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Summary. Let  (f2, ~ ,  #) be a perfect probabi l i ty  space with ~-  countably  
generated,  and let IB be a family of  sub-a-fields of  ~ ' .  Under  a countabi l i ty  
condi t ion on the family IB, I show that  there exists a family { r c ~ } ~  of  
regular  condi t ional  probabi l i t ies  which are everywhere compat ible .  Under  a 
m o r e  stringent condi t ion on 113, I show that  the ne~ can fur thermore  be 
chosen to be everywhere  proper .  I t  follows that  in the Dobrush in -Lanfo rd -  
Ruelle formula t ion  of the statistical mechanics  of  classical lattice systems, 
every (perfect) probabi l i ty  measure  is a Gibbs  measure  for some specifi- 
cation. 

1. Introduction 

Let (O, o ~ ,  #) be a probabi l i ty  space, and let N be a sub-a-field of  ~ .  A regular 
conditional probability (r .c .p .)for  (f2, oj, #) given ~ is a m a p  n: f2x o ~ [ 0 ,  1] 
such that:  

(a) n(co, .) is a probabi l i ty  measure  on o~, for each c0ef2; 
(b) n ( . ,  F) is N-measurable ,  for each F e @ ;  1 and 
(c) ~ZB(CO)n(o~,F)d#(co)=#(Bc~F) for all B e ~  and F e ~ .  

n is said to be proper at 090 (on ~ )  if, in addition, 
(d) n(Ogo, B)=ZB(Ogo) for all B ~ ;  

it is (everywhere)proper (on ~ )  if it is p roper  at co o for all og0ef2. 
If  now ~ l  c ~ 2  are sub-a-fields of  i f ,  with ~- countably  generated,  and n~l 

[resp. n~2 ] is an r.c.p, for (Q, i f ,  #) given ~ l  [resp. given ~2 ] ,  then it is not  
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hard to show (Lemma 3A) that ~z~, and 7c~2 are "almost compatible" in the 
sense that 

(e) rc~l(co, F)=~ ~l(co,  de)') rc~2(co', F) for all F e ~ -  
for #-almost-every co. It is natural to ask, therefore, whether rc~ and rc~ can 
be chosen so that (e) holds for all co; and if so, whether ~z& and rc~ can also 
be chosen to be proper. It is the purpose of this paper to show that, under 
suitable conditions, the answer to these questions is yes. More generally, I shall 
show (Theorems 3.2 and 3.3) that if 113 is a family of sub-a-fields of ~ satisfying 
suitable conditions, then (proper) regular conditional probabilities {~z~}~ can 
be chosen so that (e) holds, for all co, whenever N1, N 2 e lB with N 1 c ~2.  

Since the subject of this paper may seem rather pedantic - replacing "al- 
most everywhere" by "everywhere" - it is perhaps worthwhile to indicate an 
application in which the result of this paper is of interest. In the Dobrushin- 
Lanford-Ruelle [5-9] formulation of the classical statistical mechanics of in- 
finite systems, the basic mathematical object is a specification [10, 11]: one is 
given a measurable space (f2, ~ ) ,  a family lB of sub-a-fields of N (directed 
downwards), and a family { r ~ } ~  of mappings r~:  f2 x ~---+ [0, 1] satisfying: 

(a') rc~(co, .) is a probability measure on o ~ ,  for each coe~2; 
(b') rc~(., F) is N-measurable, for each Fe~,~; 
(d') ~(co,  B)=)~,B(co ) for all B e N  and all coeQ; and 
(e') ~(co, F)=~rc&(co, dco')rc~(co',F) for all coef2 and F e ~  whenever 

N l c N 2 .  
The resemblance of these conditions to (a)-(e) is, of course, not accidental. In- 
deed, the ~ are to be interpreted as specified conditional probabilities (whence 
the name) for which one seeks a measure/2 satisfying 

(c') ~ XB(co)~z~(co, F)d#(co)=#(B c~F) for all BeN,  F e ~  and NelB; 
any such measure # is called a Gibbs measure (or D LR measure) for the specifi- 
cation {rc~}.e~. The crucial fact, however, is that the measure # is not given in 
advance; hence, the notion "almost everywhere" has initially no meaning, and 
the compatibility condition (e') must be assumed to hold for all co. Indeed, the 
Gibbs measure # may very well not be unique ("phase transition"), and in this 
case it is known that distinct Gibbs measures are extremely mutually singular 
[10, p. 21], making the notion of "almost everywhere" even more problematic. 

