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Introduction 

The present paper is a supplement to an earlier one [Sc] on the nonlinear 
prediction of continuous, stationary processes. In order to describe its content 
we briefly recall w 6 of [Sc]. To this end, let f ,  t~R  (R = reals) be a continuous 
stationary process on a probability space (O,H,#),  (ft~L2 (Q, #)). Let H(fs,  
s__<0) be the Borel field induced by the functions fs, s<0 .  For g~L2(f2,#) let 
E(H(fs ,  s<O)/g) be the conditional expectation of g with respect to H(fs,  s<0) .  
The purpose of w was to answer the following question: I) if f ,  t e R  is a de- 
terministic process, and if for a particular coef2 we know the past f~(co), t__<0, is 
it then possible to reconstruct the future f~(co), t > 0  in terms of the past alone? 
The affirmative answer consisted in the following. A doubly infinite sequence 
of formulas A~n(co), (m, n =  1, 2 . . . . .  z>0 ,  co~f2) was constructed with the proper- 
ties: 1) A~,(co) depends only on the finitely many values f/(co), i = - z k 2  -m, 
O < - k < m n 2  m, 2) for almost all co~2 the following holds for almost all ~>0 :  
F2(co)=llm A,,,(co) exists and lira F,~(co)-f~(co). It was stated but not proved 

n m 

that for an arbitrary process 2) has to be replaced by: 2*) for almost all co the 
following holds for almost all r > 0 '  lim Amn(co)-F,~(co ) exists and lim F,~(co) 
= E(H( f , ,  s <-_ O)/f~) (co). ~ '~ 

In the first, preparatory part of the present paper we prove 2*). The second 
and main part  of the paper has its root in the following observation. As is seen 
from 2*), an iterated double limit is involved in the computat ion of 
E(H(fs,s<=O)/f, ) (co), which forces a computer to run infinitely often into the 
past. The important  problem arises as to whether one can find another com- 
putational schema which computes E(H(f~, s<=O)/f,) (co) with the aid of a single 
passage to the limit. In [Or],  D. Ornstein solves precisely this problem for the 
case of a discrete, ergodic process f~, n e Z  (Z = integers), having as range the 
set {0, 1}. He describes an algorithm which computes E(~(f~,  n<=O)/fl ) (co) with 
the aid of a single passage to the limit. In the second part we show that the 
method of Ornstein can be combined with the formulas obtained in the first 
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428 B. S c a r p e l l i n i  

part in order to obtain an algorithm of the above kind for continuous, sta- 
tionary processes ft, t~R, which are required to be bounded but which are 
otherwise arbitrary. The extension of Ornstein's method is not completely 
straightforward, but depends on a finer analysis of his construction. The difficul- 
ty is thereby rather the arbitrary range than the continuous time. As a particu- 
larity, we mention that a value is effectively determined for the crucial constant 
fi whose existence is stated in Lemma 5 of [Or]. 

Chapter I: Formulas for Conditional Expectations 

w 1. Summary of Notions 

We briefly summarize those notions from [Sc], which will be used throughout 
the sequel. A flow is a quadruple (f2, ~, S~, teR, #) with ~3 a Borel field over f2, 
At a probability measure on ~3, and St, t~R a measure preserving automor- 
phism group on t2, such that the mapping (o9, t)--rSt(co ) is measurable; f2 is a 
compact metric space and !13 is induced by the topology. We put cot=St(co ). 
With fELz(I '2,  At) we associate the stationary process ft, t~R given by ft(co) 
=f(cot). In the present chapter, use is made of the ergodic decomposition 
theory of Krylov-Bogoljubov (see [N-S]); for reasons of place we have to refer 
to [Sc], w for a summary of those of its properties which we need. The no- 
tation is the same as in [Sc]. Thus U r is the set of transitive points. With each 
coeU r there is associated an invariant ergodic Borel measure #,o having prop- 
erties 1)-6) listed in w of [Sc]. Likewise there is for each z~R a correspond- 
ing set U) of transitive points; for each c o , U )  there is a Bore1 measure #~o) 
having properties 1')-6') listed in w of [Sc]. We need the index sets I} 
={- ' ck2-N/O<k<N2S,  k~Z}, and for - l  < j < k  N (where kN=N2 N) we intro- 
duce the numbers a~ by: a) c~N 1 = - N - 2  -N, b) if - l < j < k  N then ~)+I_c~jN N__2-N, 
C) ~ =N.  With f@Lz(~,At) we associate the function f u  given by: d) fN(co) 

N ~ N iff a~__<f(co) N f) =c~_ I iff f ( c o ) < - N ,  e) if O<:j<k N then fN(CO)=aj <c~j+l, 
N iff N<=f(co). Since the two maps f ~ f N  and f ~ f t  commute with /N(co)=~ 

each other we are entitled to introduce the abbreviation f u  for (fN)t (=(ft)u). 
z _ _ ~  N We shall use repeatedly the Borel fields ~3 M -  (fl , i~YM), $ =23(f~,s<0) 

and ~B ~_ = $( f / ,  i~ U I}) (where ~3(fl, iaI) is the smallest Borel field with respect 
N 

to which all f~, iaI are measurable). If ~3' is any one of these Borel fields, 
E t t ~($/h) is the conditional expectation of heLz(f2, At) with respect to $ '  and the 
measure /~,  while E~($/ i )  is the conditional expectation with respect to $ '  
and the measure Ato,. Finally we write (A)~fdAt in place ~fdAt. 

A 

w 2. Formulas for Conditional Expectations 

Henceforth a flow (g2, if3, St, t~R, At) and an  f~L2((2  , At) are given in a fixed way. 
In order to prove statement 2*) mentioned in the introduction we recall a few 
expressions used in w of [Sc]. A n is the 2n-place function defined as follows: 
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A , ( x ~ , . . . , x , , y  1 . . . .  ,y~)=l  iff x i = y  i for i = l , . . . , n  and =0  otherwise. If d 
= {il, ..., i,} is a finite set of reals, if c~ i, iaJ  and /~ ,  i~J  are finite sets of reals 
indexed by the elements of J we simply write A(c~i, ~ i , ieJ)  instead of A,(~i~, 
�9 .., c~i.,/~i~,...,/?i.). Let 21,22,... be the possibly empty list of nonzero eigen- 
values of the flow. A r e R  is called noncritical if r2~4:2rtm for k > l ,  m~Z.  
Finally, the following expressions are important in our considerations. For co, 
~ef2 we set: 

~) HM(co, ~ ) =  A(fiM(co), fiM~(~), i e I~)  f (~), 
M CO M ~ /~) H~(co,~)=A(f/ ( ),f/ ( ) , i a I ~ ) .  

