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The low-dimensional model described in this paper displays an intermittent phenomenon with ejection and 
sweep phases that strongly resemble the bursting phenomenon observed in the boundary layer. The 
probabili ty distribution of interburst times has the observed shape [6] - [8] ,  [2]. However, we now 
recognize that the bursting period predicted by the model is much longer than the bursting period observed 
in the boundary  layer. Note  that a factor of [L1L3] 1/2 was omitted from the left-hand side of the equation 
in Appendix A of [1], which had the accidental result of making the bursting periods comparable with 
observation; this was corrected in [5], although its full implications were realized only recently. The same 
factor (333 for the specific case considered) was also omitted in the calculations described in this paper; 
hence, all of the times noted on the time history figure abscissas are in error by this factor. The amplitudes of 
the a's (and therefore the statistics such as the Reynolds stresses, the two-point correlations, etc., together 
with the phase portraits) remain quantitatively correct. 

A similar slow cycle has also been observed in direct numerical simulations of a minimal flow unit [3]. 
We believe that this results from the fact that, in the low-dimensional model, the same coherent structure is 
followed; this is also true in the minimal flow unit. In the real boundary layer, a succession of statistically 
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independent coherent structures is observed. In effect, a single coherent structure bursts relatively 
infrequently, but when a succession of such is convected past the observation point, bursting is observed 
much more often. A simple statistical model of this situation restores the magnitude of the observed 
bursting period, although there is a great deal of flexibility in the various parameters involved. For a fuller 
discussion, see [-4]. 
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