It is now clear that the problem being considered here is the "inverse prob- 
lem" in the theory of specifications: given a measure/2, is there a specification 
{~z~}~ m for which it is a Gibbs measure? To be sure, this problem is nowhere 
near as interesting, either physically or mathematically, as the "direct problem" 
of studying the existence, uniqueness, and properties of Gibbs measures for a 
given specification. It is, nevertheless, a natural question to pose; it is pleasant, 
therefore, that it has, at least in some cases, a satisfactory solution. Goldstein 
[12] and Preston [13] have resolved affirmatively the case of the discrete-state 
lattice model: here f2 is a countable Cartesian product of finite or countable 
sets, and the a-fields in lB are the cylinder sets over cofinite-dimensional bases. 
Theorem 3.3 of the present paper extends their result to general (continuous- 
state) lattice models. However, continuous models (point processes) 1-10, 
Sect. 6] are excluded by virtue of the countability condition on lB. 
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2. Regular Conditional Probabilities 

It is useful to review the known theorems concerning the existence of a (prop- 
er) regular conditional probability given a single a-field N. The main theorem, 
due to Ji~ina [14], employs the notion of a perfect measure [15]: a probability 
measure # on (f2, Y) is called perfect if, for each real-valued ~--measurable 
function f and each subset E c IR such that f - 1  [ E ] ~ ,  there exists a Borel set 
B such that B e E  and # ( f - I [ E \ B ] ) = O .  Equivalently, ~ is perfect if and only 
if for each such f, there exists a Borel set B such that B c f If2] and 
/~(f2"-. f -  1 [B])=0. Also equivalently, # is perfect if and only if its restriction to 
each countably generated sub-a-field is compact. Jifina's theorem then states 
that if Y is countably generated and/z  is perfect (equivalently, compact), then 
there exists a regular conditional probability for (f2, ~-, /0 given any sub-a-field 

It is also useful to know simple sufficient criteria for the perfectness of large 
classes of measures. A measurable space (s Y) is called perfect if every proba- 
bility measure # on (~'2, ~ )  is perfect. Then [15, 16] if ~" is countably generat- 
ed, (f2, ~') is perfect if and only if ~,~ is isomorphic to the Borel a-field of a 
universally measurable subset of a complete separable metric space. In particu- 
lar, it suffices that (f2, ~ )  be a Blackwell space 3 [17] (isomorphic to the Borel 
a-field on an analytic subset of a complete separable metric space), or more 
restrictively, a standard Borel space [181 (isomorphic to the Borel a-field on (a 
Borel subset of) a complete separable metric space). Most spaces encountered 
in applications are standard Borel spaces, hence perfect. A countable Cartesian 
product of standard spaces is standard; an arbitrary Cartesian product of per- 
fect spaces is perfect. 

We now consider the conditions under which a regular conditional proba- 
bility is proper. We first note the following [19]*: 

Lemma 2.1. I f  ~ is countably generated, then every r.c.p, for (f2, ~ ,  #) given N 
is # ~ N-almost-everywhere proper. That is, if rc is an r.c.p., there exists a set 
N e N  with ~t(N)=0 such that r~ is proper at co o for all o%r 

Proof By definition of r.c.p., 

ZB(O~) ~(CO, B') d/~(co) = #(B c~ B') = ~ XB(o~) ZB,(o)) d#(co) 

for all B,B'~N; hence ~(co, B')=)~w(m)#-a.e. by the uniqueness part of the 
Radon-Nikod~m theorem. Let d o be a countable generating subfield of ~ ,  and 
let 

N =  U {co: n(r~,S')4=Xw(~)}. 
B'~No 

Then N~N, #(N)=0, and it is not hard to show that zr is proper at co o for all 
c%r [] 

2 Note that in Corollary I of [14] (English translation, p. 82), the Russian word "sovershenna" is 
mistranslated as "complete"; it should read "perfect". See e.g. the English summary accompanying 
the original version of [14] and reprinted in the translation. 

a In [17], such spaces are called Lusin spaces. 