According to Lemmas 12, 13 in [Sc] the following holds: 
~) the limits 

N 

A~t (co)=lim N -~ ~ H~(co, co_w) 
0 

and 
N 

B~u(CO ) =l im N -1 ~ HM(co, co_p~) 
N 0 

exist for almost all co, and B~u(co)4:0 for almost all co. 
This gives rise to the difinition: 

5) F~(co)=lim (~oHM~(co, co_pr)(~HM(co, co_p~)) -1) if A~u(co), B~u(CO ) both 

exist and B~u(co ) 4: 0, and F~u(co ) = 0 otherwise. 
From 8) we obtain: e) F~(co)=A~u(co ) B~u(co ) 1 for almost all co. According 

to Theorem 4 and Corollary 3 in [Sc] the following holds: 
*) if f~, t e R  is deterministic and z > 0  then lim F~(co)=f(co~) for almost all 

co. 

Our first aim is to prove the following generalisation of *): 

Theorem 1. Assume r > O. Then lim F~(co)= E(~/f~)(co) for almost all co. 
M 

We split the proof into a few simple lemmas, from which the theorem easily 
follows. 

Lemma 1. The limit g(co)= lim F~u(co ) exists and is finite for almost all co. 
M 

Proof. The proof is very similar to the proof of Theorem 4 in [Sc] and will be 
kept short. Let L be the set of co's such that lim F~(co) exists and is finite. 

M 
According to 1')-6') in w of l-Sc] and since L is measurable, it suffices to 
show: 1) #o~(L) - 1 for almost all co e U~. Now let E' c UT- be a set of measure 1 such 
that coeE' implies feL2(f2,#~ ) (w [Sc]). According to Lemma 12 in [Sc] there 
is for every M a set EM~E'  with #(EM)= 1 such that ogeE M implies: 2) F~(4) = E~o 

~ m (~M/f~)(~) for #o;al ost all 4- From 2) we infer: 3) if coeE"= ~ E M then F~(4) 
M 

E ~ = o~OBM/f~)(4) for #;,-almost all r (M= 1, 2,...). Now assume coeE". Since ~3L 
is the smallest Borel field containing all $ ~ ,  and since ~3~___~3~u+~ , we infer 

E ~ ~ ~ o from 3) and the martingale theorem: 4) lira F~(~)= ,o(~_/f~)(4) for #,o-alm st 
M 

all 4. Since f and thus f~ are in L2(f2 , #~) for coeE", 4) implies #~(L)= 1. As 
#(E")= 1, the lemma follows. [] 
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Our next aim is to show that g =l im F~ is in L2(Q , #). To this end we need 
the M 

Lemma 2. Fix z>0.  Let G>O be measurable and assume: 1) GeLI(f2,#~) for 
almost all coEU~,2) there is a cPELI(f2,#), cp~O, such that ~Gd#~<qo almost 
everywhere. Then G~LI(Q , #) and ~Gd# = ~d# ~Gd#;. 

Proof Put GN(co ) = G(co) if G(co)<N, Gu(co ) = N otherwise. Evidently we have: 
1) Sd#~Gsd#~ <~d#~Gd#~ < oe and liras d#~ GNd#~=~d#~Gd#~. Accord- 

N 
ing to decomposition theory (w in [Sc]) the following holds: 

2) ~d#~GNd#~=~GNd #. From assumption 2 of the lemma on the other 
hand we get ~d#~Gzvd#~ N~qgd#, which, together with 2)implies: 

3) ~Gd#=lim~GNd#<~,od#. Thus G~LI(O,# ). By combining 1)-3) we ob- 
N 

tain ~Gd#=~d#~Gd#~, which proves the lemma. []  

Lemma 3. g= l im  Ffa belongs to LI(O,#) and ~[gl2 d#~l f l2d#.  

Proof. The proof of Lemma 1 shows that g has the following property: i) for 
E'~ almost all cosU~, g(r o~(~ /f~)(~) for #~-almost all r Now let Ec_.U~ be a 

subset with #(E)= 1 such that 1) holds for co~E and in addition fsL2(f2,#~). 
Now assume coeE. Since E ~o(~3_/fO~ is the projection of f onto the subspace 

z x 2 t L2(~3 ,#,~ ) of all ~3~_-measurable functions in L2(I2,#~), we get: 3)~lg[ d#o, 
<i, ILI2d#L=~[fl2d#L. But I,]fl2d#=Sd#f~lfl~d#~ according to properties 
1')-6') in w of [Scl, whence SIg[2d#<=f.l.fl~d# follows from Lemma2.  [] 

We can now proceed to the proof of Theorem 1: 

Proof of Theorem 1. Let ZA be the characteristic function of the set As~3:. 
Since ZAgELI(f2, #) by Lemma 3, we have: 1) (A)~gd#= ~d# ~ZAgd#~). As noted 
in the proof of Lemma 1, for almost all co the equation g(r 
holds for #o~-almost~ all ~. From this and 1) we get: 2) (A) J'gd#=j'd# j'd)~aE,o 
(~_/f~) d#~=~d#~ZAf~d#~=(A) ~f~d#. Since Ae~3 ~_ was arbitrary, this implies 
g = E(~3~_/f~) almost everywhere, which proves the theorem. [] 

Corollary 1. Theorem I remains true if E(~-/f~) is replaced by E(~_/f~). 

Proof. This follows from Lemma 8 in I-Sc], according to which E(~_/f~) 
=E(~_/f~) holds almost everywhere. [] 

By a straightforward Fubini argument we infer from Corollary 1: 

Corollary 2. For almost all co, lira F~(co)=E(~_/f~)(co) holds for almost all 
z>0.  M 

w 3. A Generalisation 

We conclude with a remark which will be of importance in the next chapter. 
Let f, g~L2(f2 , #) and set 

HZff~(f, g/co, ( )=  A (f/(co), f/_~((), i~I~) g(~), 

H~(.f /~, ~)= ,~(f~(~), f~(O, i~I~). 
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A straightforward inspection of w in [Sc] shows that the arguments used 
there can be taken over literally in order to obtain generalisations of the re- 
sults in w of [Sc], in which the conditional expectations E(~/f~), E~(f~/f~), 
E~(fS~/f~) are replaced by the conditional expectations E(~_/g,), E~(~3~/g~) 
and E~(~/g~) respectively, whereby the Borel fields ~B~_,~, are as before 
defined in terms of f according to the definitions in w 1. We have in particular: 

