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1. Introduction 

Harness properties of stochastic processes have been studied by J.M. Ham- 
mersley [1] and D. Williams [2, 3]. In [3] a simple harness is defined as a 
process (Xt; t>0 )  such that for any s < t < u  

(u-t)x,+(t-s)X. 
(*) E [X~IE v G.]  - , 

R - - S  

where Fs~Cr(Xr; r<s) and Gu~a(X~; v>u). It is shown that, within the class 
of processes with continuous trajectories and such that EXZt < oe for any t > 0, 
the property (*) is a characterization of brownian motion. 

Here we consider the relations between different types of two-parameter 
reversed martingales and study the harness properties of the Wiener process in 
the plane (W~; zelR2+). Then, using recent results on two-parameter mar- 
tingales, we give a characterization of W z analogous to that given by Williams. 

The author would like to thank Professor M. Yor for valuable discussions. 

2. Notations and Preliminaries 

We use the following notations: 
F 1 F 2. (f2, F, P) is a complete probability space; ( s ; s__> 0), ( t ,  t__> 0) (respectively 

G t �9 G 2 _ ( , ; 0)) are ( s, s > 0), t > increasing (respectively decreasing) families of sub-o-- 
; _ _<' ~ ,  fields of F; z=(s,t)~lR2+ z<z'  iff s<_s' and t _ t ;  z ~ z  iff s<s' and t<t'; 

I-z,z']:--{(; z<(<z '} ;  I[z,z'][:=(s'-s)(t '-t); [zl:=st. We shall often write F~, 
F~, G'z, G~ instead of F), E 2, G], G?. Let us define Fz=F~ a c~F~ 2, Gz=  G)c~ Gz 2, 

i -- 1 2 F ?=F~ ~ v F?, G 3=Glz V G~, Goo-  ~ O~, G ~ =  ("] G~, G~,~-GsnGoo,~ _ 1 2 G~,, 
s->0 t ~ 0  

i G 2 1 2 3 _ 3 3 3 o.,. N =G~c~ ~, G~ Gs, oo- 
t > O  s > O  
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Let (Y(z); zelR 2) be a process. For z~z '  let 

Y[z, z'] = Y(z')- Y(z ' |  Y(z| Y(z), where zNz '= (s, t'), 

~[z,  z'] = Y[z,  z']/l[z, z']l. 

In the following definition we consider some types of reversed martingales. 
They are useful in the study of harness properties. 

Definition 1. An integrable process (M(z); Ga~, G~; 0 < z) is 
a) a reversed strong martingale if for any z ~ z' E [ M  [z, z'] ] G 3] = 0 a.s. 
bl) a reversed 1-martingale if for any t>O and s'>s>O 

E[M(s, t )-M(s ' ,  t)lG~,] =0  a.s. 

b2) a reversed 2-martingale if for any s>__0 and t '>t>O 

E[M(s, t ) -M(s ,  t')[G 2] =0  a.s. 

c) a reversed martingale if for any z<z'  E[M(z)-M(z')JG~.]=O a.s. 

In order to establish relations between the different types of reversed 
martingales, we suppose in the first part of the following lemma that for any 
s,t>=O the limits M(s, oo) and M(o%t) exist and "close" the reversed mar- 
tingale, forming a new reversed martingale (M(z); GI~, G2; ze [0, o0]). 

L e m m a l .  a) Let (M(z); GI~, G~; ze[0, o0]) be a reversed strong martingale. I f  
for any s, te[0, oo] M(s, oo)=M(o%t)=O a.s., M is a reversed 1- and 2-mar- 
tingale. 

b) Every reversed I- and 2-martingale is a reversed martingale. Conversely, if 
(M(z); GI~,G2; 0<z)  is a reversed martingale adapted to (G~; 0<z)  and if 
G'z El G2 for any z>0,  M is a reversed 1- and 2-martingale. 