4 The main result of [19] (but not the result quoted) is, unfortunately, false. 
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The conditions for the existence of an everywhere proper r.c.p, are slightly 
more complicated. 

Definition. If N is a sub-~r-field of ~,~, a selection homomorphism for N with 
respect to ~ is a o--homomorphism ~,: ~ ' ~ N  which leaves N pointwise fixed, 
i.e. 0 (B)=B for all BeN. 

Remarks. (1) A selection homomorphism typically arises from a selection func- 
tion, that is, a measurable mapping f :  (f2, N ) ~ ( ~ ,  ~ )  such that coeBeN im- 
plies f(o))eB. Then by looking at both B and B c, we deduce that coeB if and 
only if f(co)eB; that is, f - l i , B  ] =B. So 0 = f - 1  is a selection homomorphism. 

(2) If ~ contains all one-point sets {co}, coe~2, and O = f - l = g - 1 ,  then f 
=g. Indeed, if f=t=g, there is some co such that f(co)#g(co); but then 

f -  1 [{f(co)}] # g-1 I,{f(co)}]. 
(3) Here is the standard example of a selection homomorphism: Let (f2, ~ )  

= (~21 x ~2, o~ x o~2), and let N = ~1 considered as a a-field on f~ in the obvious 
way. Fix any element (o~ . Then the mapping f ( @ = c o  1 x co ~ is a selection 
function for ~ with respect to ~-. Hence O = f - 1  is a selection homomor- 
phism; in detail, tp(F)= {(co~, a~2)ef2: (co,, co~ 

(4) If ~ is a selection homomorphism for N with respect to ~ ,  note that N 
= ~k I-N] = ~ I '~] .  Thus, if ~ is countably generated (or more generally, if there 
exists a countably generated a-field o~' with N c ~ ' c  o~), then N is also coun- 
tably generated. In general, therefore, there exist many sub-a-fields which do 
not possess any selection homomorphism. 

We call a map =: f 2 x ~ o [ 0 , 1 ]  a N-measurable probability kernel s on 
(Q, ~-) if it satisfies conditions (a) and (b) of the Introduction. It is said to be 
proper at co o if (d) holds, and (everywhere) proper if it is proper at co 0 for all 
COoe~. Obviously, every r.c.p, for (f2, o~, #) given N is a N-measurable proba- 
bility kernel on (f2, ~) .  

Lemma 2.2. (a) 1-20, 21] A sufficient condition for the existence of an everywhere 
proper N-measurable probability kernel on (f2, ~ )  is the existence of a selection 
homomorphism for N with respect to ~ .  I f  (f2, ~ )  is a standard Borel space, this 
condition is also necessary. More weakly, if ~ is countably generated, it is neces- 
sary that N be countably generated. 

(b) [22] An everywhere proper r.c.p, for (f2, ~ ,  #) given N exists if and only 
/f: (1) there exists a #~ N-almost-everywhere proper r.c.p, for (f2, ~.~, #) given N; 
and (2) there exists an everywhere proper N-measurable probability kernel on 
(~2,~,~). In particular, it suffices that: (1) ~ is countably generated; (2) # is 
perfect; and (3) there exists a selection homomorphism for N with respect to o~. 