N 

7') the limits A~(f,g/co)=limg-l~Hf~(f,g/co, cop~) and B~(f/co)= 
N 0 

N 

l imN=l~H~(f/co, cop,) exist almost everywhere and again B~(f/co),O 
N 0 

for almost all co. 
This gives rise to the definition: 

6') F~s(f,g/co)=lim tl~(fg/co, co w) H~(f/co, co ,~) if A~(f,g/ro), 
N 

B~(f/co) both exist and B~(f/co), 0, and F~(f, g/co)= 0 otherwise. 
The generalisation of Lemma 12, b) in [Sc] eg. states: 

*) for almost all coeU~ we have F~(fig/~)-E~(~3M/g ~) (() for #~-almost all 

Likewise, an inspection of the proof of Theorem 1 and its corollaries shows 
that they can be used without change in order to prove corresponding gener- 
alisations. Thus the generalisation of Theorem 1 now states: 

Theorem 1". Assume ~>0. Then lim Fju(f,g/a))=E(~ /g~)(co) for almost all co. 
M 

We omit the evident reformulations of all lemmas and theorems proved so 
far; we wilt refer to them simply as the corresponding f, g-generalisation. 

Chapter II: Guessing Schemes 

w 1. Preliminary Remarks 

If a computer has to compute E(~_/f~) (co) on the basis of Corollary 1 then it 
has to evaluate a double limit of the form lim lim G~lN(co), where G~N(co ) is 

M N 

given by the expression on the right hand side in clause 3) of Chap. I, w 2. Thus 
the computer is forced to run infinitely often into the past, which is impossible. 
The question arises if we can find integers Mi, N~ with M~, N~-~ oe as i-~ 0% 
such that lira G~hN,(co)=liln lira G~tN(co ). Thereby, M~, N i should depend only 

i M N 

on a finite portion f(cos), seI~i of the past (for some suitable Li). Such an algo- 
rithm has been described by a student of D. Ornstein, D.H. Bailey, in his un- 
published thesis [Ba], and, in a different way, by D. Ornstein in [Or]; it is the 
latter paper which serves as basis for what follows. The processes to which the 
algorithms in [Ba] and [Or] apply are ergodic, discrete time processes whose 
range consists of the two elements 0,1. Our aim is to generalize Ornstein's 
method to continuous processes f ,  tsR with arbitrary range but subject to the 
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condition tf~l =<K almost everywhere for some K. With the exception of the last 
paragraph we make 

Assumption 1. 7he flow (f2, ~, St, t6R, #) is ergodic. 
The nonergodic case can easily be reduced to the ergodic case by means of 

a standard decomposition argument, to be described in the last paragraph. By 
Lemma 9 in [Sc] and Assumption 1 it follows that the discrete system (f2, ~3, S,, 
/0 is ergodic for all z > 0  except at most denumerably many. Since subsets 
L ~_R+ = {t/t> 0} of measure zero do not count, we impose 

Assnmption 2. z > 0 is such that the discrete system (s B, St, #) is ergodic. 
A number of lemmas and statements in [Or]  carry over to the present case 

without change in their proofs; we wilt cite them without proof. However, the 
proofs of our counterparts of Lemmas 3, 5 in [-Or] require a finer analysis; 
these proofs are given in detail. 

w 2. Guessing Schemes 

Our first aim is to formulate our form of Ornstein's algorithm, or "guessing 
scheme", as it is called in [Orl ,  and state the main result. Assume f~L2(f2, #), 
let L,m>=O be integers and put J~,,={-kz2-"/O<_k<-L2m, k~Z}. With coe~2, 
L, m and -c > 0 we associate the function whose domain is the index set J~m and 
whose value for i e J~  is fro(col) (with f "  as in w 1, Chap. t). This function is 
completely determined by L, m, z, co and f and will be denoted by W~(L, re~co); 
the dependence on f is supressed since f is kept fixed. W~(L, re~co) is our coun- 
terpart of the "word"  or "string" used in [Or] .We say that W~(d,m/co)occurs 
at (place) p in W~(L,m/co) if p+d<=L and if fm(coi_p~)=f"~(coi) for ieJ~m (where 
peZ, 0__<pNL); likewise we speak of an occurrence at p. Next, let in addition 
to f, a further function heL2(f2, #) be given. We need three auxiliary functions 
~r~, Z~, D, depending on f,  h, whose definition is as follows: 

a) a~(L, m, p/co) = 1 if W~(m, re~co) occurs at p in W~(L, re~co), and = 0 other- 
wise, 

L - I n  

b) Z~(L,m,/h/co)= ~ a,(L,m,p/co)h(co_(p__l)~), 
p = l  

JL --  1/7 

c) D~(L, re~co) = ~ o-~(L, m, Nco) = number of occurrences of I4~(m, re~co) in 
W~(t~  re~co). ~ = o 

Definition I. For L>m we set g~(L,m/h/co)=Z~(L,m/h/co)D~(L,m/co) - i  if 
D~(L, re~co) 4= O, and = 0 otherwise 

The functions g~ in Definitibn 1 are our counterparts of the functions g in 
[Or]. An important notion associated with them is given by 

Definition 2. Let N > I ,  K > 0  be integers and assume ~>0.  An integer 
L > 0  is called (N, K, e)-acceptable with respect to co, h and the se- 
quence K = n  o < n  1< . . .  <nN=L if: a) [g~(nj, i/h/co)-g~(nt, s/h/co)l<-_e for 
no <__i<=nj_l,no <s~nt_ l ,  t<], t<N,  b) for no <=m<nj_ 1 the word I4~(m,m/co) 

2 many times in the word W~(nj, m/co) (that is occurs at least n~_ 
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D~(ni , m/co)>=n2_O. We call L (N, K, e)-acceptable with respect to co, h if there is 
a sequence n o . . . .  , nu with the above properties. 

Remark. The small difference between Definition 2 and the definition of e-ac- 
ceptability in [Or]  will be justified later and has no bearing on the proofs of 
the lemmas in the next paragraph. 

The notion of acceptability now leads immediately to the central notion of 
"guessing scheme", introduced in [Or]. In order to describe it, let ~k, k 
= 1,2, ... be a sequence such that ek>ek+ 1 > 0  and lim ek=0. This sequence is 

k 
arbitrary but fixed in the sequel. 