GZ 

Proof. a) Let t > 0 and s '>  s > 0. Then 

ElM(s, t)-M(s' ,  t)l G~,] =E[E[M[(s, t), (s', oo)] 3 1 IGs, oo] IGs,] --0 a.s. 

Therefore M is a reversed 1-martingale and the same argument shows that M 
is a reversed 2-martingale. 

b) Let 0 < z < z'. Then 

E [M(z) - M(z')lGz, ] = E [E [M(z ) -  M(z| G~| I Gz,] 

+ E[E[M(z| a.s. 

Therefore M is a reversed martingale. Conversely, by the conditional inde- 
pendence, for any t > 0 and s' > s > 0 

ElM(s, t)--M(s', t)l G~,] =ElM(s,  t)-M(s' ,  t)l Gs,,,] =0  a.s. 
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3. Harness Properties of the Wiener Process 

In the following proposition we consider some harness properties of the Wie- 
ner process. 

Proposition2. Let (W(z);z~lRZ+) be a Wiener process on (f2, F,P). Let 
=((r,~)~]R 2 and let F~=cr(W(0; a<=s), G~=a(W(0;  a>=s), Ft2=a(W(0; ~<=t), 
G~ = G ( W ( 0 ;  ~ > t). 

Consider for each fixed z > 0  the process (l~[z,z'];  F 3 v aa~,, F 3 v G2,; z~z'). 
It is adapted to (Fz 3 v G~,; z ~z') and has the properties a)-c) of Definition I, that 
is, for O<z ~z' ,~z" a.s. 

E [ l,{z Ez, z"] - 1,{' [z, z" |  - l~[z, z' |  + l~[z, z'] I F~ 3 v G~,,] = 0, (1) 

E Jig'[z, z ' ] ]F 3 v G~,,] = I~[z, z" |  (2.1) 

E [ l~ [z, z'] I F3 v Gz 2,,] = l~ [z, z' | z"], (2.2) 

E[lYV[z,z']lV 3 v Gz,, ] : lYV[z,z"]. (3) 

Proof Let F = { [ ;  o-<s or ~<t} and G={[ ;  a__>s or z>t}. First we notice that 
in this case F3=a (W(0 ;  [~V) and G~=a(W(0 ;  [~G) and Gz=o-(W(0; z<[) .  
Moreover F 3 v Gz,, = (F 3 v G~,,) n (F 3 v G~z,,). Here we only outline the proof of 
(1); the other equalities of the proposition are proved by the same method or 
follow by Lemma 1. 

We have F~ v Gz3,,: a(A uB) where 

A = {W(0; ~ F }  u {W(a, t); s<a<s ' }  u {W(s, z); t<r<t"} ,  

B =  {W[~, ~']; ~, ~'+G}. 

By Proposition 2.4 of [4] it follows that a({W(z')} uA) is independent of a(B). 
Therefore E [ W(z') I F 3 v Gz 3,,] = E [ W(z')l a (A)]. Let 

S" t "  

E[W(z')I~r(A)] = ~ f (O dW(O+ ~ g(a) dW(a, t)+ ~ h(z) dW(s, z) 
F s t 

where 2 2 2 hcL2(]R+,B(IR+),21), B(IRP+) and 2p being f 6 L  (]R+, B(]R+), 22) and g, 
the Borel-a-field and the Lebesgue measure on ]RP+. The functions f, g and h 
are determined by the method of the moments and (1) follows by rearranging 
the terms. QED 

Remarks. a) As in the proof of Proposition 2, conditional expectations can also 
be calculated relative to o--fields that represent other types of "past" and 
"future". For example one obtains under the assumptions of proposition 2 for 
O<z ~z'  ~z"  E[lYV[_z',z"][F z v G3,,] = ITV[z,z ''] where 

W[z',z"] : [[z', z"][ -1 f W[z',z"] : [[z', z"][-1 f ~[ W(z")- W(z' @ z")] 

+ s'7, [ W(z")- W(z" | z')] - [ W(z")- w(z')] ~. (4) 
S ] 
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b) Equalities (1)-(4) remain true for the completion 
mafields generated by the Wiener process. 