Proof. (a) Let ~ be a selection homomorphism for N with respect to ~ .  Then 
rci(co, F)=x,(F)(co) is obviously a N-measurable probability kernel on (~, o~); 
and since O(F)=F  for FeN,  by definition of selection homomorphism, it is 
everywhere proper. The converse for (f2, ~ )  standard Borel is considerably 
more difficult; see 1-20]. For the last statement we note that if = is proper, then 
N = t h e  ~r-field generated by { ~ ( - , F ) : F E N } = t h e  a-field generated by 

s Also called stochastic kernel, Markov kernel, or transition probability. 
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{re(., F): F~ff} .  Thus, if f f  is countably generated (or more generally, if there 
exists a countably generated a-field i f '  with N c ~ " c  if), then so is N. 

(b) The "only if" is trivial. For the "if" part, let ~0 be an r.c.p, for (f2, ~-, #) 
given ~ which is proper outside N, where N s N  and # (N)=0 ;  and let zc be an 
everywhere proper N-measurable probability kernel on (~2, o~). Then 

F ~frc~ for ogdeN 
~(o9, 

)=(~(o9, F) for og~N 

is easily seen to be an everywhere proper r.c.p, for (~2, o ~ ,  #) given N. The last 
statement follows from the foregoing and Lemma 2.1. []  

Remark. It is not known (to me) whether the condition of (a) is necessary in 
general. 

3. Families of Regular Conditional Probabilities 

Regular conditional probabilities are always almost compatible: 

Lemma 3.1. Let N 1 and N 2 be sub-a-fields of Y ,  with N 1~N2; and let ~1  
[resp. ~2] be an r.c.p, for (f2, ~ ,  #) given ~1 [resp. given N2]. Then for each 
F 6 ~ ,  the set 

M ( F ) =  {co: ~1(o9' F )+S n~l(o9, do') ~2(o9', F)} 

is Nl-measurable and #(M(F))=0.  Moreover, if f f  is countably generated, then 
M= [) M(F) is N~-measurable and #(M)=0.  

F ~ "  

Proof Both sides of the defining relation for M(F) define Nl-measurable func- 
tions of co, so M(F)~N 1. To show that #(M(F))=0,  it suffices to show that 

ZB(O9) ~ , ( O ,  F) d#(o9) = S XB(O9)(~ ~ 1  (o9, dog') n~2(o9', F)) d#(og) 

for all B e N  1. Now the left side is #(BeeF), by definition of r.c.p. To evaluate 
the right side, interchange the order of integration (justified by a generalized 
Fubini theorem [23]) and perform the co integral first; using the definition of 
r.c.p., we get S d # (co') ZB(co') n~2 (co', F), which again equals # (B c~ F) since B ~ N 1 c ~2.  

Now let fro be a countable generating subfield of f t .  Since both sides of the 
defining relation for M(F) define, for each fixed co, probability measures in 
F e f f ,  it follows from the monotone class theorem that M =  ~ M(F) 

Fe~,w 
= ~) M(F). Since ~o is countable, the result follows. [] 

FE~'O 

Of course, it is not true in general that the compability equation holds for 
all co. Nevertheless, there exists a choice of ~e~ and ~ for which this does 
occur. More generally: 

Theorem 3.2. Let ~ be countably generated, and let N be a family of sub-a- 
fields of J~ such that for each NlslB, the set {N2~IB: NICN2} is countable. 
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Then for any perfect measure # on (f2, ~),  there exists a family { ~ } ~  of 
regular conditional probabilities for (~2, ~ ,  #) given ~, such that 

rc~(co, F)=~rc~(co, dco')zc~2(co',F) for all cosf2 and F ~  
(3.1) 

whenever ~1, Nz 6IB with ~1C~2" 

Proof. By Jifina's theorem [14], there exists for each NeIB an r.c.p, for 
(f2, o~,/1) given ~ - call it ~ .  Then by Lemma3.1, if ~ x c N 2  we have 
~ ( c o ,  F )=~  ~(co ,  dco')"Tc~(co', F) for all F e ~ ,  for all co except in a /~-null set 
M ~ , ~  sN~. The idea of the proof is to modify each ~ on a/~-null set N~eN 
so that the modified version, which we shall call z~, is still an r.c.p, for 
(f2, o ~ ,  #) given N, and so that the compatibility Eq.(3.1) is now satisfied for all 
co. In particular, we define zc~ as follows: 

~, f~ (co ,  F) for coCN~ (3.2) 
)r~(co, r )  = ~#(f)  for co~ NN. 