Definition 3. Let f, h~L2(t2,#) be given. With every co and every integer L > 0  
we associate a number 2}~(f, h/co) as follows. Let ~%, L~, j = 1 . . . .  , k be the well 
determined, possibly empty sequence of pairs of integers such that: 1) L~ is the 
smallest / 2<L  such that /2 is (N,N, et)-acceptable for some N and N\ is the 
smallest such N, 2) L~+I is the smallest /2 with L ~ < E < L  such that /2 is 
(N,N,  ej+O-acceptable for some N > N ~  and Nj+~ is the smallest such N, 3) 
there is no t2 with L k < / 2 < L  such that 12 is (N,N,  ek+O-acceptable for some 
N > N  k. If N ~ , L ~ , j = I , . . . , k  satisfying 1)-3) exist we put ,~(f,h/co) 
= g~(L~, N]/h/co), otherwise we put 2~(f, h/co)= O. 

One of the main results is 

Theorem 2. Let f~L2(f2 , #) be essentially bounded (If[ < K almost everywhere for 
some K). Then lim 2~;(f,f/co)=E($~_/f~) (co) for almost all co. 

L 

The rest of the paper is devoted to the proof of a generalisation of Theorem 
2, which contains Theorem 2 as a corollary. 

w 3. Some Preparatory Lemmas 

Before passing to the proof of Theorem 2 we collect those lemmas from [Or] 
which carry over without changes in proof. To this end, f,  haLz(f2 , #) are fixed; 
although fully used only in the next paragraph we impose already now on h the 

Assumption 3. There is a K such that ]h(co)[ <_K for all co. 

~3 M In the following ~ M , ~ 3 ~ , ~  are always the Borel fields (f~ , icI~), 
~3(~,i~!u_j I~) and ~(f~,s<=O) respectively. We denote by a~t(co ) the atom in 

~3~u which contains co. Since by assumption the flow (f2, B, St, t~R, #) and the 
discrete system (g2, ~3, S~, #) are ergodic, it follows that for almost all co the 
measure # and the individual measures #~, #~ coincide: # = # ~ = # ~ .  By Lem- 
mas 12, 13 in [Sc] and the remarks in w of Chap. I, this implies the exis- 
tence of a set M o_~ (2 (kept fixed in the sequel) of measure t such that co~M o 
has the properties: 

N 

1) iim N -1 ~ H ~ ( f  h/co, co_p~) = (a~(co)) ~ h~d#, 
N 0 

N 

2) lira N - ~ Z Hf~(f/co, co_;~)= #(a~(co)), (with HMo~(f, h/), H~(f / )  as in w of 
N 0 

Chap. I), 
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3) #(a~vt(co))+0 for M = 1, 2, . . . .  
Now (a~(co))Sh~dl~ #(a~u(co)) -1, as a function of co, is just a version of the 

conditional probability E(B~/h~), and will henceforth be identified with it. 
Thus if coeM o then: 

4) lim ~ 0~(f, h/co, co _ v~) H~(f/co, co_ pe) - E(f~t/h~)(co). 
N 0 

By the martingale theorem we can assume without loss of generality that 
coeM o satisfies in addition: 

5) lim E(~M/h~) (co)- E(f8 ~he)(co). 
M 

From 1)-5), from the definition of the functions D e, g~ in the last paragraph 
and since (f2, B, Se, #) is ergodic, one easily infers: 

L e m m a  4. I f  coeM o then: 1) lim L- 1 D~(L, re~co) = #(a~vt(co)) =t = 0, 2) lira ge(L, m/h/co) 
L L 

= E(fB~/h~) (co), 3) lim lim g~(L, m/h/co) = E(fB~_/he) (co). 
m L 

The routine proof is omitted. 

Lemma 5. Assume coeM o. Then there is a sequence Nj, L j , j=  1, 2 . . . .  of integers 
> 0  with Nj<Nj+I ,  Lj<Lj+ 1 such that Lj is (Nj, Nj, ej)-acceptable with respect 
to co and h. 

The proof, based on Lemma 4, is the same as the proof of Lemma 2 in [Or] 
and thus omitted. Besides the notion of acceptability there is another impor- 
tant notion in [Or]  which is described by 

Definition 4. Assume coeM o. Let L , N , K  be integers >0 ;  let ~, 2~R satisfy 
0 < c~ < 1 and 2 > 0. A) L is said to be 2 - ( N ,  K, c~)+-bad with respect to co, h and 
the sequence K =no <n I < ... <nN= L if: 

1) g~(nj, m/h/co)-E(fS~/h~)(co)>e whenever no<m<nj_ 1 and I < j < N ,  2) 
the word W~(m,m/og) occurs at least 2nj_lc~ -2 many times in the word 
VV~(nj, m/co) whenever no<m<nj_  1. B) L is said to be 2 - ( N , K ,  cQ -bad with 
respect to co, h and K = n o < n  ~< . . .<nN=L if: 

1") E(fS~/he)(co)-ge(nj, m/h/co)>~ whenever no<m<=nj_ a and I < j < N ,  
2) the same as 2) in A). 

Remarks. We shall say that L is 2 - ( N ,  K, 7)_+-bad with respect to co, h if it is 
so with respect to some sequence n o, . . . ,n  N. Most of the time we have to con- 
sider the case 2=1 .  We will therefore say that L is (N,K, cQ+_-bad if L is 
1 - -  (N, K, ~) _+-bad. 

There are two lemmas in [Or]  summarizing the properties of (N,K, cQ_+- 
badness which carry over to the present situation. 

Lemma 6. Assume r  and coe Mo. Then one of the following alternatives hold: 
1) lim2~(f,h/co)=E(~3~_/h~)(co), 2) there is an e > 0  and a sequence Nj, Lj, j 

L 

= 1 , 2  . . . .  with Nj<Nj+ 1, Lj<Lj+~ such that Lj is ~ - ( N j ,  Nj, cO+-bad with re- 
spect to h, co, 3) there is an ~ > 0  and a sequence Nj, L j , j=  1, 2 . . . .  such that Lj is 

- (Nj, Nj, cQ_-bad with respect to co, h. 
The proof, based on the definition of 2}~(f, h/co) and on Lemma 5 is the 

same as the proof of Lemma 2 in [Or]  and omitted. As to the last of the 
preparatory lemmas, let L be (N,K, cQ+-bad with respect to co, h and some 
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sequence K = n o <  ... <nN=L.  Then nj is (], K, a)__-bad with respect to co, h and 
the sequence no, . . . ,  nj. Thus there is a smallest n~< nj such that n~ is (j, K, e)+- 
bad with respect to co, h. One easily verifies n~_ ~ < n). An analoguous statement 
holds of course for (N, K, e ) -badness .  The properties of the numbers n} are 
described by 

Lemma 7. A) Let L be (N, K, e)+-bad with respect to co, h. For j =  1, 2, ..., N let 
n~ be the smallest integer such that n) is (j, K, e)+-bad with respect to o), h. Then 
n'~ is (N, K, e)+-bad with respect to co, h and the sequence K = n'o <. . .  < n'u. 