M. Dozzi 

(in (O, F, P)) of the sig- 

4. Characterization of  the Wiener Process  as a Harness  

In this section we assume that for all s, t > 0  the sub-a-fields F ~ G ~ F z G z 
contain all the sets of probability zero of F and that the families 
(FI~ v Goo ;s > 0) and (F 2 v G~  ;t  > 0) are right-continuous. Moreover we assume 

~1 I G~ for 0<z~z'<cc (5) G,, F~ v G~, 

F 11 ~-~-- F 2, for z>0 .  (6) 
"F~v 

We note that (5) is equivalent to F~vG~,F3zVGz , 3  l J__ I F 3 v G ~ f o r 0 < z ~ z , < o o .  

Definition 2. An integrable process (Y(z); z ~  2) on (f2,F, P) is a harness if, for 
1 3 2. z~z ' )  is a reversed each fixed z>0 ,  the process (Y[z,z']; F 3 v G z , , F ~ v G ~ , ,  

martingale. 
Strong harnesses, 1- and 2-harnesses are defined analogously. In this section 

we show that, within the class of square integrable processes with continuous 
trajectories, the harnesses characterize (in the sense of the theorem) the Wiener 
process. 

Theorem. Let (u zelR2+) be a harness such that for each z > 0  E[Y(z)2]< oo 
and a(Y(~); ~<z )~F~  and a(Y(~); z < ~ ) c G ~ .  I f  g has continuous trajectories 
and vanishes on the axes a.s., there exist random variables #, G~-measurable, and 
a, F o v G~-measurable, such that the regular conditional law of Y given F o v Goo 
is the law of the process (#[zl + a W(z); z~lR2+). 

The w o o f  is given by the following lemmas. 

Lemma 3. a) (Y(z)/lzl; Glz, G2~; 0 ~z)  is a reversed martingale. 
b) lira Y(z)/[z[ exists a.s. (and will be denoted by #). 

z~2,z ~ ~ 
C) For 0 < z ~ z ' < o o ,  # = E [ Y [ z , z ' ] I F ~ v G ~ ]  a.s. 
d) (Y(z)-~zlzI; F~ v G~,  F~ v G~; z ~lR2+) is a strong martingale, denoted by 

(X(z); z~+) .  
e) (X(z)/Iz[; GI~, G2; 0 ~ z) is a reversed martingal e and 

lim X(z)/lzl=O a.s. 

f) X is a harness. 

Proof. a) Let 0 ~ z < z'. By the harness property 

E[Y(z)/[zl IG~,] = E[EI-'~[0, z] IF3o v a~,][ a~,] 

= E[Ir  [0, z'] IG~,] -- Y(z')/Iz'l 

and a) follows. 
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b) By Theorem 2.3 of [5] and a) it follows that (Y(z')/lz'l; z'>>O) converges 
a.s. as z'~[~ 2, ZtT OO. 

C) As in b) we consider, for z and z' fixed such that O<z~z ' ,  the reversed 
martingale in " - , 3 z (E[Y[z , z ][FzvGz , , ] ;  z '~z").  It also converges a.s. to 
E[~-[z , z ' ] [F3zvGj  as z"Ol) a, z " ] '~ .  We show that this limit is a.s. equal to 
#; by the harness property 

E[Y[z, z'] ]F~ v Gz,, ] = Y[z, z"] 

y(z")  s"t" Y(s", t) s"t  

Iz"l (s"-s)(t"-t) s"t (s'-s)(t"-t)  

Y(s, t") st" Y(z) 
+ ~,#, 

st" (s"--s)(t"--t) [[z,z"][ 

a.s. and L 1, as z"Too , the processes (Y(s",t)/s"t; Gs,,,; s">0)  and (Y(s,t")/st"; 
Gs, t,,; t">0) being reversed martingales with one-dimensional parameter. 
Therefore E[Y[z,  ' 3 z ] l F z v G o J =  # a.s. 