Since N ~ s ~  and /~(N~)=0, r~  is an r.c.p, for (D, @,/~) given ~.  By definition 
of r.c.p., (3.1) now holds for coeN~ (both sides equal/~(F)). Thus, we only have 
to pick {N~}~m so that (3.1) holds for co~N~. We proceed step-by-step to 
discover the required construction. 

First of all, we demand that 

N ~ = M ~ , ~ 2  whenever ~ 1 C ~ 2  , (**) 

It follows from this that the "mixed" compatibility condition 

~(co ,  F)=Srce~(co, dco')'Tc~(co',F) for all F E g  (3.3) 

holds for coqIN~ . However, this is not quite what we want, since the ~ ( c o ' ,  F) 
on the right side of (3.3) differs from ~ ( c o ' , F )  for co'~N~ . This causes no 
harm if ~l(co, N ~ ) = 0 ,  but may cause trouble otherwise. Therefore we define 
the set 

~el(N) = {co: ~l(co, N)>0}  (3.4) 

for any N e ~ .  We note that N~I(N)eN1; moreover, since Sd#(co)~c~(co, N) 
=#(N),  it follows that N~I(N) is #-null whenever N is. Finally, we remark that 

~ is a o--u-homomorphism, that is, ~ (~)i=1 Ni) = i=1 ~) ~ I ( N Y  This is because 

~ (co, i=1 ~) Ni) > 0  if and only if ~l(co, Ni)>0 for some i. We now demand that 

N~l=~l(N~2 ) whenever N 1 c N 2 .  (***) 

This suffices to exclude the potentially mischievous points, hence to make (3.1) 
hold also for cor 
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The proof is now reduced to choosing #-null sets N~e~ satisfying (**) and 
(***). First let us define 

M ~ =  ~ M~,,~ (3.5) 
,@2 eIB 

and 
M~I--- U M~2. (3.6) 

~ 2 ~  
~2~IB 

Since {~2eIB: ~ l c ~ 2 }  is countable, we have M~ e~i ,  ]~r~ ef t ,  and /2(M~) 
=/~(2~1) = 0. Clearly (**) is equivalent to N~I ~ M~.  Similarly, let us define 

)~ , (n )=  U ~2(N) (3.7) 
~2e~3 

for N e ~ .  Clearly )~,(N)eff and is #-null whenever N is; moreover, )~1 is a 
a-u-homomorphism. 

Now define 

N~I= 0 ~=(/~4=~) (3.8) 
j = o  

where ~ O ( M ~ ) = M ~  and ~ ( M ~ ) = ~ e ~ ( ~ - I ( M ~ I ) ) .  Clearly _N~e~ and 
#(N~) =0; moreover, by the a-u-homomorphism property of ~ , ,  

~=,(Nr=,)= 0 ~-~,(M=,)=b)=I (3.9) 
j =~  

and indeed ~ = _ ~  ~ I ( N ~ ) .  In addition, N~ = N ~  whenever ~ a = ~ 2 .  
Now let 

Ne, = M ~  w ~ 1  (N~,) (3.10) 

for each N~elB. Clearly N ~ e ~ l  and ~(NeJ=0. Moreover, N~ ~ M ~ ,  so (**) is 
satisfied. Finally, N~=M~(N~I)=M~2~N~(Ne~)=N~ whenever ~'a 
c ~ 2 ;  hence N~,=~e~(N~2) whenever N~ c ~ 2 ,  so (***) is satisfied. This com- 
pletes the proof. [] 