B) Likewise with (N, K, e)-badness.  
The proof is the same as the proof of the corresponding Lemma 4 in [Or]  

and omitted. In order to have a simple expression at hand we introduce. 

Definition 5. Let L be (N,K,  e)_+-bad with respect to co, h. The sequence n'o=K, 
n' t . . . .  , n' N associated with co according to Lemma 7 is called the canonical se- 
quence of co with respect to N, K, e. 

w 4. Proof of Theorem 2 

We now proceed to the proof of Theorem 2. It is based on two lemmas, the 
first corresponding to Lemma 5 in [Or], and the second to Lemma 3 in  [Or]. 
Once these lemmas are proved, Theorem 2 easily follows. In order to formulate 
the first of these lemmas it is convenient to introduce. 

Definition 6. Let M > m > 0  be integers, b an atom from ~3~ and e~R such that 
0 < e < l .  A) By F+(M, e,b/h) we denote the set of corM o for which there is an 
I with m<_l<_M such that: 1) g~(l,m/h/co)-E(fB~/h~)(co)>e, 2) the word 
W~(m,m/co) occurs at least me -2 many times in the word W~(I, re~co). B) By 
F- (M,e ,b /h )  we denote the set of co6M o for which there is an I w i t h  
m<_l<_M such that: 1) E(~3~m/h,)(co)-g~(1, m/h/co)>e, 2) the same as 2) in A). 

The basic lemma concerning the sets F § F -  is: 

Lemma 8. Assume 0 < e <= �88 put fl = 1 - e + 2 e2. Assume 0 <_ h <- 1. Then: 
1) I~(F + (M, e, b/h)) <-_ fll~(b), 2) #(F-  (M, e, b/h)) <= fl#(b). 

Remark. The constant fi does not depend on M, b, h; use of this will be made 
later. 

Proof. We split the proof into three steps, S1-$3, the first of which is rather 
routine and hence kept short. 

$1. Assume c o r M  o, let L > m > 0  be integers. We say that W~(m,m/o~) occurs 
positively at p in W~(L,m/co) if there is an integer 1 with m<_l<M such that: 
1) p+l<=L, 2) W~(m,m/co) occurs at p in W~(L,m/co), 3) g~(l,m/h/co_p~)-E(~/h~) 
(co)>e, 4) W~(m,m/co) (= W~(m,m/co p,)) occurs at least me -2 many times in 
the part W~(l, m/cop,) of VV~(L,m/co). We call the occurrence in question nega- 
tive if 1), 2), 4) remain true while 3) is replaced by 3*) E(~m/h~)(co)-g~ 
(l, m/h/co_ p~) > a. Now let A + (L, m/h/co) (resp. A -  (L, m/h/co)) be the number of 
positive (resp. negative) occurrences of W~(m,m/co) in W~(L,m/co); let, as in w 
D,(L, m/co) be the number of occurrences of Wdm, re~co) in W~(L, re~co). Finally put 
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Q-(L, m/h/co) = A • (L, m/h/co) D,(L, re~co)- 1. It then follows from a standard ap- 
plication of the ergodic theorem that there is a set M I_~M o with ~(M1)= 1 
such that COEM 1 implies: I) lira Q+(L,m/h/co)=#(F+(M,e,b/h))l~(b) -1, II)lira 

L L 

Q-(L, m/h/co) = #(F-(M, ~, b/h)) #(b)~ ~ (#(b) # 0 since co~Mo). In order to prove 
the lemma we take an arbitrary but fixed r  1 and try to estimate 
Q • (L, m/h/o). We thereby treat clauses 1), 2) of the lemma separately. 

$2. In order to prove 1) we fix a fi > 0. According to $1 and Lemma 4 there 
is an L o such that L > L o im plies: ~) t Q. + (L, m/h/co) - g(F + (M, ~, b/h)) ~ (b) - 11 < 6, 
fl) tg~(L,m/h/co)-E(~h~)(co)j <& We take an L > L  o arbitrary but fixed. We 
now proceed as in [Or] and split the word ~ ( L ,  re~co) into blocks S 1 . . . .  , S N as 
follows. A block Sj is determined by integers pj, t j>0 such that: 

1) pj + I i < p~ + i for j < N, 2) VV~ (m, re~m) occurs positively a t  p~ in W~ (L, re~e)) 
with pj, Ij satisfying 1)-4) in $1, 3) P~+I is the first integer p>p~+l~ such that 
W~(m,m/co) occurs positively at p in W~(L,m/co), 4) p~ is the first integer p > 0  
such that W~(m,m/co) occurs positively at p in W~(L, re~o)), 5) there is no P>PN 
+ l  N such that W~(m,m/co) occurs positively at p in W~(L, rn/co). With each 
block Sj we associate the numbers: a) Aj=Z~(tj,m/h/copj~) (with Z~ as in w 2), 
b) D~=number of p's with pj=p, p+rn<pj+lj  such that W~(m,m/co) occurs at 
p in WdL, m/co), c) Bj=number  of p's with p~<p, p+m<=pj+l~ such that 
W~(m, re~co) occurs positively at p in W~(L, re~o). We also set: d) DL=D~(L, re~co) 
(with D~ as in w 2). We now proceed to the bookkeeping. By fi) at the beginning 
of $2 we have: i) g~(L, rn/h/o))<E(~/h,)(co)+fi. Now g~(L,m/h/co)=Z~ 
(L, m/h/o) V L 1. Since 0 _< h _< 1 we also have ~ A j  < Z~(L, m/h/co), which implies 
ii) (~A~)DLt<E(B~/h,)(co)+g). Now let rnj be the number of p such that: *) 
pj<=! ;pj+t j<p+m, **) W~(m,m/m) occurs positively at p. Evidently m~<_m 
and (Bj+rn~)=A+(L,m/h/co)=Total number of positive occurrences. Thus: 
iii) Q + (L, m/h/o)) = ~ (B~ + m j) DL ~ <= (~ A j) DE 1 sup (Bj + rn~) A f  t. According to 
the definition of positive occurrence we have: J 

iv) A~>=(E(~3~/h~)(co)+~)Dj. Since D~>Bj and V~>_me-2>m~a -2, this 
yields" v) sup (B~ + rn~) A f  z __< (1 + ~ )  (E(~3~/h~) (co) + c~)- ~. By combining ii), iii), v) 

with c~) at the beginning of $2 we find: 
vi) tt(F + (M, ~z, b/h)) #(b)- ~ - ,5 <= (E(~B~/h~)(co) + ~)(1 + :r + ~)- 1. 