d) Y(z) is Fz-measurable by hypothesis,/~ is Go~-measurable. Therefore X(z) 
is Fz v Goo-measurable. X(z) vanishes a.s. on the axis. Moreover, for 0 < z  <z', 
E[X[z,z']lF3~ v G~]=E[Y[z , z ' ] IF~vGoo] -# l [ z , z ' ] l = O a.s. 

e) X(z) is Gz-measurable. For 0 < z < z '  

g[X(z)/lzllG~,] = EEY(z)/lzllGz,] - ~ = g(z')/lz'[- # = X(z')/lz'l a.s. 

f) Let O<z~z '<z" .  Then 

EEJ(Ez, z']lF~ v G~,,]=EEf[z,z ']lF~ v G~,,]-# 

= Y [ z , z " ] - # = J ( E z ,  z"] a.s. QED 

By Lemma 3, d) we have 

Lemma 4 [6, p. 1201. For O<z~z '  

E [ ( X [ z , z ' ] ) 2 l ~ v G j = E [ X 2 [ z , z ' ] [ F ~ v G o o ]  (i=1,2). 

Lemma 5. For z, z', z" such that 0 < z ~ z' and z ~ z" 

E [(X [z, z'])~/[[z, z'] JI V~ v G j  

=E[(X[z , z"] ) z / l [ z , z"] l lF~vGJ ( i :  1,2). 

Proof. We may assume z'<z". If z' and z" are not comparable, we have the 
equality of the lemma for [z, z'] and [z, sup(z', z")] on the one hand and for 
[z, z"] and [z, sup(z', z")] on the other hand. Therefore we have the equality for 
[z, z'] and [z, z"]. 

Let z < z' < z". By Lemma 3, f) 

E [(x [z, z'])2/I Vz, z"] I [ F[ v Goo ] = E [X [z, z"] E [Jr [z, z ' ] lF ~ v G~,,]IF~ v Goo ] 

= E[X[z ,  z"] Y [ z ,  z ' ] l~  v G~] 
=E[~[z ,z ' ]  { X [ z , z ' ] + E [ X [ z |  ' " z |  ][F~| v Go~ ] 

+E[X[z ' |  z"| I F~,| v G~o] +E[X[z ' ,  z"] I F~, v G J }  IF~ v Go~] 

=E[(X[z , z ' ] ) z / l [ z , z ' ] I lF~vGJ a.s. QED 
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' z" such that 0 < z ~ z' and z ~ z" Corollary 6. For z, z ,  

EEX2Ez, z']IF~vGj=EEXiEz, z"]IF~vG J ( i=  1,2). 

Proof Application of the equality of lemma 4 on both sides of the equality of 
Lemma 5. QED 

For each z > 0 we choose now 8=  (L t~ >> z and set 

~i(z)=E[X2[z,  8][F~vG~] (i= 1,2). 

Lemma 7. There exist (one-parameter) martingales (cq(s); F l s v G ~ ;  s__>0) (re- 
spectively(e2(t); F ] v  Go~; t_>0)such that for each z > 0  el (s)=~l(z  ) a.s. (respec- 
tively e2(t )= ~2(z) a.s.). 

Proof We show the existence and the martingale property of el ;  the proof for 
% is identical. For z > 0 we have a.s. 

[I-z, 8]]~I(z)=E[X2[z,  8] ] Fls v Go,] 

= E [X 2 [(s, 0), 8] I F~s v G~]  - E [X 2 E(s, 0), (s, t)] I FI~ v G~]  

= I[(s, 0), 8] 16 l((s, 0))-- I[(s, 0), (A t)] I ~l((S, 0)) 

= I D, 8] I ~ 1 ((s, 0)). 

For s' > s > 0 we have a.s. 