Remark. If, in addition to the hypotheses of Theorem 3.2, IB is Noetherian (i.e. 
every nonempty subset of I13 has at least one maximal element), then the proof 
of Theorem 3.2 can be made conceptually simpler: instead of the roundabout 
groping for the sets {N~} exemplified by the foregoing proof, the sets {Ne} can 
be constructed inductively [24] starting from the maximal elements of IB and 
working downwards. The point is that when N ~  is being chosen, { N ~ } ~ = ~  
will have already been chosen, so N ~  can simply be defined as the set of co 
where 

~1(o)' F) 4: ~ ~1(o), do)') 7c~2(o)', F) 

for some F e f f  and some ~2D~1.  
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The regular conditional probabilities 7c~ constructed in Theorem 3.2 will 
not in general b e -  and cannot in general be chosen to b e -  everywhere prop- 
er: for this it is necessary [Lemma 2.2(a)] that each ~ I B  possess a selection 
homomorphism with respect to ~ ,  at least if ~ is standard. However, we do 
have the following result: 

Theorem 3.3. Let ~ be countably generated, and let IB be a family of sub-a- 
fields of oj such that for each NI~IB, the se t  {~2elB: ~ 1 c ~ 2  or ~2c~1} is 
countable. Assume further that IB possesses a compatible family of selection ho- 
momorphisms, that is, a family of a-homomorphisms { 0 ~ } ~  such that: 

(a) for each r162 O~ is a selection homomorphism for ~ with respect to ~ ;  
and 

(b) if ~1, ~ 2  ffIB with ~1C~2, then O& ~ �9 
Then, if # is any perfect measure on (f2,Y), there exists a family {Tr~}~, B of 
everywhere proper, regular conditional probabilities for (f2,g,#) given ~ which 
satisfy (3.1) whenever ~1, ~2 ~ IB with ~1 c ~2. 

Example (lattice model). Let Ga be a countable index set; for each i~G a, let 
(f2 i, o~/) be a measurable space; and let (f2, ~ ) = (  X Qi, X 4) .  Then ~" is 

i~2~ ~ i~.L~ ~ 
countably generated if and only if each ~ is; and (~2, i f )  is perfect if and only 
if each (t2/, .,~/) is. For each subset F c 5q, let ~ r  be the a-field X if/considered 

as a a-field on t2 in the obvious way. Let ~ be any countable family of 
subsets of ~ ,  and let liB= {~r: FESPl}. Then choose any fixed element co~ 
let f~,_(co) = cot x co~ (in the obvious notation), and define ~9~,_ =f.@x. It is easy 
to verify that {~9~}~,_~B is a compatible family of selection homomorphisms. 
By taking ~ to be the family of all subsets of 5~ with finite complement, we 
recover the Dobrushin-Lanford-Ruelle framework for lattice models in classical 
statistical mechanics [5-13]. In particular, Theorem 3.3 includes and general- 
izes the results of [12, 13]. 

Proof By Lemma 2.2(b), there exists for each N~IB an everywhere proper, re- 
gular conditional probability for (f2, ~-, #) given ~ - call it ~ .  Then, by Le- 
mma 3.1, if ~ c ~  2 we have ~&(co, F )=  f ~ ( c o ,  dco') ~ ( c o ' ,  F) for all F ~ ,  for 
all co except in a #-null set M~,,~ ~ .  The philosophy of the proof is the 
same as that of Theorem 3.2; however, the choice of the null sets N~eN and 
the definition of ~z~ are somewhat more delicate in the present case, since we 
must arrange that the modified kernels { ~ } ~  be not only everywhere com- 
patible but also everywhere proper. First of all, we define n~ as follows: 

f )=f~(co ,~  F )  for co~N~ 
7C~ (CO, (3.11) 

(ZO~(~)(co) for coe N~. 