Since ~ >0  was arbitrary and 0 <=E(~B~/h~)(co)=< 1 this implies: 
vii) #(F+(M,a, b/h))lz(b) -~ =<(1 +a2)(1 +a)-~ = 1 - ~ + 2 : t  2. Thus 1) of the 

lemma holds. 

$3. It remains to prove clause 2) of the lemma. To start with, we take as in 
$2 a 6 > 0  and an L o such that L>=L o implies: 

~) IQ -(L, m/h/co)- tt(F-(M, :t, b/h)) #(b)-l[ <= 6, 

fi) [g~(L, m/h/co)- E(~3~h~) (co)l ~ ~. 

An L > L  o is kept fixed. Next we split the word W~(L,m/co) into blocks 
$1 . . . .  , Ss in the same way as in step $2. Each block S~ is described by integers 
p~, /~=>0, which satisfy a list of clauses 1')-5') which are the same as 1)-5) in 
step $2 with the following exceptions: the term "occurs positively" is replaced 
by "occurs negatively" and the numbers p~, I~ are required to satisfy 1), 2), 3*), 
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4) in step $1. The bookkeeping which we apply to W~(L, re~co) now deviates in 
minor respects from that in $2. The numbers A j, Dj, D L introduced in $2 
retain their meaning, while Bj is now the number of p with pj<p, p +m <p j+ lj 
such that W~(m, re~co) occurs negatively at p in W~(L, re~co). In order to arrive 
at a first inequality, let Ej be the set of p with pj<p, p+m<pj+lj  such that 
W~(m, m/co) occurs at p. Let S be the set of p > 0 such that W~(m, re~co) occurs at 
p and such that p does not satisfy an inequality p j+ 1 <p, p +m<pj+ lj. Evi- 
dently Sc~Ej contains at most pj, and if W~(mkm/co) occurrs at p then 
p~S~ ~j E~. Now put CL=~h(co (v-~)~), pcS and CL=number of elements in 

J 

S. Since Dj is the number of elements in Ej, this implies: CL+~(D j -  1)<D L. 
Since 0<h_<l  we also have CL<C'L, which implies: a) (~Dj)DLI__<I 
+ ( ~  1 ) D / t -  CLDL ~. On the other hand, CI. is evidently related to the num- 

J 
bers Aj according to: b) Cc+~Aj=Z~(L,m/h/co ). From clause /3) at the be- 
ginning of this step we find g~(L,m/h/co)>=E03~/h~)(co)-6. Since g~(L,m/h/co) 
=Z~(L,m/h/co)DL -1 we infer from this and b): c) CcOFX>E(~h,)(co)-6 
-(~Aj) DL 1. On the other hand, according to the definition of S j-block (claus- 
es 1')-5') above) and the notion of negative occurrence we also have 
g~(lj, m/h/co _.p~) < E(~/h~) (co)- ~, which implies: d) Aj < (E(fg~/h~) (co)- cQ D ~. By 
combining c) with d) we get: e) CLDLl>(E(~/h~)(co)--b)-(E(~3~/h~)(co) 
--c O(~Dj)DL 1. By combining a) with e) and observing that ~ 1 = N  is the 
number of blocks, we obtain: J 

f) (1 -- (E03,yh~) (co)- e)) (~  D~) D 2 < 1 + NDL ~ - (E(~,]h~) (co)-,5). 

Now D~>=m c~ '-a according to the definition of blocks and negative occurrence, 
thus ~D3=> N m c~-2 and therefore NDL I <= N(~ D j)-i <m-1 c~2__< c~2 follows. 
From this, and since ~ B j N  ~Dj,  we infer from f): 

g) (~  Sj) D~ 1 < (1 - E(~h~)  (co) + 6 + ~2) ( 1 -  (E(~h~) (co)- cQ) -1 

As in step $2, the total number of negative occurrences A-(L,m/h/co) is equal 
to ~,(Bj+mj) for some mj with O<mj<m. On the other hand, since 
Dj>=m c~ -2 ~mj~ -2 according to the definition of negative occurrence, we have 
(~rnj) DE ~ <= (~mj) (~Dj)-~ < c~ 2. Finally, by clause a) at the beginning of this 
step we also have #(F-(M, ~, b/h)) #(b)- 1 _ (3 < ~(Bj + m j) D L i By combining 
these facts with inequality g) and by taking care of the fact that ~ >0  was 
arbitrary, we obtain: 

h) #(F-(M, ~, b/h)) #(b) -~ 
< (1 - E(fB~/h~) (co) + c~ 2) (1 + c~ - E(~/h~) (o9)) -~ 4- ~2. 

Now c~<E(~/h~)(co)<l,  since we are concerned with negative occurrences, 
and since 0 < h < l .  Using these facts and the condition 0 < ~ < � 8 8  imposed on 
by the lemma, one easily recognizes that the right hand side of inequality h) is 
always ____ 1 -  c~ + 2e ;. This proves clause 2) and hence the whole lemma. [] 

Evidently F+(M, c~, b/h)~_F+(M+ 1,c~,b/h) and likewise with F- .  Since /3 in 
lemma does not depend on M we get the 
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Corollary. If  0 < ~ <= �88 then #(U F • (M, ~, b/h)) <= fl /~(b), with fl = 1 - ~ + 2a 2. 
M 

Notation. We put F+(~, b/h)= ~ F+(M, ~, b/h), r-(~, b/h)= ~ F-(M, a, b/h). 

We now come to the counterpart of Lemma 3 in I-Or]. In order to for- 
mulate it we need 

Definition 7. We denote by S+(N, K, a/h) (resp. S-(N,K,~/h)) the set of ~o~Mo 
with the property: there is an L > K  such that L is (N, K, a) +-bad (resp. 
(N, K, a ) - b a d )  with respect to m, h. 

Prior to state Lemma 9, we recall that ~ ( f " )  is the smallest Borel field with 
respect to which f "  is measurable; fm is thereby the function associated with f 
according to d), e), f) in w 1, Chapt. I. We then have 

Lemma9.  Let h~L2(~,#) and the integer too>0 satisfy: a) 0_<h_<l, b) h is 
~3 (fm~ Assume K >= m o and 0 < a < �88 Then: 

a) #(S+(N, K, ~/h))<fl N, b) #(S-(N, K, a/h))~fl N, where fl= 1 - a + 2 ~  2. 