I E(s', 0), 8'~ I E [e l(s')l Fa s v G J = E EX 2 E(s', 0), 8'] 1F~ v O J 

=l[(s' ,0), Z]lel(S),  

and therefore E[%(s')lFl~vGo~ ] = e l ( s  ) a.s. QED 
$ 

Lemma 8. For each t>O (X2(s , t ) - t~e~(~)da;  Fl~vGoo; s__>0) and for each 
0 

t 
s > 0 (X2(s, t ) - s  ~ %(z) d'c; F ] v Go~ ; t->_ 0) are martingales, adapted to Fs, t v Go~. 

0 

Proof First, we note that, by the right-continuity of the families (F~v Go~; 
s>0)  and ( F 2 v G ~ ;  t>0) ,  the martingales e~ and e2 have right-continuous 
modifications (also denoted by e 1 and %). Therefore the Lebesgue integrals 
with respect to these modifications exist. 

Fix t__>0. For each s'>s>=O we have a.s. 

E[X2(s ', t ) -  X2(s, t)l Fls v Goo] 

-- E [X2 [-(s, 0), (s', t)qlFl~ v G J  = e 1 (S) t(s'-- S). 

By the Lemma 7 

Therefore 

E [X2(s ', t ) -  t ~ e l ( o  ) d o [ F l s  v Gee = X2(s, t ) -  t ~ o~ 1(0") dtT. 
0 0 
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Let us show now that cq(s) is F~, 0 v G~-measurable: Choose a sequence (z. 
=(s.,  t.); n~N) with s.>s and t.~0. By (6) we have a.s. 

~1 (S) ~--- E EX 2 E(s, 0), z,]lF1 s v Goo] = E [X = [(s, 0), z,] I Fs,,, v Goo ] 

for each n. By (6) and the right-continuity of the family (F2~v Goo; t>0), cq(s) is 
Fs, o vGoo-measurable. QED 

Lemma 9. There exists an F o v Goo-measurable random variable ~ such that 
(X2(z)-c~lz[; Fz v Goo; z>O) is a martingale. 

Proof Let us define 

s 
M(1)(s, t) = X2(s, t)-- A(1)(s, t), where A(1)(s, t) = t ~ ~a (a)da, 

0 
t 

M(2)(s,t)=X2(s,t)-A(2)(s,t), where A(2)(s,t)=s~c~2(z)dz, 
0 

B(s, t)= M(1)(s, t ) -  M(2)(s, t)= A(2)(s, t ) -  A(1)(s, t). 

By the Lemma 8, B is a weak martingale and a continuous process of finite 
variation. The Dol6ans-F611mer-measure #~ of B is zero on the a-field of 
predictable sets. 

Let Z be a bounded and measurable process, FIZ its predictable projection 
[7]. By the results in [8] we have for each z > 0 

PB(Z)=E [[~z]ZdB]=E [[~z]HZdB]=#B(I1Z)=O" 

Therefore 

l=P(B(s,t)=O for all s, t>O) 

0 

=P(el(s)=e2(z) for almost all (s,t)~N2+). 

Since cq and e2 are a.s. right-continuous 

P(el(s)=c~2(t) for each (s,t)elR2+)=l. 

Therefore there exists a Fo v Goo-measurable random variable such that 

P(O:l(S)~-o~2(t)=o: for each (s , t )e lR2)=l .  

Therefore (XZ(s, t)-c~st; Fs, t v G~o; s, t__>0) is a martingale. QED 
We complete now the proof of the theorem: 

By the Lemma 3, d) (X(z); FzvGo~; z>0)  is a continuous strong martingale 
and by the lemma 9 (X2(z)-elz[; F~ v Goo; z>0)  is a martingale. By Proposi- 
tion 5.4 in [9] we conclude that the regular conditional law of X(z) given 
F ovGoo is tile law of e~/2W(z) where W(z) is the two-parameter Wiener 
process. Therefore the regular conditional law of g(z)=#[zl+X(z) given 
F o v Goo is the law of #[zl +el /z  W(z), and the theorem is proved. 
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