Since N~eN and #(N~)=0, ~ is an r.c.p, for (g2, ~,#)  given ~ ;  and by the argu- 
ment in Lemma 2.2, ~c~ is everywhere proper. To see what requirements are 
imposed upon the choice of { N ~ } ~ ,  we distinguish two cases: 

Case 1. coeN~,. To make (3.1) hold in this case, we demand that 

N~  c N~2 whenever ~ c N' 2. (,) 
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(Note that this is the reverse of the situation for the N~ in Theorem 3.2.) To see 
that this works, we compute the right side of (3.1) for e ) eNe .  Then rc~,(c0, .) 
=X0~(o(~o) is a 0-1-valued probability measure on ~ ;  hence, since ~- is coun- 
tably generated, it is concentrated on an atom of -~-. Indeed, 7r~(co, .) is con- 
centrated on the unique atom A~, of ~- such that co~O~(A,o). Now since 
coeN~ = O ~ ( N ~ ) ,  it follows by definition of A,o that A,ocNe. Thus we can 
restrict ourselves to co'eAo~c N~, o n e s ,  so that rc~(e)', F)=xo~(v)(ef).  Then the 
right side of (3.1) equals 1 if A~c~p~(F), 0 otherwise. Now if Ao~c~ke~(F), then 
O~,(Ao~)c~pe~(tpe~(F)) since ~ is a homomorphism; and the converse is true 
since A o~ is an atom and Oe~(A~) is nonempty.6 Moreover, Og~(O~(F))= O~(F)  
by the compatibility hypothesis. Hence the right side of (3.1) equals 1 if 
O.e~(Ao~)cO.e~(F), 0 otherwise. But since Oe~(Ao~ ) is an atom of ~ containing 
09, 7 O&(Ao)~O.e~(F) if and only if coetpe~(F). That is, the right side of (3.1) 
equals X0~(e)(co), which is just what the left side equals. 

Case 2. o)(sN~. As in the proof of Theorem 3.2, we demand that 

N ~ M ~ I , ~  whenever N ~ N ~  (**) 

Ne~ ~ ~ ( N e ~ )  whenever M~ c ~z ,  (***) 

is defined by (3.4). ~ possesses all the same properties as before; 

and 

where N~ 
and as before, (**) and (***) suffice to exclude the potentially mischievous 
points from Case 2. 

We are thus reduced to choosing #-null sets NeEN satisfying (,), (**) and 
(***); the difference from Theorem 3.2 is based on the need to satisfy (,). First 
recall that N1 and ~2 are said to be comparable if N l c N 2  or ~ 2 ~ .  Now 
define a relation - on IB by saying that N-~N'  if there is a finite sequence 
{Mk}0_<k<, in IB such that ~ 0 = N ,  ~ , = ~ ' ,  and Nk is comparable to ~k+l  for 
each k. It is clear that -- is an equivalence relation; and it follows easily from 
the hypothesis on IB that each equivalence class is countable. 

Now define Me, as in (3.5) and let 

e M ~ .  (3.12) 
~2eI13 

Since the equivalence classes are countable, we have M~ e ~ ,  ~ ~ ,  and 
/ z ( M ~ ) = # ( ~ e ~ ) = 0 .  Clearly (**) is equivalent to N ~ M ~ .  Similarly, let us 
define 

~ I ( N )  = U N~(N)  (3.13) 
,.~2elB 

6 In detail: ifA~r then A j ~ ( F ) = 0  since A~ is an atom. Then ~(A~)~k~l(~,~2(F)) 
=0 since ~ is a homomorphism. But coeO~(A~), so O~(Ao,) is nonempty. Hence 

7 In detail: we know that Oe~(A~) is nonempty. Now let B ~ O ~ ( A j ,  Be:@ 1. Then Oee~(B~Ao~) 
=Oe,(B)nt)~,(A,o)=Bc~O~,(A~)=B. Now Bc~A,o equals either 0 or A~, since A~, is an atom; 
hence B equals either 0 or O~,(A~). Thus O~(A~) is an atom of N' 1 
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for Ns.~. Clearly .~,(N)~.~ and is /~-null whenever N is; moreover, ~ ,  is a 
a-w-homomorphism. 