Proof. It suffices to discuss a); b) is treated in exactly the same way. Thus 
assume a) to hold for N; we prove a) for N +  1. We proceed in three steps S1- 
$3. 

$I. We start with an observation. Let ~9 be ~B(fM)-measurable for some M, 
and let co, co' belong to the same atom from ~3~. Then one easily verifies: 1) 
qffo)~)=qffco'~) for all ieI~. Next consider an co~S+(N,K,e/h). By definition of 
S + there is an L > K  such that L is (N, K, a)+-bad with respect to co and h. 
With co we associate its canonical sequence n o, ..., n N (K = n  o, nNNL) accord- 
ing to Lemma 7 and Definition 5. Let b(co) be the atom from ~ which con- 
tains co. We claim: 2) if co'eMoc~b(co) then co'eS+(N,K,c~/h) and b(co)=b(co'). 
In order to see this we first note that h and fP are ~(f"~')-measurable, pro- 
vided p<=n N. By Remark 1) this implies h(coi)=h(co'i) and fP(coi)=fP(co'~) for all 
ieI*,~ and p<n N. Now g~(l, p/h/co) and g,(/, p/h/co') depend only on h(col), fP(co~), 
t~I,~ and h(coi), f (~), t e I ~  respectively, provided p ~ l ~ n  N. Therefore 
g~(l,p/h/eg)=g~(I,p/h/d) for all l, p with K < p ~ l < n  N. From this fact however, 
clause 2) easily follows. 

$2. Next let J be the collection of atoms b ~  ~B~ of the form b=b(co) for 
M 

some ~o~S+(N,K,~/h); that is, b~J iff there is an co~S+(N,K,~/h) with as- 
sociated canonical sequence no, ..., nN such that b=b(co) is the atom from ~3 ~ r/N 

containing co. From 2) in S1 we infer: 3) two atoms b,b'~J are either disjoint 
or coincide, 4) Mo~(~b)=S+(N,K,a /h) .  Since #(M0)=l ,  3), 4) imply: 5) 

J 

g(U b)= ~ I~(b)=t~(S+(N, K, a/h)). Now assume b~J, say b ~  for some m. Let 
J J 

C(b) be the set of co~b such that: a) there is an l>m such that g~(1,m/h/co) 
-E(~Uh~)(o)>7, b) W~(m,m/co) occurs at least m~ -2 often in W~(I,m/co). Ac- 
cording to the last lemma we have: 6) #(C(b))<fl#(b), # = 1 - ~ + 2 ~  z. 
Moreover, if b ~ b' (b, b' ~J) then C(b) c~ C(b') = 0. Thus: 7) 
#((_) C(b))<=(~ #(b)) fl<=fl t~(S+(N, K, a/h)). 

J J 
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$3. By 7) the induction step from N to N +  1 is accomplished if we can 
show: *) S+(N+ 1, K, a/h)~_ U C(b). Thus take an coeS+(N + 1, K, a/h) and let 

J 
n o, ..., n N, nN+ 1 be its canonical sequence with respect to N +  1, K, a; n o . . . .  , n N 
is then the canonical sequence of co with respect to N, K, a according to Lem- 
ma 7 and Definition 5. But this implies coeb and bed for some b e $ , ~  and in 
addition: 8) coeC(b). This proves *) and thus the induction step. Since the 
induction basis N = I  is treated in exactly the same way, the lemma 
follows. []  

We now come to the main result, which contains Theorem 2 as a corollary. 

Theorem 3. Let h a L 2 (t2, #) be bounded, say - A <_ h <- B, where A > 0, B > O. As- 
sume that there is a sequence hmeL2(f2,1~), r e = l , 2 ,  ..., such that: 1) h m is $(fm)- 
measurable, 2) - A < h m < B ,  3) l imsuplh,~(~)-h(~)f=0. Then lim2[(f,h/co) 
=E(~_/h~) (co)for almost all co. ~ ~ L 

Proof. Without loss of generality we assume B=> 1. We proceed in three steps. 

$1. Let O<a< �88  be given. We introduce the functions h'=(A+B)-I(h+A),  
! - 1  t hm=(A+B ) (h~+A) whichhavetheproper t ies:a)O<h'<l ,b)O=<h'<l ,c)h  m 

is ~B(fm)-measurable, d) lira sup f h ' (4) -  h~(~)l = O. According to the last lemma, 

#(S+(m,m,e/h'~))<=fl m, where f l = l - a + 2 c d .  Therefore # S+(m,m,a/h" 
ttl 

__<flN(l-fl). \Thus # ( (~  ~) S+(m,m,c~/h'~))=O. Likewise, # ( (~ ~) 
N = I  m = N  N = I  m = N  

S-(m, 7/h'~)) =0. Now let S be the set m, 
r 

{ ~ ~ S+(m,m,(2k)-l/h~) L; ~ U S-(m,m,(2k)-l/h'~)} . 
/r N=I m=N N=I m=N 

Evidently, #(S)=O. The theorem is proved if we can show: I) if 2}~(f, h/co), L 
= 1, 2 . . . .  does not converge against E(!13~_/h~)(co) for an coeMo, then coeS. 

$2. Before proceeding to the proof of I) we need two properties of the 
notion of 2-badness (Definition 4). In order to state the first, let ~o, 0eL2(I2, #) 
with 0<q~,O__<l be arbitrary but fixed for the moment. For memo we then 
have: 

1) IE(~3~./c,o~)(co)-g(~3~./G)(co)l<suplO(~)-cp(~)l for all m>0.  This in- 

equality follows immediately from our representation of E(~B~/q)~); E(~/~k~) 
given in w of this chapter and the fact that #(a~,(co))+0 for coeM o. In the 
same way we infer from the definition of g~: 2) [g~(l,p/~o/co) 
-g~(l,p/O/co)l<suplcp(~)-O(r Now assume a>0 ,  supl~o(~)-0(~)l__<e and 

- 2 e > � 8 9  From 1), 2) and the definition of 2-badness (Definition4) one easily 
infers the first property: 3) if L is 2 - (N ,K,e ) :~ -bad  with respect to co, ~o and 
the sequence no, . . . ,n  N then L is �88189 with respect to co, ~ and 
the same sequence. In order to state the second property, assume that for some 
2>1 ,  L is 2 - (N, K, a) +-bad with respect to coeMo, h and the sequence 
n o . . . .  , n N. Thus g~(nj, m/h/co)- E(!B~/h~) (co) > a for n o <_ m <= n j_ 1, J = 1 . . . . .  N. A 
straightforward calculation based on the definition of g, and the fact that (A 
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+ B) h' - A = h then yields the inequality: 

4) g~(n~, m/h'/co)- E(~B~/h'~) (co) > (A + B)-I (~_ AD~ (n j, re~o)-1). 

