aligned}
X_{n}(s, t) & =2^{K(n)} I_{A_{n} \times B_{n}}(s, t), \\
\mathscr{G} & =\mathscr{B}_{0} \times(0,1],
\end{aligned}
$$

where $\mathscr{B}_{0}$ is the Borel field on $(0,1]$. Evidently $\mathscr{G}$ is a sub- $\sigma$-field of $\mathscr{B}$. For every $B \in \mathscr{G}$, we have $B=B_{0} \times(0,1]$ where $B_{0} \in \mathscr{B}_{0}$. Furthermore,

$$
\begin{aligned}
\int_{B} x_{n} d P & =\int_{B_{0} \times(0,1]} 2^{K(n)} I_{A_{n} \times B_{n}}(s, t) d P \\
& =2^{K(n)} \mu\left[A_{n} \cap B_{0}\right] \mu\left(B_{n}\right) \\
& =\mu\left[A_{n} \cap B_{0}\right] \\
& =\int_{B_{0} \times(0,1]} I_{A_{n} \times(0,1]}(s, t) d P \\
& =\int_{B} I_{A_{n} \times(0,1]}(s, t) d P .
\end{aligned}
$$

Hence
$E\left[x_{n} \mid \mathscr{G}\right]=I_{A_{n} \times(0,1]} \quad$ a.s.
Since $x_{n} \rightarrow 0$ and $E\left[x_{n}\right] \rightarrow 0,\left(x_{n}\right)$ are uniformly integrable. They satisfy the conditions of Theorems 1.2 and 1.3 of [1]. But $\lim _{n \rightarrow \infty} E\left[x_{n} \mid \mathscr{G}\right]=\lim _{n \rightarrow \infty} I_{A_{n} \times(0,1]}$ $=1>0=E\left[\varlimsup_{n \rightarrow \infty} x_{n} \mid \mathscr{G}\right]$ a.s. leads to a contradiction.

Note of a referee: The example above also shows that the Corollary to Theorem 1.2 and 1.3 of [1] is wrong.

## Reference

1. Липцер, Р. Щ., Ширяев, А. Н.: Статистина Случайных процессов. Москва, 1974. (English translation:Liptser, R.S., Shiryayev, A.N.: Statistics of Random Processes I. New York: Springer 1978.)