Now define 

j=O 

where ~~  (~re~,)=~r~, a n d  ;'J~a(MN1)=7~Nt(~j,--I(J~rN,)). Clearly N ~  and 
/~(~e~)=0; moreover, by the a-w-homomorphism property of ~ , ,  

.~(Neel)= ~) ~J~(Y/~,)~b~ (3.15) 
j = l  

and indeed N~=~w~,(N~,).  In addition, N ~ , = ~ 2  whenever N1 =Ne,  in 
particular whenever N~ c M z. Now let 

N~= ~ (MeoWN~o(Ne,)) (3.16) 
~oe~ 

for each ~lelB. Clearly N ~ a ~  1 and p(N~,)=0; moreover, N~cN~ whenever 
~1 c ~ s  so (*) is satisfied. Furthermore, Na, ~M~,, so (**) is satisfied. Finally, 
N~ cM~,~e~(N~)=Na =Na, whenever N ~ - ~ 2 ;  hence X e =o~e,(N~, ) 
~ e , ( N ~ 2  ) whenever .~ I -N~ ,  so (***) is satisfied. This completes 
the proof. [] 

Remarks. (1) I do not know whether the countability hypothesis of Theorem 3.3 
can be weakened to that of Theorem 3.2. 

(2) The argument in Case 1 of the above proofs is considerably clearer in 
terms of selection functions (if they exist): If co eN~,, then rc~,(co, .)= c~fee,(o~) , the 
unit mass concentrated on the atom of .~- which contains the point f~,(co). 
Hence the right side of (3.1) equals K~2(f~,(co),F). But since e )~N~Ie~,  we 
have f~,(co)eN~cN~ by definition of selection function, so r~2(f~,(co),F) 
=){v(f~2 (fe~ (co))) = Zv (f~ (co)) = ~a~ (co, F) by the compatibility equation f ~  ofel 
= f a .  (Note that faof~=f~, is slightly stronger than the homomorphism 
version f ~  of~-~ =f~-a. However, if ~ contains all one-point sets {co}, coet2, 
the two formulations are equivalent.) 

(3) If Na ~ ~2 ,  the reversed compatibility condition O~ ~ Oc,~ = q/~, is auto- 
matic, since ~p~,(F)e~2c~ 2 for all Fe~ ' ,  and tp~z acts as the identity on M2. 

(4) In one very special case (which does not, unfortunately, include the lat- 
tice models), the proof of Theorem 3.3 can be considerably simplified. Assume 
that IB consists of a decreasing sequence N~=M2 ~. . .  of sub-a-fields of ~ ,  
each of which has a selection function f~. Then the rc~. can be constructed 
inductively: First let zc~ = ~ .  Now assume that {~a~}~z~_<, have been con- 
structed and are everywhere proper and everywhere compatible. Let 

N.+~ = {co: ~ .  ~(co, F) =t=~ ~.+,(co, dco') reg.(co', F) for some fe~-}  

and note that N.+~.~.+~ and #(N., ~)=0. Now define 

rt~.~,(co, F) ~ . ~ ( c o ,  F) for coq~N.+ 1 
=(n~~ for co~N,+~. 
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Since fe.+l  and N,+ 1 are Mn+l-measurable, so is n~n§ and its proper- 
ness follows from that of ~ .  and the definition of selection function. The com- 
patibility equation 7t~.+ 1(co, F ) = ~  n~.+ ~(co, do')~e.(co', F) obviously holds for co 
~N,+I ;  and it holds for coeN,+ 1 because the properness of ~r~. implies that 
~ zc~ = n ~ .  Finally, 7z~n+~ is now compatible with ~ for all k<=n, since 
compatibility is transitive. 

It might be throught that this case is not covered by Theorem 3.3, since the 
selection functions fe~ need not satisfy any compatibility condition. However, 
it is easy to show, using remark (3) above, that ~ =f~-~ of~-~ o . . . .  f ~ l  de- 
fines a compatible family of selection homomorphisms, in the sense of hy- 
pothesis (b) of Theorem 3.3. 

Note Added in Proof. A recent article of Kuznetsov [25] treats questions closely related to those 
treated here. 
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