Now D~(nj,rn/co) is the number of occurrences of W~(m,m/co) in W~(nj, m/co) 
which is by assumption >__2nj_ I ~ - z > K  ~-2. We thus find: 

5) g~(nj, m/h'/co) - E ( ~ h ; )  (co) > (A + B) -1 (c~- A ~2 g -1). 

From 5) and the definition of 2-badness we now immediately infer the second 
property: 6 ) i f  c~-Ac~2K-l>�89 then L is �88189 - 
bad with respect to co, h' and no, . . . ,n  N. The situation is simpler if L is 2 
- (N, K, c~) - b a d  with respect to h. Without assumption on K we find: 6*) L is 
2(A + B) - 2 -  (N, K, c~(A +B) -1) _-bad with respect to co, h' and no, . . . ,  n N. 

$3. We now come to the proof of I) in S1. Let coeM o and assume that 
2}.(f, h/co), L = 1, 2,. . .  does not converge to E(~_/h~) (co). By Lemma 6 there is a 
sequence Lj, Nj, j = l , 2  . . . .  with Nj<Nj+I,  L~<Lj+ 1 and an c~>0 such that ei- 
ther L~ is 64(A + B) 2 -  (Nj, N~, ~)+-bad with respect to co, h for j = 1, 2,. . .  or else 
Lj is 64(A+B)2-(Nj, Nj, cO-bad with respect to co, h for j = l , 2 , . . . .  Let e.g. 
the first be the case. According to 6) in $2 there is a Jo with the property: 7) if 
J>Jo then Lj is 16-(Nj, N~,�89 with respect to h',co. Now let 
k__>4 be so large that k -~ >�89 -1 > ( k +  1) -~. Since (k+ 1) -1 >�88 +B) -1 
we infer from 7): 

8) i f j > j o  then L~ is 4-(N~, Nj, (k+ 1)-~)+-bad with respect to co, h'. 

Now let e>0  satisfy (k+ l )  - 1 - 2 e > � 8 9  let jl>Jo be so large that J>=Jl 
implies sup ]h}j(~)-h'(~)l <~. From 3) in $2 and 8) we infer: 

9) i f j>j l  then Lj is (Nj, Nj, �89 + 1)-a)+-bad with respect to co, h' N i" 

But this implies coeS+(Nj, Nj,�89 ~,h'N) for j > j l  and thus coeS. The argu- 
ment in case of (Nj, N~, c0-badness is exactly the same. Thus I) in S1 is proved, 
whence the theorem follows. [] 

We now come to the 

Proof of Theorem 2. Assume Ifl __<K almost everywhere for some K. Thus there 
is an integer N > 0  so large that - N < f < N  almost everywhere. Put h(co) 
=f(co) if -N<f (co )<N,  h ( c o ) = - N  if f ( c o ) < - g ,  h(co)=g if f ( co )>g .  It is 
not difficult to find a list of functions hm, r n = l , 2 , . . ,  which are ~( f~) -  
measurable, satisfy - N < h ~ < N  and such that l imsuplh(~)-hm(~)[=0. By 

m r 

Theorem 3 we then have lim ;~}~(f, h/co)=E(~_/f~)(co) for almost all co. On the 
L 

other hand there is a set E__f2 with # (E)=I  such that h(co~)=f(co~) for all 
i ~  I~t, provided coeE. Since 2~(f,h/co) and 2~(f,f/co) depend only on h(col), 

M 

f(coi), ie~) I~u, they coincide on E, whence the theorem follows. [] 
M 

w 5. Ergodic Decomposition 

Theorem 3 has been proved under the assumption that the underlying flows is 
ergodic. However, as has been pointed out in w the nonergodic case can 
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easily be reduced to the ergodic case by means  of an ergodic decompos i t ion  
a rgument  which proceeds along similar lines to the decompos i t ion  a rgument  
used in [Sc]. We indicate briefly this argument .  Let  h~L2(f2,#  ) satisfy the con- 
ditions of T h e o r e m  3, let z > 0  be noncri t ical  and let E be the set of  ~'s such 
that  lim 2}~(f, h/~)=E(~/h~)(4). Since z is noncri t ical  and according to the re- 

L 
sults obta ined  in Chap.  I one finds a set E o with # ( E o ) = l  such that  co~E o 
implies: 1) the discrete system (f2, ~3, S~, #o) is ergodic, 2) E~(f~/h~) (~)=E(~/h~) 
(~) for #~-a lmost  all 4. To  the discrete system ((2, ~3, S~,#~o) we can apply  
Theo rem 3 and infer: 3 ) l im2~( f , h /~ )=Eo~( f~ /h~ ) (~ )  for #~-almost  all 4. This 

L 

implies # o ( E ) =  1 for coeE0, and thus # ( E ) =  1, since # (Eo )=  1. However ,  this is 
precisely T h e o r e m  3 for an arbi t rary  flow (f2, ~, S, t~R, #). The corollaries then 
follow as before. 

w 6. Open Questions 

There  are quite a number  of  pa ramete rs  associated with s ta t ionary  processes, 
such as spectrum, en t ropy etc. If one wants to compute  any of these entities 
with the aid of  the past  f(~ot), t < 0 of  a single t ra jectory one is immedia te ly  led 
to the evaluat ion of i terated double, triple or even higher limits. The  quest ion 
arises if there are a lgor i thms which replace these i terated limits by a single 
limit in a similar way as we have done in this chapter  for the compu ta t ion  of 
the condit ional  expectat ion,  following the line of [Or] .  Fo r  some of these pa- 
rameters ,  in par t icular  for the entropy,  an aff irmative answer has been given by 
D.H.  Bailey ([-Ba]) under  the proviso that  the process in quest ion is a discrete 
t ime process whose range consists of  finitely m a n y  values. Fo r  the en t ropy  of a 
cont inuous  t ime process with arb i t ra ry  range, as in t roduced [Sc] (Definit ion 2, 
w 5) the quest ion still remains  open;  and for a large class of  o ther  pa ramete rs  
(eg. those related to the spectrum) the question is open even for discrete t ime 
processes with finite range. 
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